7df1aa4d34314a037cdb05407b378788aa76146f
[vlc.git] / src / input / input_clock.c
1 /*****************************************************************************
2  * input_clock.c: Clock/System date convertions, stream management
3  *****************************************************************************
4  * Copyright (C) 1999-2001 VideoLAN
5  * $Id: input_clock.c,v 1.37 2003/05/22 16:01:02 gbazin Exp $
6  *
7  * Authors: Christophe Massiot <massiot@via.ecp.fr>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  * 
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program; if not, write to the Free Software
21  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111, USA.
22  *****************************************************************************/
23
24 /*****************************************************************************
25  * Preamble
26  *****************************************************************************/
27 #include <string.h>                                    /* memcpy(), memset() */
28
29 #include <vlc/vlc.h>
30
31 #include "stream_control.h"
32 #include "input_ext-intf.h"
33 #include "input_ext-dec.h"
34 #include "input_ext-plugins.h"
35
36 /*
37  * DISCUSSION : SYNCHRONIZATION METHOD
38  *
39  * In some cases we can impose the pace of reading (when reading from a
40  * file or a pipe), and for the synchronization we simply sleep() until
41  * it is time to deliver the packet to the decoders. When reading from
42  * the network, we must be read at the same pace as the server writes,
43  * otherwise the kernel's buffer will trash packets. The risk is now to
44  * overflow the input buffers in case the server goes too fast, that is
45  * why we do these calculations :
46  *
47  * We compute a mean for the pcr because we want to eliminate the
48  * network jitter and keep the low frequency variations. The mean is
49  * in fact a low pass filter and the jitter is a high frequency signal
50  * that is why it is eliminated by the filter/average.
51  *
52  * The low frequency variations enable us to synchronize the client clock
53  * with the server clock because they represent the time variation between
54  * the 2 clocks. Those variations (ie the filtered pcr) are used to compute
55  * the presentation dates for the audio and video frames. With those dates
56  * we can decode (or trash) the MPEG2 stream at "exactly" the same rate
57  * as it is sent by the server and so we keep the synchronization between
58  * the server and the client.
59  *
60  * It is a very important matter if you want to avoid underflow or overflow
61  * in all the FIFOs, but it may be not enough.
62  */
63
64 /*****************************************************************************
65  * Constants
66  *****************************************************************************/
67
68 /* Maximum number of samples used to compute the dynamic average value.
69  * We use the following formula :
70  * new_average = (old_average * c_average + new_sample_value) / (c_average +1)
71  */
72 #define CR_MAX_AVERAGE_COUNTER 40
73
74 /* Maximum gap allowed between two CRs. */
75 #define CR_MAX_GAP 1000000
76
77 /*****************************************************************************
78  * ClockToSysdate: converts a movie clock to system date
79  *****************************************************************************/
80 static mtime_t ClockToSysdate( input_thread_t * p_input,
81                                pgrm_descriptor_t * p_pgrm, mtime_t i_clock )
82 {
83     mtime_t     i_sysdate = 0;
84
85     if( p_pgrm->i_synchro_state == SYNCHRO_OK )
86     {
87         i_sysdate = (mtime_t)(i_clock - p_pgrm->cr_ref) 
88                         * (mtime_t)p_input->stream.control.i_rate
89                         * (mtime_t)300;
90         i_sysdate /= 27;
91         i_sysdate /= 1000;
92         i_sysdate += (mtime_t)p_pgrm->sysdate_ref;
93     }
94
95     return( i_sysdate );
96 }
97
98 /*****************************************************************************
99  * ClockCurrent: converts current system date to clock units
100  *****************************************************************************
101  * Caution : the synchro state must be SYNCHRO_OK for this to operate.
102  *****************************************************************************/
103 static mtime_t ClockCurrent( input_thread_t * p_input,
104                              pgrm_descriptor_t * p_pgrm )
105 {
106     return( (mdate() - p_pgrm->sysdate_ref) * 27 * DEFAULT_RATE
107              / p_input->stream.control.i_rate / 300
108              + p_pgrm->cr_ref );
109 }
110
111 /*****************************************************************************
112  * ClockNewRef: writes a new clock reference
113  *****************************************************************************/
114 static void ClockNewRef( pgrm_descriptor_t * p_pgrm,
115                          mtime_t i_clock, mtime_t i_sysdate )
116 {
117     p_pgrm->cr_ref = i_clock;
118     /* this is actually a kludge, but it gives better results when scr
119     * is zero in DVDs: we are 3-4 ms in advance instead of sometimes
120     * 100ms late  */
121     p_pgrm->sysdate_ref = ( p_pgrm->last_syscr && !i_clock )
122                           ? p_pgrm->last_syscr
123                           : i_sysdate ;
124 }
125
126 /*****************************************************************************
127  * input_ClockInit: reinitializes the clock reference after a stream
128  *                  discontinuity
129  *****************************************************************************/
130 void input_ClockInit( pgrm_descriptor_t * p_pgrm )
131 {
132     p_pgrm->last_cr = 0;
133     p_pgrm->last_syscr = 0;
134     p_pgrm->cr_ref = 0;
135     p_pgrm->sysdate_ref = 0;
136     p_pgrm->delta_cr = 0;
137     p_pgrm->c_average_count = 0;
138 }
139
140 /*****************************************************************************
141  * input_ClockManageControl: handles the messages from the interface
142  *****************************************************************************
143  * Returns UNDEF_S if nothing happened, PAUSE_S if the stream was paused
144  *****************************************************************************/
145 int input_ClockManageControl( input_thread_t * p_input,
146                                pgrm_descriptor_t * p_pgrm, mtime_t i_clock )
147 {
148     int i_return_value = UNDEF_S;
149
150     vlc_mutex_lock( &p_input->stream.stream_lock );
151
152     if( p_input->stream.i_new_status == PAUSE_S )
153     {
154         int i_old_status;
155
156         vlc_mutex_lock( &p_input->stream.control.control_lock );
157         i_old_status = p_input->stream.control.i_status;
158         p_input->stream.control.i_status = PAUSE_S;
159         vlc_mutex_unlock( &p_input->stream.control.control_lock );
160
161         vlc_cond_wait( &p_input->stream.stream_wait,
162                        &p_input->stream.stream_lock );
163         p_pgrm->last_syscr = 0;
164         ClockNewRef( p_pgrm, i_clock, mdate() );
165
166         if( p_input->stream.i_new_status == PAUSE_S )
167         {
168             /* PAUSE_S undoes the pause state: Return to old state. */
169             vlc_mutex_lock( &p_input->stream.control.control_lock );
170             p_input->stream.control.i_status = i_old_status;
171             vlc_mutex_unlock( &p_input->stream.control.control_lock );
172
173             p_input->stream.i_new_status = UNDEF_S;
174             p_input->stream.i_new_rate = UNDEF_S;
175         }
176
177         /* We handle i_new_status != PAUSE_S below... */
178
179         i_return_value = PAUSE_S;
180     }
181
182     if( p_input->stream.i_new_status != UNDEF_S )
183     {
184         vlc_mutex_lock( &p_input->stream.control.control_lock );
185
186         p_input->stream.control.i_status = p_input->stream.i_new_status;
187
188         ClockNewRef( p_pgrm, i_clock,
189                      ClockToSysdate( p_input, p_pgrm, i_clock ) );
190
191         if( p_input->stream.control.i_status == PLAYING_S )
192         {
193             p_input->stream.control.i_rate = DEFAULT_RATE;
194             p_input->stream.control.b_mute = 0;
195         }
196         else
197         {
198             p_input->stream.control.i_rate = p_input->stream.i_new_rate;
199             p_input->stream.control.b_mute = 1;
200
201             /* Feed the audio decoders with a NULL packet to avoid
202              * discontinuities. */
203             input_EscapeAudioDiscontinuity( p_input );
204         }
205
206         p_input->stream.i_new_status = UNDEF_S;
207         p_input->stream.i_new_rate = UNDEF_S;
208
209         vlc_mutex_unlock( &p_input->stream.control.control_lock );
210     }
211
212     vlc_mutex_unlock( &p_input->stream.stream_lock );
213
214     return( i_return_value );
215 }
216
217 /*****************************************************************************
218  * input_ClockManageRef: manages a clock reference
219  *****************************************************************************/
220 void input_ClockManageRef( input_thread_t * p_input,
221                            pgrm_descriptor_t * p_pgrm, mtime_t i_clock )
222 {
223     /* take selected program if none specified */
224     if( !p_pgrm )
225     {
226         p_pgrm = p_input->stream.p_selected_program;
227     }
228
229     if( ( p_pgrm->i_synchro_state != SYNCHRO_OK ) || ( i_clock == 0 ) )
230     {
231         /* Feed synchro with a new reference point. */
232         ClockNewRef( p_pgrm, i_clock, mdate() );
233         p_pgrm->i_synchro_state = SYNCHRO_OK;
234
235         if( p_input->stream.b_pace_control
236              && p_input->stream.p_selected_program == p_pgrm )
237         {
238             p_pgrm->last_cr = i_clock;
239             mwait( ClockToSysdate( p_input, p_pgrm, i_clock ) );
240         }
241         else
242         {
243             p_pgrm->last_cr = 0;
244             p_pgrm->last_syscr = 0;
245             p_pgrm->delta_cr = 0;
246             p_pgrm->c_average_count = 0;
247         }
248     }
249     else
250     {
251         if ( p_pgrm->last_cr != 0 &&
252                (    (p_pgrm->last_cr - i_clock) > CR_MAX_GAP
253                  || (p_pgrm->last_cr - i_clock) < - CR_MAX_GAP ) )
254         {
255             /* Stream discontinuity, for which we haven't received a
256              * warning from the stream control facilities (dd-edited
257              * stream ?). */
258             msg_Warn( p_input, "clock gap, unexpected stream discontinuity" );
259             input_ClockInit( p_pgrm );
260             p_pgrm->i_synchro_state = SYNCHRO_START;
261             input_EscapeDiscontinuity( p_input );
262         }
263
264         p_pgrm->last_cr = i_clock;
265
266         if( p_input->stream.b_pace_control
267              && p_input->stream.p_selected_program == p_pgrm )
268         {
269             /* We remember the last system date to be able to restart
270              * the synchro we statistically better continuity, after 
271              * a zero scr */
272             p_pgrm->last_syscr = ClockToSysdate( p_input, p_pgrm, i_clock );
273             
274             /* Wait a while before delivering the packets to the decoder.
275              * In case of multiple programs, we arbitrarily follow the
276              * clock of the first program. */
277             mwait( p_pgrm->last_syscr );
278
279             /* Now take into account interface changes. */
280             input_ClockManageControl( p_input, p_pgrm, i_clock );
281         }
282         else
283         {
284             /* Smooth clock reference variations. */
285             mtime_t     i_extrapoled_clock = ClockCurrent( p_input, p_pgrm );
286
287             /* Bresenham algorithm to smooth variations. */
288             if( p_pgrm->c_average_count == CR_MAX_AVERAGE_COUNTER )
289             {
290                 p_pgrm->delta_cr = ( p_pgrm->delta_cr
291                                         * (CR_MAX_AVERAGE_COUNTER - 1)
292                                       + ( i_extrapoled_clock - i_clock ) )
293                                     / CR_MAX_AVERAGE_COUNTER;
294             }
295             else
296             {
297                 p_pgrm->delta_cr = ( p_pgrm->delta_cr
298                                         * p_pgrm->c_average_count
299                                       + ( i_extrapoled_clock - i_clock ) )
300                                     / (p_pgrm->c_average_count + 1);
301                 p_pgrm->c_average_count++;
302             }
303         }
304     }
305 }
306
307 /*****************************************************************************
308  * input_ClockGetTS: manages a PTS or DTS
309  *****************************************************************************/
310 mtime_t input_ClockGetTS( input_thread_t * p_input,
311                           pgrm_descriptor_t * p_pgrm, mtime_t i_ts )
312 {
313     /* take selected program if none specified */
314     if( !p_pgrm )
315     {
316         p_pgrm = p_input->stream.p_selected_program;
317     }
318
319     if( p_pgrm->i_synchro_state == SYNCHRO_OK )
320     {
321         return( ClockToSysdate( p_input, p_pgrm, i_ts + p_pgrm->delta_cr )
322                  + p_input->i_pts_delay );
323     }
324     else
325     {
326         return 0;
327     }
328 }
329