2 * VC-1 and WMV3 decoder
3 * Copyright (c) 2011 Mashiat Sarker Shakkhar
4 * Copyright (c) 2006-2007 Konstantin Shishkov
5 * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
7 * This file is part of FFmpeg.
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
26 * VC-1 and WMV3 decoder
32 #include "mpegvideo.h"
34 #include "h264chroma.h"
37 #include "vc1acdata.h"
38 #include "msmpeg4data.h"
41 #include "vdpau_internal.h"
42 #include "libavutil/avassert.h"
47 #define MB_INTRA_VLC_BITS 9
51 // offset tables for interlaced picture MVDATA decoding
52 static const int offset_table1[9] = { 0, 1, 2, 4, 8, 16, 32, 64, 128 };
53 static const int offset_table2[9] = { 0, 1, 3, 7, 15, 31, 63, 127, 255 };
55 /***********************************************************************/
57 * @name VC-1 Bitplane decoding
75 /** @} */ //imode defines
77 static void init_block_index(VC1Context *v)
79 MpegEncContext *s = &v->s;
80 ff_init_block_index(s);
81 if (v->field_mode && v->second_field) {
82 s->dest[0] += s->current_picture_ptr->f.linesize[0];
83 s->dest[1] += s->current_picture_ptr->f.linesize[1];
84 s->dest[2] += s->current_picture_ptr->f.linesize[2];
89 /** @} */ //Bitplane group
91 static void vc1_put_signed_blocks_clamped(VC1Context *v)
93 MpegEncContext *s = &v->s;
94 int topleft_mb_pos, top_mb_pos;
95 int stride_y, fieldtx = 0;
98 /* The put pixels loop is always one MB row behind the decoding loop,
99 * because we can only put pixels when overlap filtering is done, and
100 * for filtering of the bottom edge of a MB, we need the next MB row
102 * Within the row, the put pixels loop is also one MB col behind the
103 * decoding loop. The reason for this is again, because for filtering
104 * of the right MB edge, we need the next MB present. */
105 if (!s->first_slice_line) {
107 topleft_mb_pos = (s->mb_y - 1) * s->mb_stride + s->mb_x - 1;
108 if (v->fcm == ILACE_FRAME)
109 fieldtx = v->fieldtx_plane[topleft_mb_pos];
110 stride_y = s->linesize << fieldtx;
111 v_dist = (16 - fieldtx) >> (fieldtx == 0);
112 s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][0],
113 s->dest[0] - 16 * s->linesize - 16,
115 s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][1],
116 s->dest[0] - 16 * s->linesize - 8,
118 s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][2],
119 s->dest[0] - v_dist * s->linesize - 16,
121 s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][3],
122 s->dest[0] - v_dist * s->linesize - 8,
124 s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][4],
125 s->dest[1] - 8 * s->uvlinesize - 8,
127 s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][5],
128 s->dest[2] - 8 * s->uvlinesize - 8,
131 if (s->mb_x == s->mb_width - 1) {
132 top_mb_pos = (s->mb_y - 1) * s->mb_stride + s->mb_x;
133 if (v->fcm == ILACE_FRAME)
134 fieldtx = v->fieldtx_plane[top_mb_pos];
135 stride_y = s->linesize << fieldtx;
136 v_dist = fieldtx ? 15 : 8;
137 s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][0],
138 s->dest[0] - 16 * s->linesize,
140 s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][1],
141 s->dest[0] - 16 * s->linesize + 8,
143 s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][2],
144 s->dest[0] - v_dist * s->linesize,
146 s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][3],
147 s->dest[0] - v_dist * s->linesize + 8,
149 s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][4],
150 s->dest[1] - 8 * s->uvlinesize,
152 s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][5],
153 s->dest[2] - 8 * s->uvlinesize,
158 #define inc_blk_idx(idx) do { \
160 if (idx >= v->n_allocated_blks) \
164 inc_blk_idx(v->topleft_blk_idx);
165 inc_blk_idx(v->top_blk_idx);
166 inc_blk_idx(v->left_blk_idx);
167 inc_blk_idx(v->cur_blk_idx);
170 static void vc1_loop_filter_iblk(VC1Context *v, int pq)
172 MpegEncContext *s = &v->s;
174 if (!s->first_slice_line) {
175 v->vc1dsp.vc1_v_loop_filter16(s->dest[0], s->linesize, pq);
177 v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
178 v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize + 8, s->linesize, pq);
179 for (j = 0; j < 2; j++) {
180 v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1], s->uvlinesize, pq);
182 v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
185 v->vc1dsp.vc1_v_loop_filter16(s->dest[0] + 8 * s->linesize, s->linesize, pq);
187 if (s->mb_y == s->end_mb_y - 1) {
189 v->vc1dsp.vc1_h_loop_filter16(s->dest[0], s->linesize, pq);
190 v->vc1dsp.vc1_h_loop_filter8(s->dest[1], s->uvlinesize, pq);
191 v->vc1dsp.vc1_h_loop_filter8(s->dest[2], s->uvlinesize, pq);
193 v->vc1dsp.vc1_h_loop_filter16(s->dest[0] + 8, s->linesize, pq);
197 static void vc1_loop_filter_iblk_delayed(VC1Context *v, int pq)
199 MpegEncContext *s = &v->s;
202 /* The loopfilter runs 1 row and 1 column behind the overlap filter, which
203 * means it runs two rows/cols behind the decoding loop. */
204 if (!s->first_slice_line) {
206 if (s->mb_y >= s->start_mb_y + 2) {
207 v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 16 * s->linesize - 16, s->linesize, pq);
210 v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize - 16, s->linesize, pq);
211 v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize - 8, s->linesize, pq);
212 for (j = 0; j < 2; j++) {
213 v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize - 8, s->uvlinesize, pq);
215 v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 16 * s->uvlinesize - 8, s->uvlinesize, pq);
219 v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 8 * s->linesize - 16, s->linesize, pq);
222 if (s->mb_x == s->mb_width - 1) {
223 if (s->mb_y >= s->start_mb_y + 2) {
224 v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
227 v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize, s->linesize, pq);
228 v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize + 8, s->linesize, pq);
229 for (j = 0; j < 2; j++) {
230 v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
232 v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 16 * s->uvlinesize, s->uvlinesize, pq);
236 v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 8 * s->linesize, s->linesize, pq);
239 if (s->mb_y == s->end_mb_y) {
242 v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize - 16, s->linesize, pq);
243 v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize - 8, s->linesize, pq);
245 for (j = 0; j < 2; j++) {
246 v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize - 8, s->uvlinesize, pq);
251 if (s->mb_x == s->mb_width - 1) {
253 v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
254 v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize + 8, s->linesize, pq);
256 for (j = 0; j < 2; j++) {
257 v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
265 static void vc1_smooth_overlap_filter_iblk(VC1Context *v)
267 MpegEncContext *s = &v->s;
270 if (v->condover == CONDOVER_NONE)
273 mb_pos = s->mb_x + s->mb_y * s->mb_stride;
275 /* Within a MB, the horizontal overlap always runs before the vertical.
276 * To accomplish that, we run the H on left and internal borders of the
277 * currently decoded MB. Then, we wait for the next overlap iteration
278 * to do H overlap on the right edge of this MB, before moving over and
279 * running the V overlap. Therefore, the V overlap makes us trail by one
280 * MB col and the H overlap filter makes us trail by one MB row. This
281 * is reflected in the time at which we run the put_pixels loop. */
282 if (v->condover == CONDOVER_ALL || v->pq >= 9 || v->over_flags_plane[mb_pos]) {
283 if (s->mb_x && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
284 v->over_flags_plane[mb_pos - 1])) {
285 v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][1],
286 v->block[v->cur_blk_idx][0]);
287 v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][3],
288 v->block[v->cur_blk_idx][2]);
289 if (!(s->flags & CODEC_FLAG_GRAY)) {
290 v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][4],
291 v->block[v->cur_blk_idx][4]);
292 v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][5],
293 v->block[v->cur_blk_idx][5]);
296 v->vc1dsp.vc1_h_s_overlap(v->block[v->cur_blk_idx][0],
297 v->block[v->cur_blk_idx][1]);
298 v->vc1dsp.vc1_h_s_overlap(v->block[v->cur_blk_idx][2],
299 v->block[v->cur_blk_idx][3]);
301 if (s->mb_x == s->mb_width - 1) {
302 if (!s->first_slice_line && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
303 v->over_flags_plane[mb_pos - s->mb_stride])) {
304 v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][2],
305 v->block[v->cur_blk_idx][0]);
306 v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][3],
307 v->block[v->cur_blk_idx][1]);
308 if (!(s->flags & CODEC_FLAG_GRAY)) {
309 v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][4],
310 v->block[v->cur_blk_idx][4]);
311 v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][5],
312 v->block[v->cur_blk_idx][5]);
315 v->vc1dsp.vc1_v_s_overlap(v->block[v->cur_blk_idx][0],
316 v->block[v->cur_blk_idx][2]);
317 v->vc1dsp.vc1_v_s_overlap(v->block[v->cur_blk_idx][1],
318 v->block[v->cur_blk_idx][3]);
321 if (s->mb_x && (v->condover == CONDOVER_ALL || v->over_flags_plane[mb_pos - 1])) {
322 if (!s->first_slice_line && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
323 v->over_flags_plane[mb_pos - s->mb_stride - 1])) {
324 v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][2],
325 v->block[v->left_blk_idx][0]);
326 v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][3],
327 v->block[v->left_blk_idx][1]);
328 if (!(s->flags & CODEC_FLAG_GRAY)) {
329 v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][4],
330 v->block[v->left_blk_idx][4]);
331 v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][5],
332 v->block[v->left_blk_idx][5]);
335 v->vc1dsp.vc1_v_s_overlap(v->block[v->left_blk_idx][0],
336 v->block[v->left_blk_idx][2]);
337 v->vc1dsp.vc1_v_s_overlap(v->block[v->left_blk_idx][1],
338 v->block[v->left_blk_idx][3]);
342 /** Do motion compensation over 1 macroblock
343 * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
345 static void vc1_mc_1mv(VC1Context *v, int dir)
347 MpegEncContext *s = &v->s;
348 DSPContext *dsp = &v->s.dsp;
349 H264ChromaContext *h264chroma = &v->h264chroma;
350 uint8_t *srcY, *srcU, *srcV;
351 int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
353 int v_edge_pos = s->v_edge_pos >> v->field_mode;
355 if ((!v->field_mode ||
356 (v->ref_field_type[dir] == 1 && v->cur_field_type == 1)) &&
357 !v->s.last_picture.f.data[0])
360 mx = s->mv[dir][0][0];
361 my = s->mv[dir][0][1];
363 // store motion vectors for further use in B frames
364 if (s->pict_type == AV_PICTURE_TYPE_P) {
365 s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = mx;
366 s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = my;
369 uvmx = (mx + ((mx & 3) == 3)) >> 1;
370 uvmy = (my + ((my & 3) == 3)) >> 1;
371 v->luma_mv[s->mb_x][0] = uvmx;
372 v->luma_mv[s->mb_x][1] = uvmy;
375 v->cur_field_type != v->ref_field_type[dir]) {
376 my = my - 2 + 4 * v->cur_field_type;
377 uvmy = uvmy - 2 + 4 * v->cur_field_type;
380 // fastuvmc shall be ignored for interlaced frame picture
381 if (v->fastuvmc && (v->fcm != ILACE_FRAME)) {
382 uvmx = uvmx + ((uvmx < 0) ? (uvmx & 1) : -(uvmx & 1));
383 uvmy = uvmy + ((uvmy < 0) ? (uvmy & 1) : -(uvmy & 1));
385 if (v->field_mode) { // interlaced field picture
387 if ((v->cur_field_type != v->ref_field_type[dir]) && v->second_field) {
388 srcY = s->current_picture.f.data[0];
389 srcU = s->current_picture.f.data[1];
390 srcV = s->current_picture.f.data[2];
392 srcY = s->last_picture.f.data[0];
393 srcU = s->last_picture.f.data[1];
394 srcV = s->last_picture.f.data[2];
397 srcY = s->next_picture.f.data[0];
398 srcU = s->next_picture.f.data[1];
399 srcV = s->next_picture.f.data[2];
403 srcY = s->last_picture.f.data[0];
404 srcU = s->last_picture.f.data[1];
405 srcV = s->last_picture.f.data[2];
407 srcY = s->next_picture.f.data[0];
408 srcU = s->next_picture.f.data[1];
409 srcV = s->next_picture.f.data[2];
416 src_x = s->mb_x * 16 + (mx >> 2);
417 src_y = s->mb_y * 16 + (my >> 2);
418 uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
419 uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
421 if (v->profile != PROFILE_ADVANCED) {
422 src_x = av_clip( src_x, -16, s->mb_width * 16);
423 src_y = av_clip( src_y, -16, s->mb_height * 16);
424 uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
425 uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
427 src_x = av_clip( src_x, -17, s->avctx->coded_width);
428 src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
429 uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
430 uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
433 srcY += src_y * s->linesize + src_x;
434 srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
435 srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
437 if (v->field_mode && v->ref_field_type[dir]) {
438 srcY += s->current_picture_ptr->f.linesize[0];
439 srcU += s->current_picture_ptr->f.linesize[1];
440 srcV += s->current_picture_ptr->f.linesize[2];
443 /* for grayscale we should not try to read from unknown area */
444 if (s->flags & CODEC_FLAG_GRAY) {
445 srcU = s->edge_emu_buffer + 18 * s->linesize;
446 srcV = s->edge_emu_buffer + 18 * s->linesize;
449 if (v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
450 || s->h_edge_pos < 22 || v_edge_pos < 22
451 || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel * 3
452 || (unsigned)(src_y - 1) > v_edge_pos - (my&3) - 16 - 3) {
453 uint8_t *uvbuf = s->edge_emu_buffer + 19 * s->linesize;
455 srcY -= s->mspel * (1 + s->linesize);
456 s->vdsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize,
457 17 + s->mspel * 2, 17 + s->mspel * 2,
458 src_x - s->mspel, src_y - s->mspel,
459 s->h_edge_pos, v_edge_pos);
460 srcY = s->edge_emu_buffer;
461 s->vdsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8 + 1, 8 + 1,
462 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
463 s->vdsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8 + 1, 8 + 1,
464 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
467 /* if we deal with range reduction we need to scale source blocks */
468 if (v->rangeredfrm) {
473 for (j = 0; j < 17 + s->mspel * 2; j++) {
474 for (i = 0; i < 17 + s->mspel * 2; i++)
475 src[i] = ((src[i] - 128) >> 1) + 128;
480 for (j = 0; j < 9; j++) {
481 for (i = 0; i < 9; i++) {
482 src[i] = ((src[i] - 128) >> 1) + 128;
483 src2[i] = ((src2[i] - 128) >> 1) + 128;
485 src += s->uvlinesize;
486 src2 += s->uvlinesize;
489 /* if we deal with intensity compensation we need to scale source blocks */
490 if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
495 for (j = 0; j < 17 + s->mspel * 2; j++) {
496 for (i = 0; i < 17 + s->mspel * 2; i++)
497 src[i] = v->luty[src[i]];
502 for (j = 0; j < 9; j++) {
503 for (i = 0; i < 9; i++) {
504 src[i] = v->lutuv[src[i]];
505 src2[i] = v->lutuv[src2[i]];
507 src += s->uvlinesize;
508 src2 += s->uvlinesize;
511 srcY += s->mspel * (1 + s->linesize);
517 dxy = ((my & 3) << 2) | (mx & 3);
518 v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off , srcY , s->linesize, v->rnd);
519 v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8, srcY + 8, s->linesize, v->rnd);
520 srcY += s->linesize * 8;
521 v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize , srcY , s->linesize, v->rnd);
522 v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
523 } else { // hpel mc - always used for luma
524 dxy = (my & 2) | ((mx & 2) >> 1);
526 dsp->put_pixels_tab[0][dxy](s->dest[0] + off, srcY, s->linesize, 16);
528 dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0] + off, srcY, s->linesize, 16);
531 if (s->flags & CODEC_FLAG_GRAY) return;
532 /* Chroma MC always uses qpel bilinear */
533 uvmx = (uvmx & 3) << 1;
534 uvmy = (uvmy & 3) << 1;
536 h264chroma->put_h264_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
537 h264chroma->put_h264_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
539 v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
540 v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
544 static inline int median4(int a, int b, int c, int d)
547 if (c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
548 else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
550 if (c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
551 else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
555 /** Do motion compensation for 4-MV macroblock - luminance block
557 static void vc1_mc_4mv_luma(VC1Context *v, int n, int dir)
559 MpegEncContext *s = &v->s;
560 DSPContext *dsp = &v->s.dsp;
562 int dxy, mx, my, src_x, src_y;
564 int fieldmv = (v->fcm == ILACE_FRAME) ? v->blk_mv_type[s->block_index[n]] : 0;
565 int v_edge_pos = s->v_edge_pos >> v->field_mode;
567 if ((!v->field_mode ||
568 (v->ref_field_type[dir] == 1 && v->cur_field_type == 1)) &&
569 !v->s.last_picture.f.data[0])
572 mx = s->mv[dir][n][0];
573 my = s->mv[dir][n][1];
577 if ((v->cur_field_type != v->ref_field_type[dir]) && v->second_field)
578 srcY = s->current_picture.f.data[0];
580 srcY = s->last_picture.f.data[0];
582 srcY = s->last_picture.f.data[0];
584 srcY = s->next_picture.f.data[0];
590 if (v->cur_field_type != v->ref_field_type[dir])
591 my = my - 2 + 4 * v->cur_field_type;
594 if (s->pict_type == AV_PICTURE_TYPE_P && n == 3 && v->field_mode) {
595 int same_count = 0, opp_count = 0, k;
596 int chosen_mv[2][4][2], f;
598 for (k = 0; k < 4; k++) {
599 f = v->mv_f[0][s->block_index[k] + v->blocks_off];
600 chosen_mv[f][f ? opp_count : same_count][0] = s->mv[0][k][0];
601 chosen_mv[f][f ? opp_count : same_count][1] = s->mv[0][k][1];
605 f = opp_count > same_count;
606 switch (f ? opp_count : same_count) {
608 tx = median4(chosen_mv[f][0][0], chosen_mv[f][1][0],
609 chosen_mv[f][2][0], chosen_mv[f][3][0]);
610 ty = median4(chosen_mv[f][0][1], chosen_mv[f][1][1],
611 chosen_mv[f][2][1], chosen_mv[f][3][1]);
614 tx = mid_pred(chosen_mv[f][0][0], chosen_mv[f][1][0], chosen_mv[f][2][0]);
615 ty = mid_pred(chosen_mv[f][0][1], chosen_mv[f][1][1], chosen_mv[f][2][1]);
618 tx = (chosen_mv[f][0][0] + chosen_mv[f][1][0]) / 2;
619 ty = (chosen_mv[f][0][1] + chosen_mv[f][1][1]) / 2;
624 s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = tx;
625 s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = ty;
626 for (k = 0; k < 4; k++)
627 v->mv_f[1][s->block_index[k] + v->blocks_off] = f;
630 if (v->fcm == ILACE_FRAME) { // not sure if needed for other types of picture
632 int width = s->avctx->coded_width;
633 int height = s->avctx->coded_height >> 1;
634 qx = (s->mb_x * 16) + (mx >> 2);
635 qy = (s->mb_y * 8) + (my >> 3);
640 mx -= 4 * (qx - width);
643 else if (qy > height + 1)
644 my -= 8 * (qy - height - 1);
647 if ((v->fcm == ILACE_FRAME) && fieldmv)
648 off = ((n > 1) ? s->linesize : 0) + (n & 1) * 8;
650 off = s->linesize * 4 * (n & 2) + (n & 1) * 8;
652 src_x = s->mb_x * 16 + (n & 1) * 8 + (mx >> 2);
654 src_y = s->mb_y * 16 + (n & 2) * 4 + (my >> 2);
656 src_y = s->mb_y * 16 + ((n > 1) ? 1 : 0) + (my >> 2);
658 if (v->profile != PROFILE_ADVANCED) {
659 src_x = av_clip(src_x, -16, s->mb_width * 16);
660 src_y = av_clip(src_y, -16, s->mb_height * 16);
662 src_x = av_clip(src_x, -17, s->avctx->coded_width);
663 if (v->fcm == ILACE_FRAME) {
665 src_y = av_clip(src_y, -17, s->avctx->coded_height + 1);
667 src_y = av_clip(src_y, -18, s->avctx->coded_height);
669 src_y = av_clip(src_y, -18, s->avctx->coded_height + 1);
673 srcY += src_y * s->linesize + src_x;
674 if (v->field_mode && v->ref_field_type[dir])
675 srcY += s->current_picture_ptr->f.linesize[0];
677 if (fieldmv && !(src_y & 1))
679 if (fieldmv && (src_y & 1) && src_y < 4)
681 if (v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
682 || s->h_edge_pos < 13 || v_edge_pos < 23
683 || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx & 3) - 8 - s->mspel * 2
684 || (unsigned)(src_y - (s->mspel << fieldmv)) > v_edge_pos - (my & 3) - ((8 + s->mspel * 2) << fieldmv)) {
685 srcY -= s->mspel * (1 + (s->linesize << fieldmv));
686 /* check emulate edge stride and offset */
687 s->vdsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize,
688 9 + s->mspel * 2, (9 + s->mspel * 2) << fieldmv,
689 src_x - s->mspel, src_y - (s->mspel << fieldmv),
690 s->h_edge_pos, v_edge_pos);
691 srcY = s->edge_emu_buffer;
692 /* if we deal with range reduction we need to scale source blocks */
693 if (v->rangeredfrm) {
698 for (j = 0; j < 9 + s->mspel * 2; j++) {
699 for (i = 0; i < 9 + s->mspel * 2; i++)
700 src[i] = ((src[i] - 128) >> 1) + 128;
701 src += s->linesize << fieldmv;
704 /* if we deal with intensity compensation we need to scale source blocks */
705 if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
710 for (j = 0; j < 9 + s->mspel * 2; j++) {
711 for (i = 0; i < 9 + s->mspel * 2; i++)
712 src[i] = v->luty[src[i]];
713 src += s->linesize << fieldmv;
716 srcY += s->mspel * (1 + (s->linesize << fieldmv));
720 dxy = ((my & 3) << 2) | (mx & 3);
721 v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize << fieldmv, v->rnd);
722 } else { // hpel mc - always used for luma
723 dxy = (my & 2) | ((mx & 2) >> 1);
725 dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
727 dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
731 static av_always_inline int get_chroma_mv(int *mvx, int *mvy, int *a, int flag, int *tx, int *ty)
734 static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
736 idx = ((a[3] != flag) << 3)
737 | ((a[2] != flag) << 2)
738 | ((a[1] != flag) << 1)
741 *tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
742 *ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
744 } else if (count[idx] == 1) {
747 *tx = mid_pred(mvx[1], mvx[2], mvx[3]);
748 *ty = mid_pred(mvy[1], mvy[2], mvy[3]);
751 *tx = mid_pred(mvx[0], mvx[2], mvx[3]);
752 *ty = mid_pred(mvy[0], mvy[2], mvy[3]);
755 *tx = mid_pred(mvx[0], mvx[1], mvx[3]);
756 *ty = mid_pred(mvy[0], mvy[1], mvy[3]);
759 *tx = mid_pred(mvx[0], mvx[1], mvx[2]);
760 *ty = mid_pred(mvy[0], mvy[1], mvy[2]);
763 } else if (count[idx] == 2) {
765 for (i = 0; i < 3; i++)
770 for (i = t1 + 1; i < 4; i++)
775 *tx = (mvx[t1] + mvx[t2]) / 2;
776 *ty = (mvy[t1] + mvy[t2]) / 2;
784 /** Do motion compensation for 4-MV macroblock - both chroma blocks
786 static void vc1_mc_4mv_chroma(VC1Context *v, int dir)
788 MpegEncContext *s = &v->s;
789 H264ChromaContext *h264chroma = &v->h264chroma;
790 uint8_t *srcU, *srcV;
791 int uvmx, uvmy, uvsrc_x, uvsrc_y;
792 int k, tx = 0, ty = 0;
793 int mvx[4], mvy[4], intra[4], mv_f[4];
795 int chroma_ref_type = v->cur_field_type, off = 0;
796 int v_edge_pos = s->v_edge_pos >> v->field_mode;
798 if (!v->field_mode && !v->s.last_picture.f.data[0])
800 if (s->flags & CODEC_FLAG_GRAY)
803 for (k = 0; k < 4; k++) {
804 mvx[k] = s->mv[dir][k][0];
805 mvy[k] = s->mv[dir][k][1];
806 intra[k] = v->mb_type[0][s->block_index[k]];
808 mv_f[k] = v->mv_f[dir][s->block_index[k] + v->blocks_off];
811 /* calculate chroma MV vector from four luma MVs */
812 if (!v->field_mode || (v->field_mode && !v->numref)) {
813 valid_count = get_chroma_mv(mvx, mvy, intra, 0, &tx, &ty);
814 chroma_ref_type = v->reffield;
816 s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
817 s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
818 v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
819 return; //no need to do MC for intra blocks
823 if (mv_f[0] + mv_f[1] + mv_f[2] + mv_f[3] > 2)
825 valid_count = get_chroma_mv(mvx, mvy, mv_f, dominant, &tx, &ty);
827 chroma_ref_type = !v->cur_field_type;
829 if (v->field_mode && chroma_ref_type == 1 && v->cur_field_type == 1 && !v->s.last_picture.f.data[0])
831 s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = tx;
832 s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = ty;
833 uvmx = (tx + ((tx & 3) == 3)) >> 1;
834 uvmy = (ty + ((ty & 3) == 3)) >> 1;
836 v->luma_mv[s->mb_x][0] = uvmx;
837 v->luma_mv[s->mb_x][1] = uvmy;
840 uvmx = uvmx + ((uvmx < 0) ? (uvmx & 1) : -(uvmx & 1));
841 uvmy = uvmy + ((uvmy < 0) ? (uvmy & 1) : -(uvmy & 1));
843 // Field conversion bias
844 if (v->cur_field_type != chroma_ref_type)
845 uvmy += 2 - 4 * chroma_ref_type;
847 uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
848 uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
850 if (v->profile != PROFILE_ADVANCED) {
851 uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
852 uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
854 uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
855 uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
860 if ((v->cur_field_type != chroma_ref_type) && v->cur_field_type) {
861 srcU = s->current_picture.f.data[1];
862 srcV = s->current_picture.f.data[2];
864 srcU = s->last_picture.f.data[1];
865 srcV = s->last_picture.f.data[2];
868 srcU = s->last_picture.f.data[1];
869 srcV = s->last_picture.f.data[2];
872 srcU = s->next_picture.f.data[1];
873 srcV = s->next_picture.f.data[2];
879 srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
880 srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
883 if (chroma_ref_type) {
884 srcU += s->current_picture_ptr->f.linesize[1];
885 srcV += s->current_picture_ptr->f.linesize[2];
890 if (v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
891 || s->h_edge_pos < 18 || v_edge_pos < 18
892 || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
893 || (unsigned)uvsrc_y > (v_edge_pos >> 1) - 9) {
894 s->vdsp.emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize,
895 8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
896 s->h_edge_pos >> 1, v_edge_pos >> 1);
897 s->vdsp.emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize,
898 8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
899 s->h_edge_pos >> 1, v_edge_pos >> 1);
900 srcU = s->edge_emu_buffer;
901 srcV = s->edge_emu_buffer + 16;
903 /* if we deal with range reduction we need to scale source blocks */
904 if (v->rangeredfrm) {
910 for (j = 0; j < 9; j++) {
911 for (i = 0; i < 9; i++) {
912 src[i] = ((src[i] - 128) >> 1) + 128;
913 src2[i] = ((src2[i] - 128) >> 1) + 128;
915 src += s->uvlinesize;
916 src2 += s->uvlinesize;
919 /* if we deal with intensity compensation we need to scale source blocks */
920 if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
926 for (j = 0; j < 9; j++) {
927 for (i = 0; i < 9; i++) {
928 src[i] = v->lutuv[src[i]];
929 src2[i] = v->lutuv[src2[i]];
931 src += s->uvlinesize;
932 src2 += s->uvlinesize;
937 /* Chroma MC always uses qpel bilinear */
938 uvmx = (uvmx & 3) << 1;
939 uvmy = (uvmy & 3) << 1;
941 h264chroma->put_h264_chroma_pixels_tab[0](s->dest[1] + off, srcU, s->uvlinesize, 8, uvmx, uvmy);
942 h264chroma->put_h264_chroma_pixels_tab[0](s->dest[2] + off, srcV, s->uvlinesize, 8, uvmx, uvmy);
944 v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1] + off, srcU, s->uvlinesize, 8, uvmx, uvmy);
945 v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2] + off, srcV, s->uvlinesize, 8, uvmx, uvmy);
949 /** Do motion compensation for 4-MV field chroma macroblock (both U and V)
951 static void vc1_mc_4mv_chroma4(VC1Context *v)
953 MpegEncContext *s = &v->s;
954 H264ChromaContext *h264chroma = &v->h264chroma;
955 uint8_t *srcU, *srcV;
956 int uvsrc_x, uvsrc_y;
957 int uvmx_field[4], uvmy_field[4];
959 int fieldmv = v->blk_mv_type[s->block_index[0]];
960 static const int s_rndtblfield[16] = { 0, 0, 1, 2, 4, 4, 5, 6, 2, 2, 3, 8, 6, 6, 7, 12 };
961 int v_dist = fieldmv ? 1 : 4; // vertical offset for lower sub-blocks
962 int v_edge_pos = s->v_edge_pos >> 1;
964 if (!v->s.last_picture.f.data[0])
966 if (s->flags & CODEC_FLAG_GRAY)
969 for (i = 0; i < 4; i++) {
971 uvmx_field[i] = (tx + ((tx & 3) == 3)) >> 1;
974 uvmy_field[i] = (ty >> 4) * 8 + s_rndtblfield[ty & 0xF];
976 uvmy_field[i] = (ty + ((ty & 3) == 3)) >> 1;
979 for (i = 0; i < 4; i++) {
980 off = (i & 1) * 4 + ((i & 2) ? v_dist * s->uvlinesize : 0);
981 uvsrc_x = s->mb_x * 8 + (i & 1) * 4 + (uvmx_field[i] >> 2);
982 uvsrc_y = s->mb_y * 8 + ((i & 2) ? v_dist : 0) + (uvmy_field[i] >> 2);
983 // FIXME: implement proper pull-back (see vc1cropmv.c, vc1CROPMV_ChromaPullBack())
984 uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
985 uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
986 srcU = s->last_picture.f.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
987 srcV = s->last_picture.f.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
988 uvmx_field[i] = (uvmx_field[i] & 3) << 1;
989 uvmy_field[i] = (uvmy_field[i] & 3) << 1;
991 if (fieldmv && !(uvsrc_y & 1))
992 v_edge_pos = (s->v_edge_pos >> 1) - 1;
994 if (fieldmv && (uvsrc_y & 1) && uvsrc_y < 2)
996 if ((v->mv_mode == MV_PMODE_INTENSITY_COMP)
997 || s->h_edge_pos < 10 || v_edge_pos < (5 << fieldmv)
998 || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 5
999 || (unsigned)uvsrc_y > v_edge_pos - (5 << fieldmv)) {
1000 s->vdsp.emulated_edge_mc(s->edge_emu_buffer, srcU, s->uvlinesize,
1001 5, (5 << fieldmv), uvsrc_x, uvsrc_y,
1002 s->h_edge_pos >> 1, v_edge_pos);
1003 s->vdsp.emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize,
1004 5, (5 << fieldmv), uvsrc_x, uvsrc_y,
1005 s->h_edge_pos >> 1, v_edge_pos);
1006 srcU = s->edge_emu_buffer;
1007 srcV = s->edge_emu_buffer + 16;
1009 /* if we deal with intensity compensation we need to scale source blocks */
1010 if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
1012 uint8_t *src, *src2;
1016 for (j = 0; j < 5; j++) {
1017 for (i = 0; i < 5; i++) {
1018 src[i] = v->lutuv[src[i]];
1019 src2[i] = v->lutuv[src2[i]];
1021 src += s->uvlinesize << 1;
1022 src2 += s->uvlinesize << 1;
1027 h264chroma->put_h264_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
1028 h264chroma->put_h264_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
1030 v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
1031 v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
1036 /***********************************************************************/
1038 * @name VC-1 Block-level functions
1039 * @see 7.1.4, p91 and 8.1.1.7, p(1)04
1045 * @brief Get macroblock-level quantizer scale
1047 #define GET_MQUANT() \
1048 if (v->dquantfrm) { \
1050 if (v->dqprofile == DQPROFILE_ALL_MBS) { \
1051 if (v->dqbilevel) { \
1052 mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
1054 mqdiff = get_bits(gb, 3); \
1056 mquant = v->pq + mqdiff; \
1058 mquant = get_bits(gb, 5); \
1061 if (v->dqprofile == DQPROFILE_SINGLE_EDGE) \
1062 edges = 1 << v->dqsbedge; \
1063 else if (v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
1064 edges = (3 << v->dqsbedge) % 15; \
1065 else if (v->dqprofile == DQPROFILE_FOUR_EDGES) \
1067 if ((edges&1) && !s->mb_x) \
1068 mquant = v->altpq; \
1069 if ((edges&2) && s->first_slice_line) \
1070 mquant = v->altpq; \
1071 if ((edges&4) && s->mb_x == (s->mb_width - 1)) \
1072 mquant = v->altpq; \
1073 if ((edges&8) && s->mb_y == (s->mb_height - 1)) \
1074 mquant = v->altpq; \
1075 if (!mquant || mquant > 31) { \
1076 av_log(v->s.avctx, AV_LOG_ERROR, \
1077 "Overriding invalid mquant %d\n", mquant); \
1083 * @def GET_MVDATA(_dmv_x, _dmv_y)
1084 * @brief Get MV differentials
1085 * @see MVDATA decoding from 8.3.5.2, p(1)20
1086 * @param _dmv_x Horizontal differential for decoded MV
1087 * @param _dmv_y Vertical differential for decoded MV
1089 #define GET_MVDATA(_dmv_x, _dmv_y) \
1090 index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table, \
1091 VC1_MV_DIFF_VLC_BITS, 2); \
1093 mb_has_coeffs = 1; \
1096 mb_has_coeffs = 0; \
1099 _dmv_x = _dmv_y = 0; \
1100 } else if (index == 35) { \
1101 _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
1102 _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
1103 } else if (index == 36) { \
1108 index1 = index % 6; \
1109 if (!s->quarter_sample && index1 == 5) val = 1; \
1111 if (size_table[index1] - val > 0) \
1112 val = get_bits(gb, size_table[index1] - val); \
1114 sign = 0 - (val&1); \
1115 _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
1117 index1 = index / 6; \
1118 if (!s->quarter_sample && index1 == 5) val = 1; \
1120 if (size_table[index1] - val > 0) \
1121 val = get_bits(gb, size_table[index1] - val); \
1123 sign = 0 - (val & 1); \
1124 _dmv_y = (sign ^ ((val >> 1) + offset_table[index1])) - sign; \
1127 static av_always_inline void get_mvdata_interlaced(VC1Context *v, int *dmv_x,
1128 int *dmv_y, int *pred_flag)
1131 int extend_x = 0, extend_y = 0;
1132 GetBitContext *gb = &v->s.gb;
1135 const int* offs_tab;
1138 bits = VC1_2REF_MVDATA_VLC_BITS;
1141 bits = VC1_1REF_MVDATA_VLC_BITS;
1144 switch (v->dmvrange) {
1152 extend_x = extend_y = 1;
1155 index = get_vlc2(gb, v->imv_vlc->table, bits, 3);
1157 *dmv_x = get_bits(gb, v->k_x);
1158 *dmv_y = get_bits(gb, v->k_y);
1161 *pred_flag = *dmv_y & 1;
1162 *dmv_y = (*dmv_y + *pred_flag) >> 1;
1164 *dmv_y = (*dmv_y + (*dmv_y & 1)) >> 1;
1169 av_assert0(index < esc);
1171 offs_tab = offset_table2;
1173 offs_tab = offset_table1;
1174 index1 = (index + 1) % 9;
1176 val = get_bits(gb, index1 + extend_x);
1177 sign = 0 -(val & 1);
1178 *dmv_x = (sign ^ ((val >> 1) + offs_tab[index1])) - sign;
1182 offs_tab = offset_table2;
1184 offs_tab = offset_table1;
1185 index1 = (index + 1) / 9;
1186 if (index1 > v->numref) {
1187 val = get_bits(gb, (index1 + (extend_y << v->numref)) >> v->numref);
1188 sign = 0 - (val & 1);
1189 *dmv_y = (sign ^ ((val >> 1) + offs_tab[index1 >> v->numref])) - sign;
1192 if (v->numref && pred_flag)
1193 *pred_flag = index1 & 1;
1197 static av_always_inline int scaleforsame_x(VC1Context *v, int n /* MV */, int dir)
1199 int scaledvalue, refdist;
1200 int scalesame1, scalesame2;
1201 int scalezone1_x, zone1offset_x;
1202 int table_index = dir ^ v->second_field;
1204 if (v->s.pict_type != AV_PICTURE_TYPE_B)
1205 refdist = v->refdist;
1207 refdist = dir ? v->brfd : v->frfd;
1210 scalesame1 = ff_vc1_field_mvpred_scales[table_index][1][refdist];
1211 scalesame2 = ff_vc1_field_mvpred_scales[table_index][2][refdist];
1212 scalezone1_x = ff_vc1_field_mvpred_scales[table_index][3][refdist];
1213 zone1offset_x = ff_vc1_field_mvpred_scales[table_index][5][refdist];
1218 if (FFABS(n) < scalezone1_x)
1219 scaledvalue = (n * scalesame1) >> 8;
1222 scaledvalue = ((n * scalesame2) >> 8) - zone1offset_x;
1224 scaledvalue = ((n * scalesame2) >> 8) + zone1offset_x;
1227 return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
1230 static av_always_inline int scaleforsame_y(VC1Context *v, int i, int n /* MV */, int dir)
1232 int scaledvalue, refdist;
1233 int scalesame1, scalesame2;
1234 int scalezone1_y, zone1offset_y;
1235 int table_index = dir ^ v->second_field;
1237 if (v->s.pict_type != AV_PICTURE_TYPE_B)
1238 refdist = v->refdist;
1240 refdist = dir ? v->brfd : v->frfd;
1243 scalesame1 = ff_vc1_field_mvpred_scales[table_index][1][refdist];
1244 scalesame2 = ff_vc1_field_mvpred_scales[table_index][2][refdist];
1245 scalezone1_y = ff_vc1_field_mvpred_scales[table_index][4][refdist];
1246 zone1offset_y = ff_vc1_field_mvpred_scales[table_index][6][refdist];
1251 if (FFABS(n) < scalezone1_y)
1252 scaledvalue = (n * scalesame1) >> 8;
1255 scaledvalue = ((n * scalesame2) >> 8) - zone1offset_y;
1257 scaledvalue = ((n * scalesame2) >> 8) + zone1offset_y;
1261 if (v->cur_field_type && !v->ref_field_type[dir])
1262 return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
1264 return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
1267 static av_always_inline int scaleforopp_x(VC1Context *v, int n /* MV */)
1269 int scalezone1_x, zone1offset_x;
1270 int scaleopp1, scaleopp2, brfd;
1273 brfd = FFMIN(v->brfd, 3);
1274 scalezone1_x = ff_vc1_b_field_mvpred_scales[3][brfd];
1275 zone1offset_x = ff_vc1_b_field_mvpred_scales[5][brfd];
1276 scaleopp1 = ff_vc1_b_field_mvpred_scales[1][brfd];
1277 scaleopp2 = ff_vc1_b_field_mvpred_scales[2][brfd];
1282 if (FFABS(n) < scalezone1_x)
1283 scaledvalue = (n * scaleopp1) >> 8;
1286 scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_x;
1288 scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_x;
1291 return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
1294 static av_always_inline int scaleforopp_y(VC1Context *v, int n /* MV */, int dir)
1296 int scalezone1_y, zone1offset_y;
1297 int scaleopp1, scaleopp2, brfd;
1300 brfd = FFMIN(v->brfd, 3);
1301 scalezone1_y = ff_vc1_b_field_mvpred_scales[4][brfd];
1302 zone1offset_y = ff_vc1_b_field_mvpred_scales[6][brfd];
1303 scaleopp1 = ff_vc1_b_field_mvpred_scales[1][brfd];
1304 scaleopp2 = ff_vc1_b_field_mvpred_scales[2][brfd];
1309 if (FFABS(n) < scalezone1_y)
1310 scaledvalue = (n * scaleopp1) >> 8;
1313 scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_y;
1315 scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_y;
1318 if (v->cur_field_type && !v->ref_field_type[dir]) {
1319 return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
1321 return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
1325 static av_always_inline int scaleforsame(VC1Context *v, int i, int n /* MV */,
1328 int brfd, scalesame;
1329 int hpel = 1 - v->s.quarter_sample;
1332 if (v->s.pict_type != AV_PICTURE_TYPE_B || v->second_field || !dir) {
1334 n = scaleforsame_y(v, i, n, dir) << hpel;
1336 n = scaleforsame_x(v, n, dir) << hpel;
1339 brfd = FFMIN(v->brfd, 3);
1340 scalesame = ff_vc1_b_field_mvpred_scales[0][brfd];
1342 n = (n * scalesame >> 8) << hpel;
1346 static av_always_inline int scaleforopp(VC1Context *v, int n /* MV */,
1349 int refdist, scaleopp;
1350 int hpel = 1 - v->s.quarter_sample;
1353 if (v->s.pict_type == AV_PICTURE_TYPE_B && !v->second_field && dir == 1) {
1355 n = scaleforopp_y(v, n, dir) << hpel;
1357 n = scaleforopp_x(v, n) << hpel;
1360 if (v->s.pict_type != AV_PICTURE_TYPE_B)
1361 refdist = FFMIN(v->refdist, 3);
1363 refdist = dir ? v->brfd : v->frfd;
1364 scaleopp = ff_vc1_field_mvpred_scales[dir ^ v->second_field][0][refdist];
1366 n = (n * scaleopp >> 8) << hpel;
1370 /** Predict and set motion vector
1372 static inline void vc1_pred_mv(VC1Context *v, int n, int dmv_x, int dmv_y,
1373 int mv1, int r_x, int r_y, uint8_t* is_intra,
1374 int pred_flag, int dir)
1376 MpegEncContext *s = &v->s;
1377 int xy, wrap, off = 0;
1381 int mixedmv_pic, num_samefield = 0, num_oppfield = 0;
1382 int opposite, a_f, b_f, c_f;
1383 int16_t field_predA[2];
1384 int16_t field_predB[2];
1385 int16_t field_predC[2];
1386 int a_valid, b_valid, c_valid;
1387 int hybridmv_thresh, y_bias = 0;
1389 if (v->mv_mode == MV_PMODE_MIXED_MV ||
1390 ((v->mv_mode == MV_PMODE_INTENSITY_COMP) && (v->mv_mode2 == MV_PMODE_MIXED_MV)))
1394 /* scale MV difference to be quad-pel */
1395 dmv_x <<= 1 - s->quarter_sample;
1396 dmv_y <<= 1 - s->quarter_sample;
1398 wrap = s->b8_stride;
1399 xy = s->block_index[n];
1402 s->mv[0][n][0] = s->current_picture.f.motion_val[0][xy + v->blocks_off][0] = 0;
1403 s->mv[0][n][1] = s->current_picture.f.motion_val[0][xy + v->blocks_off][1] = 0;
1404 s->current_picture.f.motion_val[1][xy + v->blocks_off][0] = 0;
1405 s->current_picture.f.motion_val[1][xy + v->blocks_off][1] = 0;
1406 if (mv1) { /* duplicate motion data for 1-MV block */
1407 s->current_picture.f.motion_val[0][xy + 1 + v->blocks_off][0] = 0;
1408 s->current_picture.f.motion_val[0][xy + 1 + v->blocks_off][1] = 0;
1409 s->current_picture.f.motion_val[0][xy + wrap + v->blocks_off][0] = 0;
1410 s->current_picture.f.motion_val[0][xy + wrap + v->blocks_off][1] = 0;
1411 s->current_picture.f.motion_val[0][xy + wrap + 1 + v->blocks_off][0] = 0;
1412 s->current_picture.f.motion_val[0][xy + wrap + 1 + v->blocks_off][1] = 0;
1413 v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
1414 s->current_picture.f.motion_val[1][xy + 1 + v->blocks_off][0] = 0;
1415 s->current_picture.f.motion_val[1][xy + 1 + v->blocks_off][1] = 0;
1416 s->current_picture.f.motion_val[1][xy + wrap][0] = 0;
1417 s->current_picture.f.motion_val[1][xy + wrap + v->blocks_off][1] = 0;
1418 s->current_picture.f.motion_val[1][xy + wrap + 1 + v->blocks_off][0] = 0;
1419 s->current_picture.f.motion_val[1][xy + wrap + 1 + v->blocks_off][1] = 0;
1424 C = s->current_picture.f.motion_val[dir][xy - 1 + v->blocks_off];
1425 A = s->current_picture.f.motion_val[dir][xy - wrap + v->blocks_off];
1427 if (v->field_mode && mixedmv_pic)
1428 off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
1430 off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
1432 //in 4-MV mode different blocks have different B predictor position
1435 off = (s->mb_x > 0) ? -1 : 1;
1438 off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
1447 B = s->current_picture.f.motion_val[dir][xy - wrap + off + v->blocks_off];
1449 a_valid = !s->first_slice_line || (n == 2 || n == 3);
1450 b_valid = a_valid && (s->mb_width > 1);
1451 c_valid = s->mb_x || (n == 1 || n == 3);
1452 if (v->field_mode) {
1453 a_valid = a_valid && !is_intra[xy - wrap];
1454 b_valid = b_valid && !is_intra[xy - wrap + off];
1455 c_valid = c_valid && !is_intra[xy - 1];
1459 a_f = v->mv_f[dir][xy - wrap + v->blocks_off];
1460 num_oppfield += a_f;
1461 num_samefield += 1 - a_f;
1462 field_predA[0] = A[0];
1463 field_predA[1] = A[1];
1465 field_predA[0] = field_predA[1] = 0;
1469 b_f = v->mv_f[dir][xy - wrap + off + v->blocks_off];
1470 num_oppfield += b_f;
1471 num_samefield += 1 - b_f;
1472 field_predB[0] = B[0];
1473 field_predB[1] = B[1];
1475 field_predB[0] = field_predB[1] = 0;
1479 c_f = v->mv_f[dir][xy - 1 + v->blocks_off];
1480 num_oppfield += c_f;
1481 num_samefield += 1 - c_f;
1482 field_predC[0] = C[0];
1483 field_predC[1] = C[1];
1485 field_predC[0] = field_predC[1] = 0;
1489 if (v->field_mode) {
1491 // REFFIELD determines if the last field or the second-last field is
1492 // to be used as reference
1493 opposite = 1 - v->reffield;
1495 if (num_samefield <= num_oppfield)
1496 opposite = 1 - pred_flag;
1498 opposite = pred_flag;
1503 if (a_valid && !a_f) {
1504 field_predA[0] = scaleforopp(v, field_predA[0], 0, dir);
1505 field_predA[1] = scaleforopp(v, field_predA[1], 1, dir);
1507 if (b_valid && !b_f) {
1508 field_predB[0] = scaleforopp(v, field_predB[0], 0, dir);
1509 field_predB[1] = scaleforopp(v, field_predB[1], 1, dir);
1511 if (c_valid && !c_f) {
1512 field_predC[0] = scaleforopp(v, field_predC[0], 0, dir);
1513 field_predC[1] = scaleforopp(v, field_predC[1], 1, dir);
1515 v->mv_f[dir][xy + v->blocks_off] = 1;
1516 v->ref_field_type[dir] = !v->cur_field_type;
1518 if (a_valid && a_f) {
1519 field_predA[0] = scaleforsame(v, n, field_predA[0], 0, dir);
1520 field_predA[1] = scaleforsame(v, n, field_predA[1], 1, dir);
1522 if (b_valid && b_f) {
1523 field_predB[0] = scaleforsame(v, n, field_predB[0], 0, dir);
1524 field_predB[1] = scaleforsame(v, n, field_predB[1], 1, dir);
1526 if (c_valid && c_f) {
1527 field_predC[0] = scaleforsame(v, n, field_predC[0], 0, dir);
1528 field_predC[1] = scaleforsame(v, n, field_predC[1], 1, dir);
1530 v->mv_f[dir][xy + v->blocks_off] = 0;
1531 v->ref_field_type[dir] = v->cur_field_type;
1535 px = field_predA[0];
1536 py = field_predA[1];
1537 } else if (c_valid) {
1538 px = field_predC[0];
1539 py = field_predC[1];
1540 } else if (b_valid) {
1541 px = field_predB[0];
1542 py = field_predB[1];
1548 if (num_samefield + num_oppfield > 1) {
1549 px = mid_pred(field_predA[0], field_predB[0], field_predC[0]);
1550 py = mid_pred(field_predA[1], field_predB[1], field_predC[1]);
1553 /* Pullback MV as specified in 8.3.5.3.4 */
1554 if (!v->field_mode) {
1556 qx = (s->mb_x << 6) + ((n == 1 || n == 3) ? 32 : 0);
1557 qy = (s->mb_y << 6) + ((n == 2 || n == 3) ? 32 : 0);
1558 X = (s->mb_width << 6) - 4;
1559 Y = (s->mb_height << 6) - 4;
1561 if (qx + px < -60) px = -60 - qx;
1562 if (qy + py < -60) py = -60 - qy;
1564 if (qx + px < -28) px = -28 - qx;
1565 if (qy + py < -28) py = -28 - qy;
1567 if (qx + px > X) px = X - qx;
1568 if (qy + py > Y) py = Y - qy;
1571 if (!v->field_mode || s->pict_type != AV_PICTURE_TYPE_B) {
1572 /* Calculate hybrid prediction as specified in 8.3.5.3.5 (also 10.3.5.4.3.5) */
1573 hybridmv_thresh = 32;
1574 if (a_valid && c_valid) {
1575 if (is_intra[xy - wrap])
1576 sum = FFABS(px) + FFABS(py);
1578 sum = FFABS(px - field_predA[0]) + FFABS(py - field_predA[1]);
1579 if (sum > hybridmv_thresh) {
1580 if (get_bits1(&s->gb)) { // read HYBRIDPRED bit
1581 px = field_predA[0];
1582 py = field_predA[1];
1584 px = field_predC[0];
1585 py = field_predC[1];
1588 if (is_intra[xy - 1])
1589 sum = FFABS(px) + FFABS(py);
1591 sum = FFABS(px - field_predC[0]) + FFABS(py - field_predC[1]);
1592 if (sum > hybridmv_thresh) {
1593 if (get_bits1(&s->gb)) {
1594 px = field_predA[0];
1595 py = field_predA[1];
1597 px = field_predC[0];
1598 py = field_predC[1];
1605 if (v->field_mode && v->numref)
1607 if (v->field_mode && v->cur_field_type && v->ref_field_type[dir] == 0)
1609 /* store MV using signed modulus of MV range defined in 4.11 */
1610 s->mv[dir][n][0] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
1611 s->mv[dir][n][1] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][1] = ((py + dmv_y + r_y - y_bias) & ((r_y << 1) - 1)) - r_y + y_bias;
1612 if (mv1) { /* duplicate motion data for 1-MV block */
1613 s->current_picture.f.motion_val[dir][xy + 1 + v->blocks_off][0] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][0];
1614 s->current_picture.f.motion_val[dir][xy + 1 + v->blocks_off][1] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][1];
1615 s->current_picture.f.motion_val[dir][xy + wrap + v->blocks_off][0] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][0];
1616 s->current_picture.f.motion_val[dir][xy + wrap + v->blocks_off][1] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][1];
1617 s->current_picture.f.motion_val[dir][xy + wrap + 1 + v->blocks_off][0] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][0];
1618 s->current_picture.f.motion_val[dir][xy + wrap + 1 + v->blocks_off][1] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][1];
1619 v->mv_f[dir][xy + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
1620 v->mv_f[dir][xy + wrap + v->blocks_off] = v->mv_f[dir][xy + wrap + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
1624 /** Predict and set motion vector for interlaced frame picture MBs
1626 static inline void vc1_pred_mv_intfr(VC1Context *v, int n, int dmv_x, int dmv_y,
1627 int mvn, int r_x, int r_y, uint8_t* is_intra)
1629 MpegEncContext *s = &v->s;
1630 int xy, wrap, off = 0;
1631 int A[2], B[2], C[2];
1633 int a_valid = 0, b_valid = 0, c_valid = 0;
1634 int field_a, field_b, field_c; // 0: same, 1: opposit
1635 int total_valid, num_samefield, num_oppfield;
1636 int pos_c, pos_b, n_adj;
1638 wrap = s->b8_stride;
1639 xy = s->block_index[n];
1642 s->mv[0][n][0] = s->current_picture.f.motion_val[0][xy][0] = 0;
1643 s->mv[0][n][1] = s->current_picture.f.motion_val[0][xy][1] = 0;
1644 s->current_picture.f.motion_val[1][xy][0] = 0;
1645 s->current_picture.f.motion_val[1][xy][1] = 0;
1646 if (mvn == 1) { /* duplicate motion data for 1-MV block */
1647 s->current_picture.f.motion_val[0][xy + 1][0] = 0;
1648 s->current_picture.f.motion_val[0][xy + 1][1] = 0;
1649 s->current_picture.f.motion_val[0][xy + wrap][0] = 0;
1650 s->current_picture.f.motion_val[0][xy + wrap][1] = 0;
1651 s->current_picture.f.motion_val[0][xy + wrap + 1][0] = 0;
1652 s->current_picture.f.motion_val[0][xy + wrap + 1][1] = 0;
1653 v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
1654 s->current_picture.f.motion_val[1][xy + 1][0] = 0;
1655 s->current_picture.f.motion_val[1][xy + 1][1] = 0;
1656 s->current_picture.f.motion_val[1][xy + wrap][0] = 0;
1657 s->current_picture.f.motion_val[1][xy + wrap][1] = 0;
1658 s->current_picture.f.motion_val[1][xy + wrap + 1][0] = 0;
1659 s->current_picture.f.motion_val[1][xy + wrap + 1][1] = 0;
1664 off = ((n == 0) || (n == 1)) ? 1 : -1;
1666 if (s->mb_x || (n == 1) || (n == 3)) {
1667 if ((v->blk_mv_type[xy]) // current block (MB) has a field MV
1668 || (!v->blk_mv_type[xy] && !v->blk_mv_type[xy - 1])) { // or both have frame MV
1669 A[0] = s->current_picture.f.motion_val[0][xy - 1][0];
1670 A[1] = s->current_picture.f.motion_val[0][xy - 1][1];
1672 } else { // current block has frame mv and cand. has field MV (so average)
1673 A[0] = (s->current_picture.f.motion_val[0][xy - 1][0]
1674 + s->current_picture.f.motion_val[0][xy - 1 + off * wrap][0] + 1) >> 1;
1675 A[1] = (s->current_picture.f.motion_val[0][xy - 1][1]
1676 + s->current_picture.f.motion_val[0][xy - 1 + off * wrap][1] + 1) >> 1;
1679 if (!(n & 1) && v->is_intra[s->mb_x - 1]) {
1685 /* Predict B and C */
1686 B[0] = B[1] = C[0] = C[1] = 0;
1687 if (n == 0 || n == 1 || v->blk_mv_type[xy]) {
1688 if (!s->first_slice_line) {
1689 if (!v->is_intra[s->mb_x - s->mb_stride]) {
1692 pos_b = s->block_index[n_adj] - 2 * wrap;
1693 if (v->blk_mv_type[pos_b] && v->blk_mv_type[xy]) {
1694 n_adj = (n & 2) | (n & 1);
1696 B[0] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap][0];
1697 B[1] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap][1];
1698 if (v->blk_mv_type[pos_b] && !v->blk_mv_type[xy]) {
1699 B[0] = (B[0] + s->current_picture.f.motion_val[0][s->block_index[n_adj ^ 2] - 2 * wrap][0] + 1) >> 1;
1700 B[1] = (B[1] + s->current_picture.f.motion_val[0][s->block_index[n_adj ^ 2] - 2 * wrap][1] + 1) >> 1;
1703 if (s->mb_width > 1) {
1704 if (!v->is_intra[s->mb_x - s->mb_stride + 1]) {
1707 pos_c = s->block_index[2] - 2 * wrap + 2;
1708 if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
1711 C[0] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap + 2][0];
1712 C[1] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap + 2][1];
1713 if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
1714 C[0] = (1 + C[0] + (s->current_picture.f.motion_val[0][s->block_index[n_adj ^ 2] - 2 * wrap + 2][0])) >> 1;
1715 C[1] = (1 + C[1] + (s->current_picture.f.motion_val[0][s->block_index[n_adj ^ 2] - 2 * wrap + 2][1])) >> 1;
1717 if (s->mb_x == s->mb_width - 1) {
1718 if (!v->is_intra[s->mb_x - s->mb_stride - 1]) {
1721 pos_c = s->block_index[3] - 2 * wrap - 2;
1722 if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
1725 C[0] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap - 2][0];
1726 C[1] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap - 2][1];
1727 if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
1728 C[0] = (1 + C[0] + s->current_picture.f.motion_val[0][s->block_index[1] - 2 * wrap - 2][0]) >> 1;
1729 C[1] = (1 + C[1] + s->current_picture.f.motion_val[0][s->block_index[1] - 2 * wrap - 2][1]) >> 1;
1738 pos_b = s->block_index[1];
1740 B[0] = s->current_picture.f.motion_val[0][pos_b][0];
1741 B[1] = s->current_picture.f.motion_val[0][pos_b][1];
1742 pos_c = s->block_index[0];
1744 C[0] = s->current_picture.f.motion_val[0][pos_c][0];
1745 C[1] = s->current_picture.f.motion_val[0][pos_c][1];
1748 total_valid = a_valid + b_valid + c_valid;
1749 // check if predictor A is out of bounds
1750 if (!s->mb_x && !(n == 1 || n == 3)) {
1753 // check if predictor B is out of bounds
1754 if ((s->first_slice_line && v->blk_mv_type[xy]) || (s->first_slice_line && !(n & 2))) {
1755 B[0] = B[1] = C[0] = C[1] = 0;
1757 if (!v->blk_mv_type[xy]) {
1758 if (s->mb_width == 1) {
1762 if (total_valid >= 2) {
1763 px = mid_pred(A[0], B[0], C[0]);
1764 py = mid_pred(A[1], B[1], C[1]);
1765 } else if (total_valid) {
1766 if (a_valid) { px = A[0]; py = A[1]; }
1767 else if (b_valid) { px = B[0]; py = B[1]; }
1768 else if (c_valid) { px = C[0]; py = C[1]; }
1775 field_a = (A[1] & 4) ? 1 : 0;
1779 field_b = (B[1] & 4) ? 1 : 0;
1783 field_c = (C[1] & 4) ? 1 : 0;
1787 num_oppfield = field_a + field_b + field_c;
1788 num_samefield = total_valid - num_oppfield;
1789 if (total_valid == 3) {
1790 if ((num_samefield == 3) || (num_oppfield == 3)) {
1791 px = mid_pred(A[0], B[0], C[0]);
1792 py = mid_pred(A[1], B[1], C[1]);
1793 } else if (num_samefield >= num_oppfield) {
1794 /* take one MV from same field set depending on priority
1795 the check for B may not be necessary */
1796 px = !field_a ? A[0] : B[0];
1797 py = !field_a ? A[1] : B[1];
1799 px = field_a ? A[0] : B[0];
1800 py = field_a ? A[1] : B[1];
1802 } else if (total_valid == 2) {
1803 if (num_samefield >= num_oppfield) {
1804 if (!field_a && a_valid) {
1807 } else if (!field_b && b_valid) {
1810 } else if (c_valid) {
1815 if (field_a && a_valid) {
1818 } else if (field_b && b_valid) {
1821 } else if (c_valid) {
1826 } else if (total_valid == 1) {
1827 px = (a_valid) ? A[0] : ((b_valid) ? B[0] : C[0]);
1828 py = (a_valid) ? A[1] : ((b_valid) ? B[1] : C[1]);
1833 /* store MV using signed modulus of MV range defined in 4.11 */
1834 s->mv[0][n][0] = s->current_picture.f.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
1835 s->mv[0][n][1] = s->current_picture.f.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
1836 if (mvn == 1) { /* duplicate motion data for 1-MV block */
1837 s->current_picture.f.motion_val[0][xy + 1 ][0] = s->current_picture.f.motion_val[0][xy][0];
1838 s->current_picture.f.motion_val[0][xy + 1 ][1] = s->current_picture.f.motion_val[0][xy][1];
1839 s->current_picture.f.motion_val[0][xy + wrap ][0] = s->current_picture.f.motion_val[0][xy][0];
1840 s->current_picture.f.motion_val[0][xy + wrap ][1] = s->current_picture.f.motion_val[0][xy][1];
1841 s->current_picture.f.motion_val[0][xy + wrap + 1][0] = s->current_picture.f.motion_val[0][xy][0];
1842 s->current_picture.f.motion_val[0][xy + wrap + 1][1] = s->current_picture.f.motion_val[0][xy][1];
1843 } else if (mvn == 2) { /* duplicate motion data for 2-Field MV block */
1844 s->current_picture.f.motion_val[0][xy + 1][0] = s->current_picture.f.motion_val[0][xy][0];
1845 s->current_picture.f.motion_val[0][xy + 1][1] = s->current_picture.f.motion_val[0][xy][1];
1846 s->mv[0][n + 1][0] = s->mv[0][n][0];
1847 s->mv[0][n + 1][1] = s->mv[0][n][1];
1851 /** Motion compensation for direct or interpolated blocks in B-frames
1853 static void vc1_interp_mc(VC1Context *v)
1855 MpegEncContext *s = &v->s;
1856 DSPContext *dsp = &v->s.dsp;
1857 H264ChromaContext *h264chroma = &v->h264chroma;
1858 uint8_t *srcY, *srcU, *srcV;
1859 int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
1861 int v_edge_pos = s->v_edge_pos >> v->field_mode;
1863 if (!v->field_mode && !v->s.next_picture.f.data[0])
1866 mx = s->mv[1][0][0];
1867 my = s->mv[1][0][1];
1868 uvmx = (mx + ((mx & 3) == 3)) >> 1;
1869 uvmy = (my + ((my & 3) == 3)) >> 1;
1870 if (v->field_mode) {
1871 if (v->cur_field_type != v->ref_field_type[1])
1872 my = my - 2 + 4 * v->cur_field_type;
1873 uvmy = uvmy - 2 + 4 * v->cur_field_type;
1876 uvmx = uvmx + ((uvmx < 0) ? -(uvmx & 1) : (uvmx & 1));
1877 uvmy = uvmy + ((uvmy < 0) ? -(uvmy & 1) : (uvmy & 1));
1879 srcY = s->next_picture.f.data[0];
1880 srcU = s->next_picture.f.data[1];
1881 srcV = s->next_picture.f.data[2];
1883 src_x = s->mb_x * 16 + (mx >> 2);
1884 src_y = s->mb_y * 16 + (my >> 2);
1885 uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
1886 uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
1888 if (v->profile != PROFILE_ADVANCED) {
1889 src_x = av_clip( src_x, -16, s->mb_width * 16);
1890 src_y = av_clip( src_y, -16, s->mb_height * 16);
1891 uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
1892 uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
1894 src_x = av_clip( src_x, -17, s->avctx->coded_width);
1895 src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
1896 uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
1897 uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
1900 srcY += src_y * s->linesize + src_x;
1901 srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
1902 srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
1904 if (v->field_mode && v->ref_field_type[1]) {
1905 srcY += s->current_picture_ptr->f.linesize[0];
1906 srcU += s->current_picture_ptr->f.linesize[1];
1907 srcV += s->current_picture_ptr->f.linesize[2];
1910 /* for grayscale we should not try to read from unknown area */
1911 if (s->flags & CODEC_FLAG_GRAY) {
1912 srcU = s->edge_emu_buffer + 18 * s->linesize;
1913 srcV = s->edge_emu_buffer + 18 * s->linesize;
1916 if (v->rangeredfrm || s->h_edge_pos < 22 || v_edge_pos < 22
1917 || (unsigned)(src_x - 1) > s->h_edge_pos - (mx & 3) - 16 - 3
1918 || (unsigned)(src_y - 1) > v_edge_pos - (my & 3) - 16 - 3) {
1919 uint8_t *uvbuf = s->edge_emu_buffer + 19 * s->linesize;
1921 srcY -= s->mspel * (1 + s->linesize);
1922 s->vdsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize,
1923 17 + s->mspel * 2, 17 + s->mspel * 2,
1924 src_x - s->mspel, src_y - s->mspel,
1925 s->h_edge_pos, v_edge_pos);
1926 srcY = s->edge_emu_buffer;
1927 s->vdsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8 + 1, 8 + 1,
1928 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
1929 s->vdsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8 + 1, 8 + 1,
1930 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
1933 /* if we deal with range reduction we need to scale source blocks */
1934 if (v->rangeredfrm) {
1936 uint8_t *src, *src2;
1939 for (j = 0; j < 17 + s->mspel * 2; j++) {
1940 for (i = 0; i < 17 + s->mspel * 2; i++)
1941 src[i] = ((src[i] - 128) >> 1) + 128;
1946 for (j = 0; j < 9; j++) {
1947 for (i = 0; i < 9; i++) {
1948 src[i] = ((src[i] - 128) >> 1) + 128;
1949 src2[i] = ((src2[i] - 128) >> 1) + 128;
1951 src += s->uvlinesize;
1952 src2 += s->uvlinesize;
1955 srcY += s->mspel * (1 + s->linesize);
1962 dxy = ((my & 3) << 2) | (mx & 3);
1963 v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off , srcY , s->linesize, v->rnd);
1964 v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8, srcY + 8, s->linesize, v->rnd);
1965 srcY += s->linesize * 8;
1966 v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize , srcY , s->linesize, v->rnd);
1967 v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
1969 dxy = (my & 2) | ((mx & 2) >> 1);
1972 dsp->avg_pixels_tab[0][dxy](s->dest[0] + off, srcY, s->linesize, 16);
1974 dsp->avg_no_rnd_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize, 16);
1977 if (s->flags & CODEC_FLAG_GRAY) return;
1978 /* Chroma MC always uses qpel blilinear */
1979 uvmx = (uvmx & 3) << 1;
1980 uvmy = (uvmy & 3) << 1;
1982 h264chroma->avg_h264_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
1983 h264chroma->avg_h264_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
1985 v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
1986 v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
1990 static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
1994 #if B_FRACTION_DEN==256
1998 return 2 * ((value * n + 255) >> 9);
1999 return (value * n + 128) >> 8;
2002 n -= B_FRACTION_DEN;
2004 return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
2005 return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
2009 /** Reconstruct motion vector for B-frame and do motion compensation
2011 static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2],
2012 int direct, int mode)
2015 v->mv_mode2 = v->mv_mode;
2016 v->mv_mode = MV_PMODE_INTENSITY_COMP;
2022 v->mv_mode = v->mv_mode2;
2025 if (mode == BMV_TYPE_INTERPOLATED) {
2029 v->mv_mode = v->mv_mode2;
2033 if (v->use_ic && (mode == BMV_TYPE_BACKWARD))
2034 v->mv_mode = v->mv_mode2;
2035 vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
2037 v->mv_mode = v->mv_mode2;
2040 static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2],
2041 int direct, int mvtype)
2043 MpegEncContext *s = &v->s;
2044 int xy, wrap, off = 0;
2049 const uint8_t *is_intra = v->mb_type[0];
2053 /* scale MV difference to be quad-pel */
2054 dmv_x[0] <<= 1 - s->quarter_sample;
2055 dmv_y[0] <<= 1 - s->quarter_sample;
2056 dmv_x[1] <<= 1 - s->quarter_sample;
2057 dmv_y[1] <<= 1 - s->quarter_sample;
2059 wrap = s->b8_stride;
2060 xy = s->block_index[0];
2063 s->current_picture.f.motion_val[0][xy + v->blocks_off][0] =
2064 s->current_picture.f.motion_val[0][xy + v->blocks_off][1] =
2065 s->current_picture.f.motion_val[1][xy + v->blocks_off][0] =
2066 s->current_picture.f.motion_val[1][xy + v->blocks_off][1] = 0;
2069 if (!v->field_mode) {
2070 s->mv[0][0][0] = scale_mv(s->next_picture.f.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
2071 s->mv[0][0][1] = scale_mv(s->next_picture.f.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
2072 s->mv[1][0][0] = scale_mv(s->next_picture.f.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
2073 s->mv[1][0][1] = scale_mv(s->next_picture.f.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
2075 /* Pullback predicted motion vectors as specified in 8.4.5.4 */
2076 s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
2077 s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
2078 s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
2079 s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
2082 s->current_picture.f.motion_val[0][xy + v->blocks_off][0] = s->mv[0][0][0];
2083 s->current_picture.f.motion_val[0][xy + v->blocks_off][1] = s->mv[0][0][1];
2084 s->current_picture.f.motion_val[1][xy + v->blocks_off][0] = s->mv[1][0][0];
2085 s->current_picture.f.motion_val[1][xy + v->blocks_off][1] = s->mv[1][0][1];
2089 if ((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
2090 C = s->current_picture.f.motion_val[0][xy - 2];
2091 A = s->current_picture.f.motion_val[0][xy - wrap * 2];
2092 off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
2093 B = s->current_picture.f.motion_val[0][xy - wrap * 2 + off];
2095 if (!s->mb_x) C[0] = C[1] = 0;
2096 if (!s->first_slice_line) { // predictor A is not out of bounds
2097 if (s->mb_width == 1) {
2101 px = mid_pred(A[0], B[0], C[0]);
2102 py = mid_pred(A[1], B[1], C[1]);
2104 } else if (s->mb_x) { // predictor C is not out of bounds
2110 /* Pullback MV as specified in 8.3.5.3.4 */
2113 if (v->profile < PROFILE_ADVANCED) {
2114 qx = (s->mb_x << 5);
2115 qy = (s->mb_y << 5);
2116 X = (s->mb_width << 5) - 4;
2117 Y = (s->mb_height << 5) - 4;
2118 if (qx + px < -28) px = -28 - qx;
2119 if (qy + py < -28) py = -28 - qy;
2120 if (qx + px > X) px = X - qx;
2121 if (qy + py > Y) py = Y - qy;
2123 qx = (s->mb_x << 6);
2124 qy = (s->mb_y << 6);
2125 X = (s->mb_width << 6) - 4;
2126 Y = (s->mb_height << 6) - 4;
2127 if (qx + px < -60) px = -60 - qx;
2128 if (qy + py < -60) py = -60 - qy;
2129 if (qx + px > X) px = X - qx;
2130 if (qy + py > Y) py = Y - qy;
2133 /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
2134 if (0 && !s->first_slice_line && s->mb_x) {
2135 if (is_intra[xy - wrap])
2136 sum = FFABS(px) + FFABS(py);
2138 sum = FFABS(px - A[0]) + FFABS(py - A[1]);
2140 if (get_bits1(&s->gb)) {
2148 if (is_intra[xy - 2])
2149 sum = FFABS(px) + FFABS(py);
2151 sum = FFABS(px - C[0]) + FFABS(py - C[1]);
2153 if (get_bits1(&s->gb)) {
2163 /* store MV using signed modulus of MV range defined in 4.11 */
2164 s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
2165 s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
2167 if ((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
2168 C = s->current_picture.f.motion_val[1][xy - 2];
2169 A = s->current_picture.f.motion_val[1][xy - wrap * 2];
2170 off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
2171 B = s->current_picture.f.motion_val[1][xy - wrap * 2 + off];
2175 if (!s->first_slice_line) { // predictor A is not out of bounds
2176 if (s->mb_width == 1) {
2180 px = mid_pred(A[0], B[0], C[0]);
2181 py = mid_pred(A[1], B[1], C[1]);
2183 } else if (s->mb_x) { // predictor C is not out of bounds
2189 /* Pullback MV as specified in 8.3.5.3.4 */
2192 if (v->profile < PROFILE_ADVANCED) {
2193 qx = (s->mb_x << 5);
2194 qy = (s->mb_y << 5);
2195 X = (s->mb_width << 5) - 4;
2196 Y = (s->mb_height << 5) - 4;
2197 if (qx + px < -28) px = -28 - qx;
2198 if (qy + py < -28) py = -28 - qy;
2199 if (qx + px > X) px = X - qx;
2200 if (qy + py > Y) py = Y - qy;
2202 qx = (s->mb_x << 6);
2203 qy = (s->mb_y << 6);
2204 X = (s->mb_width << 6) - 4;
2205 Y = (s->mb_height << 6) - 4;
2206 if (qx + px < -60) px = -60 - qx;
2207 if (qy + py < -60) py = -60 - qy;
2208 if (qx + px > X) px = X - qx;
2209 if (qy + py > Y) py = Y - qy;
2212 /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
2213 if (0 && !s->first_slice_line && s->mb_x) {
2214 if (is_intra[xy - wrap])
2215 sum = FFABS(px) + FFABS(py);
2217 sum = FFABS(px - A[0]) + FFABS(py - A[1]);
2219 if (get_bits1(&s->gb)) {
2227 if (is_intra[xy - 2])
2228 sum = FFABS(px) + FFABS(py);
2230 sum = FFABS(px - C[0]) + FFABS(py - C[1]);
2232 if (get_bits1(&s->gb)) {
2242 /* store MV using signed modulus of MV range defined in 4.11 */
2244 s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
2245 s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
2247 s->current_picture.f.motion_val[0][xy][0] = s->mv[0][0][0];
2248 s->current_picture.f.motion_val[0][xy][1] = s->mv[0][0][1];
2249 s->current_picture.f.motion_val[1][xy][0] = s->mv[1][0][0];
2250 s->current_picture.f.motion_val[1][xy][1] = s->mv[1][0][1];
2253 static inline void vc1_pred_b_mv_intfi(VC1Context *v, int n, int *dmv_x, int *dmv_y, int mv1, int *pred_flag)
2255 int dir = (v->bmvtype == BMV_TYPE_BACKWARD) ? 1 : 0;
2256 MpegEncContext *s = &v->s;
2257 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2259 if (v->bmvtype == BMV_TYPE_DIRECT) {
2260 int total_opp, k, f;
2261 if (s->next_picture.f.mb_type[mb_pos + v->mb_off] != MB_TYPE_INTRA) {
2262 s->mv[0][0][0] = scale_mv(s->next_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0],
2263 v->bfraction, 0, s->quarter_sample);
2264 s->mv[0][0][1] = scale_mv(s->next_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1],
2265 v->bfraction, 0, s->quarter_sample);
2266 s->mv[1][0][0] = scale_mv(s->next_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0],
2267 v->bfraction, 1, s->quarter_sample);
2268 s->mv[1][0][1] = scale_mv(s->next_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1],
2269 v->bfraction, 1, s->quarter_sample);
2271 total_opp = v->mv_f_next[0][s->block_index[0] + v->blocks_off]
2272 + v->mv_f_next[0][s->block_index[1] + v->blocks_off]
2273 + v->mv_f_next[0][s->block_index[2] + v->blocks_off]
2274 + v->mv_f_next[0][s->block_index[3] + v->blocks_off];
2275 f = (total_opp > 2) ? 1 : 0;
2277 s->mv[0][0][0] = s->mv[0][0][1] = 0;
2278 s->mv[1][0][0] = s->mv[1][0][1] = 0;
2281 v->ref_field_type[0] = v->ref_field_type[1] = v->cur_field_type ^ f;
2282 for (k = 0; k < 4; k++) {
2283 s->current_picture.f.motion_val[0][s->block_index[k] + v->blocks_off][0] = s->mv[0][0][0];
2284 s->current_picture.f.motion_val[0][s->block_index[k] + v->blocks_off][1] = s->mv[0][0][1];
2285 s->current_picture.f.motion_val[1][s->block_index[k] + v->blocks_off][0] = s->mv[1][0][0];
2286 s->current_picture.f.motion_val[1][s->block_index[k] + v->blocks_off][1] = s->mv[1][0][1];
2287 v->mv_f[0][s->block_index[k] + v->blocks_off] = f;
2288 v->mv_f[1][s->block_index[k] + v->blocks_off] = f;
2292 if (v->bmvtype == BMV_TYPE_INTERPOLATED) {
2293 vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
2294 vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
2297 if (dir) { // backward
2298 vc1_pred_mv(v, n, dmv_x[1], dmv_y[1], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
2299 if (n == 3 || mv1) {
2300 vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
2303 vc1_pred_mv(v, n, dmv_x[0], dmv_y[0], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
2304 if (n == 3 || mv1) {
2305 vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], 0, 1);
2310 /** Get predicted DC value for I-frames only
2311 * prediction dir: left=0, top=1
2312 * @param s MpegEncContext
2313 * @param overlap flag indicating that overlap filtering is used
2314 * @param pq integer part of picture quantizer
2315 * @param[in] n block index in the current MB
2316 * @param dc_val_ptr Pointer to DC predictor
2317 * @param dir_ptr Prediction direction for use in AC prediction
2319 static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
2320 int16_t **dc_val_ptr, int *dir_ptr)
2322 int a, b, c, wrap, pred, scale;
2324 static const uint16_t dcpred[32] = {
2325 -1, 1024, 512, 341, 256, 205, 171, 146, 128,
2326 114, 102, 93, 85, 79, 73, 68, 64,
2327 60, 57, 54, 51, 49, 47, 45, 43,
2328 41, 39, 38, 37, 35, 34, 33
2331 /* find prediction - wmv3_dc_scale always used here in fact */
2332 if (n < 4) scale = s->y_dc_scale;
2333 else scale = s->c_dc_scale;
2335 wrap = s->block_wrap[n];
2336 dc_val = s->dc_val[0] + s->block_index[n];
2342 b = dc_val[ - 1 - wrap];
2343 a = dc_val[ - wrap];
2345 if (pq < 9 || !overlap) {
2346 /* Set outer values */
2347 if (s->first_slice_line && (n != 2 && n != 3))
2348 b = a = dcpred[scale];
2349 if (s->mb_x == 0 && (n != 1 && n != 3))
2350 b = c = dcpred[scale];
2352 /* Set outer values */
2353 if (s->first_slice_line && (n != 2 && n != 3))
2355 if (s->mb_x == 0 && (n != 1 && n != 3))
2359 if (abs(a - b) <= abs(b - c)) {
2361 *dir_ptr = 1; // left
2364 *dir_ptr = 0; // top
2367 /* update predictor */
2368 *dc_val_ptr = &dc_val[0];
2373 /** Get predicted DC value
2374 * prediction dir: left=0, top=1
2375 * @param s MpegEncContext
2376 * @param overlap flag indicating that overlap filtering is used
2377 * @param pq integer part of picture quantizer
2378 * @param[in] n block index in the current MB
2379 * @param a_avail flag indicating top block availability
2380 * @param c_avail flag indicating left block availability
2381 * @param dc_val_ptr Pointer to DC predictor
2382 * @param dir_ptr Prediction direction for use in AC prediction
2384 static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
2385 int a_avail, int c_avail,
2386 int16_t **dc_val_ptr, int *dir_ptr)
2388 int a, b, c, wrap, pred;
2390 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2394 wrap = s->block_wrap[n];
2395 dc_val = s->dc_val[0] + s->block_index[n];
2401 b = dc_val[ - 1 - wrap];
2402 a = dc_val[ - wrap];
2403 /* scale predictors if needed */
2404 q1 = s->current_picture.f.qscale_table[mb_pos];
2405 dqscale_index = s->y_dc_scale_table[q1] - 1;
2406 if (dqscale_index < 0)
2408 if (c_avail && (n != 1 && n != 3)) {
2409 q2 = s->current_picture.f.qscale_table[mb_pos - 1];
2411 c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
2413 if (a_avail && (n != 2 && n != 3)) {
2414 q2 = s->current_picture.f.qscale_table[mb_pos - s->mb_stride];
2416 a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
2418 if (a_avail && c_avail && (n != 3)) {
2423 off -= s->mb_stride;
2424 q2 = s->current_picture.f.qscale_table[off];
2426 b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[dqscale_index] + 0x20000) >> 18;
2429 if (a_avail && c_avail) {
2430 if (abs(a - b) <= abs(b - c)) {
2432 *dir_ptr = 1; // left
2435 *dir_ptr = 0; // top
2437 } else if (a_avail) {
2439 *dir_ptr = 0; // top
2440 } else if (c_avail) {
2442 *dir_ptr = 1; // left
2445 *dir_ptr = 1; // left
2448 /* update predictor */
2449 *dc_val_ptr = &dc_val[0];
2453 /** @} */ // Block group
2456 * @name VC1 Macroblock-level functions in Simple/Main Profiles
2457 * @see 7.1.4, p91 and 8.1.1.7, p(1)04
2461 static inline int vc1_coded_block_pred(MpegEncContext * s, int n,
2462 uint8_t **coded_block_ptr)
2464 int xy, wrap, pred, a, b, c;
2466 xy = s->block_index[n];
2467 wrap = s->b8_stride;
2472 a = s->coded_block[xy - 1 ];
2473 b = s->coded_block[xy - 1 - wrap];
2474 c = s->coded_block[xy - wrap];
2483 *coded_block_ptr = &s->coded_block[xy];
2489 * Decode one AC coefficient
2490 * @param v The VC1 context
2491 * @param last Last coefficient
2492 * @param skip How much zero coefficients to skip
2493 * @param value Decoded AC coefficient value
2494 * @param codingset set of VLC to decode data
2497 static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip,
2498 int *value, int codingset)
2500 GetBitContext *gb = &v->s.gb;
2501 int index, escape, run = 0, level = 0, lst = 0;
2503 index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
2504 if (index != ff_vc1_ac_sizes[codingset] - 1) {
2505 run = vc1_index_decode_table[codingset][index][0];
2506 level = vc1_index_decode_table[codingset][index][1];
2507 lst = index >= vc1_last_decode_table[codingset] || get_bits_left(gb) < 0;
2511 escape = decode210(gb);
2513 index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
2514 run = vc1_index_decode_table[codingset][index][0];
2515 level = vc1_index_decode_table[codingset][index][1];
2516 lst = index >= vc1_last_decode_table[codingset];
2519 level += vc1_last_delta_level_table[codingset][run];
2521 level += vc1_delta_level_table[codingset][run];
2524 run += vc1_last_delta_run_table[codingset][level] + 1;
2526 run += vc1_delta_run_table[codingset][level] + 1;
2532 lst = get_bits1(gb);
2533 if (v->s.esc3_level_length == 0) {
2534 if (v->pq < 8 || v->dquantfrm) { // table 59
2535 v->s.esc3_level_length = get_bits(gb, 3);
2536 if (!v->s.esc3_level_length)
2537 v->s.esc3_level_length = get_bits(gb, 2) + 8;
2538 } else { // table 60
2539 v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
2541 v->s.esc3_run_length = 3 + get_bits(gb, 2);
2543 run = get_bits(gb, v->s.esc3_run_length);
2544 sign = get_bits1(gb);
2545 level = get_bits(gb, v->s.esc3_level_length);
2556 /** Decode intra block in intra frames - should be faster than decode_intra_block
2557 * @param v VC1Context
2558 * @param block block to decode
2559 * @param[in] n subblock index
2560 * @param coded are AC coeffs present or not
2561 * @param codingset set of VLC to decode data
2563 static int vc1_decode_i_block(VC1Context *v, int16_t block[64], int n,
2564 int coded, int codingset)
2566 GetBitContext *gb = &v->s.gb;
2567 MpegEncContext *s = &v->s;
2568 int dc_pred_dir = 0; /* Direction of the DC prediction used */
2571 int16_t *ac_val, *ac_val2;
2574 /* Get DC differential */
2576 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2578 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2581 av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2585 if (dcdiff == 119 /* ESC index value */) {
2586 /* TODO: Optimize */
2587 if (v->pq == 1) dcdiff = get_bits(gb, 10);
2588 else if (v->pq == 2) dcdiff = get_bits(gb, 9);
2589 else dcdiff = get_bits(gb, 8);
2592 dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
2593 else if (v->pq == 2)
2594 dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
2601 dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
2604 /* Store the quantized DC coeff, used for prediction */
2606 block[0] = dcdiff * s->y_dc_scale;
2608 block[0] = dcdiff * s->c_dc_scale;
2619 int last = 0, skip, value;
2620 const uint8_t *zz_table;
2624 scale = v->pq * 2 + v->halfpq;
2628 zz_table = v->zz_8x8[2];
2630 zz_table = v->zz_8x8[3];
2632 zz_table = v->zz_8x8[1];
2634 ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2636 if (dc_pred_dir) // left
2639 ac_val -= 16 * s->block_wrap[n];
2642 vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
2646 block[zz_table[i++]] = value;
2649 /* apply AC prediction if needed */
2651 if (dc_pred_dir) { // left
2652 for (k = 1; k < 8; k++)
2653 block[k << v->left_blk_sh] += ac_val[k];
2655 for (k = 1; k < 8; k++)
2656 block[k << v->top_blk_sh] += ac_val[k + 8];
2659 /* save AC coeffs for further prediction */
2660 for (k = 1; k < 8; k++) {
2661 ac_val2[k] = block[k << v->left_blk_sh];
2662 ac_val2[k + 8] = block[k << v->top_blk_sh];
2665 /* scale AC coeffs */
2666 for (k = 1; k < 64; k++)
2670 block[k] += (block[k] < 0) ? -v->pq : v->pq;
2673 if (s->ac_pred) i = 63;
2679 ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2683 scale = v->pq * 2 + v->halfpq;
2684 memset(ac_val2, 0, 16 * 2);
2685 if (dc_pred_dir) { // left
2688 memcpy(ac_val2, ac_val, 8 * 2);
2690 ac_val -= 16 * s->block_wrap[n];
2692 memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
2695 /* apply AC prediction if needed */
2697 if (dc_pred_dir) { //left
2698 for (k = 1; k < 8; k++) {
2699 block[k << v->left_blk_sh] = ac_val[k] * scale;
2700 if (!v->pquantizer && block[k << v->left_blk_sh])
2701 block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -v->pq : v->pq;
2704 for (k = 1; k < 8; k++) {
2705 block[k << v->top_blk_sh] = ac_val[k + 8] * scale;
2706 if (!v->pquantizer && block[k << v->top_blk_sh])
2707 block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -v->pq : v->pq;
2713 s->block_last_index[n] = i;
2718 /** Decode intra block in intra frames - should be faster than decode_intra_block
2719 * @param v VC1Context
2720 * @param block block to decode
2721 * @param[in] n subblock number
2722 * @param coded are AC coeffs present or not
2723 * @param codingset set of VLC to decode data
2724 * @param mquant quantizer value for this macroblock
2726 static int vc1_decode_i_block_adv(VC1Context *v, int16_t block[64], int n,
2727 int coded, int codingset, int mquant)
2729 GetBitContext *gb = &v->s.gb;
2730 MpegEncContext *s = &v->s;
2731 int dc_pred_dir = 0; /* Direction of the DC prediction used */
2733 int16_t *dc_val = NULL;
2734 int16_t *ac_val, *ac_val2;
2736 int a_avail = v->a_avail, c_avail = v->c_avail;
2737 int use_pred = s->ac_pred;
2740 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2742 /* Get DC differential */
2744 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2746 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2749 av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2753 if (dcdiff == 119 /* ESC index value */) {
2754 /* TODO: Optimize */
2755 if (mquant == 1) dcdiff = get_bits(gb, 10);
2756 else if (mquant == 2) dcdiff = get_bits(gb, 9);
2757 else dcdiff = get_bits(gb, 8);
2760 dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
2761 else if (mquant == 2)
2762 dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
2769 dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
2772 /* Store the quantized DC coeff, used for prediction */
2774 block[0] = dcdiff * s->y_dc_scale;
2776 block[0] = dcdiff * s->c_dc_scale;
2782 /* check if AC is needed at all */
2783 if (!a_avail && !c_avail)
2785 ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2788 scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
2790 if (dc_pred_dir) // left
2793 ac_val -= 16 * s->block_wrap[n];
2795 q1 = s->current_picture.f.qscale_table[mb_pos];
2796 if ( dc_pred_dir && c_avail && mb_pos)
2797 q2 = s->current_picture.f.qscale_table[mb_pos - 1];
2798 if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride)
2799 q2 = s->current_picture.f.qscale_table[mb_pos - s->mb_stride];
2800 if ( dc_pred_dir && n == 1)
2802 if (!dc_pred_dir && n == 2)
2808 int last = 0, skip, value;
2809 const uint8_t *zz_table;
2813 if (!use_pred && v->fcm == ILACE_FRAME) {
2814 zz_table = v->zzi_8x8;
2816 if (!dc_pred_dir) // top
2817 zz_table = v->zz_8x8[2];
2819 zz_table = v->zz_8x8[3];
2822 if (v->fcm != ILACE_FRAME)
2823 zz_table = v->zz_8x8[1];
2825 zz_table = v->zzi_8x8;
2829 vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
2833 block[zz_table[i++]] = value;
2836 /* apply AC prediction if needed */
2838 /* scale predictors if needed*/
2839 if (q2 && q1 != q2) {
2840 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2841 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2844 return AVERROR_INVALIDDATA;
2845 if (dc_pred_dir) { // left
2846 for (k = 1; k < 8; k++)
2847 block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2849 for (k = 1; k < 8; k++)
2850 block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2853 if (dc_pred_dir) { //left
2854 for (k = 1; k < 8; k++)
2855 block[k << v->left_blk_sh] += ac_val[k];
2857 for (k = 1; k < 8; k++)
2858 block[k << v->top_blk_sh] += ac_val[k + 8];
2862 /* save AC coeffs for further prediction */
2863 for (k = 1; k < 8; k++) {
2864 ac_val2[k ] = block[k << v->left_blk_sh];
2865 ac_val2[k + 8] = block[k << v->top_blk_sh];
2868 /* scale AC coeffs */
2869 for (k = 1; k < 64; k++)
2873 block[k] += (block[k] < 0) ? -mquant : mquant;
2876 if (use_pred) i = 63;
2877 } else { // no AC coeffs
2880 memset(ac_val2, 0, 16 * 2);
2881 if (dc_pred_dir) { // left
2883 memcpy(ac_val2, ac_val, 8 * 2);
2884 if (q2 && q1 != q2) {
2885 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2886 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2888 return AVERROR_INVALIDDATA;
2889 for (k = 1; k < 8; k++)
2890 ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2895 memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
2896 if (q2 && q1 != q2) {
2897 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2898 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2900 return AVERROR_INVALIDDATA;
2901 for (k = 1; k < 8; k++)
2902 ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2907 /* apply AC prediction if needed */
2909 if (dc_pred_dir) { // left
2910 for (k = 1; k < 8; k++) {
2911 block[k << v->left_blk_sh] = ac_val2[k] * scale;
2912 if (!v->pquantizer && block[k << v->left_blk_sh])
2913 block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
2916 for (k = 1; k < 8; k++) {
2917 block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
2918 if (!v->pquantizer && block[k << v->top_blk_sh])
2919 block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
2925 s->block_last_index[n] = i;
2930 /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
2931 * @param v VC1Context
2932 * @param block block to decode
2933 * @param[in] n subblock index
2934 * @param coded are AC coeffs present or not
2935 * @param mquant block quantizer
2936 * @param codingset set of VLC to decode data
2938 static int vc1_decode_intra_block(VC1Context *v, int16_t block[64], int n,
2939 int coded, int mquant, int codingset)
2941 GetBitContext *gb = &v->s.gb;
2942 MpegEncContext *s = &v->s;
2943 int dc_pred_dir = 0; /* Direction of the DC prediction used */
2945 int16_t *dc_val = NULL;
2946 int16_t *ac_val, *ac_val2;
2948 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2949 int a_avail = v->a_avail, c_avail = v->c_avail;
2950 int use_pred = s->ac_pred;
2954 s->dsp.clear_block(block);
2956 /* XXX: Guard against dumb values of mquant */
2957 mquant = (mquant < 1) ? 0 : ((mquant > 31) ? 31 : mquant);
2959 /* Set DC scale - y and c use the same */
2960 s->y_dc_scale = s->y_dc_scale_table[mquant];
2961 s->c_dc_scale = s->c_dc_scale_table[mquant];
2963 /* Get DC differential */
2965 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2967 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2970 av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2974 if (dcdiff == 119 /* ESC index value */) {
2975 /* TODO: Optimize */
2976 if (mquant == 1) dcdiff = get_bits(gb, 10);
2977 else if (mquant == 2) dcdiff = get_bits(gb, 9);
2978 else dcdiff = get_bits(gb, 8);
2981 dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
2982 else if (mquant == 2)
2983 dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
2990 dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
2993 /* Store the quantized DC coeff, used for prediction */
2996 block[0] = dcdiff * s->y_dc_scale;
2998 block[0] = dcdiff * s->c_dc_scale;
3004 /* check if AC is needed at all and adjust direction if needed */
3005 if (!a_avail) dc_pred_dir = 1;
3006 if (!c_avail) dc_pred_dir = 0;
3007 if (!a_avail && !c_avail) use_pred = 0;
3008 ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
3011 scale = mquant * 2 + v->halfpq;
3013 if (dc_pred_dir) //left
3016 ac_val -= 16 * s->block_wrap[n];
3018 q1 = s->current_picture.f.qscale_table[mb_pos];
3019 if (dc_pred_dir && c_avail && mb_pos)
3020 q2 = s->current_picture.f.qscale_table[mb_pos - 1];
3021 if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride)
3022 q2 = s->current_picture.f.qscale_table[mb_pos - s->mb_stride];
3023 if ( dc_pred_dir && n == 1)
3025 if (!dc_pred_dir && n == 2)
3027 if (n == 3) q2 = q1;
3030 int last = 0, skip, value;
3034 vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
3038 if (v->fcm == PROGRESSIVE)
3039 block[v->zz_8x8[0][i++]] = value;
3041 if (use_pred && (v->fcm == ILACE_FRAME)) {
3042 if (!dc_pred_dir) // top
3043 block[v->zz_8x8[2][i++]] = value;
3045 block[v->zz_8x8[3][i++]] = value;
3047 block[v->zzi_8x8[i++]] = value;
3052 /* apply AC prediction if needed */
3054 /* scale predictors if needed*/
3055 if (q2 && q1 != q2) {
3056 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
3057 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
3060 return AVERROR_INVALIDDATA;
3061 if (dc_pred_dir) { // left
3062 for (k = 1; k < 8; k++)
3063 block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
3065 for (k = 1; k < 8; k++)
3066 block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
3069 if (dc_pred_dir) { // left
3070 for (k = 1; k < 8; k++)
3071 block[k << v->left_blk_sh] += ac_val[k];
3073 for (k = 1; k < 8; k++)
3074 block[k << v->top_blk_sh] += ac_val[k + 8];
3078 /* save AC coeffs for further prediction */
3079 for (k = 1; k < 8; k++) {
3080 ac_val2[k ] = block[k << v->left_blk_sh];
3081 ac_val2[k + 8] = block[k << v->top_blk_sh];
3084 /* scale AC coeffs */
3085 for (k = 1; k < 64; k++)
3089 block[k] += (block[k] < 0) ? -mquant : mquant;
3092 if (use_pred) i = 63;
3093 } else { // no AC coeffs
3096 memset(ac_val2, 0, 16 * 2);
3097 if (dc_pred_dir) { // left
3099 memcpy(ac_val2, ac_val, 8 * 2);
3100 if (q2 && q1 != q2) {
3101 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
3102 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
3104 return AVERROR_INVALIDDATA;
3105 for (k = 1; k < 8; k++)
3106 ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
3111 memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
3112 if (q2 && q1 != q2) {
3113 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
3114 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
3116 return AVERROR_INVALIDDATA;
3117 for (k = 1; k < 8; k++)
3118 ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
3123 /* apply AC prediction if needed */
3125 if (dc_pred_dir) { // left
3126 for (k = 1; k < 8; k++) {
3127 block[k << v->left_blk_sh] = ac_val2[k] * scale;
3128 if (!v->pquantizer && block[k << v->left_blk_sh])
3129 block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
3132 for (k = 1; k < 8; k++) {
3133 block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
3134 if (!v->pquantizer && block[k << v->top_blk_sh])
3135 block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
3141 s->block_last_index[n] = i;
3148 static int vc1_decode_p_block(VC1Context *v, int16_t block[64], int n,
3149 int mquant, int ttmb, int first_block,
3150 uint8_t *dst, int linesize, int skip_block,
3153 MpegEncContext *s = &v->s;
3154 GetBitContext *gb = &s->gb;
3157 int scale, off, idx, last, skip, value;
3158 int ttblk = ttmb & 7;
3161 s->dsp.clear_block(block);
3164 ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
3166 if (ttblk == TT_4X4) {
3167 subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
3169 if ((ttblk != TT_8X8 && ttblk != TT_4X4)
3170 && ((v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))
3171 || (!v->res_rtm_flag && !first_block))) {
3172 subblkpat = decode012(gb);
3174 subblkpat ^= 3; // swap decoded pattern bits
3175 if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM)
3177 if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT)
3180 scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
3182 // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
3183 if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
3184 subblkpat = 2 - (ttblk == TT_8X4_TOP);
3187 if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
3188 subblkpat = 2 - (ttblk == TT_4X8_LEFT);
3197 vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3202 idx = v->zz_8x8[0][i++];
3204 idx = v->zzi_8x8[i++];
3205 block[idx] = value * scale;
3207 block[idx] += (block[idx] < 0) ? -mquant : mquant;
3211 v->vc1dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
3213 v->vc1dsp.vc1_inv_trans_8x8(block);
3214 s->dsp.add_pixels_clamped(block, dst, linesize);
3219 pat = ~subblkpat & 0xF;
3220 for (j = 0; j < 4; j++) {
3221 last = subblkpat & (1 << (3 - j));
3223 off = (j & 1) * 4 + (j & 2) * 16;
3225 vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3230 idx = ff_vc1_simple_progressive_4x4_zz[i++];
3232 idx = ff_vc1_adv_interlaced_4x4_zz[i++];
3233 block[idx + off] = value * scale;
3235 block[idx + off] += (block[idx + off] < 0) ? -mquant : mquant;
3237 if (!(subblkpat & (1 << (3 - j))) && !skip_block) {
3239 v->vc1dsp.vc1_inv_trans_4x4_dc(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
3241 v->vc1dsp.vc1_inv_trans_4x4(dst + (j & 1) * 4 + (j & 2) * 2 * linesize, linesize, block + off);
3246 pat = ~((subblkpat & 2) * 6 + (subblkpat & 1) * 3) & 0xF;
3247 for (j = 0; j < 2; j++) {
3248 last = subblkpat & (1 << (1 - j));
3252 vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3257 idx = v->zz_8x4[i++] + off;
3259 idx = ff_vc1_adv_interlaced_8x4_zz[i++] + off;
3260 block[idx] = value * scale;
3262 block[idx] += (block[idx] < 0) ? -mquant : mquant;
3264 if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
3266 v->vc1dsp.vc1_inv_trans_8x4_dc(dst + j * 4 * linesize, linesize, block + off);
3268 v->vc1dsp.vc1_inv_trans_8x4(dst + j * 4 * linesize, linesize, block + off);
3273 pat = ~(subblkpat * 5) & 0xF;
3274 for (j = 0; j < 2; j++) {
3275 last = subblkpat & (1 << (1 - j));
3279 vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3284 idx = v->zz_4x8[i++] + off;
3286 idx = ff_vc1_adv_interlaced_4x8_zz[i++] + off;
3287 block[idx] = value * scale;
3289 block[idx] += (block[idx] < 0) ? -mquant : mquant;
3291 if (!(subblkpat & (1 << (1 - j))) && !skip_block) {
3293 v->vc1dsp.vc1_inv_trans_4x8_dc(dst + j * 4, linesize, block + off);
3295 v->vc1dsp.vc1_inv_trans_4x8(dst + j*4, linesize, block + off);
3301 *ttmb_out |= ttblk << (n * 4);
3305 /** @} */ // Macroblock group
3307 static const int size_table [6] = { 0, 2, 3, 4, 5, 8 };
3308 static const int offset_table[6] = { 0, 1, 3, 7, 15, 31 };
3310 static av_always_inline void vc1_apply_p_v_loop_filter(VC1Context *v, int block_num)
3312 MpegEncContext *s = &v->s;
3313 int mb_cbp = v->cbp[s->mb_x - s->mb_stride],
3314 block_cbp = mb_cbp >> (block_num * 4), bottom_cbp,
3315 mb_is_intra = v->is_intra[s->mb_x - s->mb_stride],
3316 block_is_intra = mb_is_intra >> (block_num * 4), bottom_is_intra;
3317 int idx, linesize = block_num > 3 ? s->uvlinesize : s->linesize, ttblk;
3320 if (block_num > 3) {
3321 dst = s->dest[block_num - 3];
3323 dst = s->dest[0] + (block_num & 1) * 8 + ((block_num & 2) * 4 - 8) * linesize;
3325 if (s->mb_y != s->end_mb_y || block_num < 2) {
3329 if (block_num > 3) {
3330 bottom_cbp = v->cbp[s->mb_x] >> (block_num * 4);
3331 bottom_is_intra = v->is_intra[s->mb_x] >> (block_num * 4);
3332 mv = &v->luma_mv[s->mb_x - s->mb_stride];
3333 mv_stride = s->mb_stride;
3335 bottom_cbp = (block_num < 2) ? (mb_cbp >> ((block_num + 2) * 4))
3336 : (v->cbp[s->mb_x] >> ((block_num - 2) * 4));
3337 bottom_is_intra = (block_num < 2) ? (mb_is_intra >> ((block_num + 2) * 4))
3338 : (v->is_intra[s->mb_x] >> ((block_num - 2) * 4));
3339 mv_stride = s->b8_stride;
3340 mv = &s->current_picture.f.motion_val[0][s->block_index[block_num] - 2 * mv_stride];
3343 if (bottom_is_intra & 1 || block_is_intra & 1 ||
3344 mv[0][0] != mv[mv_stride][0] || mv[0][1] != mv[mv_stride][1]) {
3345 v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
3347 idx = ((bottom_cbp >> 2) | block_cbp) & 3;
3349 v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
3352 v->vc1dsp.vc1_v_loop_filter4(dst + 4, linesize, v->pq);
3354 v->vc1dsp.vc1_v_loop_filter4(dst, linesize, v->pq);
3359 dst -= 4 * linesize;
3360 ttblk = (v->ttblk[s->mb_x - s->mb_stride] >> (block_num * 4)) & 0xF;
3361 if (ttblk == TT_4X4 || ttblk == TT_8X4) {
3362 idx = (block_cbp | (block_cbp >> 2)) & 3;
3364 v->vc1dsp.vc1_v_loop_filter8(dst, linesize, v->pq);
3367 v->vc1dsp.vc1_v_loop_filter4(dst + 4, linesize, v->pq);
3369 v->vc1dsp.vc1_v_loop_filter4(dst, linesize, v->pq);
3374 static av_always_inline void vc1_apply_p_h_loop_filter(VC1Context *v, int block_num)
3376 MpegEncContext *s = &v->s;
3377 int mb_cbp = v->cbp[s->mb_x - 1 - s->mb_stride],
3378 block_cbp = mb_cbp >> (block_num * 4), right_cbp,
3379 mb_is_intra = v->is_intra[s->mb_x - 1 - s->mb_stride],
3380 block_is_intra = mb_is_intra >> (block_num * 4), right_is_intra;
3381 int idx, linesize = block_num > 3 ? s->uvlinesize : s->linesize, ttblk;
3384 if (block_num > 3) {
3385 dst = s->dest[block_num - 3] - 8 * linesize;
3387 dst = s->dest[0] + (block_num & 1) * 8 + ((block_num & 2) * 4 - 16) * linesize - 8;
3390 if (s->mb_x != s->mb_width || !(block_num & 5)) {
3393 if (block_num > 3) {
3394 right_cbp = v->cbp[s->mb_x - s->mb_stride] >> (block_num * 4);
3395 right_is_intra = v->is_intra[s->mb_x - s->mb_stride] >> (block_num * 4);
3396 mv = &v->luma_mv[s->mb_x - s->mb_stride - 1];
3398 right_cbp = (block_num & 1) ? (v->cbp[s->mb_x - s->mb_stride] >> ((block_num - 1) * 4))
3399 : (mb_cbp >> ((block_num + 1) * 4));
3400 right_is_intra = (block_num & 1) ? (v->is_intra[s->mb_x - s->mb_stride] >> ((block_num - 1) * 4))
3401 : (mb_is_intra >> ((block_num + 1) * 4));
3402 mv = &s->current_picture.f.motion_val[0][s->block_index[block_num] - s->b8_stride * 2 - 2];
3404 if (block_is_intra & 1 || right_is_intra & 1 || mv[0][0] != mv[1][0] || mv[0][1] != mv[1][1]) {
3405 v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
3407 idx = ((right_cbp >> 1) | block_cbp) & 5; // FIXME check
3409 v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
3412 v->vc1dsp.vc1_h_loop_filter4(dst + 4 * linesize, linesize, v->pq);
3414 v->vc1dsp.vc1_h_loop_filter4(dst, linesize, v->pq);
3420 ttblk = (v->ttblk[s->mb_x - s->mb_stride - 1] >> (block_num * 4)) & 0xf;
3421 if (ttblk == TT_4X4 || ttblk == TT_4X8) {
3422 idx = (block_cbp | (block_cbp >> 1)) & 5;
3424 v->vc1dsp.vc1_h_loop_filter8(dst, linesize, v->pq);
3427 v->vc1dsp.vc1_h_loop_filter4(dst + linesize * 4, linesize, v->pq);
3429 v->vc1dsp.vc1_h_loop_filter4(dst, linesize, v->pq);
3434 static void vc1_apply_p_loop_filter(VC1Context *v)
3436 MpegEncContext *s = &v->s;
3439 for (i = 0; i < 6; i++) {
3440 vc1_apply_p_v_loop_filter(v, i);
3443 /* V always precedes H, therefore we run H one MB before V;
3444 * at the end of a row, we catch up to complete the row */
3446 for (i = 0; i < 6; i++) {
3447 vc1_apply_p_h_loop_filter(v, i);
3449 if (s->mb_x == s->mb_width - 1) {
3451 ff_update_block_index(s);
3452 for (i = 0; i < 6; i++) {
3453 vc1_apply_p_h_loop_filter(v, i);
3459 /** Decode one P-frame MB
3461 static int vc1_decode_p_mb(VC1Context *v)
3463 MpegEncContext *s = &v->s;
3464 GetBitContext *gb = &s->gb;
3466 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3467 int cbp; /* cbp decoding stuff */
3468 int mqdiff, mquant; /* MB quantization */
3469 int ttmb = v->ttfrm; /* MB Transform type */
3471 int mb_has_coeffs = 1; /* last_flag */
3472 int dmv_x, dmv_y; /* Differential MV components */
3473 int index, index1; /* LUT indexes */
3474 int val, sign; /* temp values */
3475 int first_block = 1;
3477 int skipped, fourmv;
3478 int block_cbp = 0, pat, block_tt = 0, block_intra = 0;
3480 mquant = v->pq; /* lossy initialization */
3482 if (v->mv_type_is_raw)
3483 fourmv = get_bits1(gb);
3485 fourmv = v->mv_type_mb_plane[mb_pos];
3487 skipped = get_bits1(gb);
3489 skipped = v->s.mbskip_table[mb_pos];
3491 if (!fourmv) { /* 1MV mode */
3493 GET_MVDATA(dmv_x, dmv_y);
3496 s->current_picture.f.motion_val[1][s->block_index[0]][0] = 0;
3497 s->current_picture.f.motion_val[1][s->block_index[0]][1] = 0;
3499 s->current_picture.f.mb_type[mb_pos] = s->mb_intra ? MB_TYPE_INTRA : MB_TYPE_16x16;
3500 vc1_pred_mv(v, 0, dmv_x, dmv_y, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
3502 /* FIXME Set DC val for inter block ? */
3503 if (s->mb_intra && !mb_has_coeffs) {
3505 s->ac_pred = get_bits1(gb);
3507 } else if (mb_has_coeffs) {
3509 s->ac_pred = get_bits1(gb);
3510 cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3516 s->current_picture.f.qscale_table[mb_pos] = mquant;
3518 if (!v->ttmbf && !s->mb_intra && mb_has_coeffs)
3519 ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table,
3520 VC1_TTMB_VLC_BITS, 2);
3521 if (!s->mb_intra) vc1_mc_1mv(v, 0);
3523 for (i = 0; i < 6; i++) {
3524 s->dc_val[0][s->block_index[i]] = 0;
3526 val = ((cbp >> (5 - i)) & 1);
3527 off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3528 v->mb_type[0][s->block_index[i]] = s->mb_intra;
3530 /* check if prediction blocks A and C are available */
3531 v->a_avail = v->c_avail = 0;
3532 if (i == 2 || i == 3 || !s->first_slice_line)
3533 v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3534 if (i == 1 || i == 3 || s->mb_x)
3535 v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3537 vc1_decode_intra_block(v, s->block[i], i, val, mquant,
3538 (i & 4) ? v->codingset2 : v->codingset);
3539 if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
3541 v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
3543 for (j = 0; j < 64; j++)
3544 s->block[i][j] <<= 1;
3545 s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
3546 if (v->pq >= 9 && v->overlap) {
3548 v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
3550 v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
3552 block_cbp |= 0xF << (i << 2);
3553 block_intra |= 1 << i;
3555 pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb, first_block,
3556 s->dest[dst_idx] + off, (i & 4) ? s->uvlinesize : s->linesize,
3557 (i & 4) && (s->flags & CODEC_FLAG_GRAY), &block_tt);
3558 block_cbp |= pat << (i << 2);
3559 if (!v->ttmbf && ttmb < 8)
3566 for (i = 0; i < 6; i++) {
3567 v->mb_type[0][s->block_index[i]] = 0;
3568 s->dc_val[0][s->block_index[i]] = 0;
3570 s->current_picture.f.mb_type[mb_pos] = MB_TYPE_SKIP;
3571 s->current_picture.f.qscale_table[mb_pos] = 0;
3572 vc1_pred_mv(v, 0, 0, 0, 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
3575 } else { // 4MV mode
3576 if (!skipped /* unskipped MB */) {
3577 int intra_count = 0, coded_inter = 0;
3578 int is_intra[6], is_coded[6];
3580 cbp = get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3581 for (i = 0; i < 6; i++) {
3582 val = ((cbp >> (5 - i)) & 1);
3583 s->dc_val[0][s->block_index[i]] = 0;
3590 GET_MVDATA(dmv_x, dmv_y);
3592 vc1_pred_mv(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
3594 vc1_mc_4mv_luma(v, i, 0);
3595 intra_count += s->mb_intra;
3596 is_intra[i] = s->mb_intra;
3597 is_coded[i] = mb_has_coeffs;
3600 is_intra[i] = (intra_count >= 3);
3604 vc1_mc_4mv_chroma(v, 0);
3605 v->mb_type[0][s->block_index[i]] = is_intra[i];
3607 coded_inter = !is_intra[i] & is_coded[i];
3609 // if there are no coded blocks then don't do anything more
3611 if (!intra_count && !coded_inter)
3614 s->current_picture.f.qscale_table[mb_pos] = mquant;
3615 /* test if block is intra and has pred */
3618 for (i = 0; i < 6; i++)
3620 if (((!s->first_slice_line || (i == 2 || i == 3)) && v->mb_type[0][s->block_index[i] - s->block_wrap[i]])
3621 || ((s->mb_x || (i == 1 || i == 3)) && v->mb_type[0][s->block_index[i] - 1])) {
3627 s->ac_pred = get_bits1(gb);
3631 if (!v->ttmbf && coded_inter)
3632 ttmb = get_vlc2(gb, ff_vc1_ttmb_vlc[v->tt_index].table, VC1_TTMB_VLC_BITS, 2);
3633 for (i = 0; i < 6; i++) {
3635 off = (i & 4) ? 0 : ((i & 1) * 8 + (i & 2) * 4 * s->linesize);
3636 s->mb_intra = is_intra[i];
3638 /* check if prediction blocks A and C are available */
3639 v->a_avail = v->c_avail = 0;
3640 if (i == 2 || i == 3 || !s->first_slice_line)
3641 v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3642 if (i == 1 || i == 3 || s->mb_x)
3643 v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3645 vc1_decode_intra_block(v, s->block[i], i, is_coded[i], mquant,
3646 (i & 4) ? v->codingset2 : v->codingset);
3647 if ((i>3) && (s->flags & CODEC_FLAG_GRAY))
3649 v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
3651 for (j = 0; j < 64; j++)
3652 s->block[i][j] <<= 1;
3653 s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off,
3654 (i & 4) ? s->uvlinesize : s->linesize);
3655 if (v->pq >= 9 && v->overlap) {
3657 v->vc1dsp.vc1_h_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
3659 v->vc1dsp.vc1_v_overlap(s->dest[dst_idx] + off, i & 4 ? s->uvlinesize : s->linesize);
3661 block_cbp |= 0xF << (i << 2);
3662 block_intra |= 1 << i;
3663 } else if (is_coded[i]) {
3664 pat = vc1_decode_p_block(v, s->block[i], i, mquant, ttmb,
3665 first_block, s->dest[dst_idx] + off,
3666 (i & 4) ? s->uvlinesize : s->linesize,
3667 (i & 4) && (s->flags & CODEC_FLAG_GRAY),
3669 block_cbp |= pat << (i << 2);
3670 if (!v->ttmbf && ttmb < 8)
3675 } else { // skipped MB
3677 s->current_picture.f.qscale_table[mb_pos] = 0;
3678 for (i = 0; i < 6; i++) {
3679 v->mb_type[0][s->block_index[i]] = 0;
3680 s->dc_val[0][s->block_index[i]] = 0;
3682 for (i = 0; i < 4; i++) {
3683 vc1_pred_mv(v, i, 0, 0, 0, v->range_x, v->range_y, v->mb_type[0], 0, 0);
3684 vc1_mc_4mv_luma(v, i, 0);
3686 vc1_mc_4mv_chroma(v, 0);
3687 s->current_picture.f.qscale_table[mb_pos] = 0;
3691 v->cbp[s->mb_x] = block_cbp;
3692 v->ttblk[s->mb_x] = block_tt;
3693 v->is_intra[s->mb_x] = block_intra;
3698 /* Decode one macroblock in an interlaced frame p picture */
3700 static int vc1_decode_p_mb_intfr(VC1Context *v)
3702 MpegEncContext *s = &v->s;
3703 GetBitContext *gb = &s->gb;
3705 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3706 int cbp = 0; /* cbp decoding stuff */
3707 int mqdiff, mquant; /* MB quantization */
3708 int ttmb = v->ttfrm; /* MB Transform type */
3710 int mb_has_coeffs = 1; /* last_flag */
3711 int dmv_x, dmv_y; /* Differential MV components */
3712 int val; /* temp value */
3713 int first_block = 1;
3715 int skipped, fourmv = 0, twomv = 0;
3716 int block_cbp = 0, pat, block_tt = 0;
3717 int idx_mbmode = 0, mvbp;
3718 int stride_y, fieldtx;
3720 mquant = v->pq; /* Lossy initialization */
3723 skipped = get_bits1(gb);
3725 skipped = v->s.mbskip_table[mb_pos];
3727 if (v->fourmvswitch)
3728 idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_4MV_MBMODE_VLC_BITS, 2); // try getting this done
3730 idx_mbmode = get_vlc2(gb, v->mbmode_vlc->table, VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 2); // in a single line
3731 switch (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0]) {
3732 /* store the motion vector type in a flag (useful later) */
3733 case MV_PMODE_INTFR_4MV:
3735 v->blk_mv_type[s->block_index[0]] = 0;
3736 v->blk_mv_type[s->block_index[1]] = 0;
3737 v->blk_mv_type[s->block_index[2]] = 0;
3738 v->blk_mv_type[s->block_index[3]] = 0;
3740 case MV_PMODE_INTFR_4MV_FIELD:
3742 v->blk_mv_type[s->block_index[0]] = 1;
3743 v->blk_mv_type[s->block_index[1]] = 1;
3744 v->blk_mv_type[s->block_index[2]] = 1;
3745 v->blk_mv_type[s->block_index[3]] = 1;
3747 case MV_PMODE_INTFR_2MV_FIELD:
3749 v->blk_mv_type[s->block_index[0]] = 1;
3750 v->blk_mv_type[s->block_index[1]] = 1;
3751 v->blk_mv_type[s->block_index[2]] = 1;
3752 v->blk_mv_type[s->block_index[3]] = 1;
3754 case MV_PMODE_INTFR_1MV:
3755 v->blk_mv_type[s->block_index[0]] = 0;
3756 v->blk_mv_type[s->block_index[1]] = 0;
3757 v->blk_mv_type[s->block_index[2]] = 0;
3758 v->blk_mv_type[s->block_index[3]] = 0;
3761 if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_INTRA) { // intra MB
3762 s->current_picture.f.motion_val[1][s->block_index[0]][0] = 0;
3763 s->current_picture.f.motion_val[1][s->block_index[0]][1] = 0;
3764 s->current_picture.f.mb_type[mb_pos] = MB_TYPE_INTRA;
3765 s->mb_intra = v->is_intra[s->mb_x] = 1;
3766 for (i = 0; i < 6; i++)
3767 v->mb_type[0][s->block_index[i]] = 1;
3768 fieldtx = v->fieldtx_plane[mb_pos] = get_bits1(gb);
3769 mb_has_coeffs = get_bits1(gb);
3771 cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3772 v->s.ac_pred = v->acpred_plane[mb_pos] = get_bits1(gb);
3774 s->current_picture.f.qscale_table[mb_pos] = mquant;
3775 /* Set DC scale - y and c use the same (not sure if necessary here) */
3776 s->y_dc_scale = s->y_dc_scale_table[mquant];
3777 s->c_dc_scale = s->c_dc_scale_table[mquant];
3779 for (i = 0; i < 6; i++) {
3780 s->dc_val[0][s->block_index[i]] = 0;
3782 val = ((cbp >> (5 - i)) & 1);
3783 v->mb_type[0][s->block_index[i]] = s->mb_intra;
3784 v->a_avail = v->c_avail = 0;
3785 if (i == 2 || i == 3 || !s->first_slice_line)
3786 v->a_avail = v->mb_type[0][s->block_index[i] - s->block_wrap[i]];
3787 if (i == 1 || i == 3 || s->mb_x)
3788 v->c_avail = v->mb_type[0][s->block_index[i] - 1];
3790 vc1_decode_intra_block(v, s->block[i], i, val, mquant,
3791 (i & 4) ? v->codingset2 : v->codingset);
3792 if ((i>3) && (s->flags & CODEC_FLAG_GRAY)) continue;
3793 v->vc1dsp.vc1_inv_trans_8x8(s->block[i]);
3795 stride_y = s->linesize << fieldtx;
3796 off = (fieldtx) ? ((i & 1) * 8) + ((i & 2) >> 1) * s->linesize : (i & 1) * 8 + 4 * (i & 2) * s->linesize;
3798 stride_y = s->uvlinesize;
3801 s->dsp.put_signed_pixels_clamped(s->block[i], s->dest[dst_idx] + off, stride_y);
3805 } else { // inter MB
3806 mb_has_coeffs = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][3];
3808 cbp = 1 + get_vlc2(&v->s.gb, v->cbpcy_vlc->table, VC1_CBPCY_P_VLC_BITS, 2);
3809 if (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_2MV_FIELD) {
3810 v->twomvbp = get_vlc2(gb, v->twomvbp_vlc->table, VC1_2MV_BLOCK_PATTERN_VLC_BITS, 1);
3812 if ((ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV)
3813 || (ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][0] == MV_PMODE_INTFR_4MV_FIELD)) {
3814 v->fourmvbp = get_vlc2(gb, v->fourmvbp_vlc->table, VC1_4MV_BLOCK_PATTERN_VLC_BITS, 1);
3817 s->mb_intra = v->is_intra[s->mb_x] = 0;
3818 for (i = 0; i < 6; i++)
3819 v->mb_type[0][s->block_index[i]] = 0;
3820 fieldtx = v->fieldtx_plane[mb_pos] = ff_vc1_mbmode_intfrp[v->fourmvswitch][idx_mbmode][1];
3821 /* for all motion vector read MVDATA and motion compensate each block */
3825 for (i = 0; i < 6; i++) {
3828 val = ((mvbp >> (3 - i)) & 1);
3830 get_mvdata_interlaced(v, &dmv_x, &dmv_y, 0);
3832 vc1_pred_mv_intfr(v, i, dmv_x, dmv_y, 0, v->range_x, v->range_y, v->mb_type[0]);
3833 vc1_mc_4mv_luma(v, i, 0);