49608fbcba03708e9aad9adf63be2b8fc73aa622
[ffmpeg.git] / libavcodec / h264.h
1 /*
2  * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 /**
23  * @file libavcodec/h264.h
24  * H.264 / AVC / MPEG4 part10 codec.
25  * @author Michael Niedermayer <michaelni@gmx.at>
26  */
27
28 #ifndef AVCODEC_H264_H
29 #define AVCODEC_H264_H
30
31 #include "dsputil.h"
32 #include "cabac.h"
33 #include "mpegvideo.h"
34 #include "h264pred.h"
35 #include "rectangle.h"
36
37 #define interlaced_dct interlaced_dct_is_a_bad_name
38 #define mb_intra mb_intra_is_not_initialized_see_mb_type
39
40 #define LUMA_DC_BLOCK_INDEX   25
41 #define CHROMA_DC_BLOCK_INDEX 26
42
43 #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
44 #define COEFF_TOKEN_VLC_BITS           8
45 #define TOTAL_ZEROS_VLC_BITS           9
46 #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
47 #define RUN_VLC_BITS                   3
48 #define RUN7_VLC_BITS                  6
49
50 #define MAX_SPS_COUNT 32
51 #define MAX_PPS_COUNT 256
52
53 #define MAX_MMCO_COUNT 66
54
55 #define MAX_DELAYED_PIC_COUNT 16
56
57 /* Compiling in interlaced support reduces the speed
58  * of progressive decoding by about 2%. */
59 #define ALLOW_INTERLACE
60
61 #define ALLOW_NOCHROMA
62
63 /**
64  * The maximum number of slices supported by the decoder.
65  * must be a power of 2
66  */
67 #define MAX_SLICES 16
68
69 #ifdef ALLOW_INTERLACE
70 #define MB_MBAFF h->mb_mbaff
71 #define MB_FIELD h->mb_field_decoding_flag
72 #define FRAME_MBAFF h->mb_aff_frame
73 #define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
74 #else
75 #define MB_MBAFF 0
76 #define MB_FIELD 0
77 #define FRAME_MBAFF 0
78 #define FIELD_PICTURE 0
79 #undef  IS_INTERLACED
80 #define IS_INTERLACED(mb_type) 0
81 #endif
82 #define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
83
84 #ifdef ALLOW_NOCHROMA
85 #define CHROMA h->sps.chroma_format_idc
86 #else
87 #define CHROMA 1
88 #endif
89
90 #ifndef CABAC
91 #define CABAC h->pps.cabac
92 #endif
93
94 #define EXTENDED_SAR          255
95
96 #define MB_TYPE_REF0       MB_TYPE_ACPRED //dirty but it fits in 16 bit
97 #define MB_TYPE_8x8DCT     0x01000000
98 #define IS_REF0(a)         ((a) & MB_TYPE_REF0)
99 #define IS_8x8DCT(a)       ((a) & MB_TYPE_8x8DCT)
100
101 /**
102  * Value of Picture.reference when Picture is not a reference picture, but
103  * is held for delayed output.
104  */
105 #define DELAYED_PIC_REF 4
106
107
108 /* NAL unit types */
109 enum {
110     NAL_SLICE=1,
111     NAL_DPA,
112     NAL_DPB,
113     NAL_DPC,
114     NAL_IDR_SLICE,
115     NAL_SEI,
116     NAL_SPS,
117     NAL_PPS,
118     NAL_AUD,
119     NAL_END_SEQUENCE,
120     NAL_END_STREAM,
121     NAL_FILLER_DATA,
122     NAL_SPS_EXT,
123     NAL_AUXILIARY_SLICE=19
124 };
125
126 /**
127  * SEI message types
128  */
129 typedef enum {
130     SEI_BUFFERING_PERIOD             =  0, ///< buffering period (H.264, D.1.1)
131     SEI_TYPE_PIC_TIMING              =  1, ///< picture timing
132     SEI_TYPE_USER_DATA_UNREGISTERED  =  5, ///< unregistered user data
133     SEI_TYPE_RECOVERY_POINT          =  6  ///< recovery point (frame # to decoder sync)
134 } SEI_Type;
135
136 /**
137  * pic_struct in picture timing SEI message
138  */
139 typedef enum {
140     SEI_PIC_STRUCT_FRAME             = 0, ///<  0: %frame
141     SEI_PIC_STRUCT_TOP_FIELD         = 1, ///<  1: top field
142     SEI_PIC_STRUCT_BOTTOM_FIELD      = 2, ///<  2: bottom field
143     SEI_PIC_STRUCT_TOP_BOTTOM        = 3, ///<  3: top field, bottom field, in that order
144     SEI_PIC_STRUCT_BOTTOM_TOP        = 4, ///<  4: bottom field, top field, in that order
145     SEI_PIC_STRUCT_TOP_BOTTOM_TOP    = 5, ///<  5: top field, bottom field, top field repeated, in that order
146     SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///<  6: bottom field, top field, bottom field repeated, in that order
147     SEI_PIC_STRUCT_FRAME_DOUBLING    = 7, ///<  7: %frame doubling
148     SEI_PIC_STRUCT_FRAME_TRIPLING    = 8  ///<  8: %frame tripling
149 } SEI_PicStructType;
150
151 /**
152  * Sequence parameter set
153  */
154 typedef struct SPS{
155
156     int profile_idc;
157     int level_idc;
158     int chroma_format_idc;
159     int transform_bypass;              ///< qpprime_y_zero_transform_bypass_flag
160     int log2_max_frame_num;            ///< log2_max_frame_num_minus4 + 4
161     int poc_type;                      ///< pic_order_cnt_type
162     int log2_max_poc_lsb;              ///< log2_max_pic_order_cnt_lsb_minus4
163     int delta_pic_order_always_zero_flag;
164     int offset_for_non_ref_pic;
165     int offset_for_top_to_bottom_field;
166     int poc_cycle_length;              ///< num_ref_frames_in_pic_order_cnt_cycle
167     int ref_frame_count;               ///< num_ref_frames
168     int gaps_in_frame_num_allowed_flag;
169     int mb_width;                      ///< pic_width_in_mbs_minus1 + 1
170     int mb_height;                     ///< pic_height_in_map_units_minus1 + 1
171     int frame_mbs_only_flag;
172     int mb_aff;                        ///<mb_adaptive_frame_field_flag
173     int direct_8x8_inference_flag;
174     int crop;                   ///< frame_cropping_flag
175     unsigned int crop_left;            ///< frame_cropping_rect_left_offset
176     unsigned int crop_right;           ///< frame_cropping_rect_right_offset
177     unsigned int crop_top;             ///< frame_cropping_rect_top_offset
178     unsigned int crop_bottom;          ///< frame_cropping_rect_bottom_offset
179     int vui_parameters_present_flag;
180     AVRational sar;
181     int video_signal_type_present_flag;
182     int full_range;
183     int colour_description_present_flag;
184     enum AVColorPrimaries color_primaries;
185     enum AVColorTransferCharacteristic color_trc;
186     enum AVColorSpace colorspace;
187     int timing_info_present_flag;
188     uint32_t num_units_in_tick;
189     uint32_t time_scale;
190     int fixed_frame_rate_flag;
191     short offset_for_ref_frame[256]; //FIXME dyn aloc?
192     int bitstream_restriction_flag;
193     int num_reorder_frames;
194     int scaling_matrix_present;
195     uint8_t scaling_matrix4[6][16];
196     uint8_t scaling_matrix8[2][64];
197     int nal_hrd_parameters_present_flag;
198     int vcl_hrd_parameters_present_flag;
199     int pic_struct_present_flag;
200     int time_offset_length;
201     int cpb_cnt;                       ///< See H.264 E.1.2
202     int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
203     int cpb_removal_delay_length;      ///< cpb_removal_delay_length_minus1 + 1
204     int dpb_output_delay_length;       ///< dpb_output_delay_length_minus1 + 1
205     int bit_depth_luma;                ///< bit_depth_luma_minus8 + 8
206     int bit_depth_chroma;              ///< bit_depth_chroma_minus8 + 8
207     int residual_color_transform_flag; ///< residual_colour_transform_flag
208 }SPS;
209
210 /**
211  * Picture parameter set
212  */
213 typedef struct PPS{
214     unsigned int sps_id;
215     int cabac;                  ///< entropy_coding_mode_flag
216     int pic_order_present;      ///< pic_order_present_flag
217     int slice_group_count;      ///< num_slice_groups_minus1 + 1
218     int mb_slice_group_map_type;
219     unsigned int ref_count[2];  ///< num_ref_idx_l0/1_active_minus1 + 1
220     int weighted_pred;          ///< weighted_pred_flag
221     int weighted_bipred_idc;
222     int init_qp;                ///< pic_init_qp_minus26 + 26
223     int init_qs;                ///< pic_init_qs_minus26 + 26
224     int chroma_qp_index_offset[2];
225     int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
226     int constrained_intra_pred; ///< constrained_intra_pred_flag
227     int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
228     int transform_8x8_mode;     ///< transform_8x8_mode_flag
229     uint8_t scaling_matrix4[6][16];
230     uint8_t scaling_matrix8[2][64];
231     uint8_t chroma_qp_table[2][64];  ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
232     int chroma_qp_diff;
233 }PPS;
234
235 /**
236  * Memory management control operation opcode.
237  */
238 typedef enum MMCOOpcode{
239     MMCO_END=0,
240     MMCO_SHORT2UNUSED,
241     MMCO_LONG2UNUSED,
242     MMCO_SHORT2LONG,
243     MMCO_SET_MAX_LONG,
244     MMCO_RESET,
245     MMCO_LONG,
246 } MMCOOpcode;
247
248 /**
249  * Memory management control operation.
250  */
251 typedef struct MMCO{
252     MMCOOpcode opcode;
253     int short_pic_num;  ///< pic_num without wrapping (pic_num & max_pic_num)
254     int long_arg;       ///< index, pic_num, or num long refs depending on opcode
255 } MMCO;
256
257 /**
258  * H264Context
259  */
260 typedef struct H264Context{
261     MpegEncContext s;
262     int nal_ref_idc;
263     int nal_unit_type;
264     uint8_t *rbsp_buffer[2];
265     unsigned int rbsp_buffer_size[2];
266
267     /**
268       * Used to parse AVC variant of h264
269       */
270     int is_avc; ///< this flag is != 0 if codec is avc1
271     int got_avcC; ///< flag used to parse avcC data only once
272     int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
273
274     int chroma_qp[2]; //QPc
275
276     int qp_thresh;      ///< QP threshold to skip loopfilter
277
278     int prev_mb_skipped;
279     int next_mb_skipped;
280
281     //prediction stuff
282     int chroma_pred_mode;
283     int intra16x16_pred_mode;
284
285     int top_mb_xy;
286     int left_mb_xy[2];
287
288     int top_type;
289     int left_type[2];
290
291     int8_t intra4x4_pred_mode_cache[5*8];
292     int8_t (*intra4x4_pred_mode)[8];
293     H264PredContext hpc;
294     unsigned int topleft_samples_available;
295     unsigned int top_samples_available;
296     unsigned int topright_samples_available;
297     unsigned int left_samples_available;
298     uint8_t (*top_borders[2])[16+2*8];
299     uint8_t left_border[2*(17+2*9)];
300
301     /**
302      * non zero coeff count cache.
303      * is 64 if not available.
304      */
305     DECLARE_ALIGNED_8(uint8_t, non_zero_count_cache)[6*8];
306
307     /*
308     .UU.YYYY
309     .UU.YYYY
310     .vv.YYYY
311     .VV.YYYY
312     */
313     uint8_t (*non_zero_count)[32];
314
315     /**
316      * Motion vector cache.
317      */
318     DECLARE_ALIGNED_16(int16_t, mv_cache)[2][5*8][2];
319     DECLARE_ALIGNED_8(int8_t, ref_cache)[2][5*8];
320 #define LIST_NOT_USED -1 //FIXME rename?
321 #define PART_NOT_AVAILABLE -2
322
323     /**
324      * is 1 if the specific list MV&references are set to 0,0,-2.
325      */
326     int mv_cache_clean[2];
327
328     /**
329      * number of neighbors (top and/or left) that used 8x8 dct
330      */
331     int neighbor_transform_size;
332
333     /**
334      * block_offset[ 0..23] for frame macroblocks
335      * block_offset[24..47] for field macroblocks
336      */
337     int block_offset[2*(16+8)];
338
339     uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
340     uint32_t *mb2b8_xy;
341     int b_stride; //FIXME use s->b4_stride
342     int b8_stride;
343
344     int mb_linesize;   ///< may be equal to s->linesize or s->linesize*2, for mbaff
345     int mb_uvlinesize;
346
347     int emu_edge_width;
348     int emu_edge_height;
349
350     int halfpel_flag;
351     int thirdpel_flag;
352
353     int unknown_svq3_flag;
354     int next_slice_index;
355
356     SPS *sps_buffers[MAX_SPS_COUNT];
357     SPS sps; ///< current sps
358
359     PPS *pps_buffers[MAX_PPS_COUNT];
360     /**
361      * current pps
362      */
363     PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
364
365     uint32_t dequant4_buffer[6][52][16];
366     uint32_t dequant8_buffer[2][52][64];
367     uint32_t (*dequant4_coeff[6])[16];
368     uint32_t (*dequant8_coeff[2])[64];
369     int dequant_coeff_pps;     ///< reinit tables when pps changes
370
371     int slice_num;
372     uint16_t *slice_table_base;
373     uint16_t *slice_table;     ///< slice_table_base + 2*mb_stride + 1
374     int slice_type;
375     int slice_type_nos;        ///< S free slice type (SI/SP are remapped to I/P)
376     int slice_type_fixed;
377
378     //interlacing specific flags
379     int mb_aff_frame;
380     int mb_field_decoding_flag;
381     int mb_mbaff;              ///< mb_aff_frame && mb_field_decoding_flag
382
383     DECLARE_ALIGNED_8(uint16_t, sub_mb_type)[4];
384
385     //POC stuff
386     int poc_lsb;
387     int poc_msb;
388     int delta_poc_bottom;
389     int delta_poc[2];
390     int frame_num;
391     int prev_poc_msb;             ///< poc_msb of the last reference pic for POC type 0
392     int prev_poc_lsb;             ///< poc_lsb of the last reference pic for POC type 0
393     int frame_num_offset;         ///< for POC type 2
394     int prev_frame_num_offset;    ///< for POC type 2
395     int prev_frame_num;           ///< frame_num of the last pic for POC type 1/2
396
397     /**
398      * frame_num for frames or 2*frame_num+1 for field pics.
399      */
400     int curr_pic_num;
401
402     /**
403      * max_frame_num or 2*max_frame_num for field pics.
404      */
405     int max_pic_num;
406
407     //Weighted pred stuff
408     int use_weight;
409     int use_weight_chroma;
410     int luma_log2_weight_denom;
411     int chroma_log2_weight_denom;
412     int luma_weight[2][48];
413     int luma_offset[2][48];
414     int chroma_weight[2][48][2];
415     int chroma_offset[2][48][2];
416     int implicit_weight[48][48];
417
418     //deblock
419     int deblocking_filter;         ///< disable_deblocking_filter_idc with 1<->0
420     int slice_alpha_c0_offset;
421     int slice_beta_offset;
422
423     int redundant_pic_count;
424
425     int direct_spatial_mv_pred;
426     int dist_scale_factor[16];
427     int dist_scale_factor_field[2][32];
428     int map_col_to_list0[2][16+32];
429     int map_col_to_list0_field[2][2][16+32];
430
431     /**
432      * num_ref_idx_l0/1_active_minus1 + 1
433      */
434     unsigned int ref_count[2];   ///< counts frames or fields, depending on current mb mode
435     unsigned int list_count;
436     uint8_t *list_counts;            ///< Array of list_count per MB specifying the slice type
437     Picture *short_ref[32];
438     Picture *long_ref[32];
439     Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
440     Picture ref_list[2][48];         /**< 0..15: frame refs, 16..47: mbaff field refs.
441                                           Reordered version of default_ref_list
442                                           according to picture reordering in slice header */
443     int ref2frm[MAX_SLICES][2][64];  ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
444     Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
445     int outputed_poc;
446
447     /**
448      * memory management control operations buffer.
449      */
450     MMCO mmco[MAX_MMCO_COUNT];
451     int mmco_index;
452
453     int long_ref_count;  ///< number of actual long term references
454     int short_ref_count; ///< number of actual short term references
455
456     //data partitioning
457     GetBitContext intra_gb;
458     GetBitContext inter_gb;
459     GetBitContext *intra_gb_ptr;
460     GetBitContext *inter_gb_ptr;
461
462     DECLARE_ALIGNED_16(DCTELEM, mb)[16*24];
463     DCTELEM mb_padding[256];        ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
464
465     /**
466      * Cabac
467      */
468     CABACContext cabac;
469     uint8_t      cabac_state[460];
470     int          cabac_init_idc;
471
472     /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
473     uint16_t     *cbp_table;
474     int cbp;
475     int top_cbp;
476     int left_cbp;
477     /* chroma_pred_mode for i4x4 or i16x16, else 0 */
478     uint8_t     *chroma_pred_mode_table;
479     int         last_qscale_diff;
480     int16_t     (*mvd_table[2])[2];
481     DECLARE_ALIGNED_16(int16_t, mvd_cache)[2][5*8][2];
482     uint8_t     *direct_table;
483     uint8_t     direct_cache[5*8];
484
485     uint8_t zigzag_scan[16];
486     uint8_t zigzag_scan8x8[64];
487     uint8_t zigzag_scan8x8_cavlc[64];
488     uint8_t field_scan[16];
489     uint8_t field_scan8x8[64];
490     uint8_t field_scan8x8_cavlc[64];
491     const uint8_t *zigzag_scan_q0;
492     const uint8_t *zigzag_scan8x8_q0;
493     const uint8_t *zigzag_scan8x8_cavlc_q0;
494     const uint8_t *field_scan_q0;
495     const uint8_t *field_scan8x8_q0;
496     const uint8_t *field_scan8x8_cavlc_q0;
497
498     int x264_build;
499
500     /**
501      * @defgroup multithreading Members for slice based multithreading
502      * @{
503      */
504     struct H264Context *thread_context[MAX_THREADS];
505
506     /**
507      * current slice number, used to initalize slice_num of each thread/context
508      */
509     int current_slice;
510
511     /**
512      * Max number of threads / contexts.
513      * This is equal to AVCodecContext.thread_count unless
514      * multithreaded decoding is impossible, in which case it is
515      * reduced to 1.
516      */
517     int max_contexts;
518
519     /**
520      *  1 if the single thread fallback warning has already been
521      *  displayed, 0 otherwise.
522      */
523     int single_decode_warning;
524
525     int last_slice_type;
526     /** @} */
527
528     int mb_xy;
529
530     uint32_t svq3_watermark_key;
531
532     /**
533      * pic_struct in picture timing SEI message
534      */
535     SEI_PicStructType sei_pic_struct;
536
537     /**
538      * Complement sei_pic_struct
539      * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
540      * However, soft telecined frames may have these values.
541      * This is used in an attempt to flag soft telecine progressive.
542      */
543     int prev_interlaced_frame;
544
545     /**
546      * Bit set of clock types for fields/frames in picture timing SEI message.
547      * For each found ct_type, appropriate bit is set (e.g., bit 1 for
548      * interlaced).
549      */
550     int sei_ct_type;
551
552     /**
553      * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
554      */
555     int sei_dpb_output_delay;
556
557     /**
558      * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
559      */
560     int sei_cpb_removal_delay;
561
562     /**
563      * recovery_frame_cnt from SEI message
564      *
565      * Set to -1 if no recovery point SEI message found or to number of frames
566      * before playback synchronizes. Frames having recovery point are key
567      * frames.
568      */
569     int sei_recovery_frame_cnt;
570
571     int is_complex;
572
573     int luma_weight_flag[2];   ///< 7.4.3.2 luma_weight_lX_flag
574     int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
575
576     // Timestamp stuff
577     int sei_buffering_period_present;  ///< Buffering period SEI flag
578     int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
579 }H264Context;
580
581
582 extern const uint8_t ff_h264_chroma_qp[52];
583
584
585 /**
586  * Decode SEI
587  */
588 int ff_h264_decode_sei(H264Context *h);
589
590 /**
591  * Decode SPS
592  */
593 int ff_h264_decode_seq_parameter_set(H264Context *h);
594
595 /**
596  * Decode PPS
597  */
598 int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
599
600 /**
601  * Decodes a network abstraction layer unit.
602  * @param consumed is the number of bytes used as input
603  * @param length is the length of the array
604  * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
605  * @returns decoded bytes, might be src+1 if no escapes
606  */
607 const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
608
609 /**
610  * identifies the exact end of the bitstream
611  * @return the length of the trailing, or 0 if damaged
612  */
613 int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src);
614
615 /**
616  * frees any data that may have been allocated in the H264 context like SPS, PPS etc.
617  */
618 av_cold void ff_h264_free_context(H264Context *h);
619
620 /**
621  * reconstructs bitstream slice_type.
622  */
623 int ff_h264_get_slice_type(const H264Context *h);
624
625 /**
626  * allocates tables.
627  * needs width/height
628  */
629 int ff_h264_alloc_tables(H264Context *h);
630
631 /**
632  * fills the default_ref_list.
633  */
634 int ff_h264_fill_default_ref_list(H264Context *h);
635
636 int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
637 void ff_h264_fill_mbaff_ref_list(H264Context *h);
638 void ff_h264_remove_all_refs(H264Context *h);
639
640 /**
641  * Executes the reference picture marking (memory management control operations).
642  */
643 int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
644
645 int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
646
647
648 /**
649  * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
650  */
651 int ff_h264_check_intra4x4_pred_mode(H264Context *h);
652
653 /**
654  * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
655  */
656 int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
657
658 void ff_h264_write_back_intra_pred_mode(H264Context *h);
659 void ff_h264_hl_decode_mb(H264Context *h);
660 int ff_h264_frame_start(H264Context *h);
661 av_cold int ff_h264_decode_init(AVCodecContext *avctx);
662 av_cold int ff_h264_decode_end(AVCodecContext *avctx);
663 av_cold void ff_h264_decode_init_vlc(void);
664
665 /**
666  * decodes a macroblock
667  * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
668  */
669 int ff_h264_decode_mb_cavlc(H264Context *h);
670
671 /**
672  * decodes a CABAC coded macroblock
673  * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
674  */
675 int ff_h264_decode_mb_cabac(H264Context *h);
676
677 void ff_h264_init_cabac_states(H264Context *h);
678
679 void ff_h264_direct_dist_scale_factor(H264Context * const h);
680 void ff_h264_direct_ref_list_init(H264Context * const h);
681 void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
682
683 void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
684 void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
685
686 /**
687  * Reset SEI values at the beginning of the frame.
688  *
689  * @param h H.264 context.
690  */
691 void ff_h264_reset_sei(H264Context *h);
692
693
694 /*
695 o-o o-o
696  / / /
697 o-o o-o
698  ,---'
699 o-o o-o
700  / / /
701 o-o o-o
702 */
703 //This table must be here because scan8[constant] must be known at compiletime
704 static const uint8_t scan8[16 + 2*4]={
705  4+1*8, 5+1*8, 4+2*8, 5+2*8,
706  6+1*8, 7+1*8, 6+2*8, 7+2*8,
707  4+3*8, 5+3*8, 4+4*8, 5+4*8,
708  6+3*8, 7+3*8, 6+4*8, 7+4*8,
709  1+1*8, 2+1*8,
710  1+2*8, 2+2*8,
711  1+4*8, 2+4*8,
712  1+5*8, 2+5*8,
713 };
714
715 static av_always_inline uint32_t pack16to32(int a, int b){
716 #if HAVE_BIGENDIAN
717    return (b&0xFFFF) + (a<<16);
718 #else
719    return (a&0xFFFF) + (b<<16);
720 #endif
721 }
722
723 /**
724  * gets the chroma qp.
725  */
726 static inline int get_chroma_qp(H264Context *h, int t, int qscale){
727     return h->pps.chroma_qp_table[t][qscale];
728 }
729
730 static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
731
732 static av_always_inline int fill_caches(H264Context *h, int mb_type, int for_deblock){
733     MpegEncContext * const s = &h->s;
734     const int mb_xy= h->mb_xy;
735     int topleft_xy, top_xy, topright_xy, left_xy[2];
736     int topleft_type, top_type, topright_type, left_type[2];
737     const uint8_t * left_block;
738     int topleft_partition= -1;
739     int i;
740     static const uint8_t left_block_options[4][16]={
741         {0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8},
742         {2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8},
743         {0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8},
744         {0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}
745     };
746
747     top_xy     = mb_xy  - (s->mb_stride << MB_FIELD);
748
749     //FIXME deblocking could skip the intra and nnz parts.
750 //     if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[top_xy]) && !FRAME_MBAFF)
751 //         return;
752
753     /* Wow, what a mess, why didn't they simplify the interlacing & intra
754      * stuff, I can't imagine that these complex rules are worth it. */
755
756     topleft_xy = top_xy - 1;
757     topright_xy= top_xy + 1;
758     left_xy[1] = left_xy[0] = mb_xy-1;
759     left_block = left_block_options[0];
760     if(FRAME_MBAFF){
761         const int left_mb_field_flag     = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
762         const int curr_mb_field_flag     = IS_INTERLACED(mb_type);
763         if(s->mb_y&1){
764             if (left_mb_field_flag != curr_mb_field_flag) {
765                 left_xy[1] = left_xy[0] = mb_xy - s->mb_stride - 1;
766                 if (curr_mb_field_flag) {
767                     left_xy[1] += s->mb_stride;
768                     left_block = left_block_options[3];
769                 } else {
770                     topleft_xy += s->mb_stride;
771                     // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
772                     topleft_partition = 0;
773                     left_block = left_block_options[1];
774                 }
775             }
776         }else{
777             if(curr_mb_field_flag){
778                 topleft_xy  += s->mb_stride & (((s->current_picture.mb_type[top_xy - 1]>>7)&1)-1);
779                 topright_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy + 1]>>7)&1)-1);
780                 top_xy      += s->mb_stride & (((s->current_picture.mb_type[top_xy    ]>>7)&1)-1);
781             }
782             if (left_mb_field_flag != curr_mb_field_flag) {
783                 left_xy[1] = left_xy[0] = mb_xy - 1;
784                 if (curr_mb_field_flag) {
785                     left_xy[1] += s->mb_stride;
786                     left_block = left_block_options[3];
787                 } else {
788                     left_block = left_block_options[2];
789                 }
790             }
791         }
792     }
793
794     h->top_mb_xy = top_xy;
795     h->left_mb_xy[0] = left_xy[0];
796     h->left_mb_xy[1] = left_xy[1];
797     if(for_deblock){
798
799         //for sufficiently low qp, filtering wouldn't do anything
800         //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
801         int qp_thresh = h->qp_thresh; //FIXME strictly we should store qp_thresh for each mb of a slice
802         int qp = s->current_picture.qscale_table[mb_xy];
803         if(qp <= qp_thresh
804            && (left_xy[0]<0 || ((qp + s->current_picture.qscale_table[left_xy[0]] + 1)>>1) <= qp_thresh)
805            && (top_xy   < 0 || ((qp + s->current_picture.qscale_table[top_xy    ] + 1)>>1) <= qp_thresh)){
806             if(!FRAME_MBAFF)
807                 return 1;
808             if(   (left_xy[0]< 0            || ((qp + s->current_picture.qscale_table[left_xy[0]+s->mb_stride] + 1)>>1) <= qp_thresh)
809                && (top_xy    < s->mb_stride || ((qp + s->current_picture.qscale_table[top_xy    -s->mb_stride] + 1)>>1) <= qp_thresh))
810                 return 1;
811         }
812
813         if(h->deblocking_filter == 2){
814             h->top_type    = top_type     = h->slice_table[top_xy     ] == h->slice_num ? s->current_picture.mb_type[top_xy]     : 0;
815             h->left_type[0]= left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
816             h->left_type[1]= left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
817         }else{
818             h->top_type    = top_type     = h->slice_table[top_xy     ] < 0xFFFF ? s->current_picture.mb_type[top_xy]     : 0;
819             h->left_type[0]= left_type[0] = h->slice_table[left_xy[0] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[0]] : 0;
820             h->left_type[1]= left_type[1] = h->slice_table[left_xy[1] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[1]] : 0;
821         }
822         if(IS_INTRA(mb_type))
823             return 0;
824
825         AV_COPY64(&h->non_zero_count_cache[0+8*1], &h->non_zero_count[mb_xy][ 0]);
826         AV_COPY64(&h->non_zero_count_cache[0+8*2], &h->non_zero_count[mb_xy][ 8]);
827         *((uint32_t*)&h->non_zero_count_cache[0+8*5])= *((uint32_t*)&h->non_zero_count[mb_xy][16]);
828         *((uint32_t*)&h->non_zero_count_cache[4+8*3])= *((uint32_t*)&h->non_zero_count[mb_xy][20]);
829         AV_COPY64(&h->non_zero_count_cache[0+8*4], &h->non_zero_count[mb_xy][24]);
830
831         h->cbp= h->cbp_table[mb_xy];
832
833         {
834             int list;
835             for(list=0; list<h->list_count; list++){
836                 int8_t *ref;
837                 int y, b_stride;
838                 int16_t (*mv_dst)[2];
839                 int16_t (*mv_src)[2];
840
841                 if(!USES_LIST(mb_type, list)){
842                     fill_rectangle(  h->mv_cache[list][scan8[0]], 4, 4, 8, pack16to32(0,0), 4);
843                     *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
844                     *(uint32_t*)&h->ref_cache[list][scan8[ 2]] =
845                     *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
846                     *(uint32_t*)&h->ref_cache[list][scan8[10]] = ((LIST_NOT_USED)&0xFF)*0x01010101;
847                     continue;
848                 }
849
850                 ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
851                 {
852                     int (*ref2frm)[64] = h->ref2frm[ h->slice_num&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
853                     *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
854                     *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101;
855                     ref += h->b8_stride;
856                     *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
857                     *(uint32_t*)&h->ref_cache[list][scan8[10]] = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101;
858                 }
859
860                 b_stride = h->b_stride;
861                 mv_dst   = &h->mv_cache[list][scan8[0]];
862                 mv_src   = &s->current_picture.motion_val[list][4*s->mb_x + 4*s->mb_y*b_stride];
863                 for(y=0; y<4; y++){
864                     AV_COPY128(mv_dst + 8*y, mv_src + y*b_stride);
865                 }
866
867             }
868         }
869     }else{
870         topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
871         top_type     = h->slice_table[top_xy     ] == h->slice_num ? s->current_picture.mb_type[top_xy]     : 0;
872         topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
873         left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
874         left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
875
876         if(IS_INTRA(mb_type)){
877             int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
878             h->topleft_samples_available=
879             h->top_samples_available=
880             h->left_samples_available= 0xFFFF;
881             h->topright_samples_available= 0xEEEA;
882
883             if(!(top_type & type_mask)){
884                 h->topleft_samples_available= 0xB3FF;
885                 h->top_samples_available= 0x33FF;
886                 h->topright_samples_available= 0x26EA;
887             }
888             if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
889                 if(IS_INTERLACED(mb_type)){
890                     if(!(left_type[0] & type_mask)){
891                         h->topleft_samples_available&= 0xDFFF;
892                         h->left_samples_available&= 0x5FFF;
893                     }
894                     if(!(left_type[1] & type_mask)){
895                         h->topleft_samples_available&= 0xFF5F;
896                         h->left_samples_available&= 0xFF5F;
897                     }
898                 }else{
899                     int left_typei = h->slice_table[left_xy[0] + s->mb_stride ] == h->slice_num
900                                     ? s->current_picture.mb_type[left_xy[0] + s->mb_stride] : 0;
901                     assert(left_xy[0] == left_xy[1]);
902                     if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
903                         h->topleft_samples_available&= 0xDF5F;
904                         h->left_samples_available&= 0x5F5F;
905                     }
906                 }
907             }else{
908                 if(!(left_type[0] & type_mask)){
909                     h->topleft_samples_available&= 0xDF5F;
910                     h->left_samples_available&= 0x5F5F;
911                 }
912             }
913
914             if(!(topleft_type & type_mask))
915                 h->topleft_samples_available&= 0x7FFF;
916
917             if(!(topright_type & type_mask))
918                 h->topright_samples_available&= 0xFBFF;
919
920             if(IS_INTRA4x4(mb_type)){
921                 if(IS_INTRA4x4(top_type)){
922                     h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
923                     h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
924                     h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
925                     h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
926                 }else{
927                     int pred;
928                     if(!(top_type & type_mask))
929                         pred= -1;
930                     else{
931                         pred= 2;
932                     }
933                     h->intra4x4_pred_mode_cache[4+8*0]=
934                     h->intra4x4_pred_mode_cache[5+8*0]=
935                     h->intra4x4_pred_mode_cache[6+8*0]=
936                     h->intra4x4_pred_mode_cache[7+8*0]= pred;
937                 }
938                 for(i=0; i<2; i++){
939                     if(IS_INTRA4x4(left_type[i])){
940                         h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
941                         h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
942                     }else{
943                         int pred;
944                         if(!(left_type[i] & type_mask))
945                             pred= -1;
946                         else{
947                             pred= 2;
948                         }
949                         h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
950                         h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
951                     }
952                 }
953             }
954         }
955     }
956
957
958 /*
959 0 . T T. T T T T
960 1 L . .L . . . .
961 2 L . .L . . . .
962 3 . T TL . . . .
963 4 L . .L . . . .
964 5 L . .. . . . .
965 */
966 //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
967     if(top_type){
968         *(uint32_t*)&h->non_zero_count_cache[4+8*0]= *(uint32_t*)&h->non_zero_count[top_xy][4+3*8];
969         if(!for_deblock){
970             h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8];
971             h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8];
972
973             h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8];
974             h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8];
975         }
976     }else if(!for_deblock){
977             h->non_zero_count_cache[1+8*0]=
978             h->non_zero_count_cache[2+8*0]=
979
980             h->non_zero_count_cache[1+8*3]=
981             h->non_zero_count_cache[2+8*3]=
982             *(uint32_t*)&h->non_zero_count_cache[4+8*0]= CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040;
983     }
984
985     for (i=0; i<2; i++) {
986         if(left_type[i]){
987             h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]];
988             h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]];
989             if(!for_deblock){
990                 h->non_zero_count_cache[0+8*1 +   8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]];
991                 h->non_zero_count_cache[0+8*4 +   8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]];
992             }
993         }else if(!for_deblock){
994                 h->non_zero_count_cache[3+8*1 + 2*8*i]=
995                 h->non_zero_count_cache[3+8*2 + 2*8*i]=
996                 h->non_zero_count_cache[0+8*1 +   8*i]=
997                 h->non_zero_count_cache[0+8*4 +   8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
998         }
999     }
1000
1001     // CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs
1002     if(for_deblock && !CABAC && h->pps.transform_8x8_mode){
1003         if(IS_8x8DCT(top_type)){
1004             h->non_zero_count_cache[4+8*0]=
1005             h->non_zero_count_cache[5+8*0]= h->cbp_table[top_xy] & 4;
1006             h->non_zero_count_cache[6+8*0]=
1007             h->non_zero_count_cache[7+8*0]= h->cbp_table[top_xy] & 8;
1008         }
1009         if(IS_8x8DCT(left_type[0])){
1010             h->non_zero_count_cache[3+8*1]=
1011             h->non_zero_count_cache[3+8*2]= h->cbp_table[left_xy[0]]&2; //FIXME check MBAFF
1012         }
1013         if(IS_8x8DCT(left_type[1])){
1014             h->non_zero_count_cache[3+8*3]=
1015             h->non_zero_count_cache[3+8*4]= h->cbp_table[left_xy[1]]&8; //FIXME check MBAFF
1016         }
1017
1018         if(IS_8x8DCT(mb_type)){
1019             h->non_zero_count_cache[scan8[0   ]]= h->non_zero_count_cache[scan8[1   ]]=
1020             h->non_zero_count_cache[scan8[2   ]]= h->non_zero_count_cache[scan8[3   ]]= h->cbp & 1;
1021
1022             h->non_zero_count_cache[scan8[0+ 4]]= h->non_zero_count_cache[scan8[1+ 4]]=
1023             h->non_zero_count_cache[scan8[2+ 4]]= h->non_zero_count_cache[scan8[3+ 4]]= h->cbp & 2;
1024
1025             h->non_zero_count_cache[scan8[0+ 8]]= h->non_zero_count_cache[scan8[1+ 8]]=
1026             h->non_zero_count_cache[scan8[2+ 8]]= h->non_zero_count_cache[scan8[3+ 8]]= h->cbp & 4;
1027
1028             h->non_zero_count_cache[scan8[0+12]]= h->non_zero_count_cache[scan8[1+12]]=
1029             h->non_zero_count_cache[scan8[2+12]]= h->non_zero_count_cache[scan8[3+12]]= h->cbp & 8;
1030         }
1031     }
1032
1033     if( CABAC && !for_deblock) {
1034         // top_cbp
1035         if(top_type) {
1036             h->top_cbp = h->cbp_table[top_xy];
1037         } else if(IS_INTRA(mb_type)) {
1038             h->top_cbp = 0x1C0;
1039         } else {
1040             h->top_cbp = 0;
1041         }
1042         // left_cbp
1043         if (left_type[0]) {
1044             h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
1045         } else if(IS_INTRA(mb_type)) {
1046             h->left_cbp = 0x1C0;
1047         } else {
1048             h->left_cbp = 0;
1049         }
1050         if (left_type[0]) {
1051             h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
1052         }
1053         if (left_type[1]) {
1054             h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
1055         }
1056     }
1057
1058 #if 1
1059     if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
1060         int list;
1061         for(list=0; list<h->list_count; list++){
1062             if(!for_deblock && !USES_LIST(mb_type, list) && !IS_DIRECT(mb_type)){
1063                 /*if(!h->mv_cache_clean[list]){
1064                     memset(h->mv_cache [list],  0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
1065                     memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
1066                     h->mv_cache_clean[list]= 1;
1067                 }*/
1068                 continue;
1069             }
1070             h->mv_cache_clean[list]= 0;
1071
1072             if(USES_LIST(top_type, list)){
1073                 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
1074                 const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
1075                 AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
1076                 if(for_deblock){
1077                     int (*ref2frm)[64] = h->ref2frm[ h->slice_table[top_xy]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
1078                     h->ref_cache[list][scan8[0] + 0 - 1*8]=
1079                     h->ref_cache[list][scan8[0] + 1 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 0]];
1080                     h->ref_cache[list][scan8[0] + 2 - 1*8]=
1081                     h->ref_cache[list][scan8[0] + 3 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 1]];
1082                 }else{
1083                     h->ref_cache[list][scan8[0] + 0 - 1*8]=
1084                     h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
1085                     h->ref_cache[list][scan8[0] + 2 - 1*8]=
1086                     h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
1087                 }
1088             }else{
1089                 AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
1090                 *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= (((for_deblock||top_type) ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
1091             }
1092
1093             for(i=0; i<2; i++){
1094                 int cache_idx = scan8[0] - 1 + i*2*8;
1095                 if(USES_LIST(left_type[i], list)){
1096                     const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
1097                     const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
1098                     *(uint32_t*)h->mv_cache[list][cache_idx  ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
1099                     *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
1100                     if(for_deblock){
1101                         int (*ref2frm)[64] = h->ref2frm[ h->slice_table[left_xy[i]]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
1102                         h->ref_cache[list][cache_idx  ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)]];
1103                         h->ref_cache[list][cache_idx+8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)]];
1104                     }else{
1105                         h->ref_cache[list][cache_idx  ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
1106                         h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
1107                     }
1108                 }else{
1109                     *(uint32_t*)h->mv_cache [list][cache_idx  ]=
1110                     *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
1111                     h->ref_cache[list][cache_idx  ]=
1112                     h->ref_cache[list][cache_idx+8]= (for_deblock||left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1113                 }
1114             }
1115
1116             if(for_deblock || ((IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred) && !FRAME_MBAFF))
1117                 continue;
1118
1119             if(USES_LIST(topleft_type, list)){
1120                 const int b_xy = h->mb2b_xy[topleft_xy] + 3 + h->b_stride + (topleft_partition & 2*h->b_stride);
1121                 const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (topleft_partition & h->b8_stride);
1122                 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
1123                 h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
1124             }else{
1125                 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
1126                 h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1127             }
1128
1129             if(USES_LIST(topright_type, list)){
1130                 const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
1131                 const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
1132                 *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
1133                 h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
1134             }else{
1135                 *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
1136                 h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1137             }
1138
1139             if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
1140                 continue;
1141
1142             h->ref_cache[list][scan8[5 ]+1] =
1143             h->ref_cache[list][scan8[7 ]+1] =
1144             h->ref_cache[list][scan8[13]+1] =  //FIXME remove past 3 (init somewhere else)
1145             h->ref_cache[list][scan8[4 ]] =
1146             h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
1147             *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
1148             *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
1149             *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
1150             *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
1151             *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
1152
1153             if( CABAC ) {
1154                 /* XXX beurk, Load mvd */
1155                 if(USES_LIST(top_type, list)){
1156                     const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
1157                     AV_COPY128(h->mvd_cache[list][scan8[0] + 0 - 1*8], h->mvd_table[list][b_xy + 0]);
1158                 }else{
1159                     AV_ZERO128(h->mvd_cache[list][scan8[0] + 0 - 1*8]);
1160                 }
1161                 if(USES_LIST(left_type[0], list)){
1162                     const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
1163                     *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
1164                     *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
1165                 }else{
1166                     *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
1167                     *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
1168                 }
1169                 if(USES_LIST(left_type[1], list)){
1170                     const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
1171                     *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
1172                     *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
1173                 }else{
1174                     *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
1175                     *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
1176                 }
1177                 *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
1178                 *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
1179                 *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
1180                 *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
1181                 *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
1182
1183                 if(h->slice_type_nos == FF_B_TYPE){
1184                     fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
1185
1186                     if(IS_DIRECT(top_type)){
1187                         *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
1188                     }else if(IS_8X8(top_type)){
1189                         int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
1190                         h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
1191                         h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
1192                     }else{
1193                         *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
1194                     }
1195
1196                     if(IS_DIRECT(left_type[0]))
1197                         h->direct_cache[scan8[0] - 1 + 0*8]= 1;
1198                     else if(IS_8X8(left_type[0]))
1199                         h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
1200                     else
1201                         h->direct_cache[scan8[0] - 1 + 0*8]= 0;
1202
1203                     if(IS_DIRECT(left_type[1]))
1204                         h->direct_cache[scan8[0] - 1 + 2*8]= 1;
1205                     else if(IS_8X8(left_type[1]))
1206                         h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
1207                     else
1208                         h->direct_cache[scan8[0] - 1 + 2*8]= 0;
1209                 }
1210             }
1211
1212             if(FRAME_MBAFF){
1213 #define MAP_MVS\
1214                     MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
1215                     MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
1216                     MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
1217                     MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
1218                     MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
1219                     MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
1220                     MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
1221                     MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
1222                     MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
1223                     MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
1224                 if(MB_FIELD){
1225 #define MAP_F2F(idx, mb_type)\
1226                     if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1227                         h->ref_cache[list][idx] <<= 1;\
1228                         h->mv_cache[list][idx][1] /= 2;\
1229                         h->mvd_cache[list][idx][1] /= 2;\
1230                     }
1231                     MAP_MVS
1232 #undef MAP_F2F
1233                 }else{
1234 #define MAP_F2F(idx, mb_type)\
1235                     if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1236                         h->ref_cache[list][idx] >>= 1;\
1237                         h->mv_cache[list][idx][1] <<= 1;\
1238                         h->mvd_cache[list][idx][1] <<= 1;\
1239                     }
1240                     MAP_MVS
1241 #undef MAP_F2F
1242                 }
1243             }
1244         }
1245     }
1246 #endif
1247
1248     if(!for_deblock)
1249         h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
1250     return 0;
1251 }
1252
1253 static void fill_decode_caches(H264Context *h, int mb_type){
1254     fill_caches(h, mb_type, 0);
1255 }
1256
1257 /**
1258  *
1259  * @returns non zero if the loop filter can be skiped
1260  */
1261 static int fill_filter_caches(H264Context *h, int mb_type){
1262     return fill_caches(h, mb_type, 1);
1263 }
1264
1265 /**
1266  * gets the predicted intra4x4 prediction mode.
1267  */
1268 static inline int pred_intra_mode(H264Context *h, int n){
1269     const int index8= scan8[n];
1270     const int left= h->intra4x4_pred_mode_cache[index8 - 1];
1271     const int top = h->intra4x4_pred_mode_cache[index8 - 8];
1272     const int min= FFMIN(left, top);
1273
1274     tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
1275
1276     if(min<0) return DC_PRED;
1277     else      return min;
1278 }
1279
1280 static inline void write_back_non_zero_count(H264Context *h){
1281     const int mb_xy= h->mb_xy;
1282
1283     AV_COPY64(&h->non_zero_count[mb_xy][ 0], &h->non_zero_count_cache[0+8*1]);
1284     AV_COPY64(&h->non_zero_count[mb_xy][ 8], &h->non_zero_count_cache[0+8*2]);
1285     *((uint32_t*)&h->non_zero_count[mb_xy][16]) = *((uint32_t*)&h->non_zero_count_cache[0+8*5]);
1286     *((uint32_t*)&h->non_zero_count[mb_xy][20]) = *((uint32_t*)&h->non_zero_count_cache[4+8*3]);
1287     AV_COPY64(&h->non_zero_count[mb_xy][24], &h->non_zero_count_cache[0+8*4]);
1288 }
1289
1290 static inline void write_back_motion(H264Context *h, int mb_type){
1291     MpegEncContext * const s = &h->s;
1292     const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1293     const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1294     int list;
1295
1296     if(!USES_LIST(mb_type, 0))
1297         fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
1298
1299     for(list=0; list<h->list_count; list++){
1300         int y, b_stride;
1301         int16_t (*mv_dst)[2];
1302         int16_t (*mv_src)[2];
1303
1304         if(!USES_LIST(mb_type, list))
1305             continue;
1306
1307         b_stride = h->b_stride;
1308         mv_dst   = &s->current_picture.motion_val[list][b_xy];
1309         mv_src   = &h->mv_cache[list][scan8[0]];
1310         for(y=0; y<4; y++){
1311             AV_COPY128(mv_dst + y*b_stride, mv_src + 8*y);
1312         }
1313         if( CABAC ) {
1314             int16_t (*mvd_dst)[2] = &h->mvd_table[list][b_xy];
1315             int16_t (*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
1316             if(IS_SKIP(mb_type))
1317                 fill_rectangle(mvd_dst, 4, 4, h->b_stride, 0, 4);
1318             else
1319             for(y=0; y<4; y++){
1320                 AV_COPY128(mvd_dst + y*b_stride, mvd_src + 8*y);
1321             }
1322         }
1323
1324         {
1325             int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
1326             ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
1327             ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
1328             ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
1329             ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
1330         }
1331     }
1332
1333     if(h->slice_type_nos == FF_B_TYPE && CABAC){
1334         if(IS_8X8(mb_type)){
1335             uint8_t *direct_table = &h->direct_table[b8_xy];
1336             direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
1337             direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
1338             direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
1339         }
1340     }
1341 }
1342
1343 static inline int get_dct8x8_allowed(H264Context *h){
1344     if(h->sps.direct_8x8_inference_flag)
1345         return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8                )*0x0001000100010001ULL));
1346     else
1347         return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
1348 }
1349
1350 static void predict_field_decoding_flag(H264Context *h){
1351     MpegEncContext * const s = &h->s;
1352     const int mb_xy= h->mb_xy;
1353     int mb_type = (h->slice_table[mb_xy-1] == h->slice_num)
1354                 ? s->current_picture.mb_type[mb_xy-1]
1355                 : (h->slice_table[mb_xy-s->mb_stride] == h->slice_num)
1356                 ? s->current_picture.mb_type[mb_xy-s->mb_stride]
1357                 : 0;
1358     h->mb_mbaff = h->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
1359 }
1360
1361 /**
1362  * decodes a P_SKIP or B_SKIP macroblock
1363  */
1364 static void decode_mb_skip(H264Context *h){
1365     MpegEncContext * const s = &h->s;
1366     const int mb_xy= h->mb_xy;
1367     int mb_type=0;
1368
1369     memset(h->non_zero_count[mb_xy], 0, 32);
1370     memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
1371
1372     if(MB_FIELD)
1373         mb_type|= MB_TYPE_INTERLACED;
1374
1375     if( h->slice_type_nos == FF_B_TYPE )
1376     {
1377         // just for fill_caches. pred_direct_motion will set the real mb_type
1378         mb_type|= MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
1379
1380         fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1381         ff_h264_pred_direct_motion(h, &mb_type);
1382         mb_type|= MB_TYPE_SKIP;
1383     }
1384     else
1385     {
1386         int mx, my;
1387         mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
1388
1389         fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1390         pred_pskip_motion(h, &mx, &my);
1391         fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
1392         fill_rectangle(  h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
1393     }
1394
1395     write_back_motion(h, mb_type);
1396     s->current_picture.mb_type[mb_xy]= mb_type;
1397     s->current_picture.qscale_table[mb_xy]= s->qscale;
1398     h->slice_table[ mb_xy ]= h->slice_num;
1399     h->prev_mb_skipped= 1;
1400 }
1401
1402 #include "h264_mvpred.h" //For pred_pskip_motion()
1403
1404 #endif /* AVCODEC_H264_H */