10658d36d55a4691ed3818cbc3063d2807fb04c0
[ffmpeg.git] / libavcodec / h264.h
1 /*
2  * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 /**
23  * @file libavcodec/h264.h
24  * H.264 / AVC / MPEG4 part10 codec.
25  * @author Michael Niedermayer <michaelni@gmx.at>
26  */
27
28 #ifndef AVCODEC_H264_H
29 #define AVCODEC_H264_H
30
31 #include "dsputil.h"
32 #include "cabac.h"
33 #include "mpegvideo.h"
34 #include "h264pred.h"
35 #include "rectangle.h"
36
37 #define interlaced_dct interlaced_dct_is_a_bad_name
38 #define mb_intra mb_intra_is_not_initialized_see_mb_type
39
40 #define LUMA_DC_BLOCK_INDEX   25
41 #define CHROMA_DC_BLOCK_INDEX 26
42
43 #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
44 #define COEFF_TOKEN_VLC_BITS           8
45 #define TOTAL_ZEROS_VLC_BITS           9
46 #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
47 #define RUN_VLC_BITS                   3
48 #define RUN7_VLC_BITS                  6
49
50 #define MAX_SPS_COUNT 32
51 #define MAX_PPS_COUNT 256
52
53 #define MAX_MMCO_COUNT 66
54
55 #define MAX_DELAYED_PIC_COUNT 16
56
57 /* Compiling in interlaced support reduces the speed
58  * of progressive decoding by about 2%. */
59 #define ALLOW_INTERLACE
60
61 #define ALLOW_NOCHROMA
62
63 /**
64  * The maximum number of slices supported by the decoder.
65  * must be a power of 2
66  */
67 #define MAX_SLICES 16
68
69 #ifdef ALLOW_INTERLACE
70 #define MB_MBAFF h->mb_mbaff
71 #define MB_FIELD h->mb_field_decoding_flag
72 #define FRAME_MBAFF h->mb_aff_frame
73 #define FIELD_PICTURE (s->picture_structure != PICT_FRAME)
74 #else
75 #define MB_MBAFF 0
76 #define MB_FIELD 0
77 #define FRAME_MBAFF 0
78 #define FIELD_PICTURE 0
79 #undef  IS_INTERLACED
80 #define IS_INTERLACED(mb_type) 0
81 #endif
82 #define FIELD_OR_MBAFF_PICTURE (FRAME_MBAFF || FIELD_PICTURE)
83
84 #ifdef ALLOW_NOCHROMA
85 #define CHROMA h->sps.chroma_format_idc
86 #else
87 #define CHROMA 1
88 #endif
89
90 #ifndef CABAC
91 #define CABAC h->pps.cabac
92 #endif
93
94 #define EXTENDED_SAR          255
95
96 #define MB_TYPE_REF0       MB_TYPE_ACPRED //dirty but it fits in 16 bit
97 #define MB_TYPE_8x8DCT     0x01000000
98 #define IS_REF0(a)         ((a) & MB_TYPE_REF0)
99 #define IS_8x8DCT(a)       ((a) & MB_TYPE_8x8DCT)
100
101 /**
102  * Value of Picture.reference when Picture is not a reference picture, but
103  * is held for delayed output.
104  */
105 #define DELAYED_PIC_REF 4
106
107
108 /* NAL unit types */
109 enum {
110     NAL_SLICE=1,
111     NAL_DPA,
112     NAL_DPB,
113     NAL_DPC,
114     NAL_IDR_SLICE,
115     NAL_SEI,
116     NAL_SPS,
117     NAL_PPS,
118     NAL_AUD,
119     NAL_END_SEQUENCE,
120     NAL_END_STREAM,
121     NAL_FILLER_DATA,
122     NAL_SPS_EXT,
123     NAL_AUXILIARY_SLICE=19
124 };
125
126 /**
127  * SEI message types
128  */
129 typedef enum {
130     SEI_BUFFERING_PERIOD             =  0, ///< buffering period (H.264, D.1.1)
131     SEI_TYPE_PIC_TIMING              =  1, ///< picture timing
132     SEI_TYPE_USER_DATA_UNREGISTERED  =  5, ///< unregistered user data
133     SEI_TYPE_RECOVERY_POINT          =  6  ///< recovery point (frame # to decoder sync)
134 } SEI_Type;
135
136 /**
137  * pic_struct in picture timing SEI message
138  */
139 typedef enum {
140     SEI_PIC_STRUCT_FRAME             = 0, ///<  0: %frame
141     SEI_PIC_STRUCT_TOP_FIELD         = 1, ///<  1: top field
142     SEI_PIC_STRUCT_BOTTOM_FIELD      = 2, ///<  2: bottom field
143     SEI_PIC_STRUCT_TOP_BOTTOM        = 3, ///<  3: top field, bottom field, in that order
144     SEI_PIC_STRUCT_BOTTOM_TOP        = 4, ///<  4: bottom field, top field, in that order
145     SEI_PIC_STRUCT_TOP_BOTTOM_TOP    = 5, ///<  5: top field, bottom field, top field repeated, in that order
146     SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM = 6, ///<  6: bottom field, top field, bottom field repeated, in that order
147     SEI_PIC_STRUCT_FRAME_DOUBLING    = 7, ///<  7: %frame doubling
148     SEI_PIC_STRUCT_FRAME_TRIPLING    = 8  ///<  8: %frame tripling
149 } SEI_PicStructType;
150
151 /**
152  * Sequence parameter set
153  */
154 typedef struct SPS{
155
156     int profile_idc;
157     int level_idc;
158     int chroma_format_idc;
159     int transform_bypass;              ///< qpprime_y_zero_transform_bypass_flag
160     int log2_max_frame_num;            ///< log2_max_frame_num_minus4 + 4
161     int poc_type;                      ///< pic_order_cnt_type
162     int log2_max_poc_lsb;              ///< log2_max_pic_order_cnt_lsb_minus4
163     int delta_pic_order_always_zero_flag;
164     int offset_for_non_ref_pic;
165     int offset_for_top_to_bottom_field;
166     int poc_cycle_length;              ///< num_ref_frames_in_pic_order_cnt_cycle
167     int ref_frame_count;               ///< num_ref_frames
168     int gaps_in_frame_num_allowed_flag;
169     int mb_width;                      ///< pic_width_in_mbs_minus1 + 1
170     int mb_height;                     ///< pic_height_in_map_units_minus1 + 1
171     int frame_mbs_only_flag;
172     int mb_aff;                        ///<mb_adaptive_frame_field_flag
173     int direct_8x8_inference_flag;
174     int crop;                   ///< frame_cropping_flag
175     unsigned int crop_left;            ///< frame_cropping_rect_left_offset
176     unsigned int crop_right;           ///< frame_cropping_rect_right_offset
177     unsigned int crop_top;             ///< frame_cropping_rect_top_offset
178     unsigned int crop_bottom;          ///< frame_cropping_rect_bottom_offset
179     int vui_parameters_present_flag;
180     AVRational sar;
181     int video_signal_type_present_flag;
182     int full_range;
183     int colour_description_present_flag;
184     enum AVColorPrimaries color_primaries;
185     enum AVColorTransferCharacteristic color_trc;
186     enum AVColorSpace colorspace;
187     int timing_info_present_flag;
188     uint32_t num_units_in_tick;
189     uint32_t time_scale;
190     int fixed_frame_rate_flag;
191     short offset_for_ref_frame[256]; //FIXME dyn aloc?
192     int bitstream_restriction_flag;
193     int num_reorder_frames;
194     int scaling_matrix_present;
195     uint8_t scaling_matrix4[6][16];
196     uint8_t scaling_matrix8[2][64];
197     int nal_hrd_parameters_present_flag;
198     int vcl_hrd_parameters_present_flag;
199     int pic_struct_present_flag;
200     int time_offset_length;
201     int cpb_cnt;                       ///< See H.264 E.1.2
202     int initial_cpb_removal_delay_length; ///< initial_cpb_removal_delay_length_minus1 +1
203     int cpb_removal_delay_length;      ///< cpb_removal_delay_length_minus1 + 1
204     int dpb_output_delay_length;       ///< dpb_output_delay_length_minus1 + 1
205     int bit_depth_luma;                ///< bit_depth_luma_minus8 + 8
206     int bit_depth_chroma;              ///< bit_depth_chroma_minus8 + 8
207     int residual_color_transform_flag; ///< residual_colour_transform_flag
208 }SPS;
209
210 /**
211  * Picture parameter set
212  */
213 typedef struct PPS{
214     unsigned int sps_id;
215     int cabac;                  ///< entropy_coding_mode_flag
216     int pic_order_present;      ///< pic_order_present_flag
217     int slice_group_count;      ///< num_slice_groups_minus1 + 1
218     int mb_slice_group_map_type;
219     unsigned int ref_count[2];  ///< num_ref_idx_l0/1_active_minus1 + 1
220     int weighted_pred;          ///< weighted_pred_flag
221     int weighted_bipred_idc;
222     int init_qp;                ///< pic_init_qp_minus26 + 26
223     int init_qs;                ///< pic_init_qs_minus26 + 26
224     int chroma_qp_index_offset[2];
225     int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
226     int constrained_intra_pred; ///< constrained_intra_pred_flag
227     int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
228     int transform_8x8_mode;     ///< transform_8x8_mode_flag
229     uint8_t scaling_matrix4[6][16];
230     uint8_t scaling_matrix8[2][64];
231     uint8_t chroma_qp_table[2][64];  ///< pre-scaled (with chroma_qp_index_offset) version of qp_table
232     int chroma_qp_diff;
233 }PPS;
234
235 /**
236  * Memory management control operation opcode.
237  */
238 typedef enum MMCOOpcode{
239     MMCO_END=0,
240     MMCO_SHORT2UNUSED,
241     MMCO_LONG2UNUSED,
242     MMCO_SHORT2LONG,
243     MMCO_SET_MAX_LONG,
244     MMCO_RESET,
245     MMCO_LONG,
246 } MMCOOpcode;
247
248 /**
249  * Memory management control operation.
250  */
251 typedef struct MMCO{
252     MMCOOpcode opcode;
253     int short_pic_num;  ///< pic_num without wrapping (pic_num & max_pic_num)
254     int long_arg;       ///< index, pic_num, or num long refs depending on opcode
255 } MMCO;
256
257 /**
258  * H264Context
259  */
260 typedef struct H264Context{
261     MpegEncContext s;
262     int nal_ref_idc;
263     int nal_unit_type;
264     uint8_t *rbsp_buffer[2];
265     unsigned int rbsp_buffer_size[2];
266
267     /**
268       * Used to parse AVC variant of h264
269       */
270     int is_avc; ///< this flag is != 0 if codec is avc1
271     int got_avcC; ///< flag used to parse avcC data only once
272     int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
273
274     int chroma_qp[2]; //QPc
275
276     int qp_thresh;      ///< QP threshold to skip loopfilter
277
278     int prev_mb_skipped;
279     int next_mb_skipped;
280
281     //prediction stuff
282     int chroma_pred_mode;
283     int intra16x16_pred_mode;
284
285     int topleft_mb_xy;
286     int top_mb_xy;
287     int topright_mb_xy;
288     int left_mb_xy[2];
289
290     int topleft_type;
291     int top_type;
292     int topright_type;
293     int left_type[2];
294
295     const uint8_t * left_block;
296     int topleft_partition;
297
298     int8_t intra4x4_pred_mode_cache[5*8];
299     int8_t (*intra4x4_pred_mode)[8];
300     H264PredContext hpc;
301     unsigned int topleft_samples_available;
302     unsigned int top_samples_available;
303     unsigned int topright_samples_available;
304     unsigned int left_samples_available;
305     uint8_t (*top_borders[2])[16+2*8];
306     uint8_t left_border[2*(17+2*9)];
307
308     /**
309      * non zero coeff count cache.
310      * is 64 if not available.
311      */
312     DECLARE_ALIGNED_8(uint8_t, non_zero_count_cache)[6*8];
313
314     /*
315     .UU.YYYY
316     .UU.YYYY
317     .vv.YYYY
318     .VV.YYYY
319     */
320     uint8_t (*non_zero_count)[32];
321
322     /**
323      * Motion vector cache.
324      */
325     DECLARE_ALIGNED_16(int16_t, mv_cache)[2][5*8][2];
326     DECLARE_ALIGNED_8(int8_t, ref_cache)[2][5*8];
327 #define LIST_NOT_USED -1 //FIXME rename?
328 #define PART_NOT_AVAILABLE -2
329
330     /**
331      * is 1 if the specific list MV&references are set to 0,0,-2.
332      */
333     int mv_cache_clean[2];
334
335     /**
336      * number of neighbors (top and/or left) that used 8x8 dct
337      */
338     int neighbor_transform_size;
339
340     /**
341      * block_offset[ 0..23] for frame macroblocks
342      * block_offset[24..47] for field macroblocks
343      */
344     int block_offset[2*(16+8)];
345
346     uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
347     uint32_t *mb2b8_xy;
348     int b_stride; //FIXME use s->b4_stride
349     int b8_stride;
350
351     int mb_linesize;   ///< may be equal to s->linesize or s->linesize*2, for mbaff
352     int mb_uvlinesize;
353
354     int emu_edge_width;
355     int emu_edge_height;
356
357     int halfpel_flag;
358     int thirdpel_flag;
359
360     int unknown_svq3_flag;
361     int next_slice_index;
362
363     SPS *sps_buffers[MAX_SPS_COUNT];
364     SPS sps; ///< current sps
365
366     PPS *pps_buffers[MAX_PPS_COUNT];
367     /**
368      * current pps
369      */
370     PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
371
372     uint32_t dequant4_buffer[6][52][16];
373     uint32_t dequant8_buffer[2][52][64];
374     uint32_t (*dequant4_coeff[6])[16];
375     uint32_t (*dequant8_coeff[2])[64];
376     int dequant_coeff_pps;     ///< reinit tables when pps changes
377
378     int slice_num;
379     uint16_t *slice_table_base;
380     uint16_t *slice_table;     ///< slice_table_base + 2*mb_stride + 1
381     int slice_type;
382     int slice_type_nos;        ///< S free slice type (SI/SP are remapped to I/P)
383     int slice_type_fixed;
384
385     //interlacing specific flags
386     int mb_aff_frame;
387     int mb_field_decoding_flag;
388     int mb_mbaff;              ///< mb_aff_frame && mb_field_decoding_flag
389
390     DECLARE_ALIGNED_8(uint16_t, sub_mb_type)[4];
391
392     //POC stuff
393     int poc_lsb;
394     int poc_msb;
395     int delta_poc_bottom;
396     int delta_poc[2];
397     int frame_num;
398     int prev_poc_msb;             ///< poc_msb of the last reference pic for POC type 0
399     int prev_poc_lsb;             ///< poc_lsb of the last reference pic for POC type 0
400     int frame_num_offset;         ///< for POC type 2
401     int prev_frame_num_offset;    ///< for POC type 2
402     int prev_frame_num;           ///< frame_num of the last pic for POC type 1/2
403
404     /**
405      * frame_num for frames or 2*frame_num+1 for field pics.
406      */
407     int curr_pic_num;
408
409     /**
410      * max_frame_num or 2*max_frame_num for field pics.
411      */
412     int max_pic_num;
413
414     //Weighted pred stuff
415     int use_weight;
416     int use_weight_chroma;
417     int luma_log2_weight_denom;
418     int chroma_log2_weight_denom;
419     int luma_weight[2][48];
420     int luma_offset[2][48];
421     int chroma_weight[2][48][2];
422     int chroma_offset[2][48][2];
423     int implicit_weight[48][48];
424
425     //deblock
426     int deblocking_filter;         ///< disable_deblocking_filter_idc with 1<->0
427     int slice_alpha_c0_offset;
428     int slice_beta_offset;
429
430     int redundant_pic_count;
431
432     int direct_spatial_mv_pred;
433     int col_parity;
434     int col_fieldoff;
435     int dist_scale_factor[16];
436     int dist_scale_factor_field[2][32];
437     int map_col_to_list0[2][16+32];
438     int map_col_to_list0_field[2][2][16+32];
439
440     /**
441      * num_ref_idx_l0/1_active_minus1 + 1
442      */
443     unsigned int ref_count[2];   ///< counts frames or fields, depending on current mb mode
444     unsigned int list_count;
445     uint8_t *list_counts;            ///< Array of list_count per MB specifying the slice type
446     Picture *short_ref[32];
447     Picture *long_ref[32];
448     Picture default_ref_list[2][32]; ///< base reference list for all slices of a coded picture
449     Picture ref_list[2][48];         /**< 0..15: frame refs, 16..47: mbaff field refs.
450                                           Reordered version of default_ref_list
451                                           according to picture reordering in slice header */
452     int ref2frm[MAX_SLICES][2][64];  ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
453     Picture *delayed_pic[MAX_DELAYED_PIC_COUNT+2]; //FIXME size?
454     int outputed_poc;
455
456     /**
457      * memory management control operations buffer.
458      */
459     MMCO mmco[MAX_MMCO_COUNT];
460     int mmco_index;
461
462     int long_ref_count;  ///< number of actual long term references
463     int short_ref_count; ///< number of actual short term references
464
465     //data partitioning
466     GetBitContext intra_gb;
467     GetBitContext inter_gb;
468     GetBitContext *intra_gb_ptr;
469     GetBitContext *inter_gb_ptr;
470
471     DECLARE_ALIGNED_16(DCTELEM, mb)[16*24];
472     DCTELEM mb_padding[256];        ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either check that i is not too large or ensure that there is some unused stuff after mb
473
474     /**
475      * Cabac
476      */
477     CABACContext cabac;
478     uint8_t      cabac_state[460];
479     int          cabac_init_idc;
480
481     /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
482     uint16_t     *cbp_table;
483     int cbp;
484     int top_cbp;
485     int left_cbp;
486     /* chroma_pred_mode for i4x4 or i16x16, else 0 */
487     uint8_t     *chroma_pred_mode_table;
488     int         last_qscale_diff;
489     int16_t     (*mvd_table[2])[2];
490     DECLARE_ALIGNED_16(int16_t, mvd_cache)[2][5*8][2];
491     uint8_t     *direct_table;
492     uint8_t     direct_cache[5*8];
493
494     uint8_t zigzag_scan[16];
495     uint8_t zigzag_scan8x8[64];
496     uint8_t zigzag_scan8x8_cavlc[64];
497     uint8_t field_scan[16];
498     uint8_t field_scan8x8[64];
499     uint8_t field_scan8x8_cavlc[64];
500     const uint8_t *zigzag_scan_q0;
501     const uint8_t *zigzag_scan8x8_q0;
502     const uint8_t *zigzag_scan8x8_cavlc_q0;
503     const uint8_t *field_scan_q0;
504     const uint8_t *field_scan8x8_q0;
505     const uint8_t *field_scan8x8_cavlc_q0;
506
507     int x264_build;
508
509     /**
510      * @defgroup multithreading Members for slice based multithreading
511      * @{
512      */
513     struct H264Context *thread_context[MAX_THREADS];
514
515     /**
516      * current slice number, used to initalize slice_num of each thread/context
517      */
518     int current_slice;
519
520     /**
521      * Max number of threads / contexts.
522      * This is equal to AVCodecContext.thread_count unless
523      * multithreaded decoding is impossible, in which case it is
524      * reduced to 1.
525      */
526     int max_contexts;
527
528     /**
529      *  1 if the single thread fallback warning has already been
530      *  displayed, 0 otherwise.
531      */
532     int single_decode_warning;
533
534     int last_slice_type;
535     /** @} */
536
537     int mb_xy;
538
539     uint32_t svq3_watermark_key;
540
541     /**
542      * pic_struct in picture timing SEI message
543      */
544     SEI_PicStructType sei_pic_struct;
545
546     /**
547      * Complement sei_pic_struct
548      * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
549      * However, soft telecined frames may have these values.
550      * This is used in an attempt to flag soft telecine progressive.
551      */
552     int prev_interlaced_frame;
553
554     /**
555      * Bit set of clock types for fields/frames in picture timing SEI message.
556      * For each found ct_type, appropriate bit is set (e.g., bit 1 for
557      * interlaced).
558      */
559     int sei_ct_type;
560
561     /**
562      * dpb_output_delay in picture timing SEI message, see H.264 C.2.2
563      */
564     int sei_dpb_output_delay;
565
566     /**
567      * cpb_removal_delay in picture timing SEI message, see H.264 C.1.2
568      */
569     int sei_cpb_removal_delay;
570
571     /**
572      * recovery_frame_cnt from SEI message
573      *
574      * Set to -1 if no recovery point SEI message found or to number of frames
575      * before playback synchronizes. Frames having recovery point are key
576      * frames.
577      */
578     int sei_recovery_frame_cnt;
579
580     int is_complex;
581
582     int luma_weight_flag[2];   ///< 7.4.3.2 luma_weight_lX_flag
583     int chroma_weight_flag[2]; ///< 7.4.3.2 chroma_weight_lX_flag
584
585     // Timestamp stuff
586     int sei_buffering_period_present;  ///< Buffering period SEI flag
587     int initial_cpb_removal_delay[32]; ///< Initial timestamps for CPBs
588 }H264Context;
589
590
591 extern const uint8_t ff_h264_chroma_qp[52];
592
593 void ff_svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
594
595 void ff_svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
596
597 /**
598  * Decode SEI
599  */
600 int ff_h264_decode_sei(H264Context *h);
601
602 /**
603  * Decode SPS
604  */
605 int ff_h264_decode_seq_parameter_set(H264Context *h);
606
607 /**
608  * Decode PPS
609  */
610 int ff_h264_decode_picture_parameter_set(H264Context *h, int bit_length);
611
612 /**
613  * Decodes a network abstraction layer unit.
614  * @param consumed is the number of bytes used as input
615  * @param length is the length of the array
616  * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
617  * @returns decoded bytes, might be src+1 if no escapes
618  */
619 const uint8_t *ff_h264_decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length);
620
621 /**
622  * identifies the exact end of the bitstream
623  * @return the length of the trailing, or 0 if damaged
624  */
625 int ff_h264_decode_rbsp_trailing(H264Context *h, const uint8_t *src);
626
627 /**
628  * frees any data that may have been allocated in the H264 context like SPS, PPS etc.
629  */
630 av_cold void ff_h264_free_context(H264Context *h);
631
632 /**
633  * reconstructs bitstream slice_type.
634  */
635 int ff_h264_get_slice_type(const H264Context *h);
636
637 /**
638  * allocates tables.
639  * needs width/height
640  */
641 int ff_h264_alloc_tables(H264Context *h);
642
643 /**
644  * fills the default_ref_list.
645  */
646 int ff_h264_fill_default_ref_list(H264Context *h);
647
648 int ff_h264_decode_ref_pic_list_reordering(H264Context *h);
649 void ff_h264_fill_mbaff_ref_list(H264Context *h);
650 void ff_h264_remove_all_refs(H264Context *h);
651
652 /**
653  * Executes the reference picture marking (memory management control operations).
654  */
655 int ff_h264_execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count);
656
657 int ff_h264_decode_ref_pic_marking(H264Context *h, GetBitContext *gb);
658
659
660 /**
661  * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
662  */
663 int ff_h264_check_intra4x4_pred_mode(H264Context *h);
664
665 /**
666  * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
667  */
668 int ff_h264_check_intra_pred_mode(H264Context *h, int mode);
669
670 void ff_h264_write_back_intra_pred_mode(H264Context *h);
671 void ff_h264_hl_decode_mb(H264Context *h);
672 int ff_h264_frame_start(H264Context *h);
673 av_cold int ff_h264_decode_init(AVCodecContext *avctx);
674 av_cold int ff_h264_decode_end(AVCodecContext *avctx);
675 av_cold void ff_h264_decode_init_vlc(void);
676
677 /**
678  * decodes a macroblock
679  * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
680  */
681 int ff_h264_decode_mb_cavlc(H264Context *h);
682
683 /**
684  * decodes a CABAC coded macroblock
685  * @returns 0 if OK, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
686  */
687 int ff_h264_decode_mb_cabac(H264Context *h);
688
689 void ff_h264_init_cabac_states(H264Context *h);
690
691 void ff_h264_direct_dist_scale_factor(H264Context * const h);
692 void ff_h264_direct_ref_list_init(H264Context * const h);
693 void ff_h264_pred_direct_motion(H264Context * const h, int *mb_type);
694
695 void ff_h264_filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
696 void ff_h264_filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
697
698 /**
699  * Reset SEI values at the beginning of the frame.
700  *
701  * @param h H.264 context.
702  */
703 void ff_h264_reset_sei(H264Context *h);
704
705
706 /*
707 o-o o-o
708  / / /
709 o-o o-o
710  ,---'
711 o-o o-o
712  / / /
713 o-o o-o
714 */
715 //This table must be here because scan8[constant] must be known at compiletime
716 static const uint8_t scan8[16 + 2*4]={
717  4+1*8, 5+1*8, 4+2*8, 5+2*8,
718  6+1*8, 7+1*8, 6+2*8, 7+2*8,
719  4+3*8, 5+3*8, 4+4*8, 5+4*8,
720  6+3*8, 7+3*8, 6+4*8, 7+4*8,
721  1+1*8, 2+1*8,
722  1+2*8, 2+2*8,
723  1+4*8, 2+4*8,
724  1+5*8, 2+5*8,
725 };
726
727 static av_always_inline uint32_t pack16to32(int a, int b){
728 #if HAVE_BIGENDIAN
729    return (b&0xFFFF) + (a<<16);
730 #else
731    return (a&0xFFFF) + (b<<16);
732 #endif
733 }
734
735 /**
736  * gets the chroma qp.
737  */
738 static inline int get_chroma_qp(H264Context *h, int t, int qscale){
739     return h->pps.chroma_qp_table[t][qscale];
740 }
741
742 static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my);
743
744 static void fill_decode_neighbors(H264Context *h, int mb_type){
745     MpegEncContext * const s = &h->s;
746     const int mb_xy= h->mb_xy;
747     int topleft_xy, top_xy, topright_xy, left_xy[2];
748     static const uint8_t left_block_options[4][16]={
749         {0,1,2,3,7,10,8,11,7+0*8, 7+1*8, 7+2*8, 7+3*8, 2+0*8, 2+3*8, 2+1*8, 2+2*8},
750         {2,2,3,3,8,11,8,11,7+2*8, 7+2*8, 7+3*8, 7+3*8, 2+1*8, 2+2*8, 2+1*8, 2+2*8},
751         {0,0,1,1,7,10,7,10,7+0*8, 7+0*8, 7+1*8, 7+1*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8},
752         {0,2,0,2,7,10,7,10,7+0*8, 7+2*8, 7+0*8, 7+2*8, 2+0*8, 2+3*8, 2+0*8, 2+3*8}
753     };
754
755     h->topleft_partition= -1;
756
757     top_xy     = mb_xy  - (s->mb_stride << MB_FIELD);
758
759     /* Wow, what a mess, why didn't they simplify the interlacing & intra
760      * stuff, I can't imagine that these complex rules are worth it. */
761
762     topleft_xy = top_xy - 1;
763     topright_xy= top_xy + 1;
764     left_xy[1] = left_xy[0] = mb_xy-1;
765     h->left_block = left_block_options[0];
766     if(FRAME_MBAFF){
767         const int left_mb_field_flag     = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
768         const int curr_mb_field_flag     = IS_INTERLACED(mb_type);
769         if(s->mb_y&1){
770             if (left_mb_field_flag != curr_mb_field_flag) {
771                 left_xy[1] = left_xy[0] = mb_xy - s->mb_stride - 1;
772                 if (curr_mb_field_flag) {
773                     left_xy[1] += s->mb_stride;
774                     h->left_block = left_block_options[3];
775                 } else {
776                     topleft_xy += s->mb_stride;
777                     // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
778                     h->topleft_partition = 0;
779                     h->left_block = left_block_options[1];
780                 }
781             }
782         }else{
783             if(curr_mb_field_flag){
784                 topleft_xy  += s->mb_stride & (((s->current_picture.mb_type[top_xy - 1]>>7)&1)-1);
785                 topright_xy += s->mb_stride & (((s->current_picture.mb_type[top_xy + 1]>>7)&1)-1);
786                 top_xy      += s->mb_stride & (((s->current_picture.mb_type[top_xy    ]>>7)&1)-1);
787             }
788             if (left_mb_field_flag != curr_mb_field_flag) {
789                 left_xy[1] = left_xy[0] = mb_xy - 1;
790                 if (curr_mb_field_flag) {
791                     left_xy[1] += s->mb_stride;
792                     h->left_block = left_block_options[3];
793                 } else {
794                     h->left_block = left_block_options[2];
795                 }
796             }
797         }
798     }
799
800     h->topleft_mb_xy = topleft_xy;
801     h->top_mb_xy     = top_xy;
802     h->topright_mb_xy= topright_xy;
803     h->left_mb_xy[0] = left_xy[0];
804     h->left_mb_xy[1] = left_xy[1];
805     //FIXME do we need all in the context?
806     h->topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
807     h->top_type     = h->slice_table[top_xy     ] == h->slice_num ? s->current_picture.mb_type[top_xy]     : 0;
808     h->topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
809     h->left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
810     h->left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
811 }
812
813 static void fill_decode_caches(H264Context *h, int mb_type){
814     MpegEncContext * const s = &h->s;
815     const int mb_xy= h->mb_xy;
816     int topleft_xy, top_xy, topright_xy, left_xy[2];
817     int topleft_type, top_type, topright_type, left_type[2];
818     const uint8_t * left_block= h->left_block;
819     int i;
820
821     topleft_xy   = h->topleft_mb_xy ;
822     top_xy       = h->top_mb_xy     ;
823     topright_xy  = h->topright_mb_xy;
824     left_xy[0]   = h->left_mb_xy[0] ;
825     left_xy[1]   = h->left_mb_xy[1] ;
826     topleft_type = h->topleft_type  ;
827     top_type     = h->top_type      ;
828     topright_type= h->topright_type ;
829     left_type[0] = h->left_type[0]  ;
830     left_type[1] = h->left_type[1]  ;
831
832     if(!IS_SKIP(mb_type)){
833         if(IS_INTRA(mb_type)){
834             int type_mask= h->pps.constrained_intra_pred ? IS_INTRA(-1) : -1;
835             h->topleft_samples_available=
836             h->top_samples_available=
837             h->left_samples_available= 0xFFFF;
838             h->topright_samples_available= 0xEEEA;
839
840             if(!(top_type & type_mask)){
841                 h->topleft_samples_available= 0xB3FF;
842                 h->top_samples_available= 0x33FF;
843                 h->topright_samples_available= 0x26EA;
844             }
845             if(IS_INTERLACED(mb_type) != IS_INTERLACED(left_type[0])){
846                 if(IS_INTERLACED(mb_type)){
847                     if(!(left_type[0] & type_mask)){
848                         h->topleft_samples_available&= 0xDFFF;
849                         h->left_samples_available&= 0x5FFF;
850                     }
851                     if(!(left_type[1] & type_mask)){
852                         h->topleft_samples_available&= 0xFF5F;
853                         h->left_samples_available&= 0xFF5F;
854                     }
855                 }else{
856                     int left_typei = h->slice_table[left_xy[0] + s->mb_stride ] == h->slice_num
857                                     ? s->current_picture.mb_type[left_xy[0] + s->mb_stride] : 0;
858                     assert(left_xy[0] == left_xy[1]);
859                     if(!((left_typei & type_mask) && (left_type[0] & type_mask))){
860                         h->topleft_samples_available&= 0xDF5F;
861                         h->left_samples_available&= 0x5F5F;
862                     }
863                 }
864             }else{
865                 if(!(left_type[0] & type_mask)){
866                     h->topleft_samples_available&= 0xDF5F;
867                     h->left_samples_available&= 0x5F5F;
868                 }
869             }
870
871             if(!(topleft_type & type_mask))
872                 h->topleft_samples_available&= 0x7FFF;
873
874             if(!(topright_type & type_mask))
875                 h->topright_samples_available&= 0xFBFF;
876
877             if(IS_INTRA4x4(mb_type)){
878                 if(IS_INTRA4x4(top_type)){
879                     h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
880                     h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
881                     h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
882                     h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
883                 }else{
884                     int pred;
885                     if(!(top_type & type_mask))
886                         pred= -1;
887                     else{
888                         pred= 2;
889                     }
890                     h->intra4x4_pred_mode_cache[4+8*0]=
891                     h->intra4x4_pred_mode_cache[5+8*0]=
892                     h->intra4x4_pred_mode_cache[6+8*0]=
893                     h->intra4x4_pred_mode_cache[7+8*0]= pred;
894                 }
895                 for(i=0; i<2; i++){
896                     if(IS_INTRA4x4(left_type[i])){
897                         h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
898                         h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
899                     }else{
900                         int pred;
901                         if(!(left_type[i] & type_mask))
902                             pred= -1;
903                         else{
904                             pred= 2;
905                         }
906                         h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
907                         h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
908                     }
909                 }
910             }
911         }
912
913
914 /*
915 0 . T T. T T T T
916 1 L . .L . . . .
917 2 L . .L . . . .
918 3 . T TL . . . .
919 4 L . .L . . . .
920 5 L . .. . . . .
921 */
922 //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
923     if(top_type){
924         *(uint32_t*)&h->non_zero_count_cache[4+8*0]= *(uint32_t*)&h->non_zero_count[top_xy][4+3*8];
925             h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][1+1*8];
926             h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][2+1*8];
927
928             h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][1+2*8];
929             h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][2+2*8];
930     }else {
931             h->non_zero_count_cache[1+8*0]=
932             h->non_zero_count_cache[2+8*0]=
933
934             h->non_zero_count_cache[1+8*3]=
935             h->non_zero_count_cache[2+8*3]=
936             *(uint32_t*)&h->non_zero_count_cache[4+8*0]= CABAC && !IS_INTRA(mb_type) ? 0 : 0x40404040;
937     }
938
939     for (i=0; i<2; i++) {
940         if(left_type[i]){
941             h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+0+2*i]];
942             h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[8+1+2*i]];
943                 h->non_zero_count_cache[0+8*1 +   8*i]= h->non_zero_count[left_xy[i]][left_block[8+4+2*i]];
944                 h->non_zero_count_cache[0+8*4 +   8*i]= h->non_zero_count[left_xy[i]][left_block[8+5+2*i]];
945         }else{
946                 h->non_zero_count_cache[3+8*1 + 2*8*i]=
947                 h->non_zero_count_cache[3+8*2 + 2*8*i]=
948                 h->non_zero_count_cache[0+8*1 +   8*i]=
949                 h->non_zero_count_cache[0+8*4 +   8*i]= CABAC && !IS_INTRA(mb_type) ? 0 : 64;
950         }
951     }
952
953     if( CABAC ) {
954         // top_cbp
955         if(top_type) {
956             h->top_cbp = h->cbp_table[top_xy];
957         } else if(IS_INTRA(mb_type)) {
958             h->top_cbp = 0x1CF;
959         } else {
960             h->top_cbp = 0x00F;
961         }
962         // left_cbp
963         if (left_type[0]) {
964             h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
965         } else if(IS_INTRA(mb_type)) {
966             h->left_cbp = 0x1CF;
967         } else {
968             h->left_cbp = 0x00F;
969         }
970         if (left_type[0]) {
971             h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
972         }
973         if (left_type[1]) {
974             h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
975         }
976     }
977     }
978
979 #if 1
980     if(IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)){
981         int list;
982         for(list=0; list<h->list_count; list++){
983             if(!USES_LIST(mb_type, list)){
984                 /*if(!h->mv_cache_clean[list]){
985                     memset(h->mv_cache [list],  0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
986                     memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
987                     h->mv_cache_clean[list]= 1;
988                 }*/
989                 continue;
990             }
991             assert(!(IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred));
992
993             h->mv_cache_clean[list]= 0;
994
995             if(USES_LIST(top_type, list)){
996                 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
997                 const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
998                 AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
999                     h->ref_cache[list][scan8[0] + 0 - 1*8]=
1000                     h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
1001                     h->ref_cache[list][scan8[0] + 2 - 1*8]=
1002                     h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
1003             }else{
1004                 AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
1005                 *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
1006             }
1007
1008             for(i=0; i<2; i++){
1009                 int cache_idx = scan8[0] - 1 + i*2*8;
1010                 if(USES_LIST(left_type[i], list)){
1011                     const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
1012                     const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
1013                     *(uint32_t*)h->mv_cache[list][cache_idx  ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
1014                     *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
1015                         h->ref_cache[list][cache_idx  ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
1016                         h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
1017                 }else{
1018                     *(uint32_t*)h->mv_cache [list][cache_idx  ]=
1019                     *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
1020                     h->ref_cache[list][cache_idx  ]=
1021                     h->ref_cache[list][cache_idx+8]= (left_type[i]) ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1022                 }
1023             }
1024
1025             if(USES_LIST(topleft_type, list)){
1026                 const int b_xy = h->mb2b_xy [topleft_xy] + 3 + h->b_stride + (h->topleft_partition & 2*h->b_stride);
1027                 const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (h->topleft_partition & h->b8_stride);
1028                 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
1029                 h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
1030             }else{
1031                 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
1032                 h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1033             }
1034
1035             if(USES_LIST(topright_type, list)){
1036                 const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
1037                 const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
1038                 *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
1039                 h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
1040             }else{
1041                 *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
1042                 h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
1043             }
1044
1045             if((mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2)) && !FRAME_MBAFF)
1046                 continue;
1047
1048             if(!(mb_type&(MB_TYPE_SKIP|MB_TYPE_DIRECT2))) {
1049             h->ref_cache[list][scan8[5 ]+1] =
1050             h->ref_cache[list][scan8[7 ]+1] =
1051             h->ref_cache[list][scan8[13]+1] =  //FIXME remove past 3 (init somewhere else)
1052             h->ref_cache[list][scan8[4 ]] =
1053             h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
1054             *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
1055             *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
1056             *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
1057             *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
1058             *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
1059
1060             if( CABAC ) {
1061                 /* XXX beurk, Load mvd */
1062                 if(USES_LIST(top_type, list)){
1063                     const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
1064                     AV_COPY128(h->mvd_cache[list][scan8[0] + 0 - 1*8], h->mvd_table[list][b_xy + 0]);
1065                 }else{
1066                     AV_ZERO128(h->mvd_cache[list][scan8[0] + 0 - 1*8]);
1067                 }
1068                 if(USES_LIST(left_type[0], list)){
1069                     const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
1070                     *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
1071                     *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
1072                 }else{
1073                     *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
1074                     *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
1075                 }
1076                 if(USES_LIST(left_type[1], list)){
1077                     const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
1078                     *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
1079                     *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
1080                 }else{
1081                     *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
1082                     *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
1083                 }
1084                 *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
1085                 *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
1086                 *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
1087                 *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
1088                 *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
1089
1090                 if(h->slice_type_nos == FF_B_TYPE){
1091                     fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, MB_TYPE_16x16>>1, 1);
1092
1093                     if(IS_DIRECT(top_type)){
1094                         *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101*(MB_TYPE_DIRECT2>>1);
1095                     }else if(IS_8X8(top_type)){
1096                         int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
1097                         h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
1098                         h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
1099                     }else{
1100                         *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101*(MB_TYPE_16x16>>1);
1101                     }
1102
1103                     if(IS_DIRECT(left_type[0]))
1104                         h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_DIRECT2>>1;
1105                     else if(IS_8X8(left_type[0]))
1106                         h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
1107                     else
1108                         h->direct_cache[scan8[0] - 1 + 0*8]= MB_TYPE_16x16>>1;
1109
1110                     if(IS_DIRECT(left_type[1]))
1111                         h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_DIRECT2>>1;
1112                     else if(IS_8X8(left_type[1]))
1113                         h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
1114                     else
1115                         h->direct_cache[scan8[0] - 1 + 2*8]= MB_TYPE_16x16>>1;
1116                 }
1117             }
1118             }
1119             if(FRAME_MBAFF){
1120 #define MAP_MVS\
1121                     MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
1122                     MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
1123                     MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
1124                     MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
1125                     MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
1126                     MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
1127                     MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
1128                     MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
1129                     MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
1130                     MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
1131                 if(MB_FIELD){
1132 #define MAP_F2F(idx, mb_type)\
1133                     if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1134                         h->ref_cache[list][idx] <<= 1;\
1135                         h->mv_cache[list][idx][1] /= 2;\
1136                         h->mvd_cache[list][idx][1] /= 2;\
1137                     }
1138                     MAP_MVS
1139 #undef MAP_F2F
1140                 }else{
1141 #define MAP_F2F(idx, mb_type)\
1142                     if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
1143                         h->ref_cache[list][idx] >>= 1;\
1144                         h->mv_cache[list][idx][1] <<= 1;\
1145                         h->mvd_cache[list][idx][1] <<= 1;\
1146                     }
1147                     MAP_MVS
1148 #undef MAP_F2F
1149                 }
1150             }
1151         }
1152     }
1153 #endif
1154
1155         h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
1156 }
1157
1158 /**
1159  *
1160  * @returns non zero if the loop filter can be skiped
1161  */
1162 static int fill_filter_caches(H264Context *h, int mb_type){
1163     MpegEncContext * const s = &h->s;
1164     const int mb_xy= h->mb_xy;
1165     int top_xy, left_xy[2];
1166     int top_type, left_type[2];
1167
1168     top_xy     = mb_xy  - (s->mb_stride << MB_FIELD);
1169
1170     //FIXME deblocking could skip the intra and nnz parts.
1171
1172     /* Wow, what a mess, why didn't they simplify the interlacing & intra
1173      * stuff, I can't imagine that these complex rules are worth it. */
1174
1175     left_xy[1] = left_xy[0] = mb_xy-1;
1176     if(FRAME_MBAFF){
1177         const int left_mb_field_flag     = IS_INTERLACED(s->current_picture.mb_type[mb_xy-1]);
1178         const int curr_mb_field_flag     = IS_INTERLACED(mb_type);
1179         if(s->mb_y&1){
1180             if (left_mb_field_flag != curr_mb_field_flag) {
1181                 left_xy[0] -= s->mb_stride;
1182             }
1183         }else{
1184             if(curr_mb_field_flag){
1185                 top_xy      += s->mb_stride & (((s->current_picture.mb_type[top_xy    ]>>7)&1)-1);
1186             }
1187             if (left_mb_field_flag != curr_mb_field_flag) {
1188                 left_xy[1] += s->mb_stride;
1189             }
1190         }
1191     }
1192
1193     h->top_mb_xy = top_xy;
1194     h->left_mb_xy[0] = left_xy[0];
1195     h->left_mb_xy[1] = left_xy[1];
1196     {
1197         //for sufficiently low qp, filtering wouldn't do anything
1198         //this is a conservative estimate: could also check beta_offset and more accurate chroma_qp
1199         int qp_thresh = h->qp_thresh; //FIXME strictly we should store qp_thresh for each mb of a slice
1200         int qp = s->current_picture.qscale_table[mb_xy];
1201         if(qp <= qp_thresh
1202            && (left_xy[0]<0 || ((qp + s->current_picture.qscale_table[left_xy[0]] + 1)>>1) <= qp_thresh)
1203            && (top_xy   < 0 || ((qp + s->current_picture.qscale_table[top_xy    ] + 1)>>1) <= qp_thresh)){
1204             if(!FRAME_MBAFF)
1205                 return 1;
1206             if(   (left_xy[0]< 0            || ((qp + s->current_picture.qscale_table[left_xy[1]             ] + 1)>>1) <= qp_thresh)
1207                && (top_xy    < s->mb_stride || ((qp + s->current_picture.qscale_table[top_xy    -s->mb_stride] + 1)>>1) <= qp_thresh))
1208                 return 1;
1209         }
1210     }
1211
1212     if(h->deblocking_filter == 2){
1213         h->top_type    = top_type     = h->slice_table[top_xy     ] == h->slice_num ? s->current_picture.mb_type[top_xy]     : 0;
1214         h->left_type[0]= left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
1215         h->left_type[1]= left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
1216     }else{
1217         h->top_type    = top_type     = h->slice_table[top_xy     ] < 0xFFFF ? s->current_picture.mb_type[top_xy]     : 0;
1218         h->left_type[0]= left_type[0] = h->slice_table[left_xy[0] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[0]] : 0;
1219         h->left_type[1]= left_type[1] = h->slice_table[left_xy[1] ] < 0xFFFF ? s->current_picture.mb_type[left_xy[1]] : 0;
1220     }
1221     if(IS_INTRA(mb_type))
1222         return 0;
1223
1224     AV_COPY64(&h->non_zero_count_cache[0+8*1], &h->non_zero_count[mb_xy][ 0]);
1225     AV_COPY64(&h->non_zero_count_cache[0+8*2], &h->non_zero_count[mb_xy][ 8]);
1226     *((uint32_t*)&h->non_zero_count_cache[0+8*5])= *((uint32_t*)&h->non_zero_count[mb_xy][16]);
1227     *((uint32_t*)&h->non_zero_count_cache[4+8*3])= *((uint32_t*)&h->non_zero_count[mb_xy][20]);
1228     AV_COPY64(&h->non_zero_count_cache[0+8*4], &h->non_zero_count[mb_xy][24]);
1229
1230     h->cbp= h->cbp_table[mb_xy];
1231
1232     {
1233         int list;
1234         for(list=0; list<h->list_count; list++){
1235             int8_t *ref;
1236             int y, b_stride;
1237             int16_t (*mv_dst)[2];
1238             int16_t (*mv_src)[2];
1239
1240             if(!USES_LIST(mb_type, list)){
1241                 fill_rectangle(  h->mv_cache[list][scan8[0]], 4, 4, 8, pack16to32(0,0), 4);
1242                 *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
1243                 *(uint32_t*)&h->ref_cache[list][scan8[ 2]] =
1244                 *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
1245                 *(uint32_t*)&h->ref_cache[list][scan8[10]] = ((LIST_NOT_USED)&0xFF)*0x01010101U;
1246                 continue;
1247             }
1248
1249             ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
1250             {
1251                 int (*ref2frm)[64] = h->ref2frm[ h->slice_num&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
1252                 *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
1253                 *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101;
1254                 ref += h->b8_stride;
1255                 *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
1256                 *(uint32_t*)&h->ref_cache[list][scan8[10]] = (pack16to32(ref2frm[list][ref[0]],ref2frm[list][ref[1]])&0x00FF00FF)*0x0101;
1257             }
1258
1259             b_stride = h->b_stride;
1260             mv_dst   = &h->mv_cache[list][scan8[0]];
1261             mv_src   = &s->current_picture.motion_val[list][4*s->mb_x + 4*s->mb_y*b_stride];
1262             for(y=0; y<4; y++){
1263                 AV_COPY128(mv_dst + 8*y, mv_src + y*b_stride);
1264             }
1265
1266         }
1267     }
1268
1269
1270 /*
1271 0 . T T. T T T T
1272 1 L . .L . . . .
1273 2 L . .L . . . .
1274 3 . T TL . . . .
1275 4 L . .L . . . .
1276 5 L . .. . . . .
1277 */
1278 //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
1279     if(top_type){
1280         *(uint32_t*)&h->non_zero_count_cache[4+8*0]= *(uint32_t*)&h->non_zero_count[top_xy][4+3*8];
1281     }
1282
1283     if(left_type[0]){
1284         h->non_zero_count_cache[3+8*1]= h->non_zero_count[left_xy[0]][7+0*8];
1285         h->non_zero_count_cache[3+8*2]= h->non_zero_count[left_xy[0]][7+1*8];
1286         h->non_zero_count_cache[3+8*3]= h->non_zero_count[left_xy[0]][7+2*8];
1287         h->non_zero_count_cache[3+8*4]= h->non_zero_count[left_xy[0]][7+3*8];
1288     }
1289
1290     // CAVLC 8x8dct requires NNZ values for residual decoding that differ from what the loop filter needs
1291     if(!CABAC && h->pps.transform_8x8_mode){
1292         if(IS_8x8DCT(top_type)){
1293             h->non_zero_count_cache[4+8*0]=
1294             h->non_zero_count_cache[5+8*0]= h->cbp_table[top_xy] & 4;
1295             h->non_zero_count_cache[6+8*0]=
1296             h->non_zero_count_cache[7+8*0]= h->cbp_table[top_xy] & 8;
1297         }
1298         if(IS_8x8DCT(left_type[0])){
1299             h->non_zero_count_cache[3+8*1]=
1300             h->non_zero_count_cache[3+8*2]= h->cbp_table[left_xy[0]]&2; //FIXME check MBAFF
1301         }
1302         if(IS_8x8DCT(left_type[1])){
1303             h->non_zero_count_cache[3+8*3]=
1304             h->non_zero_count_cache[3+8*4]= h->cbp_table[left_xy[1]]&8; //FIXME check MBAFF
1305         }
1306
1307         if(IS_8x8DCT(mb_type)){
1308             h->non_zero_count_cache[scan8[0   ]]= h->non_zero_count_cache[scan8[1   ]]=
1309             h->non_zero_count_cache[scan8[2   ]]= h->non_zero_count_cache[scan8[3   ]]= h->cbp & 1;
1310
1311             h->non_zero_count_cache[scan8[0+ 4]]= h->non_zero_count_cache[scan8[1+ 4]]=
1312             h->non_zero_count_cache[scan8[2+ 4]]= h->non_zero_count_cache[scan8[3+ 4]]= h->cbp & 2;
1313
1314             h->non_zero_count_cache[scan8[0+ 8]]= h->non_zero_count_cache[scan8[1+ 8]]=
1315             h->non_zero_count_cache[scan8[2+ 8]]= h->non_zero_count_cache[scan8[3+ 8]]= h->cbp & 4;
1316
1317             h->non_zero_count_cache[scan8[0+12]]= h->non_zero_count_cache[scan8[1+12]]=
1318             h->non_zero_count_cache[scan8[2+12]]= h->non_zero_count_cache[scan8[3+12]]= h->cbp & 8;
1319         }
1320     }
1321
1322     if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
1323         int list;
1324         for(list=0; list<h->list_count; list++){
1325             if(USES_LIST(top_type, list)){
1326                 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
1327                 const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
1328                 int (*ref2frm)[64] = h->ref2frm[ h->slice_table[top_xy]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
1329                 AV_COPY128(h->mv_cache[list][scan8[0] + 0 - 1*8], s->current_picture.motion_val[list][b_xy + 0]);
1330                 h->ref_cache[list][scan8[0] + 0 - 1*8]=
1331                 h->ref_cache[list][scan8[0] + 1 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 0]];
1332                 h->ref_cache[list][scan8[0] + 2 - 1*8]=
1333                 h->ref_cache[list][scan8[0] + 3 - 1*8]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + 1]];
1334             }else{
1335                 AV_ZERO128(h->mv_cache[list][scan8[0] + 0 - 1*8]);
1336                 *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((LIST_NOT_USED)&0xFF)*0x01010101U;
1337             }
1338
1339             if(!IS_INTERLACED(mb_type^left_type[0])){
1340                 if(USES_LIST(left_type[0], list)){
1341                     const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
1342                     const int b8_xy= h->mb2b8_xy[left_xy[0]] + 1;
1343                     int (*ref2frm)[64] = h->ref2frm[ h->slice_table[left_xy[0]]&(MAX_SLICES-1) ][0] + (MB_MBAFF ? 20 : 2);
1344                     *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 0 ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*0];
1345                     *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 8 ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*1];
1346                     *(uint32_t*)h->mv_cache[list][scan8[0] - 1 +16 ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*2];
1347                     *(uint32_t*)h->mv_cache[list][scan8[0] - 1 +24 ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*3];
1348                     h->ref_cache[list][scan8[0] - 1 + 0 ]=
1349                     h->ref_cache[list][scan8[0] - 1 + 8 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*0]];
1350                     h->ref_cache[list][scan8[0] - 1 +16 ]=
1351                     h->ref_cache[list][scan8[0] - 1 +24 ]= ref2frm[list][s->current_picture.ref_index[list][b8_xy + h->b8_stride*1]];
1352                 }else{
1353                     *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 0 ]=
1354                     *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 8 ]=
1355                     *(uint32_t*)h->mv_cache [list][scan8[0] - 1 +16 ]=
1356                     *(uint32_t*)h->mv_cache [list][scan8[0] - 1 +24 ]= 0;
1357                     h->ref_cache[list][scan8[0] - 1 + 0  ]=
1358                     h->ref_cache[list][scan8[0] - 1 + 8  ]=
1359                     h->ref_cache[list][scan8[0] - 1 + 16 ]=
1360                     h->ref_cache[list][scan8[0] - 1 + 24 ]= LIST_NOT_USED;
1361                 }
1362             }
1363         }
1364     }
1365
1366     return 0;
1367 }
1368
1369 /**
1370  * gets the predicted intra4x4 prediction mode.
1371  */
1372 static inline int pred_intra_mode(H264Context *h, int n){
1373     const int index8= scan8[n];
1374     const int left= h->intra4x4_pred_mode_cache[index8 - 1];
1375     const int top = h->intra4x4_pred_mode_cache[index8 - 8];
1376     const int min= FFMIN(left, top);
1377
1378     tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
1379
1380     if(min<0) return DC_PRED;
1381     else      return min;
1382 }
1383
1384 static inline void write_back_non_zero_count(H264Context *h){
1385     const int mb_xy= h->mb_xy;
1386
1387     AV_COPY64(&h->non_zero_count[mb_xy][ 0], &h->non_zero_count_cache[0+8*1]);
1388     AV_COPY64(&h->non_zero_count[mb_xy][ 8], &h->non_zero_count_cache[0+8*2]);
1389     *((uint32_t*)&h->non_zero_count[mb_xy][16]) = *((uint32_t*)&h->non_zero_count_cache[0+8*5]);
1390     *((uint32_t*)&h->non_zero_count[mb_xy][20]) = *((uint32_t*)&h->non_zero_count_cache[4+8*3]);
1391     AV_COPY64(&h->non_zero_count[mb_xy][24], &h->non_zero_count_cache[0+8*4]);
1392 }
1393
1394 static inline void write_back_motion(H264Context *h, int mb_type){
1395     MpegEncContext * const s = &h->s;
1396     const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1397     const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1398     int list;
1399
1400     if(!USES_LIST(mb_type, 0))
1401         fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
1402
1403     for(list=0; list<h->list_count; list++){
1404         int y, b_stride;
1405         int16_t (*mv_dst)[2];
1406         int16_t (*mv_src)[2];
1407
1408         if(!USES_LIST(mb_type, list))
1409             continue;
1410
1411         b_stride = h->b_stride;
1412         mv_dst   = &s->current_picture.motion_val[list][b_xy];
1413         mv_src   = &h->mv_cache[list][scan8[0]];
1414         for(y=0; y<4; y++){
1415             AV_COPY128(mv_dst + y*b_stride, mv_src + 8*y);
1416         }
1417         if( CABAC ) {
1418             int16_t (*mvd_dst)[2] = &h->mvd_table[list][b_xy];
1419             int16_t (*mvd_src)[2] = &h->mvd_cache[list][scan8[0]];
1420             if(IS_SKIP(mb_type))
1421                 fill_rectangle(mvd_dst, 4, 4, h->b_stride, 0, 4);
1422             else
1423             for(y=0; y<4; y++){
1424                 AV_COPY128(mvd_dst + y*b_stride, mvd_src + 8*y);
1425             }
1426         }
1427
1428         {
1429             int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
1430             ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
1431             ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
1432             ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
1433             ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
1434         }
1435     }
1436
1437     if(h->slice_type_nos == FF_B_TYPE && CABAC){
1438         if(IS_8X8(mb_type)){
1439             uint8_t *direct_table = &h->direct_table[b8_xy];
1440             direct_table[1+0*h->b8_stride] = h->sub_mb_type[1]>>1;
1441             direct_table[0+1*h->b8_stride] = h->sub_mb_type[2]>>1;
1442             direct_table[1+1*h->b8_stride] = h->sub_mb_type[3]>>1;
1443         }
1444     }
1445 }
1446
1447 static inline int get_dct8x8_allowed(H264Context *h){
1448     if(h->sps.direct_8x8_inference_flag)
1449         return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8                )*0x0001000100010001ULL));
1450     else
1451         return !(*(uint64_t*)h->sub_mb_type & ((MB_TYPE_16x8|MB_TYPE_8x16|MB_TYPE_8x8|MB_TYPE_DIRECT2)*0x0001000100010001ULL));
1452 }
1453
1454 /**
1455  * decodes a P_SKIP or B_SKIP macroblock
1456  */
1457 static void decode_mb_skip(H264Context *h){
1458     MpegEncContext * const s = &h->s;
1459     const int mb_xy= h->mb_xy;
1460     int mb_type=0;
1461
1462     memset(h->non_zero_count[mb_xy], 0, 32);
1463     memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
1464
1465     if(MB_FIELD)
1466         mb_type|= MB_TYPE_INTERLACED;
1467
1468     if( h->slice_type_nos == FF_B_TYPE )
1469     {
1470         // just for fill_caches. pred_direct_motion will set the real mb_type
1471         mb_type|= MB_TYPE_L0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
1472         if(h->direct_spatial_mv_pred){
1473             fill_decode_neighbors(h, mb_type);
1474         fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1475         }
1476         ff_h264_pred_direct_motion(h, &mb_type);
1477         mb_type|= MB_TYPE_SKIP;
1478     }
1479     else
1480     {
1481         int mx, my;
1482         mb_type|= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
1483
1484         fill_decode_neighbors(h, mb_type);
1485         fill_decode_caches(h, mb_type); //FIXME check what is needed and what not ...
1486         pred_pskip_motion(h, &mx, &my);
1487         fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
1488         fill_rectangle(  h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
1489     }
1490
1491     write_back_motion(h, mb_type);
1492     s->current_picture.mb_type[mb_xy]= mb_type;
1493     s->current_picture.qscale_table[mb_xy]= s->qscale;
1494     h->slice_table[ mb_xy ]= h->slice_num;
1495     h->prev_mb_skipped= 1;
1496 }
1497
1498 #include "h264_mvpred.h" //For pred_pskip_motion()
1499
1500 #endif /* AVCODEC_H264_H */