2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 * H.264 / AVC / MPEG4 part10 codec.
25 * @author Michael Niedermayer <michaelni@gmx.at>
30 #include "mpegvideo.h"
33 #include "h264_parser.h"
42 * Value of Picture.reference when Picture is not a reference picture, but
43 * is held for delayed output.
45 #define DELAYED_PIC_REF 4
47 static VLC coeff_token_vlc[4];
48 static VLC chroma_dc_coeff_token_vlc;
50 static VLC total_zeros_vlc[15];
51 static VLC chroma_dc_total_zeros_vlc[3];
53 static VLC run_vlc[6];
56 static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
57 static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
58 static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
59 static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
61 static av_always_inline uint32_t pack16to32(int a, int b){
62 #ifdef WORDS_BIGENDIAN
63 return (b&0xFFFF) + (a<<16);
65 return (a&0xFFFF) + (b<<16);
69 const uint8_t ff_rem6[52]={
70 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
73 const uint8_t ff_div6[52]={
74 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,
80 * @param h height of the rectangle, should be a constant
81 * @param w width of the rectangle, should be a constant
82 * @param size the size of val (1 or 4), should be a constant
84 static av_always_inline void fill_rectangle(void *vp, int w, int h, int stride, uint32_t val, int size){
85 uint8_t *p= (uint8_t*)vp;
86 assert(size==1 || size==4);
92 assert((((long)vp)&(FFMIN(w, STRIDE_ALIGN)-1)) == 0);
93 assert((stride&(w-1))==0);
95 const uint16_t v= size==4 ? val : val*0x0101;
96 *(uint16_t*)(p + 0*stride)= v;
98 *(uint16_t*)(p + 1*stride)= v;
100 *(uint16_t*)(p + 2*stride)= v;
101 *(uint16_t*)(p + 3*stride)= v;
103 const uint32_t v= size==4 ? val : val*0x01010101;
104 *(uint32_t*)(p + 0*stride)= v;
106 *(uint32_t*)(p + 1*stride)= v;
108 *(uint32_t*)(p + 2*stride)= v;
109 *(uint32_t*)(p + 3*stride)= v;
111 //gcc can't optimize 64bit math on x86_32
112 #if defined(ARCH_X86_64) || (defined(MP_WORDSIZE) && MP_WORDSIZE >= 64)
113 const uint64_t v= val*0x0100000001ULL;
114 *(uint64_t*)(p + 0*stride)= v;
116 *(uint64_t*)(p + 1*stride)= v;
118 *(uint64_t*)(p + 2*stride)= v;
119 *(uint64_t*)(p + 3*stride)= v;
121 const uint64_t v= val*0x0100000001ULL;
122 *(uint64_t*)(p + 0+0*stride)= v;
123 *(uint64_t*)(p + 8+0*stride)= v;
124 *(uint64_t*)(p + 0+1*stride)= v;
125 *(uint64_t*)(p + 8+1*stride)= v;
127 *(uint64_t*)(p + 0+2*stride)= v;
128 *(uint64_t*)(p + 8+2*stride)= v;
129 *(uint64_t*)(p + 0+3*stride)= v;
130 *(uint64_t*)(p + 8+3*stride)= v;
132 *(uint32_t*)(p + 0+0*stride)= val;
133 *(uint32_t*)(p + 4+0*stride)= val;
135 *(uint32_t*)(p + 0+1*stride)= val;
136 *(uint32_t*)(p + 4+1*stride)= val;
138 *(uint32_t*)(p + 0+2*stride)= val;
139 *(uint32_t*)(p + 4+2*stride)= val;
140 *(uint32_t*)(p + 0+3*stride)= val;
141 *(uint32_t*)(p + 4+3*stride)= val;
143 *(uint32_t*)(p + 0+0*stride)= val;
144 *(uint32_t*)(p + 4+0*stride)= val;
145 *(uint32_t*)(p + 8+0*stride)= val;
146 *(uint32_t*)(p +12+0*stride)= val;
147 *(uint32_t*)(p + 0+1*stride)= val;
148 *(uint32_t*)(p + 4+1*stride)= val;
149 *(uint32_t*)(p + 8+1*stride)= val;
150 *(uint32_t*)(p +12+1*stride)= val;
152 *(uint32_t*)(p + 0+2*stride)= val;
153 *(uint32_t*)(p + 4+2*stride)= val;
154 *(uint32_t*)(p + 8+2*stride)= val;
155 *(uint32_t*)(p +12+2*stride)= val;
156 *(uint32_t*)(p + 0+3*stride)= val;
157 *(uint32_t*)(p + 4+3*stride)= val;
158 *(uint32_t*)(p + 8+3*stride)= val;
159 *(uint32_t*)(p +12+3*stride)= val;
166 static void fill_caches(H264Context *h, int mb_type, int for_deblock){
167 MpegEncContext * const s = &h->s;
168 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
169 int topleft_xy, top_xy, topright_xy, left_xy[2];
170 int topleft_type, top_type, topright_type, left_type[2];
174 top_xy = mb_xy - (s->mb_stride << FIELD_PICTURE);
176 //FIXME deblocking could skip the intra and nnz parts.
177 if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[top_xy]) && !FRAME_MBAFF)
180 //wow what a mess, why didn't they simplify the interlacing&intra stuff, i can't imagine that these complex rules are worth it
182 topleft_xy = top_xy - 1;
183 topright_xy= top_xy + 1;
184 left_xy[1] = left_xy[0] = mb_xy-1;
194 const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
195 const int top_pair_xy = pair_xy - s->mb_stride;
196 const int topleft_pair_xy = top_pair_xy - 1;
197 const int topright_pair_xy = top_pair_xy + 1;
198 const int topleft_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
199 const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
200 const int topright_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
201 const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
202 const int curr_mb_frame_flag = !IS_INTERLACED(mb_type);
203 const int bottom = (s->mb_y & 1);
204 tprintf(s->avctx, "fill_caches: curr_mb_frame_flag:%d, left_mb_frame_flag:%d, topleft_mb_frame_flag:%d, top_mb_frame_flag:%d, topright_mb_frame_flag:%d\n", curr_mb_frame_flag, left_mb_frame_flag, topleft_mb_frame_flag, top_mb_frame_flag, topright_mb_frame_flag);
206 ? !curr_mb_frame_flag // bottom macroblock
207 : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
209 top_xy -= s->mb_stride;
212 ? !curr_mb_frame_flag // bottom macroblock
213 : (!curr_mb_frame_flag && !topleft_mb_frame_flag) // top macroblock
215 topleft_xy -= s->mb_stride;
218 ? !curr_mb_frame_flag // bottom macroblock
219 : (!curr_mb_frame_flag && !topright_mb_frame_flag) // top macroblock
221 topright_xy -= s->mb_stride;
223 if (left_mb_frame_flag != curr_mb_frame_flag) {
224 left_xy[1] = left_xy[0] = pair_xy - 1;
225 if (curr_mb_frame_flag) {
246 left_xy[1] += s->mb_stride;
259 h->top_mb_xy = top_xy;
260 h->left_mb_xy[0] = left_xy[0];
261 h->left_mb_xy[1] = left_xy[1];
265 top_type = h->slice_table[top_xy ] < 255 ? s->current_picture.mb_type[top_xy] : 0;
266 left_type[0] = h->slice_table[left_xy[0] ] < 255 ? s->current_picture.mb_type[left_xy[0]] : 0;
267 left_type[1] = h->slice_table[left_xy[1] ] < 255 ? s->current_picture.mb_type[left_xy[1]] : 0;
269 if(FRAME_MBAFF && !IS_INTRA(mb_type)){
271 int v = *(uint16_t*)&h->non_zero_count[mb_xy][14];
273 h->non_zero_count_cache[scan8[i]] = (v>>i)&1;
274 for(list=0; list<h->list_count; list++){
275 if(USES_LIST(mb_type,list)){
276 uint32_t *src = (uint32_t*)s->current_picture.motion_val[list][h->mb2b_xy[mb_xy]];
277 uint32_t *dst = (uint32_t*)h->mv_cache[list][scan8[0]];
278 int8_t *ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
279 for(i=0; i<4; i++, dst+=8, src+=h->b_stride){
285 *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
286 *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = pack16to32(ref[0],ref[1])*0x0101;
288 *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
289 *(uint32_t*)&h->ref_cache[list][scan8[10]] = pack16to32(ref[0],ref[1])*0x0101;
291 fill_rectangle(&h-> mv_cache[list][scan8[ 0]], 4, 4, 8, 0, 4);
292 fill_rectangle(&h->ref_cache[list][scan8[ 0]], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1);
297 topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
298 top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
299 topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
300 left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
301 left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
304 if(IS_INTRA(mb_type)){
305 h->topleft_samples_available=
306 h->top_samples_available=
307 h->left_samples_available= 0xFFFF;
308 h->topright_samples_available= 0xEEEA;
310 if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
311 h->topleft_samples_available= 0xB3FF;
312 h->top_samples_available= 0x33FF;
313 h->topright_samples_available= 0x26EA;
316 if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
317 h->topleft_samples_available&= 0xDF5F;
318 h->left_samples_available&= 0x5F5F;
322 if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
323 h->topleft_samples_available&= 0x7FFF;
325 if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
326 h->topright_samples_available&= 0xFBFF;
328 if(IS_INTRA4x4(mb_type)){
329 if(IS_INTRA4x4(top_type)){
330 h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
331 h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
332 h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
333 h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
336 if(!top_type || (IS_INTER(top_type) && h->pps.constrained_intra_pred))
341 h->intra4x4_pred_mode_cache[4+8*0]=
342 h->intra4x4_pred_mode_cache[5+8*0]=
343 h->intra4x4_pred_mode_cache[6+8*0]=
344 h->intra4x4_pred_mode_cache[7+8*0]= pred;
347 if(IS_INTRA4x4(left_type[i])){
348 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
349 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
352 if(!left_type[i] || (IS_INTER(left_type[i]) && h->pps.constrained_intra_pred))
357 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
358 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
373 //FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
375 h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4];
376 h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5];
377 h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6];
378 h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
380 h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9];
381 h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
383 h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12];
384 h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
387 h->non_zero_count_cache[4+8*0]=
388 h->non_zero_count_cache[5+8*0]=
389 h->non_zero_count_cache[6+8*0]=
390 h->non_zero_count_cache[7+8*0]=
392 h->non_zero_count_cache[1+8*0]=
393 h->non_zero_count_cache[2+8*0]=
395 h->non_zero_count_cache[1+8*3]=
396 h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
400 for (i=0; i<2; i++) {
402 h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]];
403 h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]];
404 h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]];
405 h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]];
407 h->non_zero_count_cache[3+8*1 + 2*8*i]=
408 h->non_zero_count_cache[3+8*2 + 2*8*i]=
409 h->non_zero_count_cache[0+8*1 + 8*i]=
410 h->non_zero_count_cache[0+8*4 + 8*i]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
417 h->top_cbp = h->cbp_table[top_xy];
418 } else if(IS_INTRA(mb_type)) {
425 h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
426 } else if(IS_INTRA(mb_type)) {
432 h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
435 h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
440 if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
442 for(list=0; list<h->list_count; list++){
443 if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
444 /*if(!h->mv_cache_clean[list]){
445 memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
446 memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
447 h->mv_cache_clean[list]= 1;
451 h->mv_cache_clean[list]= 0;
453 if(USES_LIST(top_type, list)){
454 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
455 const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
456 *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
457 *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
458 *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
459 *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
460 h->ref_cache[list][scan8[0] + 0 - 1*8]=
461 h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
462 h->ref_cache[list][scan8[0] + 2 - 1*8]=
463 h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
465 *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
466 *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
467 *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
468 *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
469 *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
473 int cache_idx = scan8[0] - 1 + i*2*8;
474 if(USES_LIST(left_type[i], list)){
475 const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
476 const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
477 *(uint32_t*)h->mv_cache[list][cache_idx ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
478 *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
479 h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
480 h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
482 *(uint32_t*)h->mv_cache [list][cache_idx ]=
483 *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
484 h->ref_cache[list][cache_idx ]=
485 h->ref_cache[list][cache_idx+8]= left_type[i] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
489 if((for_deblock || (IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred)) && !FRAME_MBAFF)
492 if(USES_LIST(topleft_type, list)){
493 const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
494 const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + h->b8_stride;
495 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
496 h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
498 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
499 h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
502 if(USES_LIST(topright_type, list)){
503 const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
504 const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
505 *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
506 h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
508 *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
509 h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
512 if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
515 h->ref_cache[list][scan8[5 ]+1] =
516 h->ref_cache[list][scan8[7 ]+1] =
517 h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
518 h->ref_cache[list][scan8[4 ]] =
519 h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
520 *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
521 *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
522 *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
523 *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
524 *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
527 /* XXX beurk, Load mvd */
528 if(USES_LIST(top_type, list)){
529 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
530 *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
531 *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
532 *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
533 *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
535 *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
536 *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
537 *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
538 *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
540 if(USES_LIST(left_type[0], list)){
541 const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
542 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
543 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
545 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
546 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
548 if(USES_LIST(left_type[1], list)){
549 const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
550 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
551 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
553 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
554 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
556 *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
557 *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
558 *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
559 *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
560 *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
562 if(h->slice_type == B_TYPE){
563 fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
565 if(IS_DIRECT(top_type)){
566 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
567 }else if(IS_8X8(top_type)){
568 int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
569 h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
570 h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
572 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
575 if(IS_DIRECT(left_type[0]))
576 h->direct_cache[scan8[0] - 1 + 0*8]= 1;
577 else if(IS_8X8(left_type[0]))
578 h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
580 h->direct_cache[scan8[0] - 1 + 0*8]= 0;
582 if(IS_DIRECT(left_type[1]))
583 h->direct_cache[scan8[0] - 1 + 2*8]= 1;
584 else if(IS_8X8(left_type[1]))
585 h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
587 h->direct_cache[scan8[0] - 1 + 2*8]= 0;
593 MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
594 MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
595 MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
596 MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
597 MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
598 MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
599 MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
600 MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
601 MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
602 MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
604 #define MAP_F2F(idx, mb_type)\
605 if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
606 h->ref_cache[list][idx] <<= 1;\
607 h->mv_cache[list][idx][1] /= 2;\
608 h->mvd_cache[list][idx][1] /= 2;\
613 #define MAP_F2F(idx, mb_type)\
614 if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
615 h->ref_cache[list][idx] >>= 1;\
616 h->mv_cache[list][idx][1] <<= 1;\
617 h->mvd_cache[list][idx][1] <<= 1;\
627 h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
630 static inline void write_back_intra_pred_mode(H264Context *h){
631 MpegEncContext * const s = &h->s;
632 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
634 h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
635 h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
636 h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
637 h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
638 h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
639 h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
640 h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
644 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
646 static inline int check_intra4x4_pred_mode(H264Context *h){
647 MpegEncContext * const s = &h->s;
648 static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
649 static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
652 if(!(h->top_samples_available&0x8000)){
654 int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
656 av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
659 h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
664 if(!(h->left_samples_available&0x8000)){
666 int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
668 av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
671 h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
677 } //FIXME cleanup like next
680 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
682 static inline int check_intra_pred_mode(H264Context *h, int mode){
683 MpegEncContext * const s = &h->s;
684 static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
685 static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
688 av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
692 if(!(h->top_samples_available&0x8000)){
695 av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
700 if(!(h->left_samples_available&0x8000)){
703 av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
712 * gets the predicted intra4x4 prediction mode.
714 static inline int pred_intra_mode(H264Context *h, int n){
715 const int index8= scan8[n];
716 const int left= h->intra4x4_pred_mode_cache[index8 - 1];
717 const int top = h->intra4x4_pred_mode_cache[index8 - 8];
718 const int min= FFMIN(left, top);
720 tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
722 if(min<0) return DC_PRED;
726 static inline void write_back_non_zero_count(H264Context *h){
727 MpegEncContext * const s = &h->s;
728 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
730 h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[7+8*1];
731 h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[7+8*2];
732 h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[7+8*3];
733 h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
734 h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[4+8*4];
735 h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[5+8*4];
736 h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[6+8*4];
738 h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[1+8*2];
739 h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
740 h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[2+8*1];
742 h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5];
743 h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
744 h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4];
747 // store all luma nnzs, for deblocking
750 v += (!!h->non_zero_count_cache[scan8[i]]) << i;
751 *(uint16_t*)&h->non_zero_count[mb_xy][14] = v;
756 * gets the predicted number of non zero coefficients.
757 * @param n block index
759 static inline int pred_non_zero_count(H264Context *h, int n){
760 const int index8= scan8[n];
761 const int left= h->non_zero_count_cache[index8 - 1];
762 const int top = h->non_zero_count_cache[index8 - 8];
765 if(i<64) i= (i+1)>>1;
767 tprintf(h->s.avctx, "pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
772 static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
773 const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
774 MpegEncContext *s = &h->s;
776 /* there is no consistent mapping of mvs to neighboring locations that will
777 * make mbaff happy, so we can't move all this logic to fill_caches */
779 const uint32_t *mb_types = s->current_picture_ptr->mb_type;
781 *(uint32_t*)h->mv_cache[list][scan8[0]-2] = 0;
782 *C = h->mv_cache[list][scan8[0]-2];
785 && (s->mb_y&1) && i < scan8[0]+8 && topright_ref != PART_NOT_AVAILABLE){
786 int topright_xy = s->mb_x + (s->mb_y-1)*s->mb_stride + (i == scan8[0]+3);
787 if(IS_INTERLACED(mb_types[topright_xy])){
788 #define SET_DIAG_MV(MV_OP, REF_OP, X4, Y4)\
789 const int x4 = X4, y4 = Y4;\
790 const int mb_type = mb_types[(x4>>2)+(y4>>2)*s->mb_stride];\
791 if(!USES_LIST(mb_type,list) && !IS_8X8(mb_type))\
792 return LIST_NOT_USED;\
793 mv = s->current_picture_ptr->motion_val[list][x4 + y4*h->b_stride];\
794 h->mv_cache[list][scan8[0]-2][0] = mv[0];\
795 h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\
796 return s->current_picture_ptr->ref_index[list][(x4>>1) + (y4>>1)*h->b8_stride] REF_OP;
798 SET_DIAG_MV(*2, >>1, s->mb_x*4+(i&7)-4+part_width, s->mb_y*4-1);
801 if(topright_ref == PART_NOT_AVAILABLE
802 && ((s->mb_y&1) || i >= scan8[0]+8) && (i&7)==4
803 && h->ref_cache[list][scan8[0]-1] != PART_NOT_AVAILABLE){
805 && IS_INTERLACED(mb_types[h->left_mb_xy[0]])){
806 SET_DIAG_MV(*2, >>1, s->mb_x*4-1, (s->mb_y|1)*4+(s->mb_y&1)*2+(i>>4)-1);
809 && !IS_INTERLACED(mb_types[h->left_mb_xy[0]])
811 // leftshift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's ok.
812 SET_DIAG_MV(>>1, <<1, s->mb_x*4-1, (s->mb_y&~1)*4 - 1 + ((i-scan8[0])>>3)*2);
818 if(topright_ref != PART_NOT_AVAILABLE){
819 *C= h->mv_cache[list][ i - 8 + part_width ];
822 tprintf(s->avctx, "topright MV not available\n");
824 *C= h->mv_cache[list][ i - 8 - 1 ];
825 return h->ref_cache[list][ i - 8 - 1 ];
830 * gets the predicted MV.
831 * @param n the block index
832 * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
833 * @param mx the x component of the predicted motion vector
834 * @param my the y component of the predicted motion vector
836 static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
837 const int index8= scan8[n];
838 const int top_ref= h->ref_cache[list][ index8 - 8 ];
839 const int left_ref= h->ref_cache[list][ index8 - 1 ];
840 const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
841 const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
843 int diagonal_ref, match_count;
845 assert(part_width==1 || part_width==2 || part_width==4);
855 diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
856 match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
857 tprintf(h->s.avctx, "pred_motion match_count=%d\n", match_count);
858 if(match_count > 1){ //most common
859 *mx= mid_pred(A[0], B[0], C[0]);
860 *my= mid_pred(A[1], B[1], C[1]);
861 }else if(match_count==1){
865 }else if(top_ref==ref){
873 if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
877 *mx= mid_pred(A[0], B[0], C[0]);
878 *my= mid_pred(A[1], B[1], C[1]);
882 tprintf(h->s.avctx, "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
886 * gets the directionally predicted 16x8 MV.
887 * @param n the block index
888 * @param mx the x component of the predicted motion vector
889 * @param my the y component of the predicted motion vector
891 static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
893 const int top_ref= h->ref_cache[list][ scan8[0] - 8 ];
894 const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
896 tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
904 const int left_ref= h->ref_cache[list][ scan8[8] - 1 ];
905 const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
907 tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
917 pred_motion(h, n, 4, list, ref, mx, my);
921 * gets the directionally predicted 8x16 MV.
922 * @param n the block index
923 * @param mx the x component of the predicted motion vector
924 * @param my the y component of the predicted motion vector
926 static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
928 const int left_ref= h->ref_cache[list][ scan8[0] - 1 ];
929 const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
931 tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
942 diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
944 tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
946 if(diagonal_ref == ref){
954 pred_motion(h, n, 2, list, ref, mx, my);
957 static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
958 const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
959 const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
961 tprintf(h->s.avctx, "pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
963 if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
964 || (top_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
965 || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
971 pred_motion(h, 0, 4, 0, 0, mx, my);
976 static inline void direct_dist_scale_factor(H264Context * const h){
977 const int poc = h->s.current_picture_ptr->poc;
978 const int poc1 = h->ref_list[1][0].poc;
980 for(i=0; i<h->ref_count[0]; i++){
981 int poc0 = h->ref_list[0][i].poc;
982 int td = av_clip(poc1 - poc0, -128, 127);
983 if(td == 0 /* FIXME || pic0 is a long-term ref */){
984 h->dist_scale_factor[i] = 256;
986 int tb = av_clip(poc - poc0, -128, 127);
987 int tx = (16384 + (FFABS(td) >> 1)) / td;
988 h->dist_scale_factor[i] = av_clip((tb*tx + 32) >> 6, -1024, 1023);
992 for(i=0; i<h->ref_count[0]; i++){
993 h->dist_scale_factor_field[2*i] =
994 h->dist_scale_factor_field[2*i+1] = h->dist_scale_factor[i];
998 static inline void direct_ref_list_init(H264Context * const h){
999 MpegEncContext * const s = &h->s;
1000 Picture * const ref1 = &h->ref_list[1][0];
1001 Picture * const cur = s->current_picture_ptr;
1003 if(cur->pict_type == I_TYPE)
1004 cur->ref_count[0] = 0;
1005 if(cur->pict_type != B_TYPE)
1006 cur->ref_count[1] = 0;
1007 for(list=0; list<2; list++){
1008 cur->ref_count[list] = h->ref_count[list];
1009 for(j=0; j<h->ref_count[list]; j++)
1010 cur->ref_poc[list][j] = h->ref_list[list][j].poc;
1012 if(cur->pict_type != B_TYPE || h->direct_spatial_mv_pred)
1014 for(list=0; list<2; list++){
1015 for(i=0; i<ref1->ref_count[list]; i++){
1016 const int poc = ref1->ref_poc[list][i];
1017 h->map_col_to_list0[list][i] = 0; /* bogus; fills in for missing frames */
1018 for(j=0; j<h->ref_count[list]; j++)
1019 if(h->ref_list[list][j].poc == poc){
1020 h->map_col_to_list0[list][i] = j;
1026 for(list=0; list<2; list++){
1027 for(i=0; i<ref1->ref_count[list]; i++){
1028 j = h->map_col_to_list0[list][i];
1029 h->map_col_to_list0_field[list][2*i] = 2*j;
1030 h->map_col_to_list0_field[list][2*i+1] = 2*j+1;
1036 static inline void pred_direct_motion(H264Context * const h, int *mb_type){
1037 MpegEncContext * const s = &h->s;
1038 const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
1039 const int b8_xy = 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1040 const int b4_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1041 const int mb_type_col = h->ref_list[1][0].mb_type[mb_xy];
1042 const int16_t (*l1mv0)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[0][b4_xy];
1043 const int16_t (*l1mv1)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[1][b4_xy];
1044 const int8_t *l1ref0 = &h->ref_list[1][0].ref_index[0][b8_xy];
1045 const int8_t *l1ref1 = &h->ref_list[1][0].ref_index[1][b8_xy];
1046 const int is_b8x8 = IS_8X8(*mb_type);
1047 unsigned int sub_mb_type;
1050 #define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16|MB_TYPE_INTRA4x4|MB_TYPE_INTRA16x16|MB_TYPE_INTRA_PCM)
1051 if(IS_8X8(mb_type_col) && !h->sps.direct_8x8_inference_flag){
1052 /* FIXME save sub mb types from previous frames (or derive from MVs)
1053 * so we know exactly what block size to use */
1054 sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
1055 *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
1056 }else if(!is_b8x8 && (mb_type_col & MB_TYPE_16x16_OR_INTRA)){
1057 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1058 *mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
1060 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1061 *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
1064 *mb_type |= MB_TYPE_DIRECT2;
1066 *mb_type |= MB_TYPE_INTERLACED;
1068 tprintf(s->avctx, "mb_type = %08x, sub_mb_type = %08x, is_b8x8 = %d, mb_type_col = %08x\n", *mb_type, sub_mb_type, is_b8x8, mb_type_col);
1070 if(h->direct_spatial_mv_pred){
1075 /* FIXME interlacing + spatial direct uses wrong colocated block positions */
1077 /* ref = min(neighbors) */
1078 for(list=0; list<2; list++){
1079 int refa = h->ref_cache[list][scan8[0] - 1];
1080 int refb = h->ref_cache[list][scan8[0] - 8];
1081 int refc = h->ref_cache[list][scan8[0] - 8 + 4];
1083 refc = h->ref_cache[list][scan8[0] - 8 - 1];
1085 if(ref[list] < 0 || (refb < ref[list] && refb >= 0))
1087 if(ref[list] < 0 || (refc < ref[list] && refc >= 0))
1093 if(ref[0] < 0 && ref[1] < 0){
1094 ref[0] = ref[1] = 0;
1095 mv[0][0] = mv[0][1] =
1096 mv[1][0] = mv[1][1] = 0;
1098 for(list=0; list<2; list++){
1100 pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]);
1102 mv[list][0] = mv[list][1] = 0;
1107 *mb_type &= ~MB_TYPE_P0L1;
1108 sub_mb_type &= ~MB_TYPE_P0L1;
1109 }else if(ref[0] < 0){
1110 *mb_type &= ~MB_TYPE_P0L0;
1111 sub_mb_type &= ~MB_TYPE_P0L0;
1114 if(IS_16X16(*mb_type)){
1117 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
1118 fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
1119 if(!IS_INTRA(mb_type_col)
1120 && ( (l1ref0[0] == 0 && FFABS(l1mv0[0][0]) <= 1 && FFABS(l1mv0[0][1]) <= 1)
1121 || (l1ref0[0] < 0 && l1ref1[0] == 0 && FFABS(l1mv1[0][0]) <= 1 && FFABS(l1mv1[0][1]) <= 1
1122 && (h->x264_build>33 || !h->x264_build)))){
1124 a= pack16to32(mv[0][0],mv[0][1]);
1126 b= pack16to32(mv[1][0],mv[1][1]);
1128 a= pack16to32(mv[0][0],mv[0][1]);
1129 b= pack16to32(mv[1][0],mv[1][1]);
1131 fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, a, 4);
1132 fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, b, 4);
1134 for(i8=0; i8<4; i8++){
1135 const int x8 = i8&1;
1136 const int y8 = i8>>1;
1138 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1140 h->sub_mb_type[i8] = sub_mb_type;
1142 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1143 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1144 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
1145 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
1148 if(!IS_INTRA(mb_type_col) && ( l1ref0[x8 + y8*h->b8_stride] == 0
1149 || (l1ref0[x8 + y8*h->b8_stride] < 0 && l1ref1[x8 + y8*h->b8_stride] == 0
1150 && (h->x264_build>33 || !h->x264_build)))){
1151 const int16_t (*l1mv)[2]= l1ref0[x8 + y8*h->b8_stride] == 0 ? l1mv0 : l1mv1;
1152 if(IS_SUB_8X8(sub_mb_type)){
1153 const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
1154 if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
1156 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1158 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1161 for(i4=0; i4<4; i4++){
1162 const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
1163 if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
1165 *(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0;
1167 *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0;
1173 }else{ /* direct temporal mv pred */
1174 const int *map_col_to_list0[2] = {h->map_col_to_list0[0], h->map_col_to_list0[1]};
1175 const int *dist_scale_factor = h->dist_scale_factor;
1178 if(IS_INTERLACED(*mb_type)){
1179 map_col_to_list0[0] = h->map_col_to_list0_field[0];
1180 map_col_to_list0[1] = h->map_col_to_list0_field[1];
1181 dist_scale_factor = h->dist_scale_factor_field;
1183 if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col)){
1184 /* FIXME assumes direct_8x8_inference == 1 */
1185 const int pair_xy = s->mb_x + (s->mb_y&~1)*s->mb_stride;
1186 int mb_types_col[2];
1189 *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1
1190 | (is_b8x8 ? 0 : MB_TYPE_DIRECT2)
1191 | (*mb_type & MB_TYPE_INTERLACED);
1192 sub_mb_type = MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_16x16;
1194 if(IS_INTERLACED(*mb_type)){
1195 /* frame to field scaling */
1196 mb_types_col[0] = h->ref_list[1][0].mb_type[pair_xy];
1197 mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
1199 l1ref0 -= 2*h->b8_stride;
1200 l1ref1 -= 2*h->b8_stride;
1201 l1mv0 -= 4*h->b_stride;
1202 l1mv1 -= 4*h->b_stride;
1206 if( (mb_types_col[0] & MB_TYPE_16x16_OR_INTRA)
1207 && (mb_types_col[1] & MB_TYPE_16x16_OR_INTRA)
1209 *mb_type |= MB_TYPE_16x8;
1211 *mb_type |= MB_TYPE_8x8;
1213 /* field to frame scaling */
1214 /* col_mb_y = (mb_y&~1) + (topAbsDiffPOC < bottomAbsDiffPOC ? 0 : 1)
1215 * but in MBAFF, top and bottom POC are equal */
1216 int dy = (s->mb_y&1) ? 1 : 2;
1218 mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
1219 l1ref0 += dy*h->b8_stride;
1220 l1ref1 += dy*h->b8_stride;
1221 l1mv0 += 2*dy*h->b_stride;
1222 l1mv1 += 2*dy*h->b_stride;
1225 if((mb_types_col[0] & (MB_TYPE_16x16_OR_INTRA|MB_TYPE_16x8))
1227 *mb_type |= MB_TYPE_16x16;
1229 *mb_type |= MB_TYPE_8x8;
1232 for(i8=0; i8<4; i8++){
1233 const int x8 = i8&1;
1234 const int y8 = i8>>1;
1236 const int16_t (*l1mv)[2]= l1mv0;
1238 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1240 h->sub_mb_type[i8] = sub_mb_type;
1242 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1243 if(IS_INTRA(mb_types_col[y8])){
1244 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
1245 fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1246 fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1250 ref0 = l1ref0[x8 + (y8*2>>y_shift)*h->b8_stride];
1252 ref0 = map_col_to_list0[0][ref0*2>>y_shift];
1254 ref0 = map_col_to_list0[1][l1ref1[x8 + (y8*2>>y_shift)*h->b8_stride]*2>>y_shift];
1257 scale = dist_scale_factor[ref0];
1258 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
1261 const int16_t *mv_col = l1mv[x8*3 + (y8*6>>y_shift)*h->b_stride];
1262 int my_col = (mv_col[1]<<y_shift)/2;
1263 int mx = (scale * mv_col[0] + 128) >> 8;
1264 int my = (scale * my_col + 128) >> 8;
1265 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
1266 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-my_col), 4);
1273 /* one-to-one mv scaling */
1275 if(IS_16X16(*mb_type)){
1278 fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
1279 if(IS_INTRA(mb_type_col)){
1282 const int ref0 = l1ref0[0] >= 0 ? map_col_to_list0[0][l1ref0[0]]
1283 : map_col_to_list0[1][l1ref1[0]];
1284 const int scale = dist_scale_factor[ref0];
1285 const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0];
1287 mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
1288 mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
1290 mv0= pack16to32(mv_l0[0],mv_l0[1]);
1291 mv1= pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
1293 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1);
1294 fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, mv0, 4);
1295 fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, mv1, 4);
1297 for(i8=0; i8<4; i8++){
1298 const int x8 = i8&1;
1299 const int y8 = i8>>1;
1301 const int16_t (*l1mv)[2]= l1mv0;
1303 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1305 h->sub_mb_type[i8] = sub_mb_type;
1306 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1307 if(IS_INTRA(mb_type_col)){
1308 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
1309 fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1310 fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1314 ref0 = l1ref0[x8 + y8*h->b8_stride];
1316 ref0 = map_col_to_list0[0][ref0];
1318 ref0 = map_col_to_list0[1][l1ref1[x8 + y8*h->b8_stride]];
1321 scale = dist_scale_factor[ref0];
1323 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
1324 if(IS_SUB_8X8(sub_mb_type)){
1325 const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
1326 int mx = (scale * mv_col[0] + 128) >> 8;
1327 int my = (scale * mv_col[1] + 128) >> 8;
1328 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
1329 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-mv_col[1]), 4);
1331 for(i4=0; i4<4; i4++){
1332 const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
1333 int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
1334 mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
1335 mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
1336 *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] =
1337 pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
1344 static inline void write_back_motion(H264Context *h, int mb_type){
1345 MpegEncContext * const s = &h->s;
1346 const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1347 const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1350 if(!USES_LIST(mb_type, 0))
1351 fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
1353 for(list=0; list<h->list_count; list++){
1355 if(!USES_LIST(mb_type, list))
1359 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
1360 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
1362 if( h->pps.cabac ) {
1363 if(IS_SKIP(mb_type))
1364 fill_rectangle(h->mvd_table[list][b_xy], 4, 4, h->b_stride, 0, 4);
1367 *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
1368 *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
1373 int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
1374 ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
1375 ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
1376 ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
1377 ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
1381 if(h->slice_type == B_TYPE && h->pps.cabac){
1382 if(IS_8X8(mb_type)){
1383 uint8_t *direct_table = &h->direct_table[b8_xy];
1384 direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
1385 direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
1386 direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
1392 * Decodes a network abstraction layer unit.
1393 * @param consumed is the number of bytes used as input
1394 * @param length is the length of the array
1395 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
1396 * @returns decoded bytes, might be src+1 if no escapes
1398 static uint8_t *decode_nal(H264Context *h, uint8_t *src, int *dst_length, int *consumed, int length){
1403 // src[0]&0x80; //forbidden bit
1404 h->nal_ref_idc= src[0]>>5;
1405 h->nal_unit_type= src[0]&0x1F;
1409 for(i=0; i<length; i++)
1410 printf("%2X ", src[i]);
1412 for(i=0; i+1<length; i+=2){
1413 if(src[i]) continue;
1414 if(i>0 && src[i-1]==0) i--;
1415 if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1417 /* startcode, so we must be past the end */
1424 if(i>=length-1){ //no escaped 0
1425 *dst_length= length;
1426 *consumed= length+1; //+1 for the header
1430 bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; // use second escape buffer for inter data
1431 h->rbsp_buffer[bufidx]= av_fast_realloc(h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length);
1432 dst= h->rbsp_buffer[bufidx];
1438 //printf("decoding esc\n");
1441 //remove escapes (very rare 1:2^22)
1442 if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
1443 if(src[si+2]==3){ //escape
1448 }else //next start code
1452 dst[di++]= src[si++];
1456 *consumed= si + 1;//+1 for the header
1457 //FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
1462 * identifies the exact end of the bitstream
1463 * @return the length of the trailing, or 0 if damaged
1465 static int decode_rbsp_trailing(H264Context *h, uint8_t *src){
1469 tprintf(h->s.avctx, "rbsp trailing %X\n", v);
1479 * idct tranforms the 16 dc values and dequantize them.
1480 * @param qp quantization parameter
1482 static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
1485 int temp[16]; //FIXME check if this is a good idea
1486 static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
1487 static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1489 //memset(block, 64, 2*256);
1492 const int offset= y_offset[i];
1493 const int z0= block[offset+stride*0] + block[offset+stride*4];
1494 const int z1= block[offset+stride*0] - block[offset+stride*4];
1495 const int z2= block[offset+stride*1] - block[offset+stride*5];
1496 const int z3= block[offset+stride*1] + block[offset+stride*5];
1505 const int offset= x_offset[i];
1506 const int z0= temp[4*0+i] + temp[4*2+i];
1507 const int z1= temp[4*0+i] - temp[4*2+i];
1508 const int z2= temp[4*1+i] - temp[4*3+i];
1509 const int z3= temp[4*1+i] + temp[4*3+i];
1511 block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_resdual
1512 block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8));
1513 block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8));
1514 block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8));
1520 * dct tranforms the 16 dc values.
1521 * @param qp quantization parameter ??? FIXME
1523 static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
1524 // const int qmul= dequant_coeff[qp][0];
1526 int temp[16]; //FIXME check if this is a good idea
1527 static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
1528 static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1531 const int offset= y_offset[i];
1532 const int z0= block[offset+stride*0] + block[offset+stride*4];
1533 const int z1= block[offset+stride*0] - block[offset+stride*4];
1534 const int z2= block[offset+stride*1] - block[offset+stride*5];
1535 const int z3= block[offset+stride*1] + block[offset+stride*5];
1544 const int offset= x_offset[i];
1545 const int z0= temp[4*0+i] + temp[4*2+i];
1546 const int z1= temp[4*0+i] - temp[4*2+i];
1547 const int z2= temp[4*1+i] - temp[4*3+i];
1548 const int z3= temp[4*1+i] + temp[4*3+i];
1550 block[stride*0 +offset]= (z0 + z3)>>1;
1551 block[stride*2 +offset]= (z1 + z2)>>1;
1552 block[stride*8 +offset]= (z1 - z2)>>1;
1553 block[stride*10+offset]= (z0 - z3)>>1;
1561 static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
1562 const int stride= 16*2;
1563 const int xStride= 16;
1566 a= block[stride*0 + xStride*0];
1567 b= block[stride*0 + xStride*1];
1568 c= block[stride*1 + xStride*0];
1569 d= block[stride*1 + xStride*1];
1576 block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7;
1577 block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7;
1578 block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7;
1579 block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7;
1583 static void chroma_dc_dct_c(DCTELEM *block){
1584 const int stride= 16*2;
1585 const int xStride= 16;
1588 a= block[stride*0 + xStride*0];
1589 b= block[stride*0 + xStride*1];
1590 c= block[stride*1 + xStride*0];
1591 d= block[stride*1 + xStride*1];
1598 block[stride*0 + xStride*0]= (a+c);
1599 block[stride*0 + xStride*1]= (e+b);
1600 block[stride*1 + xStride*0]= (a-c);
1601 block[stride*1 + xStride*1]= (e-b);
1606 * gets the chroma qp.
1608 static inline int get_chroma_qp(H264Context *h, int t, int qscale){
1609 return h->pps.chroma_qp_table[t][qscale & 0xff];
1612 //FIXME need to check that this does not overflow signed 32 bit for low qp, i am not sure, it's very close
1613 //FIXME check that gcc inlines this (and optimizes intra & separate_dc stuff away)
1614 static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int separate_dc){
1616 const int * const quant_table= quant_coeff[qscale];
1617 const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
1618 const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
1619 const unsigned int threshold2= (threshold1<<1);
1625 const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
1626 const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
1627 const unsigned int dc_threshold2= (dc_threshold1<<1);
1629 int level= block[0]*quant_coeff[qscale+18][0];
1630 if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1632 level= (dc_bias + level)>>(QUANT_SHIFT-2);
1635 level= (dc_bias - level)>>(QUANT_SHIFT-2);
1638 // last_non_zero = i;
1643 const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
1644 const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
1645 const unsigned int dc_threshold2= (dc_threshold1<<1);
1647 int level= block[0]*quant_table[0];
1648 if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1650 level= (dc_bias + level)>>(QUANT_SHIFT+1);
1653 level= (dc_bias - level)>>(QUANT_SHIFT+1);
1656 // last_non_zero = i;
1669 const int j= scantable[i];
1670 int level= block[j]*quant_table[j];
1672 // if( bias+level >= (1<<(QMAT_SHIFT - 3))
1673 // || bias-level >= (1<<(QMAT_SHIFT - 3))){
1674 if(((unsigned)(level+threshold1))>threshold2){
1676 level= (bias + level)>>QUANT_SHIFT;
1679 level= (bias - level)>>QUANT_SHIFT;
1688 return last_non_zero;
1691 static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
1692 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1693 int src_x_offset, int src_y_offset,
1694 qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
1695 MpegEncContext * const s = &h->s;
1696 const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
1697 int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
1698 const int luma_xy= (mx&3) + ((my&3)<<2);
1699 uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->mb_linesize;
1700 uint8_t * src_cb, * src_cr;
1701 int extra_width= h->emu_edge_width;
1702 int extra_height= h->emu_edge_height;
1704 const int full_mx= mx>>2;
1705 const int full_my= my>>2;
1706 const int pic_width = 16*s->mb_width;
1707 const int pic_height = 16*s->mb_height >> MB_FIELD;
1709 if(!pic->data[0]) //FIXME this is unacceptable, some senseable error concealment must be done for missing reference frames
1712 if(mx&7) extra_width -= 3;
1713 if(my&7) extra_height -= 3;
1715 if( full_mx < 0-extra_width
1716 || full_my < 0-extra_height
1717 || full_mx + 16/*FIXME*/ > pic_width + extra_width
1718 || full_my + 16/*FIXME*/ > pic_height + extra_height){
1719 ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->mb_linesize, h->mb_linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
1720 src_y= s->edge_emu_buffer + 2 + 2*h->mb_linesize;
1724 qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps?
1726 qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize);
1729 if(ENABLE_GRAY && s->flags&CODEC_FLAG_GRAY) return;
1732 // chroma offset when predicting from a field of opposite parity
1733 my += 2 * ((s->mb_y & 1) - (pic->reference - 1));
1734 emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1);
1736 src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
1737 src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
1740 ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
1741 src_cb= s->edge_emu_buffer;
1743 chroma_op(dest_cb, src_cb, h->mb_uvlinesize, chroma_height, mx&7, my&7);
1746 ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
1747 src_cr= s->edge_emu_buffer;
1749 chroma_op(dest_cr, src_cr, h->mb_uvlinesize, chroma_height, mx&7, my&7);
1752 static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
1753 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1754 int x_offset, int y_offset,
1755 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
1756 qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
1757 int list0, int list1){
1758 MpegEncContext * const s = &h->s;
1759 qpel_mc_func *qpix_op= qpix_put;
1760 h264_chroma_mc_func chroma_op= chroma_put;
1762 dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
1763 dest_cb += x_offset + y_offset*h->mb_uvlinesize;
1764 dest_cr += x_offset + y_offset*h->mb_uvlinesize;
1765 x_offset += 8*s->mb_x;
1766 y_offset += 8*(s->mb_y >> MB_FIELD);
1769 Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
1770 mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
1771 dest_y, dest_cb, dest_cr, x_offset, y_offset,
1772 qpix_op, chroma_op);
1775 chroma_op= chroma_avg;
1779 Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
1780 mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
1781 dest_y, dest_cb, dest_cr, x_offset, y_offset,
1782 qpix_op, chroma_op);
1786 static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
1787 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1788 int x_offset, int y_offset,
1789 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
1790 h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
1791 h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
1792 int list0, int list1){
1793 MpegEncContext * const s = &h->s;
1795 dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
1796 dest_cb += x_offset + y_offset*h->mb_uvlinesize;
1797 dest_cr += x_offset + y_offset*h->mb_uvlinesize;
1798 x_offset += 8*s->mb_x;
1799 y_offset += 8*(s->mb_y >> MB_FIELD);
1802 /* don't optimize for luma-only case, since B-frames usually
1803 * use implicit weights => chroma too. */
1804 uint8_t *tmp_cb = s->obmc_scratchpad;
1805 uint8_t *tmp_cr = s->obmc_scratchpad + 8;
1806 uint8_t *tmp_y = s->obmc_scratchpad + 8*h->mb_uvlinesize;
1807 int refn0 = h->ref_cache[0][ scan8[n] ];
1808 int refn1 = h->ref_cache[1][ scan8[n] ];
1810 mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
1811 dest_y, dest_cb, dest_cr,
1812 x_offset, y_offset, qpix_put, chroma_put);
1813 mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
1814 tmp_y, tmp_cb, tmp_cr,
1815 x_offset, y_offset, qpix_put, chroma_put);
1817 if(h->use_weight == 2){
1818 int weight0 = h->implicit_weight[refn0][refn1];
1819 int weight1 = 64 - weight0;
1820 luma_weight_avg( dest_y, tmp_y, h-> mb_linesize, 5, weight0, weight1, 0);
1821 chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, 5, weight0, weight1, 0);
1822 chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, 5, weight0, weight1, 0);
1824 luma_weight_avg(dest_y, tmp_y, h->mb_linesize, h->luma_log2_weight_denom,
1825 h->luma_weight[0][refn0], h->luma_weight[1][refn1],
1826 h->luma_offset[0][refn0] + h->luma_offset[1][refn1]);
1827 chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
1828 h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0],
1829 h->chroma_offset[0][refn0][0] + h->chroma_offset[1][refn1][0]);
1830 chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
1831 h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1],
1832 h->chroma_offset[0][refn0][1] + h->chroma_offset[1][refn1][1]);
1835 int list = list1 ? 1 : 0;
1836 int refn = h->ref_cache[list][ scan8[n] ];
1837 Picture *ref= &h->ref_list[list][refn];
1838 mc_dir_part(h, ref, n, square, chroma_height, delta, list,
1839 dest_y, dest_cb, dest_cr, x_offset, y_offset,
1840 qpix_put, chroma_put);
1842 luma_weight_op(dest_y, h->mb_linesize, h->luma_log2_weight_denom,
1843 h->luma_weight[list][refn], h->luma_offset[list][refn]);
1844 if(h->use_weight_chroma){
1845 chroma_weight_op(dest_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
1846 h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]);
1847 chroma_weight_op(dest_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
1848 h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]);
1853 static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
1854 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1855 int x_offset, int y_offset,
1856 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
1857 qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
1858 h264_weight_func *weight_op, h264_biweight_func *weight_avg,
1859 int list0, int list1){
1860 if((h->use_weight==2 && list0 && list1
1861 && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32))
1862 || h->use_weight==1)
1863 mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
1864 x_offset, y_offset, qpix_put, chroma_put,
1865 weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
1867 mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
1868 x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
1871 static inline void prefetch_motion(H264Context *h, int list){
1872 /* fetch pixels for estimated mv 4 macroblocks ahead
1873 * optimized for 64byte cache lines */
1874 MpegEncContext * const s = &h->s;
1875 const int refn = h->ref_cache[list][scan8[0]];
1877 const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8;
1878 const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y;
1879 uint8_t **src= h->ref_list[list][refn].data;
1880 int off= mx + (my + (s->mb_x&3)*4)*h->mb_linesize + 64;
1881 s->dsp.prefetch(src[0]+off, s->linesize, 4);
1882 off= (mx>>1) + ((my>>1) + (s->mb_x&7))*s->uvlinesize + 64;
1883 s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
1887 static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1888 qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
1889 qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
1890 h264_weight_func *weight_op, h264_biweight_func *weight_avg){
1891 MpegEncContext * const s = &h->s;
1892 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
1893 const int mb_type= s->current_picture.mb_type[mb_xy];
1895 assert(IS_INTER(mb_type));
1897 prefetch_motion(h, 0);
1899 if(IS_16X16(mb_type)){
1900 mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
1901 qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
1902 &weight_op[0], &weight_avg[0],
1903 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1904 }else if(IS_16X8(mb_type)){
1905 mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
1906 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
1907 &weight_op[1], &weight_avg[1],
1908 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1909 mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
1910 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
1911 &weight_op[1], &weight_avg[1],
1912 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
1913 }else if(IS_8X16(mb_type)){
1914 mc_part(h, 0, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0,
1915 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1916 &weight_op[2], &weight_avg[2],
1917 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1918 mc_part(h, 4, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0,
1919 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1920 &weight_op[2], &weight_avg[2],
1921 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
1925 assert(IS_8X8(mb_type));
1928 const int sub_mb_type= h->sub_mb_type[i];
1930 int x_offset= (i&1)<<2;
1931 int y_offset= (i&2)<<1;
1933 if(IS_SUB_8X8(sub_mb_type)){
1934 mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
1935 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1936 &weight_op[3], &weight_avg[3],
1937 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1938 }else if(IS_SUB_8X4(sub_mb_type)){
1939 mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
1940 qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
1941 &weight_op[4], &weight_avg[4],
1942 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1943 mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
1944 qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
1945 &weight_op[4], &weight_avg[4],
1946 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1947 }else if(IS_SUB_4X8(sub_mb_type)){
1948 mc_part(h, n , 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
1949 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
1950 &weight_op[5], &weight_avg[5],
1951 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1952 mc_part(h, n+1, 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
1953 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
1954 &weight_op[5], &weight_avg[5],
1955 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1958 assert(IS_SUB_4X4(sub_mb_type));
1960 int sub_x_offset= x_offset + 2*(j&1);
1961 int sub_y_offset= y_offset + (j&2);
1962 mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
1963 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
1964 &weight_op[6], &weight_avg[6],
1965 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1971 prefetch_motion(h, 1);
1974 static void decode_init_vlc(void){
1975 static int done = 0;
1981 init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
1982 &chroma_dc_coeff_token_len [0], 1, 1,
1983 &chroma_dc_coeff_token_bits[0], 1, 1, 1);
1986 init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
1987 &coeff_token_len [i][0], 1, 1,
1988 &coeff_token_bits[i][0], 1, 1, 1);
1992 init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
1993 &chroma_dc_total_zeros_len [i][0], 1, 1,
1994 &chroma_dc_total_zeros_bits[i][0], 1, 1, 1);
1996 for(i=0; i<15; i++){
1997 init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16,
1998 &total_zeros_len [i][0], 1, 1,
1999 &total_zeros_bits[i][0], 1, 1, 1);
2003 init_vlc(&run_vlc[i], RUN_VLC_BITS, 7,
2004 &run_len [i][0], 1, 1,
2005 &run_bits[i][0], 1, 1, 1);
2007 init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
2008 &run_len [6][0], 1, 1,
2009 &run_bits[6][0], 1, 1, 1);
2013 static void free_tables(H264Context *h){
2016 av_freep(&h->intra4x4_pred_mode);
2017 av_freep(&h->chroma_pred_mode_table);
2018 av_freep(&h->cbp_table);
2019 av_freep(&h->mvd_table[0]);
2020 av_freep(&h->mvd_table[1]);
2021 av_freep(&h->direct_table);
2022 av_freep(&h->non_zero_count);
2023 av_freep(&h->slice_table_base);
2024 h->slice_table= NULL;
2026 av_freep(&h->mb2b_xy);
2027 av_freep(&h->mb2b8_xy);
2029 for(i = 0; i < MAX_SPS_COUNT; i++)
2030 av_freep(h->sps_buffers + i);
2032 for(i = 0; i < MAX_PPS_COUNT; i++)
2033 av_freep(h->pps_buffers + i);
2035 for(i = 0; i < h->s.avctx->thread_count; i++) {
2036 hx = h->thread_context[i];
2038 av_freep(&hx->top_borders[1]);
2039 av_freep(&hx->top_borders[0]);
2040 av_freep(&hx->s.obmc_scratchpad);
2041 av_freep(&hx->s.allocated_edge_emu_buffer);
2045 static void init_dequant8_coeff_table(H264Context *h){
2047 const int transpose = (h->s.dsp.h264_idct8_add != ff_h264_idct8_add_c); //FIXME ugly
2048 h->dequant8_coeff[0] = h->dequant8_buffer[0];
2049 h->dequant8_coeff[1] = h->dequant8_buffer[1];
2051 for(i=0; i<2; i++ ){
2052 if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){
2053 h->dequant8_coeff[1] = h->dequant8_buffer[0];
2057 for(q=0; q<52; q++){
2058 int shift = ff_div6[q];
2059 int idx = ff_rem6[q];
2061 h->dequant8_coeff[i][q][transpose ? (x>>3)|((x&7)<<3) : x] =
2062 ((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] *
2063 h->pps.scaling_matrix8[i][x]) << shift;
2068 static void init_dequant4_coeff_table(H264Context *h){
2070 const int transpose = (h->s.dsp.h264_idct_add != ff_h264_idct_add_c); //FIXME ugly
2071 for(i=0; i<6; i++ ){
2072 h->dequant4_coeff[i] = h->dequant4_buffer[i];
2074 if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
2075 h->dequant4_coeff[i] = h->dequant4_buffer[j];
2082 for(q=0; q<52; q++){
2083 int shift = ff_div6[q] + 2;
2084 int idx = ff_rem6[q];
2086 h->dequant4_coeff[i][q][transpose ? (x>>2)|((x<<2)&0xF) : x] =
2087 ((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
2088 h->pps.scaling_matrix4[i][x]) << shift;
2093 static void init_dequant_tables(H264Context *h){
2095 init_dequant4_coeff_table(h);
2096 if(h->pps.transform_8x8_mode)
2097 init_dequant8_coeff_table(h);
2098 if(h->sps.transform_bypass){
2101 h->dequant4_coeff[i][0][x] = 1<<6;
2102 if(h->pps.transform_8x8_mode)
2105 h->dequant8_coeff[i][0][x] = 1<<6;
2112 * needs width/height
2114 static int alloc_tables(H264Context *h){
2115 MpegEncContext * const s = &h->s;
2116 const int big_mb_num= s->mb_stride * (s->mb_height+1);
2119 CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t))
2121 CHECKED_ALLOCZ(h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t))
2122 CHECKED_ALLOCZ(h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(uint8_t))
2123 CHECKED_ALLOCZ(h->cbp_table, big_mb_num * sizeof(uint16_t))
2125 if( h->pps.cabac ) {
2126 CHECKED_ALLOCZ(h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t))
2127 CHECKED_ALLOCZ(h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t));
2128 CHECKED_ALLOCZ(h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t));
2129 CHECKED_ALLOCZ(h->direct_table, 32*big_mb_num * sizeof(uint8_t));
2132 memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(uint8_t));
2133 h->slice_table= h->slice_table_base + s->mb_stride*2 + 1;
2135 CHECKED_ALLOCZ(h->mb2b_xy , big_mb_num * sizeof(uint32_t));
2136 CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint32_t));
2137 for(y=0; y<s->mb_height; y++){
2138 for(x=0; x<s->mb_width; x++){
2139 const int mb_xy= x + y*s->mb_stride;
2140 const int b_xy = 4*x + 4*y*h->b_stride;
2141 const int b8_xy= 2*x + 2*y*h->b8_stride;
2143 h->mb2b_xy [mb_xy]= b_xy;
2144 h->mb2b8_xy[mb_xy]= b8_xy;
2148 s->obmc_scratchpad = NULL;
2150 if(!h->dequant4_coeff[0])
2151 init_dequant_tables(h);
2160 * Mimic alloc_tables(), but for every context thread.
2162 static void clone_tables(H264Context *dst, H264Context *src){
2163 dst->intra4x4_pred_mode = src->intra4x4_pred_mode;
2164 dst->non_zero_count = src->non_zero_count;
2165 dst->slice_table = src->slice_table;
2166 dst->cbp_table = src->cbp_table;
2167 dst->mb2b_xy = src->mb2b_xy;
2168 dst->mb2b8_xy = src->mb2b8_xy;
2169 dst->chroma_pred_mode_table = src->chroma_pred_mode_table;
2170 dst->mvd_table[0] = src->mvd_table[0];
2171 dst->mvd_table[1] = src->mvd_table[1];
2172 dst->direct_table = src->direct_table;
2174 dst->s.obmc_scratchpad = NULL;
2175 ff_h264_pred_init(&dst->hpc, src->s.codec_id);
2180 * Allocate buffers which are not shared amongst multiple threads.
2182 static int context_init(H264Context *h){
2183 MpegEncContext * const s = &h->s;
2185 CHECKED_ALLOCZ(h->top_borders[0], h->s.mb_width * (16+8+8) * sizeof(uint8_t))
2186 CHECKED_ALLOCZ(h->top_borders[1], h->s.mb_width * (16+8+8) * sizeof(uint8_t))
2188 // edge emu needs blocksize + filter length - 1 (=17x17 for halfpel / 21x21 for h264)
2189 CHECKED_ALLOCZ(s->allocated_edge_emu_buffer,
2190 (s->width+64)*2*21*2); //(width + edge + align)*interlaced*MBsize*tolerance
2191 s->edge_emu_buffer= s->allocated_edge_emu_buffer + (s->width+64)*2*21;
2194 return -1; // free_tables will clean up for us
2197 static void common_init(H264Context *h){
2198 MpegEncContext * const s = &h->s;
2200 s->width = s->avctx->width;
2201 s->height = s->avctx->height;
2202 s->codec_id= s->avctx->codec->id;
2204 ff_h264_pred_init(&h->hpc, s->codec_id);
2206 h->dequant_coeff_pps= -1;
2207 s->unrestricted_mv=1;
2208 s->decode=1; //FIXME
2210 memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
2211 memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
2214 static int decode_init(AVCodecContext *avctx){
2215 H264Context *h= avctx->priv_data;
2216 MpegEncContext * const s = &h->s;
2218 MPV_decode_defaults(s);
2223 s->out_format = FMT_H264;
2224 s->workaround_bugs= avctx->workaround_bugs;
2227 // s->decode_mb= ff_h263_decode_mb;
2228 s->quarter_sample = 1;
2230 avctx->pix_fmt= PIX_FMT_YUV420P;
2234 if(avctx->extradata_size > 0 && avctx->extradata &&
2235 *(char *)avctx->extradata == 1){
2242 h->thread_context[0] = h;
2246 static int frame_start(H264Context *h){
2247 MpegEncContext * const s = &h->s;
2250 if(MPV_frame_start(s, s->avctx) < 0)
2252 ff_er_frame_start(s);
2254 * MPV_frame_start uses pict_type to derive key_frame.
2255 * This is incorrect for H.264; IDR markings must be used.
2256 * Zero here; IDR markings per slice in frame or fields are OR'd in later.
2257 * See decode_nal_units().
2259 s->current_picture_ptr->key_frame= 0;
2261 assert(s->linesize && s->uvlinesize);
2263 for(i=0; i<16; i++){
2264 h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
2265 h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
2268 h->block_offset[16+i]=
2269 h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2270 h->block_offset[24+16+i]=
2271 h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2274 /* can't be in alloc_tables because linesize isn't known there.
2275 * FIXME: redo bipred weight to not require extra buffer? */
2276 for(i = 0; i < s->avctx->thread_count; i++)
2277 if(!h->thread_context[i]->s.obmc_scratchpad)
2278 h->thread_context[i]->s.obmc_scratchpad = av_malloc(16*2*s->linesize + 8*2*s->uvlinesize);
2280 /* some macroblocks will be accessed before they're available */
2281 if(FRAME_MBAFF || s->avctx->thread_count > 1)
2282 memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(uint8_t));
2284 // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
2288 static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple){
2289 MpegEncContext * const s = &h->s;
2293 src_cb -= uvlinesize;
2294 src_cr -= uvlinesize;
2296 // There are two lines saved, the line above the the top macroblock of a pair,
2297 // and the line above the bottom macroblock
2298 h->left_border[0]= h->top_borders[0][s->mb_x][15];
2299 for(i=1; i<17; i++){
2300 h->left_border[i]= src_y[15+i* linesize];
2303 *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 16*linesize);
2304 *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
2306 if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2307 h->left_border[17 ]= h->top_borders[0][s->mb_x][16+7];
2308 h->left_border[17+9]= h->top_borders[0][s->mb_x][24+7];
2310 h->left_border[i+17 ]= src_cb[7+i*uvlinesize];
2311 h->left_border[i+17+9]= src_cr[7+i*uvlinesize];
2313 *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
2314 *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
2318 static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg, int simple){
2319 MpegEncContext * const s = &h->s;
2326 if(h->deblocking_filter == 2) {
2327 mb_xy = s->mb_x + s->mb_y*s->mb_stride;
2328 deblock_left = h->slice_table[mb_xy] == h->slice_table[mb_xy - 1];
2329 deblock_top = h->slice_table[mb_xy] == h->slice_table[h->top_mb_xy];
2331 deblock_left = (s->mb_x > 0);
2332 deblock_top = (s->mb_y > 0);
2335 src_y -= linesize + 1;
2336 src_cb -= uvlinesize + 1;
2337 src_cr -= uvlinesize + 1;
2339 #define XCHG(a,b,t,xchg)\
2346 for(i = !deblock_top; i<17; i++){
2347 XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
2352 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
2353 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
2354 if(s->mb_x+1 < s->mb_width){
2355 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
2359 if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2361 for(i = !deblock_top; i<9; i++){
2362 XCHG(h->left_border[i+17 ], src_cb[i*uvlinesize], temp8, xchg);
2363 XCHG(h->left_border[i+17+9], src_cr[i*uvlinesize], temp8, xchg);
2367 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
2368 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
2373 static inline void backup_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
2374 MpegEncContext * const s = &h->s;
2377 src_y -= 2 * linesize;
2378 src_cb -= 2 * uvlinesize;
2379 src_cr -= 2 * uvlinesize;
2381 // There are two lines saved, the line above the the top macroblock of a pair,
2382 // and the line above the bottom macroblock
2383 h->left_border[0]= h->top_borders[0][s->mb_x][15];
2384 h->left_border[1]= h->top_borders[1][s->mb_x][15];
2385 for(i=2; i<34; i++){
2386 h->left_border[i]= src_y[15+i* linesize];
2389 *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 32*linesize);
2390 *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+32*linesize);
2391 *(uint64_t*)(h->top_borders[1][s->mb_x]+0)= *(uint64_t*)(src_y + 33*linesize);
2392 *(uint64_t*)(h->top_borders[1][s->mb_x]+8)= *(uint64_t*)(src_y +8+33*linesize);
2394 if(!ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2395 h->left_border[34 ]= h->top_borders[0][s->mb_x][16+7];
2396 h->left_border[34+ 1]= h->top_borders[1][s->mb_x][16+7];
2397 h->left_border[34+18 ]= h->top_borders[0][s->mb_x][24+7];
2398 h->left_border[34+18+1]= h->top_borders[1][s->mb_x][24+7];
2399 for(i=2; i<18; i++){
2400 h->left_border[i+34 ]= src_cb[7+i*uvlinesize];
2401 h->left_border[i+34+18]= src_cr[7+i*uvlinesize];
2403 *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+16*uvlinesize);
2404 *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+16*uvlinesize);
2405 *(uint64_t*)(h->top_borders[1][s->mb_x]+16)= *(uint64_t*)(src_cb+17*uvlinesize);
2406 *(uint64_t*)(h->top_borders[1][s->mb_x]+24)= *(uint64_t*)(src_cr+17*uvlinesize);
2410 static inline void xchg_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
2411 MpegEncContext * const s = &h->s;
2414 int deblock_left = (s->mb_x > 0);
2415 int deblock_top = (s->mb_y > 1);
2417 tprintf(s->avctx, "xchg_pair_border: src_y:%p src_cb:%p src_cr:%p ls:%d uvls:%d\n", src_y, src_cb, src_cr, linesize, uvlinesize);
2419 src_y -= 2 * linesize + 1;
2420 src_cb -= 2 * uvlinesize + 1;
2421 src_cr -= 2 * uvlinesize + 1;
2423 #define XCHG(a,b,t,xchg)\
2430 for(i = (!deblock_top)<<1; i<34; i++){
2431 XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
2436 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
2437 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
2438 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+0), *(uint64_t*)(src_y +1 +linesize), temp64, xchg);
2439 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+8), *(uint64_t*)(src_y +9 +linesize), temp64, 1);
2440 if(s->mb_x+1 < s->mb_width){
2441 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
2442 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x+1]), *(uint64_t*)(src_y +17 +linesize), temp64, 1);
2446 if(!ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2448 for(i = (!deblock_top) << 1; i<18; i++){
2449 XCHG(h->left_border[i+34 ], src_cb[i*uvlinesize], temp8, xchg);
2450 XCHG(h->left_border[i+34+18], src_cr[i*uvlinesize], temp8, xchg);
2454 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
2455 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
2456 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+16), *(uint64_t*)(src_cb+1 +uvlinesize), temp64, 1);
2457 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+24), *(uint64_t*)(src_cr+1 +uvlinesize), temp64, 1);
2462 static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple){
2463 MpegEncContext * const s = &h->s;
2464 const int mb_x= s->mb_x;
2465 const int mb_y= s->mb_y;
2466 const int mb_xy= mb_x + mb_y*s->mb_stride;
2467 const int mb_type= s->current_picture.mb_type[mb_xy];
2468 uint8_t *dest_y, *dest_cb, *dest_cr;
2469 int linesize, uvlinesize /*dct_offset*/;
2471 int *block_offset = &h->block_offset[0];
2472 const unsigned int bottom = mb_y & 1;
2473 const int transform_bypass = (s->qscale == 0 && h->sps.transform_bypass), is_h264 = (simple || s->codec_id == CODEC_ID_H264);
2474 void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
2475 void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
2477 dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
2478 dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2479 dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2481 s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + 64, s->linesize, 4);
2482 s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + 64, dest_cr - dest_cb, 2);
2484 if (!simple && MB_FIELD) {
2485 linesize = h->mb_linesize = s->linesize * 2;
2486 uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
2487 block_offset = &h->block_offset[24];
2488 if(mb_y&1){ //FIXME move out of this func?
2489 dest_y -= s->linesize*15;
2490 dest_cb-= s->uvlinesize*7;
2491 dest_cr-= s->uvlinesize*7;
2495 for(list=0; list<h->list_count; list++){
2496 if(!USES_LIST(mb_type, list))
2498 if(IS_16X16(mb_type)){
2499 int8_t *ref = &h->ref_cache[list][scan8[0]];
2500 fill_rectangle(ref, 4, 4, 8, 16+*ref^(s->mb_y&1), 1);
2502 for(i=0; i<16; i+=4){
2503 //FIXME can refs be smaller than 8x8 when !direct_8x8_inference ?
2504 int ref = h->ref_cache[list][scan8[i]];
2506 fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, 16+ref^(s->mb_y&1), 1);
2512 linesize = h->mb_linesize = s->linesize;
2513 uvlinesize = h->mb_uvlinesize = s->uvlinesize;
2514 // dct_offset = s->linesize * 16;
2517 if(transform_bypass){
2519 idct_add = IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4;
2520 }else if(IS_8x8DCT(mb_type)){
2521 idct_dc_add = s->dsp.h264_idct8_dc_add;
2522 idct_add = s->dsp.h264_idct8_add;
2524 idct_dc_add = s->dsp.h264_idct_dc_add;
2525 idct_add = s->dsp.h264_idct_add;
2528 if(!simple && FRAME_MBAFF && h->deblocking_filter && IS_INTRA(mb_type)
2529 && (!bottom || !IS_INTRA(s->current_picture.mb_type[mb_xy-s->mb_stride]))){
2530 int mbt_y = mb_y&~1;
2531 uint8_t *top_y = s->current_picture.data[0] + (mbt_y * 16* s->linesize ) + mb_x * 16;
2532 uint8_t *top_cb = s->current_picture.data[1] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8;
2533 uint8_t *top_cr = s->current_picture.data[2] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8;
2534 xchg_pair_border(h, top_y, top_cb, top_cr, s->linesize, s->uvlinesize, 1);
2537 if (!simple && IS_INTRA_PCM(mb_type)) {
2540 // The pixels are stored in h->mb array in the same order as levels,
2541 // copy them in output in the correct order.
2542 for(i=0; i<16; i++) {
2543 for (y=0; y<4; y++) {
2544 for (x=0; x<4; x++) {
2545 *(dest_y + block_offset[i] + y*linesize + x) = h->mb[i*16+y*4+x];
2549 for(i=16; i<16+4; i++) {
2550 for (y=0; y<4; y++) {
2551 for (x=0; x<4; x++) {
2552 *(dest_cb + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
2556 for(i=20; i<20+4; i++) {
2557 for (y=0; y<4; y++) {
2558 for (x=0; x<4; x++) {
2559 *(dest_cr + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
2564 if(IS_INTRA(mb_type)){
2565 if(h->deblocking_filter && (simple || !FRAME_MBAFF))
2566 xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1, simple);
2568 if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2569 h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
2570 h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
2573 if(IS_INTRA4x4(mb_type)){
2574 if(simple || !s->encoding){
2575 if(IS_8x8DCT(mb_type)){
2576 for(i=0; i<16; i+=4){
2577 uint8_t * const ptr= dest_y + block_offset[i];
2578 const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
2579 const int nnz = h->non_zero_count_cache[ scan8[i] ];
2580 h->hpc.pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
2581 (h->topright_samples_available<<i)&0x4000, linesize);
2583 if(nnz == 1 && h->mb[i*16])
2584 idct_dc_add(ptr, h->mb + i*16, linesize);
2586 idct_add(ptr, h->mb + i*16, linesize);
2590 for(i=0; i<16; i++){
2591 uint8_t * const ptr= dest_y + block_offset[i];
2593 const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
2596 if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
2597 const int topright_avail= (h->topright_samples_available<<i)&0x8000;
2598 assert(mb_y || linesize <= block_offset[i]);
2599 if(!topright_avail){
2600 tr= ptr[3 - linesize]*0x01010101;
2601 topright= (uint8_t*) &tr;
2603 topright= ptr + 4 - linesize;
2607 h->hpc.pred4x4[ dir ](ptr, topright, linesize);
2608 nnz = h->non_zero_count_cache[ scan8[i] ];
2611 if(nnz == 1 && h->mb[i*16])
2612 idct_dc_add(ptr, h->mb + i*16, linesize);
2614 idct_add(ptr, h->mb + i*16, linesize);
2616 svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
2621 h->hpc.pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
2623 if(!transform_bypass)
2624 h264_luma_dc_dequant_idct_c(h->mb, s->qscale, h->dequant4_coeff[0][s->qscale][0]);
2626 svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
2628 if(h->deblocking_filter && (simple || !FRAME_MBAFF))
2629 xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0, simple);
2631 hl_motion(h, dest_y, dest_cb, dest_cr,
2632 s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
2633 s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
2634 s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab);
2638 if(!IS_INTRA4x4(mb_type)){
2640 if(IS_INTRA16x16(mb_type)){
2641 for(i=0; i<16; i++){
2642 if(h->non_zero_count_cache[ scan8[i] ])
2643 idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
2644 else if(h->mb[i*16])
2645 idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
2648 const int di = IS_8x8DCT(mb_type) ? 4 : 1;
2649 for(i=0; i<16; i+=di){
2650 int nnz = h->non_zero_count_cache[ scan8[i] ];
2652 if(nnz==1 && h->mb[i*16])
2653 idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
2655 idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
2660 for(i=0; i<16; i++){
2661 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
2662 uint8_t * const ptr= dest_y + block_offset[i];
2663 svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
2669 if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2670 uint8_t *dest[2] = {dest_cb, dest_cr};
2671 if(transform_bypass){
2672 idct_add = idct_dc_add = s->dsp.add_pixels4;
2674 idct_add = s->dsp.h264_idct_add;
2675 idct_dc_add = s->dsp.h264_idct_dc_add;
2676 chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp[0], h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp[0]][0]);
2677 chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp[1], h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp[1]][0]);
2680 for(i=16; i<16+8; i++){
2681 if(h->non_zero_count_cache[ scan8[i] ])
2682 idct_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
2683 else if(h->mb[i*16])
2684 idct_dc_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
2687 for(i=16; i<16+8; i++){
2688 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2689 uint8_t * const ptr= dest[(i&4)>>2] + block_offset[i];
2690 svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
2696 if(h->deblocking_filter) {
2697 if (!simple && FRAME_MBAFF) {
2698 //FIXME try deblocking one mb at a time?
2699 // the reduction in load/storing mvs and such might outweigh the extra backup/xchg_border
2700 const int mb_y = s->mb_y - 1;
2701 uint8_t *pair_dest_y, *pair_dest_cb, *pair_dest_cr;
2702 const int mb_xy= mb_x + mb_y*s->mb_stride;
2703 const int mb_type_top = s->current_picture.mb_type[mb_xy];
2704 const int mb_type_bottom= s->current_picture.mb_type[mb_xy+s->mb_stride];
2705 if (!bottom) return;
2706 pair_dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
2707 pair_dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2708 pair_dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2710 if(IS_INTRA(mb_type_top | mb_type_bottom))
2711 xchg_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize, 0);
2713 backup_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize);
2717 tprintf(h->s.avctx, "call mbaff filter_mb mb_x:%d mb_y:%d pair_dest_y = %p, dest_y = %p\n", mb_x, mb_y, pair_dest_y, dest_y);
2718 fill_caches(h, mb_type_top, 1); //FIXME don't fill stuff which isn't used by filter_mb
2719 h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy]);
2720 h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy]);
2721 filter_mb(h, mb_x, mb_y, pair_dest_y, pair_dest_cb, pair_dest_cr, linesize, uvlinesize);
2724 tprintf(h->s.avctx, "call mbaff filter_mb\n");
2725 fill_caches(h, mb_type_bottom, 1); //FIXME don't fill stuff which isn't used by filter_mb
2726 h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy+s->mb_stride]);
2727 h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy+s->mb_stride]);
2728 filter_mb(h, mb_x, mb_y+1, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
2730 tprintf(h->s.avctx, "call filter_mb\n");
2731 backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, simple);
2732 fill_caches(h, mb_type, 1); //FIXME don't fill stuff which isn't used by filter_mb
2733 filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
2739 * Process a macroblock; this case avoids checks for expensive uncommon cases.
2741 static void hl_decode_mb_simple(H264Context *h){
2742 hl_decode_mb_internal(h, 1);
2746 * Process a macroblock; this handles edge cases, such as interlacing.
2748 static void av_noinline hl_decode_mb_complex(H264Context *h){
2749 hl_decode_mb_internal(h, 0);
2752 static void hl_decode_mb(H264Context *h){
2753 MpegEncContext * const s = &h->s;
2754 const int mb_x= s->mb_x;
2755 const int mb_y= s->mb_y;
2756 const int mb_xy= mb_x + mb_y*s->mb_stride;
2757 const int mb_type= s->current_picture.mb_type[mb_xy];
2758 int is_complex = FRAME_MBAFF || MB_FIELD || IS_INTRA_PCM(mb_type) || s->codec_id != CODEC_ID_H264 || (ENABLE_GRAY && (s->flags&CODEC_FLAG_GRAY)) || s->encoding;
2764 hl_decode_mb_complex(h);
2765 else hl_decode_mb_simple(h);
2768 static void pic_as_field(Picture *pic, const int parity){
2770 for (i = 0; i < 4; ++i) {
2771 if (parity == PICT_BOTTOM_FIELD)
2772 pic->data[i] += pic->linesize[i];
2773 pic->reference = parity;
2774 pic->linesize[i] *= 2;
2778 static int split_field_copy(Picture *dest, Picture *src,
2779 int parity, int id_add){
2780 int match = !!(src->reference & parity);
2784 pic_as_field(dest, parity);
2786 dest->pic_id += id_add;
2793 * Split one reference list into field parts, interleaving by parity
2794 * as per H.264 spec section 8.2.4.2.5. Output fields have their data pointers
2795 * set to look at the actual start of data for that field.
2797 * @param dest output list
2798 * @param dest_len maximum number of fields to put in dest
2799 * @param src the source reference list containing fields and/or field pairs
2800 * (aka short_ref/long_ref, or
2801 * refFrameListXShortTerm/refFrameListLongTerm in spec-speak)
2802 * @param src_len number of Picture's in source (pairs and unmatched fields)
2803 * @param parity the parity of the picture being decoded/needing
2804 * these ref pics (PICT_{TOP,BOTTOM}_FIELD)
2805 * @return number of fields placed in dest
2807 static int split_field_half_ref_list(Picture *dest, int dest_len,
2808 Picture *src, int src_len, int parity){
2809 int same_parity = 1;
2815 for (out_i = 0; out_i < dest_len; out_i += field_output) {
2816 if (same_parity && same_i < src_len) {
2817 field_output = split_field_copy(dest + out_i, src + same_i,
2819 same_parity = !field_output;
2822 } else if (opp_i < src_len) {
2823 field_output = split_field_copy(dest + out_i, src + opp_i,
2824 PICT_FRAME - parity, 0);
2825 same_parity = field_output;
2837 * Split the reference frame list into a reference field list.
2838 * This implements H.264 spec 8.2.4.2.5 for a combined input list.
2839 * The input list contains both reference field pairs and
2840 * unmatched reference fields; it is ordered as spec describes
2841 * RefPicListX for frames in 8.2.4.2.1 and 8.2.4.2.3, except that
2842 * unmatched field pairs are also present. Conceptually this is equivalent
2843 * to concatenation of refFrameListXShortTerm with refFrameListLongTerm.
2845 * @param dest output reference list where ordered fields are to be placed
2846 * @param dest_len max number of fields to place at dest
2847 * @param src source reference list, as described above
2848 * @param src_len number of pictures (pairs and unmatched fields) in src
2849 * @param parity parity of field being currently decoded
2850 * (one of PICT_{TOP,BOTTOM}_FIELD)
2851 * @param long_i index into src array that holds first long reference picture,
2852 * or src_len if no long refs present.
2854 static int split_field_ref_list(Picture *dest, int dest_len,
2855 Picture *src, int src_len,
2856 int parity, int long_i){
2858 int i = split_field_half_ref_list(dest, dest_len, src, long_i, parity);
2862 i += split_field_half_ref_list(dest, dest_len, src + long_i,
2863 src_len - long_i, parity);
2868 * fills the default_ref_list.
2870 static int fill_default_ref_list(H264Context *h){
2871 MpegEncContext * const s = &h->s;
2873 int smallest_poc_greater_than_current = -1;
2875 Picture sorted_short_ref[32];
2876 Picture field_entry_list[2][32];
2877 Picture *frame_list[2];
2879 if (FIELD_PICTURE) {
2880 structure_sel = PICT_FRAME;
2881 frame_list[0] = field_entry_list[0];
2882 frame_list[1] = field_entry_list[1];
2885 frame_list[0] = h->default_ref_list[0];
2886 frame_list[1] = h->default_ref_list[1];
2889 if(h->slice_type==B_TYPE){
2896 /* sort frame according to poc in B slice */
2897 for(out_i=0; out_i<h->short_ref_count; out_i++){
2899 int best_poc=INT_MAX;
2901 for(i=0; i<h->short_ref_count; i++){
2902 const int poc= h->short_ref[i]->poc;
2903 if(poc > limit && poc < best_poc){
2909 assert(best_i != INT_MIN);
2912 sorted_short_ref[out_i]= *h->short_ref[best_i];
2913 tprintf(h->s.avctx, "sorted poc: %d->%d poc:%d fn:%d\n", best_i, out_i, sorted_short_ref[out_i].poc, sorted_short_ref[out_i].frame_num);
2914 if (-1 == smallest_poc_greater_than_current) {
2915 if (h->short_ref[best_i]->poc >= s->current_picture_ptr->poc) {
2916 smallest_poc_greater_than_current = out_i;
2921 tprintf(h->s.avctx, "current poc: %d, smallest_poc_greater_than_current: %d\n", s->current_picture_ptr->poc, smallest_poc_greater_than_current);
2923 // find the largest poc
2924 for(list=0; list<2; list++){
2927 int step= list ? -1 : 1;
2929 for(i=0; i<h->short_ref_count && index < h->ref_count[list]; i++, j+=step) {
2931 while(j<0 || j>= h->short_ref_count){
2932 if(j != -99 && step == (list ? -1 : 1))
2935 j= smallest_poc_greater_than_current + (step>>1);
2937 sel = sorted_short_ref[j].reference | structure_sel;
2938 if(sel != PICT_FRAME) continue;
2939 frame_list[list][index ]= sorted_short_ref[j];
2940 frame_list[list][index++].pic_id= sorted_short_ref[j].frame_num;
2942 short_len[list] = index;
2944 for(i = 0; i < 16 && index < h->ref_count[ list ]; i++){
2946 if(h->long_ref[i] == NULL) continue;
2947 sel = h->long_ref[i]->reference | structure_sel;
2948 if(sel != PICT_FRAME) continue;
2950 frame_list[ list ][index ]= *h->long_ref[i];
2951 frame_list[ list ][index++].pic_id= i;;
2955 if(list && (smallest_poc_greater_than_current<=0 || smallest_poc_greater_than_current>=h->short_ref_count) && (1 < index)){
2956 // swap the two first elements of L1 when
2957 // L0 and L1 are identical
2958 Picture temp= frame_list[1][0];
2959 frame_list[1][0] = frame_list[1][1];
2960 frame_list[1][1] = temp;
2965 for(list=0; list<2; list++){
2967 len[list] = split_field_ref_list(h->default_ref_list[list],
2971 s->picture_structure,
2974 if(len[list] < h->ref_count[ list ])
2975 memset(&h->default_ref_list[list][len[list]], 0, sizeof(Picture)*(h->ref_count[ list ] - len[list]));
2982 for(i=0; i<h->short_ref_count; i++){
2984 sel = h->short_ref[i]->reference | structure_sel;
2985 if(sel != PICT_FRAME) continue;
2986 frame_list[0][index ]= *h->short_ref[i];
2987 frame_list[0][index++].pic_id= h->short_ref[i]->frame_num;
2990 for(i = 0; i < 16; i++){
2992 if(h->long_ref[i] == NULL) continue;
2993 sel = h->long_ref[i]->reference | structure_sel;
2994 if(sel != PICT_FRAME) continue;
2995 frame_list[0][index ]= *h->long_ref[i];
2996 frame_list[0][index++].pic_id= i;;
3000 index = split_field_ref_list(h->default_ref_list[0],
3001 h->ref_count[0], frame_list[0],
3002 index, s->picture_structure,
3005 if(index < h->ref_count[0])
3006 memset(&h->default_ref_list[0][index], 0, sizeof(Picture)*(h->ref_count[0] - index));
3009 for (i=0; i<h->ref_count[0]; i++) {
3010 tprintf(h->s.avctx, "List0: %s fn:%d 0x%p\n", (h->default_ref_list[0][i].long_ref ? "LT" : "ST"), h->default_ref_list[0][i].pic_id, h->default_ref_list[0][i].data[0]);
3012 if(h->slice_type==B_TYPE){
3013 for (i=0; i<h->ref_count[1]; i++) {
3014 tprintf(h->s.avctx, "List1: %s fn:%d 0x%p\n", (h->default_ref_list[1][i].long_ref ? "LT" : "ST"), h->default_ref_list[1][i].pic_id, h->default_ref_list[0][i].data[0]);
3021 static void print_short_term(H264Context *h);
3022 static void print_long_term(H264Context *h);
3025 * Extract structure information about the picture described by pic_num in
3026 * the current decoding context (frame or field). Note that pic_num is
3027 * picture number without wrapping (so, 0<=pic_num<max_pic_num).
3028 * @param pic_num picture number for which to extract structure information
3029 * @param structure one of PICT_XXX describing structure of picture
3031 * @return frame number (short term) or long term index of picture
3032 * described by pic_num
3034 static int pic_num_extract(H264Context *h, int pic_num, int *structure){
3035 MpegEncContext * const s = &h->s;
3037 *structure = s->picture_structure;
3040 /* opposite field */
3041 *structure ^= PICT_FRAME;
3048 static int decode_ref_pic_list_reordering(H264Context *h){
3049 MpegEncContext * const s = &h->s;
3050 int list, index, pic_structure;
3052 print_short_term(h);
3054 if(h->slice_type==I_TYPE || h->slice_type==SI_TYPE) return 0; //FIXME move before func
3056 for(list=0; list<h->list_count; list++){
3057 memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
3059 if(get_bits1(&s->gb)){
3060 int pred= h->curr_pic_num;
3062 for(index=0; ; index++){
3063 unsigned int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb);
3064 unsigned int pic_id;
3066 Picture *ref = NULL;
3068 if(reordering_of_pic_nums_idc==3)
3071 if(index >= h->ref_count[list]){
3072 av_log(h->s.avctx, AV_LOG_ERROR, "reference count overflow\n");
3076 if(reordering_of_pic_nums_idc<3){
3077 if(reordering_of_pic_nums_idc<2){
3078 const unsigned int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1;
3081 if(abs_diff_pic_num > h->max_pic_num){
3082 av_log(h->s.avctx, AV_LOG_ERROR, "abs_diff_pic_num overflow\n");
3086 if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num;
3087 else pred+= abs_diff_pic_num;
3088 pred &= h->max_pic_num - 1;
3090 frame_num = pic_num_extract(h, pred, &pic_structure);
3092 for(i= h->short_ref_count-1; i>=0; i--){
3093 ref = h->short_ref[i];
3094 assert(ref->reference);
3095 assert(!ref->long_ref);
3096 if(ref->data[0] != NULL &&
3097 ref->frame_num == frame_num &&
3098 (ref->reference & pic_structure) &&
3099 ref->long_ref == 0) // ignore non existing pictures by testing data[0] pointer
3106 pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx
3108 long_idx= pic_num_extract(h, pic_id, &pic_structure);
3111 av_log(h->s.avctx, AV_LOG_ERROR, "long_term_pic_idx overflow\n");
3114 ref = h->long_ref[long_idx];
3115 assert(!(ref && !ref->reference));
3116 if(ref && (ref->reference & pic_structure)){
3117 ref->pic_id= pic_id;
3118 assert(ref->long_ref);
3126 av_log(h->s.avctx, AV_LOG_ERROR, "reference picture missing during reorder\n");
3127 memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME
3129 for(i=index; i+1<h->ref_count[list]; i++){
3130 if(ref->long_ref == h->ref_list[list][i].long_ref && ref->pic_id == h->ref_list[list][i].pic_id)
3133 for(; i > index; i--){
3134 h->ref_list[list][i]= h->ref_list[list][i-1];
3136 h->ref_list[list][index]= *ref;
3138 pic_as_field(&h->ref_list[list][index], pic_structure);
3142 av_log(h->s.avctx, AV_LOG_ERROR, "illegal reordering_of_pic_nums_idc\n");
3148 for(list=0; list<h->list_count; list++){
3149 for(index= 0; index < h->ref_count[list]; index++){
3150 if(!h->ref_list[list][index].data[0])
3151 h->ref_list[list][index]= s->current_picture;
3155 if(h->slice_type==B_TYPE && !h->direct_spatial_mv_pred)
3156 direct_dist_scale_factor(h);
3157 direct_ref_list_init(h);
3161 static void fill_mbaff_ref_list(H264Context *h){
3163 for(list=0; list<2; list++){ //FIXME try list_count
3164 for(i=0; i<h->ref_count[list]; i++){
3165 Picture *frame = &h->ref_list[list][i];
3166 Picture *field = &h->ref_list[list][16+2*i];
3169 field[0].linesize[j] <<= 1;
3170 field[0].reference = PICT_TOP_FIELD;
3171 field[1] = field[0];
3173 field[1].data[j] += frame->linesize[j];
3174 field[1].reference = PICT_BOTTOM_FIELD;
3176 h->luma_weight[list][16+2*i] = h->luma_weight[list][16+2*i+1] = h->luma_weight[list][i];
3177 h->luma_offset[list][16+2*i] = h->luma_offset[list][16+2*i+1] = h->luma_offset[list][i];
3179 h->chroma_weight[list][16+2*i][j] = h->chroma_weight[list][16+2*i+1][j] = h->chroma_weight[list][i][j];
3180 h->chroma_offset[list][16+2*i][j] = h->chroma_offset[list][16+2*i+1][j] = h->chroma_offset[list][i][j];
3184 for(j=0; j<h->ref_count[1]; j++){
3185 for(i=0; i<h->ref_count[0]; i++)
3186 h->implicit_weight[j][16+2*i] = h->implicit_weight[j][16+2*i+1] = h->implicit_weight[j][i];
3187 memcpy(h->implicit_weight[16+2*j], h->implicit_weight[j], sizeof(*h->implicit_weight));
3188 memcpy(h->implicit_weight[16+2*j+1], h->implicit_weight[j], sizeof(*h->implicit_weight));
3192 static int pred_weight_table(H264Context *h){
3193 MpegEncContext * const s = &h->s;
3195 int luma_def, chroma_def;
3198 h->use_weight_chroma= 0;
3199 h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
3200 h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
3201 luma_def = 1<<h->luma_log2_weight_denom;
3202 chroma_def = 1<<h->chroma_log2_weight_denom;
3204 for(list=0; list<2; list++){
3205 for(i=0; i<h->ref_count[list]; i++){
3206 int luma_weight_flag, chroma_weight_flag;
3208 luma_weight_flag= get_bits1(&s->gb);
3209 if(luma_weight_flag){
3210 h->luma_weight[list][i]= get_se_golomb(&s->gb);
3211 h->luma_offset[list][i]= get_se_golomb(&s->gb);
3212 if( h->luma_weight[list][i] != luma_def
3213 || h->luma_offset[list][i] != 0)
3216 h->luma_weight[list][i]= luma_def;
3217 h->luma_offset[list][i]= 0;
3220 chroma_weight_flag= get_bits1(&s->gb);
3221 if(chroma_weight_flag){
3224 h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
3225 h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
3226 if( h->chroma_weight[list][i][j] != chroma_def
3227 || h->chroma_offset[list][i][j] != 0)
3228 h->use_weight_chroma= 1;
3233 h->chroma_weight[list][i][j]= chroma_def;
3234 h->chroma_offset[list][i][j]= 0;
3238 if(h->slice_type != B_TYPE) break;
3240 h->use_weight= h->use_weight || h->use_weight_chroma;
3244 static void implicit_weight_table(H264Context *h){
3245 MpegEncContext * const s = &h->s;
3247 int cur_poc = s->current_picture_ptr->poc;
3249 if( h->ref_count[0] == 1 && h->ref_count[1] == 1
3250 && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
3252 h->use_weight_chroma= 0;
3257 h->use_weight_chroma= 2;
3258 h->luma_log2_weight_denom= 5;
3259 h->chroma_log2_weight_denom= 5;
3261 for(ref0=0; ref0 < h->ref_count[0]; ref0++){
3262 int poc0 = h->ref_list[0][ref0].poc;
3263 for(ref1=0; ref1 < h->ref_count[1]; ref1++){
3264 int poc1 = h->ref_list[1][ref1].poc;
3265 int td = av_clip(poc1 - poc0, -128, 127);
3267 int tb = av_clip(cur_poc - poc0, -128, 127);
3268 int tx = (16384 + (FFABS(td) >> 1)) / td;
3269 int dist_scale_factor = av_clip((tb*tx + 32) >> 6, -1024, 1023) >> 2;
3270 if(dist_scale_factor < -64 || dist_scale_factor > 128)
3271 h->implicit_weight[ref0][ref1] = 32;
3273 h->implicit_weight[ref0][ref1] = 64 - dist_scale_factor;
3275 h->implicit_weight[ref0][ref1] = 32;
3281 * Mark a picture as no longer needed for reference. The refmask
3282 * argument allows unreferencing of individual fields or the whole frame.
3283 * If the picture becomes entirely unreferenced, but is being held for
3284 * display purposes, it is marked as such.
3285 * @param refmask mask of fields to unreference; the mask is bitwise
3286 * anded with the reference marking of pic
3287 * @return non-zero if pic becomes entirely unreferenced (except possibly
3288 * for display purposes) zero if one of the fields remains in
3291 static inline int unreference_pic(H264Context *h, Picture *pic, int refmask){
3293 if (pic->reference &= refmask) {
3296 if(pic == h->delayed_output_pic)
3297 pic->reference=DELAYED_PIC_REF;
3299 for(i = 0; h->delayed_pic[i]; i++)
3300 if(pic == h->delayed_pic[i]){
3301 pic->reference=DELAYED_PIC_REF;
3310 * instantaneous decoder refresh.
3312 static void idr(H264Context *h){
3315 for(i=0; i<16; i++){
3316 if (h->long_ref[i] != NULL) {
3317 unreference_pic(h, h->long_ref[i], 0);
3318 h->long_ref[i]= NULL;
3321 h->long_ref_count=0;
3323 for(i=0; i<h->short_ref_count; i++){
3324 unreference_pic(h, h->short_ref[i], 0);
3325 h->short_ref[i]= NULL;
3327 h->short_ref_count=0;
3330 /* forget old pics after a seek */
3331 static void flush_dpb(AVCodecContext *avctx){
3332 H264Context *h= avctx->priv_data;
3334 for(i=0; i<16; i++) {
3335 if(h->delayed_pic[i])
3336 h->delayed_pic[i]->reference= 0;
3337 h->delayed_pic[i]= NULL;
3339 if(h->delayed_output_pic)
3340 h->delayed_output_pic->reference= 0;
3341 h->delayed_output_pic= NULL;
3343 if(h->s.current_picture_ptr)
3344 h->s.current_picture_ptr->reference= 0;
3345 h->s.first_field= 0;
3346 ff_mpeg_flush(avctx);
3350 * Find a Picture in the short term reference list by frame number.
3351 * @param frame_num frame number to search for
3352 * @param idx the index into h->short_ref where returned picture is found
3353 * undefined if no picture found.
3354 * @return pointer to the found picture, or NULL if no pic with the provided
3355 * frame number is found
3357 static Picture * find_short(H264Context *h, int frame_num, int *idx){
3358 MpegEncContext * const s = &h->s;
3361 for(i=0; i<h->short_ref_count; i++){
3362 Picture *pic= h->short_ref[i];
3363 if(s->avctx->debug&FF_DEBUG_MMCO)
3364 av_log(h->s.avctx, AV_LOG_DEBUG, "%d %d %p\n", i, pic->frame_num, pic);
3365 if(pic->frame_num == frame_num) {
3374 * Remove a picture from the short term reference list by its index in
3375 * that list. This does no checking on the provided index; it is assumed
3376 * to be valid. Other list entries are shifted down.
3377 * @param i index into h->short_ref of picture to remove.
3379 static void remove_short_at_index(H264Context *h, int i){
3380 assert(i > 0 && i < h->short_ref_count);
3381 h->short_ref[i]= NULL;
3382 if (--h->short_ref_count)
3383 memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i)*sizeof(Picture*));
3388 * @return the removed picture or NULL if an error occurs
3390 static Picture * remove_short(H264Context *h, int frame_num){
3391 MpegEncContext * const s = &h->s;
3395 if(s->avctx->debug&FF_DEBUG_MMCO)
3396 av_log(h->s.avctx, AV_LOG_DEBUG, "remove short %d count %d\n", frame_num, h->short_ref_count);
3398 pic = find_short(h, frame_num, &i);
3400 remove_short_at_index(h, i);
3406 * Remove a picture from the long term reference list by its index in
3407 * that list. This does no checking on the provided index; it is assumed
3408 * to be valid. The removed entry is set to NULL. Other entries are unaffected.
3409 * @param i index into h->long_ref of picture to remove.
3411 static void remove_long_at_index(H264Context *h, int i){
3412 h->long_ref[i]= NULL;
3413 h->long_ref_count--;
3418 * @return the removed picture or NULL if an error occurs
3420 static Picture * remove_long(H264Context *h, int i){
3423 pic= h->long_ref[i];
3425 remove_long_at_index(h, i);
3431 * print short term list
3433 static void print_short_term(H264Context *h) {
3435 if(h->s.avctx->debug&FF_DEBUG_MMCO) {
3436 av_log(h->s.avctx, AV_LOG_DEBUG, "short term list:\n");
3437 for(i=0; i<h->short_ref_count; i++){
3438 Picture *pic= h->short_ref[i];
3439 av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
3445 * print long term list
3447 static void print_long_term(H264Context *h) {
3449 if(h->s.avctx->debug&FF_DEBUG_MMCO) {
3450 av_log(h->s.avctx, AV_LOG_DEBUG, "long term list:\n");
3451 for(i = 0; i < 16; i++){
3452 Picture *pic= h->long_ref[i];
3454 av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
3461 * Executes the reference picture marking (memory management control operations).
3463 static int execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count){
3464 MpegEncContext * const s = &h->s;
3466 int current_ref_assigned=0;
3469 if((s->avctx->debug&FF_DEBUG_MMCO) && mmco_count==0)
3470 av_log(h->s.avctx, AV_LOG_DEBUG, "no mmco here\n");
3472 for(i=0; i<mmco_count; i++){
3473 int structure, frame_num, unref_pic;
3474 if(s->avctx->debug&FF_DEBUG_MMCO)
3475 av_log(h->s.avctx, AV_LOG_DEBUG, "mmco:%d %d %d\n", h->mmco[i].opcode, h->mmco[i].short_pic_num, h->mmco[i].long_arg);
3477 switch(mmco[i].opcode){
3478 case MMCO_SHORT2UNUSED:
3479 if(s->avctx->debug&FF_DEBUG_MMCO)
3480 av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: unref short %d count %d\n", h->mmco[i].short_pic_num, h->short_ref_count);
3481 frame_num = pic_num_extract(h, mmco[i].short_pic_num, &structure);
3482 pic = find_short(h, frame_num, &j);
3484 if (unreference_pic(h, pic, structure ^ PICT_FRAME))
3485 remove_short_at_index(h, j);
3486 } else if(s->avctx->debug&FF_DEBUG_MMCO)
3487 av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: unref short failure\n");
3489 case MMCO_SHORT2LONG:
3490 if (FIELD_PICTURE && mmco[i].long_arg < h->long_ref_count &&
3491 h->long_ref[mmco[i].long_arg]->frame_num ==
3492 mmco[i].short_pic_num / 2) {
3493 /* do nothing, we've already moved this field pair. */
3495 int frame_num = mmco[i].short_pic_num >> FIELD_PICTURE;
3497 pic= remove_long(h, mmco[i].long_arg);
3498 if(pic) unreference_pic(h, pic, 0);
3500 h->long_ref[ mmco[i].long_arg ]= remove_short(h, frame_num);
3501 if (h->long_ref[ mmco[i].long_arg ]){
3502 h->long_ref[ mmco[i].long_arg ]->long_ref=1;
3503 h->long_ref_count++;
3507 case MMCO_LONG2UNUSED:
3508 j = pic_num_extract(h, mmco[i].long_arg, &structure);
3509 pic = h->long_ref[j];
3511 if (unreference_pic(h, pic, structure ^ PICT_FRAME))
3512 remove_long_at_index(h, j);
3513 } else if(s->avctx->debug&FF_DEBUG_MMCO)
3514 av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: unref long failure\n");
3518 if (FIELD_PICTURE && !s->first_field) {
3519 if (h->long_ref[mmco[i].long_arg] == s->current_picture_ptr) {
3520 /* Just mark second field as referenced */
3522 } else if (s->current_picture_ptr->reference) {
3523 /* First field in pair is in short term list or
3524 * at a different long term index.
3525 * This is not allowed; see 7.4.3, notes 2 and 3.
3526 * Report the problem and keep the pair where it is,
3527 * and mark this field valid.
3529 av_log(h->s.avctx, AV_LOG_ERROR,
3530 "illegal long term reference assignment for second "
3531 "field in complementary field pair (first field is "
3532 "short term or has non-matching long index)\n");
3538 pic= remove_long(h, mmco[i].long_arg);
3539 if(pic) unreference_pic(h, pic, 0);
3541 h->long_ref[ mmco[i].long_arg ]= s->current_picture_ptr;
3542 h->long_ref[ mmco[i].long_arg ]->long_ref=1;
3543 h->long_ref_count++;
3546 s->current_picture_ptr->reference |= s->picture_structure;
3547 current_ref_assigned=1;
3549 case MMCO_SET_MAX_LONG:
3550 assert(mmco[i].long_arg <= 16);
3551 // just remove the long term which index is greater than new max
3552 for(j = mmco[i].long_arg; j<16; j++){
3553 pic = remove_long(h, j);
3554 if (pic) unreference_pic(h, pic, 0);
3558 while(h->short_ref_count){
3559 pic= remove_short(h, h->short_ref[0]->frame_num);
3560 if(pic) unreference_pic(h, pic, 0);
3562 for(j = 0; j < 16; j++) {
3563 pic= remove_long(h, j);
3564 if(pic) unreference_pic(h, pic, 0);
3571 if (!current_ref_assigned && FIELD_PICTURE &&
3572 !s->first_field && s->current_picture_ptr->reference) {
3574 /* Second field of complementary field pair; the first field of
3575 * which is already referenced. If short referenced, it
3576 * should be first entry in short_ref. If not, it must exist
3577 * in long_ref; trying to put it on the short list here is an
3578 * error in the encoded bit stream (ref: 7.4.3, NOTE 2 and 3).
3580 if (h->short_ref_count && h->short_ref[0] == s->current_picture_ptr) {
3581 /* Just mark the second field valid */
3582 s->current_picture_ptr->reference = PICT_FRAME;
3583 } else if (s->current_picture_ptr->long_ref) {
3584 av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term reference "
3585 "assignment for second field "
3586 "in complementary field pair "
3587 "(first field is long term)\n");
3590 * First field in reference, but not in any sensible place on our
3591 * reference lists. This shouldn't happen unless reference
3592 * handling somewhere else is wrong.
3596 current_ref_assigned = 1;
3599 if(!current_ref_assigned){
3600 pic= remove_short(h, s->current_picture_ptr->frame_num);
3602 unreference_pic(h, pic, 0);
3603 av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term buffer state detected\n");
3606 if(h->short_ref_count)
3607 memmove(&h->short_ref[1], &h->short_ref[0], h->short_ref_count*sizeof(Picture*));
3609 h->short_ref[0]= s->current_picture_ptr;
3610 h->short_ref[0]->long_ref=0;
3611 h->short_ref_count++;
3612 s->current_picture_ptr->reference |= s->picture_structure;
3615 print_short_term(h);
3620 static int decode_ref_pic_marking(H264Context *h, GetBitContext *gb){
3621 MpegEncContext * const s = &h->s;
3624 if(h->nal_unit_type == NAL_IDR_SLICE){ //FIXME fields
3625 s->broken_link= get_bits1(gb) -1;
3626 h->mmco[0].long_arg= get_bits1(gb) - 1; // current_long_term_idx
3627 if(h->mmco[0].long_arg == -1)
3630 h->mmco[0].opcode= MMCO_LONG;
3634 if(get_bits1(gb)){ // adaptive_ref_pic_marking_mode_flag
3635 for(i= 0; i<MAX_MMCO_COUNT; i++) {
3636 MMCOOpcode opcode= get_ue_golomb(gb);
3638 h->mmco[i].opcode= opcode;
3639 if(opcode==MMCO_SHORT2UNUSED || opcode==MMCO_SHORT2LONG){
3640 h->mmco[i].short_pic_num= (h->curr_pic_num - get_ue_golomb(gb) - 1) & (h->max_pic_num - 1);
3641 /* if(h->mmco[i].short_pic_num >= h->short_ref_count || h->short_ref[ h->mmco[i].short_pic_num ] == NULL){
3642 av_log(s->avctx, AV_LOG_ERROR, "illegal short ref in memory management control operation %d\n", mmco);
3646 if(opcode==MMCO_SHORT2LONG || opcode==MMCO_LONG2UNUSED || opcode==MMCO_LONG || opcode==MMCO_SET_MAX_LONG){
3647 unsigned int long_arg= get_ue_golomb(gb);
3648 if(long_arg >= 32 || (long_arg >= 16 && !(opcode == MMCO_LONG2UNUSED && FIELD_PICTURE))){
3649 av_log(h->s.avctx, AV_LOG_ERROR, "illegal long ref in memory management control operation %d\n", opcode);
3652 h->mmco[i].long_arg= long_arg;
3655 if(opcode > (unsigned)MMCO_LONG){
3656 av_log(h->s.avctx, AV_LOG_ERROR, "illegal memory management control operation %d\n", opcode);
3659 if(opcode == MMCO_END)
3664 assert(h->long_ref_count + h->short_ref_count <= h->sps.ref_frame_count);
3666 if(h->short_ref_count && h->long_ref_count + h->short_ref_count == h->sps.ref_frame_count &&
3667 !(FIELD_PICTURE && !s->first_field && s->current_picture_ptr->reference)) {
3668 h->mmco[0].opcode= MMCO_SHORT2UNUSED;
3669 h->mmco[0].short_pic_num= h->short_ref[ h->short_ref_count - 1 ]->frame_num;
3671 if (FIELD_PICTURE) {
3672 h->mmco[0].short_pic_num *= 2;
3673 h->mmco[1].opcode= MMCO_SHORT2UNUSED;
3674 h->mmco[1].short_pic_num= h->mmco[0].short_pic_num + 1;
3685 static int init_poc(H264Context *h){
3686 MpegEncContext * const s = &h->s;
3687 const int max_frame_num= 1<<h->sps.log2_max_frame_num;
3690 if(h->nal_unit_type == NAL_IDR_SLICE){
3691 h->frame_num_offset= 0;
3693 if(h->frame_num < h->prev_frame_num)
3694 h->frame_num_offset= h->prev_frame_num_offset + max_frame_num;
3696 h->frame_num_offset= h->prev_frame_num_offset;
3699 if(h->sps.poc_type==0){
3700 const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
3702 if(h->nal_unit_type == NAL_IDR_SLICE){
3707 if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
3708 h->poc_msb = h->prev_poc_msb + max_poc_lsb;
3709 else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
3710 h->poc_msb = h->prev_poc_msb - max_poc_lsb;
3712 h->poc_msb = h->prev_poc_msb;
3713 //printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
3715 field_poc[1] = h->poc_msb + h->poc_lsb;
3716 if(s->picture_structure == PICT_FRAME)
3717 field_poc[1] += h->delta_poc_bottom;
3718 }else if(h->sps.poc_type==1){
3719 int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
3722 if(h->sps.poc_cycle_length != 0)
3723 abs_frame_num = h->frame_num_offset + h->frame_num;
3727 if(h->nal_ref_idc==0 && abs_frame_num > 0)
3730 expected_delta_per_poc_cycle = 0;
3731 for(i=0; i < h->sps.poc_cycle_length; i++)
3732 expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
3734 if(abs_frame_num > 0){
3735 int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length;
3736 int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
3738 expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
3739 for(i = 0; i <= frame_num_in_poc_cycle; i++)
3740 expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
3744 if(h->nal_ref_idc == 0)
3745 expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
3747 field_poc[0] = expectedpoc + h->delta_poc[0];
3748 field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
3750 if(s->picture_structure == PICT_FRAME)
3751 field_poc[1] += h->delta_poc[1];
3754 if(h->nal_unit_type == NAL_IDR_SLICE){
3757 if(h->nal_ref_idc) poc= 2*(h->frame_num_offset + h->frame_num);
3758 else poc= 2*(h->frame_num_offset + h->frame_num) - 1;
3764 if(s->picture_structure != PICT_BOTTOM_FIELD) {
3765 s->current_picture_ptr->field_poc[0]= field_poc[0];
3766 s->current_picture_ptr->poc = field_poc[0];
3768 if(s->picture_structure != PICT_TOP_FIELD) {
3769 s->current_picture_ptr->field_poc[1]= field_poc[1];
3770 s->current_picture_ptr->poc = field_poc[1];
3772 if(!FIELD_PICTURE || !s->first_field) {
3773 Picture *cur = s->current_picture_ptr;
3774 cur->poc= FFMIN(cur->field_poc[0], cur->field_poc[1]);
3782 * initialize scan tables
3784 static void init_scan_tables(H264Context *h){
3785 MpegEncContext * const s = &h->s;
3787 if(s->dsp.h264_idct_add == ff_h264_idct_add_c){ //FIXME little ugly
3788 memcpy(h->zigzag_scan, zigzag_scan, 16*sizeof(uint8_t));
3789 memcpy(h-> field_scan, field_scan, 16*sizeof(uint8_t));
3791 for(i=0; i<16; i++){
3792 #define T(x) (x>>2) | ((x<<2) & 0xF)
3793 h->zigzag_scan[i] = T(zigzag_scan[i]);
3794 h-> field_scan[i] = T( field_scan[i]);
3798 if(s->dsp.h264_idct8_add == ff_h264_idct8_add_c){
3799 memcpy(h->zigzag_scan8x8, zigzag_scan8x8, 64*sizeof(uint8_t));
3800 memcpy(h->zigzag_scan8x8_cavlc, zigzag_scan8x8_cavlc, 64*sizeof(uint8_t));
3801 memcpy(h->field_scan8x8, field_scan8x8, 64*sizeof(uint8_t));
3802 memcpy(h->field_scan8x8_cavlc, field_scan8x8_cavlc, 64*sizeof(uint8_t));
3804 for(i=0; i<64; i++){
3805 #define T(x) (x>>3) | ((x&7)<<3)
3806 h->zigzag_scan8x8[i] = T(zigzag_scan8x8[i]);
3807 h->zigzag_scan8x8_cavlc[i] = T(zigzag_scan8x8_cavlc[i]);
3808 h->field_scan8x8[i] = T(field_scan8x8[i]);
3809 h->field_scan8x8_cavlc[i] = T(field_scan8x8_cavlc[i]);
3813 if(h->sps.transform_bypass){ //FIXME same ugly
3814 h->zigzag_scan_q0 = zigzag_scan;
3815 h->zigzag_scan8x8_q0 = zigzag_scan8x8;
3816 h->zigzag_scan8x8_cavlc_q0 = zigzag_scan8x8_cavlc;
3817 h->field_scan_q0 = field_scan;
3818 h->field_scan8x8_q0 = field_scan8x8;
3819 h->field_scan8x8_cavlc_q0 = field_scan8x8_cavlc;
3821 h->zigzag_scan_q0 = h->zigzag_scan;
3822 h->zigzag_scan8x8_q0 = h->zigzag_scan8x8;
3823 h->zigzag_scan8x8_cavlc_q0 = h->zigzag_scan8x8_cavlc;
3824 h->field_scan_q0 = h->field_scan;
3825 h->field_scan8x8_q0 = h->field_scan8x8;
3826 h->field_scan8x8_cavlc_q0 = h->field_scan8x8_cavlc;
3831 * Replicates H264 "master" context to thread contexts.
3833 static void clone_slice(H264Context *dst, H264Context *src)
3835 memcpy(dst->block_offset, src->block_offset, sizeof(dst->block_offset));
3836 dst->s.current_picture_ptr = src->s.current_picture_ptr;
3837 dst->s.current_picture = src->s.current_picture;
3838 dst->s.linesize = src->s.linesize;
3839 dst->s.uvlinesize = src->s.uvlinesize;
3840 dst->s.first_field = src->s.first_field;
3842 dst->prev_poc_msb = src->prev_poc_msb;
3843 dst->prev_poc_lsb = src->prev_poc_lsb;
3844 dst->prev_frame_num_offset = src->prev_frame_num_offset;
3845 dst->prev_frame_num = src->prev_frame_num;
3846 dst->short_ref_count = src->short_ref_count;
3848 memcpy(dst->short_ref, src->short_ref, sizeof(dst->short_ref));
3849 memcpy(dst->long_ref, src->long_ref, sizeof(dst->long_ref));
3850 memcpy(dst->default_ref_list, src->default_ref_list, sizeof(dst->default_ref_list));
3851 memcpy(dst->ref_list, src->ref_list, sizeof(dst->ref_list));
3853 memcpy(dst->dequant4_coeff, src->dequant4_coeff, sizeof(src->dequant4_coeff));
3854 memcpy(dst->dequant8_coeff, src->dequant8_coeff, sizeof(src->dequant8_coeff));
3858 * decodes a slice header.
3859 * this will allso call MPV_common_init() and frame_start() as needed
3861 * @param h h264context
3862 * @param h0 h264 master context (differs from 'h' when doing sliced based parallel decoding)
3864 * @return 0 if okay, <0 if an error occured, 1 if decoding must not be multithreaded
3866 static int decode_slice_header(H264Context *h, H264Context *h0){
3867 MpegEncContext * const s = &h->s;
3868 MpegEncContext * const s0 = &h0->s;
3869 unsigned int first_mb_in_slice;
3870 unsigned int pps_id;
3871 int num_ref_idx_active_override_flag;
3872 static const uint8_t slice_type_map[5]= {P_TYPE, B_TYPE, I_TYPE, SP_TYPE, SI_TYPE};
3873 unsigned int slice_type, tmp, i;
3874 int default_ref_list_done = 0;
3875 int last_pic_structure;
3877 s->dropable= h->nal_ref_idc == 0;
3879 if((s->avctx->flags2 & CODEC_FLAG2_FAST) && !h->nal_ref_idc){
3880 s->me.qpel_put= s->dsp.put_2tap_qpel_pixels_tab;
3881 s->me.qpel_avg= s->dsp.avg_2tap_qpel_pixels_tab;
3883 s->me.qpel_put= s->dsp.put_h264_qpel_pixels_tab;
3884 s->me.qpel_avg= s->dsp.avg_h264_qpel_pixels_tab;
3887 first_mb_in_slice= get_ue_golomb(&s->gb);
3889 if((s->flags2 & CODEC_FLAG2_CHUNKS) && first_mb_in_slice == 0){
3890 h0->current_slice = 0;
3891 if (!s0->first_field)
3892 s->current_picture_ptr= NULL;
3895 slice_type= get_ue_golomb(&s->gb);
3897 av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
3902 h->slice_type_fixed=1;
3904 h->slice_type_fixed=0;
3906 slice_type= slice_type_map[ slice_type ];
3907 if (slice_type == I_TYPE
3908 || (h0->current_slice != 0 && slice_type == h0->last_slice_type) ) {
3909 default_ref_list_done = 1;
3911 h->slice_type= slice_type;
3913 s->pict_type= h->slice_type; // to make a few old func happy, it's wrong though
3914 if (s->pict_type == B_TYPE && s->last_picture_ptr == NULL) {
3915 av_log(h->s.avctx, AV_LOG_ERROR,
3916 "B picture before any references, skipping\n");
3920 pps_id= get_ue_golomb(&s->gb);
3921 if(pps_id>=MAX_PPS_COUNT){
3922 av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
3925 if(!h0->pps_buffers[pps_id]) {
3926 av_log(h->s.avctx, AV_LOG_ERROR, "non existing PPS referenced\n");
3929 h->pps= *h0->pps_buffers[pps_id];
3931 if(!h0->sps_buffers[h->pps.sps_id]) {
3932 av_log(h->s.avctx, AV_LOG_ERROR, "non existing SPS referenced\n");
3935 h->sps = *h0->sps_buffers[h->pps.sps_id];
3937 if(h == h0 && h->dequant_coeff_pps != pps_id){
3938 h->dequant_coeff_pps = pps_id;
3939 init_dequant_tables(h);
3942 s->mb_width= h->sps.mb_width;
3943 s->mb_height= h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
3945 h->b_stride= s->mb_width*4;
3946 h->b8_stride= s->mb_width*2;
3948 s->width = 16*s->mb_width - 2*(h->sps.crop_left + h->sps.crop_right );
3949 if(h->sps.frame_mbs_only_flag)
3950 s->height= 16*s->mb_height - 2*(h->sps.crop_top + h->sps.crop_bottom);
3952 s->height= 16*s->mb_height - 4*(h->sps.crop_top + h->sps.crop_bottom); //FIXME recheck
3954 if (s->context_initialized
3955 && ( s->width != s->avctx->width || s->height != s->avctx->height)) {
3957 return -1; // width / height changed during parallelized decoding
3961 if (!s->context_initialized) {
3963 return -1; // we cant (re-)initialize context during parallel decoding
3964 if (MPV_common_init(s) < 0)
3968 init_scan_tables(h);
3971 for(i = 1; i < s->avctx->thread_count; i++) {
3973 c = h->thread_context[i] = av_malloc(sizeof(H264Context));
3974 memcpy(c, h, sizeof(MpegEncContext));
3975 memset(&c->s + 1, 0, sizeof(H264Context) - sizeof(MpegEncContext));
3978 init_scan_tables(c);
3982 for(i = 0; i < s->avctx->thread_count; i++)
3983 if(context_init(h->thread_context[i]) < 0)
3986 s->avctx->width = s->width;
3987 s->avctx->height = s->height;
3988 s->avctx->sample_aspect_ratio= h->sps.sar;
3989 if(!s->avctx->sample_aspect_ratio.den)
3990 s->avctx->sample_aspect_ratio.den = 1;
3992 if(h->sps.timing_info_present_flag){
3993 s->avctx->time_base= (AVRational){h->sps.num_units_in_tick * 2, h->sps.time_scale};
3994 if(h->x264_build > 0 && h->x264_build < 44)
3995 s->avctx->time_base.den *= 2;
3996 av_reduce(&s->avctx->time_base.num, &s->avctx->time_base.den,
3997 s->avctx->time_base.num, s->avctx->time_base.den, 1<<30);
4001 h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
4004 h->mb_aff_frame = 0;
4005 last_pic_structure = s0->picture_structure;
4006 if(h->sps.frame_mbs_only_flag){
4007 s->picture_structure= PICT_FRAME;
4009 if(get_bits1(&s->gb)) { //field_pic_flag
4010 s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
4012 s->picture_structure= PICT_FRAME;
4013 h->mb_aff_frame = h->sps.mb_aff;
4017 if(h0->current_slice == 0){
4018 /* See if we have a decoded first field looking for a pair... */
4019 if (s0->first_field) {
4020 assert(s0->current_picture_ptr);
4021 assert(s0->current_picture_ptr->data[0]);
4022 assert(s0->current_picture_ptr->reference != DELAYED_PIC_REF);
4024 /* figure out if we have a complementary field pair */
4025 if (!FIELD_PICTURE || s->picture_structure == last_pic_structure) {
4027 * Previous field is unmatched. Don't display it, but let it
4028 * remain for reference if marked as such.
4030 s0->current_picture_ptr = NULL;