2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * H.264 / AVC / MPEG4 part10 codec.
24 * @author Michael Niedermayer <michaelni@gmx.at>
30 #include "mpegvideo.h"
39 #define interlaced_dct interlaced_dct_is_a_bad_name
40 #define mb_intra mb_intra_isnt_initalized_see_mb_type
42 #define LUMA_DC_BLOCK_INDEX 25
43 #define CHROMA_DC_BLOCK_INDEX 26
45 #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
46 #define COEFF_TOKEN_VLC_BITS 8
47 #define TOTAL_ZEROS_VLC_BITS 9
48 #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
49 #define RUN_VLC_BITS 3
50 #define RUN7_VLC_BITS 6
52 #define MAX_SPS_COUNT 32
53 #define MAX_PPS_COUNT 256
55 #define MAX_MMCO_COUNT 66
58 * Sequence parameter set
64 int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
65 int poc_type; ///< pic_order_cnt_type
66 int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
67 int delta_pic_order_always_zero_flag;
68 int offset_for_non_ref_pic;
69 int offset_for_top_to_bottom_field;
70 int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
71 int ref_frame_count; ///< num_ref_frames
72 int gaps_in_frame_num_allowed_flag;
73 int mb_width; ///< frame_width_in_mbs_minus1 + 1
74 int mb_height; ///< frame_height_in_mbs_minus1 + 1
75 int frame_mbs_only_flag;
76 int mb_aff; ///<mb_adaptive_frame_field_flag
77 int direct_8x8_inference_flag;
78 int crop; ///< frame_cropping_flag
79 int crop_left; ///< frame_cropping_rect_left_offset
80 int crop_right; ///< frame_cropping_rect_right_offset
81 int crop_top; ///< frame_cropping_rect_top_offset
82 int crop_bottom; ///< frame_cropping_rect_bottom_offset
83 int vui_parameters_present_flag;
85 int timing_info_present_flag;
86 uint32_t num_units_in_tick;
88 int fixed_frame_rate_flag;
89 short offset_for_ref_frame[256]; //FIXME dyn aloc?
90 int bitstream_restriction_flag;
91 int num_reorder_frames;
95 * Picture parameter set
99 int cabac; ///< entropy_coding_mode_flag
100 int pic_order_present; ///< pic_order_present_flag
101 int slice_group_count; ///< num_slice_groups_minus1 + 1
102 int mb_slice_group_map_type;
103 int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
104 int weighted_pred; ///< weighted_pred_flag
105 int weighted_bipred_idc;
106 int init_qp; ///< pic_init_qp_minus26 + 26
107 int init_qs; ///< pic_init_qs_minus26 + 26
108 int chroma_qp_index_offset;
109 int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
110 int constrained_intra_pred; ///< constrained_intra_pred_flag
111 int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
115 * Memory management control operation opcode.
117 typedef enum MMCOOpcode{
128 * Memory management control operation.
139 typedef struct H264Context{
147 #define NAL_IDR_SLICE 5
151 #define NAL_PICTURE_DELIMITER 9
152 #define NAL_FILTER_DATA 10
153 uint8_t *rbsp_buffer;
154 int rbsp_buffer_size;
157 * Used to parse AVC variant of h264
159 int is_avc; ///< this flag is != 0 if codec is avc1
160 int got_avcC; ///< flag used to parse avcC data only once
161 int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
165 int prev_mb_skiped; //FIXME remove (IMHO not used)
168 int chroma_pred_mode;
169 int intra16x16_pred_mode;
174 int8_t intra4x4_pred_mode_cache[5*8];
175 int8_t (*intra4x4_pred_mode)[8];
176 void (*pred4x4 [9+3])(uint8_t *src, uint8_t *topright, int stride);//FIXME move to dsp?
177 void (*pred8x8 [4+3])(uint8_t *src, int stride);
178 void (*pred16x16[4+3])(uint8_t *src, int stride);
179 unsigned int topleft_samples_available;
180 unsigned int top_samples_available;
181 unsigned int topright_samples_available;
182 unsigned int left_samples_available;
183 uint8_t (*top_borders[2])[16+2*8];
184 uint8_t left_border[2*(17+2*9)];
187 * non zero coeff count cache.
188 * is 64 if not available.
190 uint8_t non_zero_count_cache[6*8] __align8;
191 uint8_t (*non_zero_count)[16];
194 * Motion vector cache.
196 int16_t mv_cache[2][5*8][2] __align8;
197 int8_t ref_cache[2][5*8] __align8;
198 #define LIST_NOT_USED -1 //FIXME rename?
199 #define PART_NOT_AVAILABLE -2
202 * is 1 if the specific list MV&references are set to 0,0,-2.
204 int mv_cache_clean[2];
207 * block_offset[ 0..23] for frame macroblocks
208 * block_offset[24..47] for field macroblocks
210 int block_offset[2*(16+8)];
212 uint16_t *mb2b_xy; //FIXME are these 4 a good idea?
214 int b_stride; //FIXME use s->b4_stride
220 int unknown_svq3_flag;
221 int next_slice_index;
223 SPS sps_buffer[MAX_SPS_COUNT];
224 SPS sps; ///< current sps
226 PPS pps_buffer[MAX_PPS_COUNT];
230 PPS pps; //FIXME move tp Picture perhaps? (->no) do we need that?
233 uint8_t *slice_table_base;
234 uint8_t *slice_table; ///< slice_table_base + mb_stride + 1
236 int slice_type_fixed;
238 //interlacing specific flags
240 int mb_field_decoding_flag;
247 int delta_poc_bottom;
250 int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
251 int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
252 int frame_num_offset; ///< for POC type 2
253 int prev_frame_num_offset; ///< for POC type 2
254 int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
257 * frame_num for frames or 2*frame_num for field pics.
262 * max_frame_num or 2*max_frame_num for field pics.
266 //Weighted pred stuff
268 int use_weight_chroma;
269 int luma_log2_weight_denom;
270 int chroma_log2_weight_denom;
271 int luma_weight[2][16];
272 int luma_offset[2][16];
273 int chroma_weight[2][16][2];
274 int chroma_offset[2][16][2];
275 int implicit_weight[16][16];
278 int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0
279 int slice_alpha_c0_offset;
280 int slice_beta_offset;
282 int redundant_pic_count;
284 int direct_spatial_mv_pred;
285 int dist_scale_factor[16];
286 int map_col_to_list0[2][16];
289 * num_ref_idx_l0/1_active_minus1 + 1
291 int ref_count[2];// FIXME split for AFF
292 Picture *short_ref[32];
293 Picture *long_ref[32];
294 Picture default_ref_list[2][32];
295 Picture ref_list[2][32]; //FIXME size?
296 Picture field_ref_list[2][32]; //FIXME size?
297 Picture *delayed_pic[16]; //FIXME size?
298 Picture *delayed_output_pic;
301 * memory management control operations buffer.
303 MMCO mmco[MAX_MMCO_COUNT];
306 int long_ref_count; ///< number of actual long term references
307 int short_ref_count; ///< number of actual short term references
310 GetBitContext intra_gb;
311 GetBitContext inter_gb;
312 GetBitContext *intra_gb_ptr;
313 GetBitContext *inter_gb_ptr;
315 DCTELEM mb[16*24] __align8;
321 uint8_t cabac_state[399];
324 /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
328 /* chroma_pred_mode for i4x4 or i16x16, else 0 */
329 uint8_t *chroma_pred_mode_table;
330 int last_qscale_diff;
331 int16_t (*mvd_table[2])[2];
332 int16_t mvd_cache[2][5*8][2] __align8;
333 uint8_t *direct_table;
334 uint8_t direct_cache[5*8];
338 static VLC coeff_token_vlc[4];
339 static VLC chroma_dc_coeff_token_vlc;
341 static VLC total_zeros_vlc[15];
342 static VLC chroma_dc_total_zeros_vlc[3];
344 static VLC run_vlc[6];
347 static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
348 static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
349 static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
351 static inline uint32_t pack16to32(int a, int b){
352 #ifdef WORDS_BIGENDIAN
353 return (b&0xFFFF) + (a<<16);
355 return (a&0xFFFF) + (b<<16);
361 * @param h height of the rectangle, should be a constant
362 * @param w width of the rectangle, should be a constant
363 * @param size the size of val (1 or 4), should be a constant
365 static inline void fill_rectangle(void *vp, int w, int h, int stride, uint32_t val, int size){ //FIXME ensure this IS inlined
366 uint8_t *p= (uint8_t*)vp;
367 assert(size==1 || size==4);
372 assert((((int)vp)&(FFMIN(w, STRIDE_ALIGN)-1)) == 0);
373 //FIXME check what gcc generates for 64 bit on x86 and possible write a 32 bit ver of it
376 *(uint16_t*)(p + stride)= size==4 ? val : val*0x0101;
377 }else if(w==2 && h==4){
378 *(uint16_t*)(p + 0*stride)=
379 *(uint16_t*)(p + 1*stride)=
380 *(uint16_t*)(p + 2*stride)=
381 *(uint16_t*)(p + 3*stride)= size==4 ? val : val*0x0101;
382 }else if(w==4 && h==1){
383 *(uint32_t*)(p + 0*stride)= size==4 ? val : val*0x01010101;
384 }else if(w==4 && h==2){
385 *(uint32_t*)(p + 0*stride)=
386 *(uint32_t*)(p + 1*stride)= size==4 ? val : val*0x01010101;
387 }else if(w==4 && h==4){
388 *(uint32_t*)(p + 0*stride)=
389 *(uint32_t*)(p + 1*stride)=
390 *(uint32_t*)(p + 2*stride)=
391 *(uint32_t*)(p + 3*stride)= size==4 ? val : val*0x01010101;
392 }else if(w==8 && h==1){
394 *(uint32_t*)(p + 4)= size==4 ? val : val*0x01010101;
395 }else if(w==8 && h==2){
396 *(uint32_t*)(p + 0 + 0*stride)=
397 *(uint32_t*)(p + 4 + 0*stride)=
398 *(uint32_t*)(p + 0 + 1*stride)=
399 *(uint32_t*)(p + 4 + 1*stride)= size==4 ? val : val*0x01010101;
400 }else if(w==8 && h==4){
401 *(uint64_t*)(p + 0*stride)=
402 *(uint64_t*)(p + 1*stride)=
403 *(uint64_t*)(p + 2*stride)=
404 *(uint64_t*)(p + 3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
405 }else if(w==16 && h==2){
406 *(uint64_t*)(p + 0+0*stride)=
407 *(uint64_t*)(p + 8+0*stride)=
408 *(uint64_t*)(p + 0+1*stride)=
409 *(uint64_t*)(p + 8+1*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
410 }else if(w==16 && h==4){
411 *(uint64_t*)(p + 0+0*stride)=
412 *(uint64_t*)(p + 8+0*stride)=
413 *(uint64_t*)(p + 0+1*stride)=
414 *(uint64_t*)(p + 8+1*stride)=
415 *(uint64_t*)(p + 0+2*stride)=
416 *(uint64_t*)(p + 8+2*stride)=
417 *(uint64_t*)(p + 0+3*stride)=
418 *(uint64_t*)(p + 8+3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
423 static inline void fill_caches(H264Context *h, int mb_type, int for_deblock){
424 MpegEncContext * const s = &h->s;
425 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
426 int topleft_xy, top_xy, topright_xy, left_xy[2];
427 int topleft_type, top_type, topright_type, left_type[2];
431 //FIXME deblocking can skip fill_caches much of the time with multiple slices too.
432 // the actual condition is whether we're on the edge of a slice,
433 // and even then the intra and nnz parts are unnecessary.
434 if(for_deblock && h->slice_num == 1)
437 //wow what a mess, why didnt they simplify the interlacing&intra stuff, i cant imagine that these complex rules are worth it
439 top_xy = mb_xy - s->mb_stride;
440 topleft_xy = top_xy - 1;
441 topright_xy= top_xy + 1;
442 left_xy[1] = left_xy[0] = mb_xy-1;
452 const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
453 const int top_pair_xy = pair_xy - s->mb_stride;
454 const int topleft_pair_xy = top_pair_xy - 1;
455 const int topright_pair_xy = top_pair_xy + 1;
456 const int topleft_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
457 const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
458 const int topright_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
459 const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
460 const int curr_mb_frame_flag = !IS_INTERLACED(mb_type);
461 const int bottom = (s->mb_y & 1);
462 tprintf("fill_caches: curr_mb_frame_flag:%d, left_mb_frame_flag:%d, topleft_mb_frame_flag:%d, top_mb_frame_flag:%d, topright_mb_frame_flag:%d\n", curr_mb_frame_flag, left_mb_frame_flag, topleft_mb_frame_flag, top_mb_frame_flag, topright_mb_frame_flag);
464 ? !curr_mb_frame_flag // bottom macroblock
465 : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
467 top_xy -= s->mb_stride;
470 ? !curr_mb_frame_flag // bottom macroblock
471 : (!curr_mb_frame_flag && !topleft_mb_frame_flag) // top macroblock
473 topleft_xy -= s->mb_stride;
476 ? !curr_mb_frame_flag // bottom macroblock
477 : (!curr_mb_frame_flag && !topright_mb_frame_flag) // top macroblock
479 topright_xy -= s->mb_stride;
481 if (left_mb_frame_flag != curr_mb_frame_flag) {
482 left_xy[1] = left_xy[0] = pair_xy - 1;
483 if (curr_mb_frame_flag) {
504 left_xy[1] += s->mb_stride;
517 h->top_mb_xy = top_xy;
518 h->left_mb_xy[0] = left_xy[0];
519 h->left_mb_xy[1] = left_xy[1];
521 topleft_type = h->slice_table[topleft_xy ] < 255 ? s->current_picture.mb_type[topleft_xy] : 0;
522 top_type = h->slice_table[top_xy ] < 255 ? s->current_picture.mb_type[top_xy] : 0;
523 topright_type= h->slice_table[topright_xy] < 255 ? s->current_picture.mb_type[topright_xy]: 0;
524 left_type[0] = h->slice_table[left_xy[0] ] < 255 ? s->current_picture.mb_type[left_xy[0]] : 0;
525 left_type[1] = h->slice_table[left_xy[1] ] < 255 ? s->current_picture.mb_type[left_xy[1]] : 0;
527 topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
528 top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
529 topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
530 left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
531 left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
534 if(IS_INTRA(mb_type)){
535 h->topleft_samples_available=
536 h->top_samples_available=
537 h->left_samples_available= 0xFFFF;
538 h->topright_samples_available= 0xEEEA;
540 if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
541 h->topleft_samples_available= 0xB3FF;
542 h->top_samples_available= 0x33FF;
543 h->topright_samples_available= 0x26EA;
546 if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
547 h->topleft_samples_available&= 0xDF5F;
548 h->left_samples_available&= 0x5F5F;
552 if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
553 h->topleft_samples_available&= 0x7FFF;
555 if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
556 h->topright_samples_available&= 0xFBFF;
558 if(IS_INTRA4x4(mb_type)){
559 if(IS_INTRA4x4(top_type)){
560 h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
561 h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
562 h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
563 h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
566 if(!top_type || (IS_INTER(top_type) && h->pps.constrained_intra_pred))
571 h->intra4x4_pred_mode_cache[4+8*0]=
572 h->intra4x4_pred_mode_cache[5+8*0]=
573 h->intra4x4_pred_mode_cache[6+8*0]=
574 h->intra4x4_pred_mode_cache[7+8*0]= pred;
577 if(IS_INTRA4x4(left_type[i])){
578 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
579 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
582 if(!left_type[i] || (IS_INTER(left_type[i]) && h->pps.constrained_intra_pred))
587 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
588 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
603 //FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
605 h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4];
606 h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5];
607 h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6];
608 h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
610 h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9];
611 h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
613 h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12];
614 h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
617 h->non_zero_count_cache[4+8*0]=
618 h->non_zero_count_cache[5+8*0]=
619 h->non_zero_count_cache[6+8*0]=
620 h->non_zero_count_cache[7+8*0]=
622 h->non_zero_count_cache[1+8*0]=
623 h->non_zero_count_cache[2+8*0]=
625 h->non_zero_count_cache[1+8*3]=
626 h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
630 for (i=0; i<2; i++) {
632 h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]];
633 h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]];
634 h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]];
635 h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]];
637 h->non_zero_count_cache[3+8*1 + 2*8*i]=
638 h->non_zero_count_cache[3+8*2 + 2*8*i]=
639 h->non_zero_count_cache[0+8*1 + 8*i]=
640 h->non_zero_count_cache[0+8*4 + 8*i]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
647 h->top_cbp = h->cbp_table[top_xy];
648 } else if(IS_INTRA(mb_type)) {
655 h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
656 } else if(IS_INTRA(mb_type)) {
662 h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
665 h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
670 //FIXME direct mb can skip much of this
671 if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
673 for(list=0; list<1+(h->slice_type==B_TYPE); list++){
674 if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
675 /*if(!h->mv_cache_clean[list]){
676 memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
677 memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
678 h->mv_cache_clean[list]= 1;
682 h->mv_cache_clean[list]= 0;
684 if(IS_INTER(top_type)){
685 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
686 const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
687 *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
688 *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
689 *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
690 *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
691 h->ref_cache[list][scan8[0] + 0 - 1*8]=
692 h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
693 h->ref_cache[list][scan8[0] + 2 - 1*8]=
694 h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
696 *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
697 *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
698 *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
699 *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
700 *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
703 //FIXME unify cleanup or sth
704 if(IS_INTER(left_type[0])){
705 const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
706 const int b8_xy= h->mb2b8_xy[left_xy[0]] + 1;
707 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]];
708 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1]];
709 h->ref_cache[list][scan8[0] - 1 + 0*8]=
710 h->ref_cache[list][scan8[0] - 1 + 1*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0]>>1)];
712 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 0*8]=
713 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 1*8]= 0;
714 h->ref_cache[list][scan8[0] - 1 + 0*8]=
715 h->ref_cache[list][scan8[0] - 1 + 1*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
718 if(IS_INTER(left_type[1])){
719 const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
720 const int b8_xy= h->mb2b8_xy[left_xy[1]] + 1;
721 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[2]];
722 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[3]];
723 h->ref_cache[list][scan8[0] - 1 + 2*8]=
724 h->ref_cache[list][scan8[0] - 1 + 3*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[2]>>1)];
726 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 2*8]=
727 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 3*8]= 0;
728 h->ref_cache[list][scan8[0] - 1 + 2*8]=
729 h->ref_cache[list][scan8[0] - 1 + 3*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
732 if(for_deblock || (IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred))
735 if(IS_INTER(topleft_type)){
736 const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
737 const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + h->b8_stride;
738 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
739 h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
741 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
742 h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
745 if(IS_INTER(topright_type)){
746 const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
747 const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
748 *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
749 h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
751 *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
752 h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
756 h->ref_cache[list][scan8[5 ]+1] =
757 h->ref_cache[list][scan8[7 ]+1] =
758 h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewher else)
759 h->ref_cache[list][scan8[4 ]] =
760 h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
761 *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
762 *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
763 *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewher else)
764 *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
765 *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
768 /* XXX beurk, Load mvd */
769 if(IS_INTER(topleft_type)){
770 const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
771 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy];
773 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 - 1*8]= 0;
776 if(IS_INTER(top_type)){
777 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
778 *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
779 *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
780 *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
781 *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
783 *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
784 *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
785 *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
786 *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
788 if(IS_INTER(left_type[0])){
789 const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
790 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
791 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
793 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
794 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
796 if(IS_INTER(left_type[1])){
797 const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
798 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
799 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
801 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
802 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
804 *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
805 *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
806 *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewher else)
807 *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
808 *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
810 if(h->slice_type == B_TYPE){
811 fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
813 if(IS_DIRECT(top_type)){
814 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
815 }else if(IS_8X8(top_type)){
816 int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
817 h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
818 h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
820 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
824 if(IS_DIRECT(left_type[0])){
825 h->direct_cache[scan8[0] - 1 + 0*8]=
826 h->direct_cache[scan8[0] - 1 + 2*8]= 1;
827 }else if(IS_8X8(left_type[0])){
828 int b8_xy = h->mb2b8_xy[left_xy[0]] + 1;
829 h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[b8_xy];
830 h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[b8_xy + h->b8_stride];
832 h->direct_cache[scan8[0] - 1 + 0*8]=
833 h->direct_cache[scan8[0] - 1 + 2*8]= 0;
842 static inline void write_back_intra_pred_mode(H264Context *h){
843 MpegEncContext * const s = &h->s;
844 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
846 h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
847 h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
848 h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
849 h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
850 h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
851 h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
852 h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
856 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
858 static inline int check_intra4x4_pred_mode(H264Context *h){
859 MpegEncContext * const s = &h->s;
860 static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
861 static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
864 if(!(h->top_samples_available&0x8000)){
866 int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
868 av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
871 h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
876 if(!(h->left_samples_available&0x8000)){
878 int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
880 av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
883 h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
889 } //FIXME cleanup like next
892 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
894 static inline int check_intra_pred_mode(H264Context *h, int mode){
895 MpegEncContext * const s = &h->s;
896 static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
897 static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
899 if(mode < 0 || mode > 6) {
900 av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
904 if(!(h->top_samples_available&0x8000)){
907 av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
912 if(!(h->left_samples_available&0x8000)){
915 av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
924 * gets the predicted intra4x4 prediction mode.
926 static inline int pred_intra_mode(H264Context *h, int n){
927 const int index8= scan8[n];
928 const int left= h->intra4x4_pred_mode_cache[index8 - 1];
929 const int top = h->intra4x4_pred_mode_cache[index8 - 8];
930 const int min= FFMIN(left, top);
932 tprintf("mode:%d %d min:%d\n", left ,top, min);
934 if(min<0) return DC_PRED;
938 static inline void write_back_non_zero_count(H264Context *h){
939 MpegEncContext * const s = &h->s;
940 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
942 h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[7+8*1];
943 h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[7+8*2];
944 h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[7+8*3];
945 h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
946 h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[4+8*4];
947 h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[5+8*4];
948 h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[6+8*4];
950 h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[1+8*2];
951 h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
952 h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[2+8*1];
954 h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5];
955 h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
956 h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4];
960 * gets the predicted number of non zero coefficients.
961 * @param n block index
963 static inline int pred_non_zero_count(H264Context *h, int n){
964 const int index8= scan8[n];
965 const int left= h->non_zero_count_cache[index8 - 1];
966 const int top = h->non_zero_count_cache[index8 - 8];
969 if(i<64) i= (i+1)>>1;
971 tprintf("pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
976 static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
977 const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
979 if(topright_ref != PART_NOT_AVAILABLE){
980 *C= h->mv_cache[list][ i - 8 + part_width ];
983 tprintf("topright MV not available\n");
985 *C= h->mv_cache[list][ i - 8 - 1 ];
986 return h->ref_cache[list][ i - 8 - 1 ];
991 * gets the predicted MV.
992 * @param n the block index
993 * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
994 * @param mx the x component of the predicted motion vector
995 * @param my the y component of the predicted motion vector
997 static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
998 const int index8= scan8[n];
999 const int top_ref= h->ref_cache[list][ index8 - 8 ];
1000 const int left_ref= h->ref_cache[list][ index8 - 1 ];
1001 const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
1002 const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
1004 int diagonal_ref, match_count;
1006 assert(part_width==1 || part_width==2 || part_width==4);
1016 diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
1017 match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
1018 tprintf("pred_motion match_count=%d\n", match_count);
1019 if(match_count > 1){ //most common
1020 *mx= mid_pred(A[0], B[0], C[0]);
1021 *my= mid_pred(A[1], B[1], C[1]);
1022 }else if(match_count==1){
1026 }else if(top_ref==ref){
1034 if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
1038 *mx= mid_pred(A[0], B[0], C[0]);
1039 *my= mid_pred(A[1], B[1], C[1]);
1043 tprintf("pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
1047 * gets the directionally predicted 16x8 MV.
1048 * @param n the block index
1049 * @param mx the x component of the predicted motion vector
1050 * @param my the y component of the predicted motion vector
1052 static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
1054 const int top_ref= h->ref_cache[list][ scan8[0] - 8 ];
1055 const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
1057 tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
1065 const int left_ref= h->ref_cache[list][ scan8[8] - 1 ];
1066 const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
1068 tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
1070 if(left_ref == ref){
1078 pred_motion(h, n, 4, list, ref, mx, my);
1082 * gets the directionally predicted 8x16 MV.
1083 * @param n the block index
1084 * @param mx the x component of the predicted motion vector
1085 * @param my the y component of the predicted motion vector
1087 static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
1089 const int left_ref= h->ref_cache[list][ scan8[0] - 1 ];
1090 const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
1092 tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
1094 if(left_ref == ref){
1103 diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
1105 tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
1107 if(diagonal_ref == ref){
1115 pred_motion(h, n, 2, list, ref, mx, my);
1118 static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
1119 const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
1120 const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
1122 tprintf("pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
1124 if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
1125 || (top_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
1126 || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
1132 pred_motion(h, 0, 4, 0, 0, mx, my);
1137 static inline void direct_dist_scale_factor(H264Context * const h){
1138 const int poc = h->s.current_picture_ptr->poc;
1139 const int poc1 = h->ref_list[1][0].poc;
1141 for(i=0; i<h->ref_count[0]; i++){
1142 int poc0 = h->ref_list[0][i].poc;
1143 int td = clip(poc1 - poc0, -128, 127);
1144 if(td == 0 /* FIXME || pic0 is a long-term ref */){
1145 h->dist_scale_factor[i] = 256;
1147 int tb = clip(poc - poc0, -128, 127);
1148 int tx = (16384 + (ABS(td) >> 1)) / td;
1149 h->dist_scale_factor[i] = clip((tb*tx + 32) >> 6, -1024, 1023);
1153 static inline void direct_ref_list_init(H264Context * const h){
1154 MpegEncContext * const s = &h->s;
1155 Picture * const ref1 = &h->ref_list[1][0];
1156 Picture * const cur = s->current_picture_ptr;
1158 if(cur->pict_type == I_TYPE)
1159 cur->ref_count[0] = 0;
1160 if(cur->pict_type != B_TYPE)
1161 cur->ref_count[1] = 0;
1162 for(list=0; list<2; list++){
1163 cur->ref_count[list] = h->ref_count[list];
1164 for(j=0; j<h->ref_count[list]; j++)
1165 cur->ref_poc[list][j] = h->ref_list[list][j].poc;
1167 if(cur->pict_type != B_TYPE || h->direct_spatial_mv_pred)
1169 for(list=0; list<2; list++){
1170 for(i=0; i<ref1->ref_count[list]; i++){
1171 const int poc = ref1->ref_poc[list][i];
1172 h->map_col_to_list0[list][i] = PART_NOT_AVAILABLE;
1173 for(j=0; j<h->ref_count[list]; j++)
1174 if(h->ref_list[list][j].poc == poc){
1175 h->map_col_to_list0[list][i] = j;
1182 static inline void pred_direct_motion(H264Context * const h, int *mb_type){
1183 MpegEncContext * const s = &h->s;
1184 const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
1185 const int b8_xy = 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1186 const int b4_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1187 const int mb_type_col = h->ref_list[1][0].mb_type[mb_xy];
1188 const int16_t (*l1mv0)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[0][b4_xy];
1189 const int8_t *l1ref0 = &h->ref_list[1][0].ref_index[0][b8_xy];
1190 const int8_t *l1ref1 = &h->ref_list[1][0].ref_index[1][b8_xy];
1191 const int is_b8x8 = IS_8X8(*mb_type);
1195 if(IS_8X8(mb_type_col) && !h->sps.direct_8x8_inference_flag){
1196 /* FIXME save sub mb types from previous frames (or derive from MVs)
1197 * so we know exactly what block size to use */
1198 sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
1199 *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
1200 }else if(!is_b8x8 && (IS_16X16(mb_type_col) || IS_INTRA(mb_type_col))){
1201 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1202 *mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
1204 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1205 *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
1208 *mb_type |= MB_TYPE_DIRECT2;
1210 tprintf("mb_type = %08x, sub_mb_type = %08x, is_b8x8 = %d, mb_type_col = %08x\n", *mb_type, sub_mb_type, is_b8x8, mb_type_col);
1212 if(h->direct_spatial_mv_pred){
1217 /* ref = min(neighbors) */
1218 for(list=0; list<2; list++){
1219 int refa = h->ref_cache[list][scan8[0] - 1];
1220 int refb = h->ref_cache[list][scan8[0] - 8];
1221 int refc = h->ref_cache[list][scan8[0] - 8 + 4];
1223 refc = h->ref_cache[list][scan8[0] - 8 - 1];
1225 if(ref[list] < 0 || (refb < ref[list] && refb >= 0))
1227 if(ref[list] < 0 || (refc < ref[list] && refc >= 0))
1233 if(ref[0] < 0 && ref[1] < 0){
1234 ref[0] = ref[1] = 0;
1235 mv[0][0] = mv[0][1] =
1236 mv[1][0] = mv[1][1] = 0;
1238 for(list=0; list<2; list++){
1240 pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]);
1242 mv[list][0] = mv[list][1] = 0;
1247 *mb_type &= ~MB_TYPE_P0L1;
1248 sub_mb_type &= ~MB_TYPE_P0L1;
1249 }else if(ref[0] < 0){
1250 *mb_type &= ~MB_TYPE_P0L0;
1251 sub_mb_type &= ~MB_TYPE_P0L0;
1254 if(IS_16X16(*mb_type)){
1255 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref[0], 1);
1256 fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, ref[1], 1);
1257 if(!IS_INTRA(mb_type_col) && l1ref0[0] == 0 &&
1258 ABS(l1mv0[0][0]) <= 1 && ABS(l1mv0[0][1]) <= 1){
1260 fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1262 fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
1264 fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1266 fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, 0, 4);
1268 fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1269 fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1272 for(i8=0; i8<4; i8++){
1273 const int x8 = i8&1;
1274 const int y8 = i8>>1;
1276 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1278 h->sub_mb_type[i8] = sub_mb_type;
1280 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1281 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1282 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref[0], 1);
1283 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, ref[1], 1);
1286 if(!IS_INTRA(mb_type_col) && l1ref0[x8 + y8*h->b8_stride] == 0){
1287 for(i4=0; i4<4; i4++){
1288 const int16_t *mv_col = l1mv0[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
1289 if(ABS(mv_col[0]) <= 1 && ABS(mv_col[1]) <= 1){
1291 *(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0;
1293 *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0;
1299 }else{ /* direct temporal mv pred */
1300 if(IS_16X16(*mb_type)){
1301 fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
1302 if(IS_INTRA(mb_type_col)){
1303 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
1304 fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
1305 fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, 0, 4);
1307 const int ref0 = l1ref0[0] >= 0 ? h->map_col_to_list0[0][l1ref0[0]]
1308 : h->map_col_to_list0[1][l1ref1[0]];
1309 const int dist_scale_factor = h->dist_scale_factor[ref0];
1310 const int16_t *mv_col = l1mv0[0];
1312 mv_l0[0] = (dist_scale_factor * mv_col[0] + 128) >> 8;
1313 mv_l0[1] = (dist_scale_factor * mv_col[1] + 128) >> 8;
1314 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref0, 1);
1315 fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv_l0[0],mv_l0[1]), 4);
1316 fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]), 4);
1319 for(i8=0; i8<4; i8++){
1320 const int x8 = i8&1;
1321 const int y8 = i8>>1;
1322 int ref0, dist_scale_factor;
1324 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1326 h->sub_mb_type[i8] = sub_mb_type;
1327 if(IS_INTRA(mb_type_col)){
1328 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
1329 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1330 fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1331 fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1335 ref0 = l1ref0[x8 + y8*h->b8_stride];
1337 ref0 = h->map_col_to_list0[0][ref0];
1339 ref0 = h->map_col_to_list0[1][l1ref1[x8 + y8*h->b8_stride]];
1340 dist_scale_factor = h->dist_scale_factor[ref0];
1342 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
1343 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1344 for(i4=0; i4<4; i4++){
1345 const int16_t *mv_col = l1mv0[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
1346 int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
1347 mv_l0[0] = (dist_scale_factor * mv_col[0] + 128) >> 8;
1348 mv_l0[1] = (dist_scale_factor * mv_col[1] + 128) >> 8;
1349 *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] =
1350 pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
1357 static inline void write_back_motion(H264Context *h, int mb_type){
1358 MpegEncContext * const s = &h->s;
1359 const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1360 const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1363 for(list=0; list<2; list++){
1365 if(!USES_LIST(mb_type, list)){
1366 if(1){ //FIXME skip or never read if mb_type doesnt use it
1368 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]=
1369 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= 0;
1371 if( h->pps.cabac ) {
1372 /* FIXME needed ? */
1374 *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]=
1375 *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= 0;
1379 *(uint16_t*)&s->current_picture.ref_index[list][b8_xy + y*h->b8_stride]= (LIST_NOT_USED&0xFF)*0x0101;
1386 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
1387 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
1389 if( h->pps.cabac ) {
1391 *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
1392 *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
1396 s->current_picture.ref_index[list][b8_xy + 0 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+0 + 16*y];
1397 s->current_picture.ref_index[list][b8_xy + 1 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+2 + 16*y];
1401 if(h->slice_type == B_TYPE && h->pps.cabac){
1402 if(IS_8X8(mb_type)){
1403 h->direct_table[b8_xy+1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
1404 h->direct_table[b8_xy+0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
1405 h->direct_table[b8_xy+1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
1411 * Decodes a network abstraction layer unit.
1412 * @param consumed is the number of bytes used as input
1413 * @param length is the length of the array
1414 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp ttailing?
1415 * @returns decoded bytes, might be src+1 if no escapes
1417 static uint8_t *decode_nal(H264Context *h, uint8_t *src, int *dst_length, int *consumed, int length){
1421 // src[0]&0x80; //forbidden bit
1422 h->nal_ref_idc= src[0]>>5;
1423 h->nal_unit_type= src[0]&0x1F;
1427 for(i=0; i<length; i++)
1428 printf("%2X ", src[i]);
1430 for(i=0; i+1<length; i+=2){
1431 if(src[i]) continue;
1432 if(i>0 && src[i-1]==0) i--;
1433 if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1435 /* startcode, so we must be past the end */
1442 if(i>=length-1){ //no escaped 0
1443 *dst_length= length;
1444 *consumed= length+1; //+1 for the header
1448 h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length);
1449 dst= h->rbsp_buffer;
1451 //printf("deoding esc\n");
1454 //remove escapes (very rare 1:2^22)
1455 if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
1456 if(src[si+2]==3){ //escape
1461 }else //next start code
1465 dst[di++]= src[si++];
1469 *consumed= si + 1;//+1 for the header
1470 //FIXME store exact number of bits in the getbitcontext (its needed for decoding)
1476 * @param src the data which should be escaped
1477 * @param dst the target buffer, dst+1 == src is allowed as a special case
1478 * @param length the length of the src data
1479 * @param dst_length the length of the dst array
1480 * @returns length of escaped data in bytes or -1 if an error occured
1482 static int encode_nal(H264Context *h, uint8_t *dst, uint8_t *src, int length, int dst_length){
1483 int i, escape_count, si, di;
1487 assert(dst_length>0);
1489 dst[0]= (h->nal_ref_idc<<5) + h->nal_unit_type;
1491 if(length==0) return 1;
1494 for(i=0; i<length; i+=2){
1495 if(src[i]) continue;
1496 if(i>0 && src[i-1]==0)
1498 if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1504 if(escape_count==0){
1506 memcpy(dst+1, src, length);
1510 if(length + escape_count + 1> dst_length)
1513 //this should be damn rare (hopefully)
1515 h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length + escape_count);
1516 temp= h->rbsp_buffer;
1517 //printf("encoding esc\n");
1522 if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
1523 temp[di++]= 0; si++;
1524 temp[di++]= 0; si++;
1526 temp[di++]= src[si++];
1529 temp[di++]= src[si++];
1531 memcpy(dst+1, temp, length+escape_count);
1533 assert(di == length+escape_count);
1539 * write 1,10,100,1000,... for alignment, yes its exactly inverse to mpeg4
1541 static void encode_rbsp_trailing(PutBitContext *pb){
1544 length= (-put_bits_count(pb))&7;
1545 if(length) put_bits(pb, length, 0);
1550 * identifies the exact end of the bitstream
1551 * @return the length of the trailing, or 0 if damaged
1553 static int decode_rbsp_trailing(uint8_t *src){
1557 tprintf("rbsp trailing %X\n", v);
1567 * idct tranforms the 16 dc values and dequantize them.
1568 * @param qp quantization parameter
1570 static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp){
1571 const int qmul= dequant_coeff[qp][0];
1574 int temp[16]; //FIXME check if this is a good idea
1575 static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
1576 static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1578 //memset(block, 64, 2*256);
1581 const int offset= y_offset[i];
1582 const int z0= block[offset+stride*0] + block[offset+stride*4];
1583 const int z1= block[offset+stride*0] - block[offset+stride*4];
1584 const int z2= block[offset+stride*1] - block[offset+stride*5];
1585 const int z3= block[offset+stride*1] + block[offset+stride*5];
1594 const int offset= x_offset[i];
1595 const int z0= temp[4*0+i] + temp[4*2+i];
1596 const int z1= temp[4*0+i] - temp[4*2+i];
1597 const int z2= temp[4*1+i] - temp[4*3+i];
1598 const int z3= temp[4*1+i] + temp[4*3+i];
1600 block[stride*0 +offset]= ((z0 + z3)*qmul + 2)>>2; //FIXME think about merging this into decode_resdual
1601 block[stride*2 +offset]= ((z1 + z2)*qmul + 2)>>2;
1602 block[stride*8 +offset]= ((z1 - z2)*qmul + 2)>>2;
1603 block[stride*10+offset]= ((z0 - z3)*qmul + 2)>>2;
1609 * dct tranforms the 16 dc values.
1610 * @param qp quantization parameter ??? FIXME
1612 static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
1613 // const int qmul= dequant_coeff[qp][0];
1615 int temp[16]; //FIXME check if this is a good idea
1616 static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
1617 static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1620 const int offset= y_offset[i];
1621 const int z0= block[offset+stride*0] + block[offset+stride*4];
1622 const int z1= block[offset+stride*0] - block[offset+stride*4];
1623 const int z2= block[offset+stride*1] - block[offset+stride*5];
1624 const int z3= block[offset+stride*1] + block[offset+stride*5];
1633 const int offset= x_offset[i];
1634 const int z0= temp[4*0+i] + temp[4*2+i];
1635 const int z1= temp[4*0+i] - temp[4*2+i];
1636 const int z2= temp[4*1+i] - temp[4*3+i];
1637 const int z3= temp[4*1+i] + temp[4*3+i];
1639 block[stride*0 +offset]= (z0 + z3)>>1;
1640 block[stride*2 +offset]= (z1 + z2)>>1;
1641 block[stride*8 +offset]= (z1 - z2)>>1;
1642 block[stride*10+offset]= (z0 - z3)>>1;
1650 static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp){
1651 const int qmul= dequant_coeff[qp][0];
1652 const int stride= 16*2;
1653 const int xStride= 16;
1656 a= block[stride*0 + xStride*0];
1657 b= block[stride*0 + xStride*1];
1658 c= block[stride*1 + xStride*0];
1659 d= block[stride*1 + xStride*1];
1666 block[stride*0 + xStride*0]= ((a+c)*qmul + 0)>>1;
1667 block[stride*0 + xStride*1]= ((e+b)*qmul + 0)>>1;
1668 block[stride*1 + xStride*0]= ((a-c)*qmul + 0)>>1;
1669 block[stride*1 + xStride*1]= ((e-b)*qmul + 0)>>1;
1673 static void chroma_dc_dct_c(DCTELEM *block){
1674 const int stride= 16*2;
1675 const int xStride= 16;
1678 a= block[stride*0 + xStride*0];
1679 b= block[stride*0 + xStride*1];
1680 c= block[stride*1 + xStride*0];
1681 d= block[stride*1 + xStride*1];
1688 block[stride*0 + xStride*0]= (a+c);
1689 block[stride*0 + xStride*1]= (e+b);
1690 block[stride*1 + xStride*0]= (a-c);
1691 block[stride*1 + xStride*1]= (e-b);
1696 * gets the chroma qp.
1698 static inline int get_chroma_qp(int chroma_qp_index_offset, int qscale){
1700 return chroma_qp[clip(qscale + chroma_qp_index_offset, 0, 51)];
1705 static void h264_diff_dct_c(DCTELEM *block, uint8_t *src1, uint8_t *src2, int stride){
1707 //FIXME try int temp instead of block
1710 const int d0= src1[0 + i*stride] - src2[0 + i*stride];
1711 const int d1= src1[1 + i*stride] - src2[1 + i*stride];
1712 const int d2= src1[2 + i*stride] - src2[2 + i*stride];
1713 const int d3= src1[3 + i*stride] - src2[3 + i*stride];
1714 const int z0= d0 + d3;
1715 const int z3= d0 - d3;
1716 const int z1= d1 + d2;
1717 const int z2= d1 - d2;
1719 block[0 + 4*i]= z0 + z1;
1720 block[1 + 4*i]= 2*z3 + z2;
1721 block[2 + 4*i]= z0 - z1;
1722 block[3 + 4*i]= z3 - 2*z2;
1726 const int z0= block[0*4 + i] + block[3*4 + i];
1727 const int z3= block[0*4 + i] - block[3*4 + i];
1728 const int z1= block[1*4 + i] + block[2*4 + i];
1729 const int z2= block[1*4 + i] - block[2*4 + i];
1731 block[0*4 + i]= z0 + z1;
1732 block[1*4 + i]= 2*z3 + z2;
1733 block[2*4 + i]= z0 - z1;
1734 block[3*4 + i]= z3 - 2*z2;
1739 //FIXME need to check that this doesnt overflow signed 32 bit for low qp, iam not sure, its very close
1740 //FIXME check that gcc inlines this (and optimizes intra & seperate_dc stuff away)
1741 static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int seperate_dc){
1743 const int * const quant_table= quant_coeff[qscale];
1744 const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
1745 const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
1746 const unsigned int threshold2= (threshold1<<1);
1752 const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
1753 const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
1754 const unsigned int dc_threshold2= (dc_threshold1<<1);
1756 int level= block[0]*quant_coeff[qscale+18][0];
1757 if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1759 level= (dc_bias + level)>>(QUANT_SHIFT-2);
1762 level= (dc_bias - level)>>(QUANT_SHIFT-2);
1765 // last_non_zero = i;
1770 const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
1771 const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
1772 const unsigned int dc_threshold2= (dc_threshold1<<1);
1774 int level= block[0]*quant_table[0];
1775 if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1777 level= (dc_bias + level)>>(QUANT_SHIFT+1);
1780 level= (dc_bias - level)>>(QUANT_SHIFT+1);
1783 // last_non_zero = i;
1796 const int j= scantable[i];
1797 int level= block[j]*quant_table[j];
1799 // if( bias+level >= (1<<(QMAT_SHIFT - 3))
1800 // || bias-level >= (1<<(QMAT_SHIFT - 3))){
1801 if(((unsigned)(level+threshold1))>threshold2){
1803 level= (bias + level)>>QUANT_SHIFT;
1806 level= (bias - level)>>QUANT_SHIFT;
1815 return last_non_zero;
1818 static void pred4x4_vertical_c(uint8_t *src, uint8_t *topright, int stride){
1819 const uint32_t a= ((uint32_t*)(src-stride))[0];
1820 ((uint32_t*)(src+0*stride))[0]= a;
1821 ((uint32_t*)(src+1*stride))[0]= a;
1822 ((uint32_t*)(src+2*stride))[0]= a;
1823 ((uint32_t*)(src+3*stride))[0]= a;
1826 static void pred4x4_horizontal_c(uint8_t *src, uint8_t *topright, int stride){
1827 ((uint32_t*)(src+0*stride))[0]= src[-1+0*stride]*0x01010101;
1828 ((uint32_t*)(src+1*stride))[0]= src[-1+1*stride]*0x01010101;
1829 ((uint32_t*)(src+2*stride))[0]= src[-1+2*stride]*0x01010101;
1830 ((uint32_t*)(src+3*stride))[0]= src[-1+3*stride]*0x01010101;
1833 static void pred4x4_dc_c(uint8_t *src, uint8_t *topright, int stride){
1834 const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride]
1835 + src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 4) >>3;
1837 ((uint32_t*)(src+0*stride))[0]=
1838 ((uint32_t*)(src+1*stride))[0]=
1839 ((uint32_t*)(src+2*stride))[0]=
1840 ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
1843 static void pred4x4_left_dc_c(uint8_t *src, uint8_t *topright, int stride){
1844 const int dc= ( src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 2) >>2;
1846 ((uint32_t*)(src+0*stride))[0]=
1847 ((uint32_t*)(src+1*stride))[0]=
1848 ((uint32_t*)(src+2*stride))[0]=
1849 ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
1852 static void pred4x4_top_dc_c(uint8_t *src, uint8_t *topright, int stride){
1853 const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride] + 2) >>2;
1855 ((uint32_t*)(src+0*stride))[0]=
1856 ((uint32_t*)(src+1*stride))[0]=
1857 ((uint32_t*)(src+2*stride))[0]=
1858 ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
1861 static void pred4x4_128_dc_c(uint8_t *src, uint8_t *topright, int stride){
1862 ((uint32_t*)(src+0*stride))[0]=
1863 ((uint32_t*)(src+1*stride))[0]=
1864 ((uint32_t*)(src+2*stride))[0]=
1865 ((uint32_t*)(src+3*stride))[0]= 128U*0x01010101U;
1869 #define LOAD_TOP_RIGHT_EDGE\
1870 const int t4= topright[0];\
1871 const int t5= topright[1];\
1872 const int t6= topright[2];\
1873 const int t7= topright[3];\
1875 #define LOAD_LEFT_EDGE\
1876 const int l0= src[-1+0*stride];\
1877 const int l1= src[-1+1*stride];\
1878 const int l2= src[-1+2*stride];\
1879 const int l3= src[-1+3*stride];\
1881 #define LOAD_TOP_EDGE\
1882 const int t0= src[ 0-1*stride];\
1883 const int t1= src[ 1-1*stride];\
1884 const int t2= src[ 2-1*stride];\
1885 const int t3= src[ 3-1*stride];\
1887 static void pred4x4_down_right_c(uint8_t *src, uint8_t *topright, int stride){
1888 const int lt= src[-1-1*stride];
1892 src[0+3*stride]=(l3 + 2*l2 + l1 + 2)>>2;
1894 src[1+3*stride]=(l2 + 2*l1 + l0 + 2)>>2;
1897 src[2+3*stride]=(l1 + 2*l0 + lt + 2)>>2;
1901 src[3+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
1904 src[3+2*stride]=(lt + 2*t0 + t1 + 2)>>2;
1906 src[3+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1907 src[3+0*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1910 static void pred4x4_down_left_c(uint8_t *src, uint8_t *topright, int stride){
1915 src[0+0*stride]=(t0 + t2 + 2*t1 + 2)>>2;
1917 src[0+1*stride]=(t1 + t3 + 2*t2 + 2)>>2;
1920 src[0+2*stride]=(t2 + t4 + 2*t3 + 2)>>2;
1924 src[0+3*stride]=(t3 + t5 + 2*t4 + 2)>>2;
1927 src[1+3*stride]=(t4 + t6 + 2*t5 + 2)>>2;
1929 src[2+3*stride]=(t5 + t7 + 2*t6 + 2)>>2;
1930 src[3+3*stride]=(t6 + 3*t7 + 2)>>2;
1933 static void pred4x4_vertical_right_c(uint8_t *src, uint8_t *topright, int stride){
1934 const int lt= src[-1-1*stride];
1937 const __attribute__((unused)) int unu= l3;
1940 src[1+2*stride]=(lt + t0 + 1)>>1;
1942 src[2+2*stride]=(t0 + t1 + 1)>>1;
1944 src[3+2*stride]=(t1 + t2 + 1)>>1;
1945 src[3+0*stride]=(t2 + t3 + 1)>>1;
1947 src[1+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
1949 src[2+3*stride]=(lt + 2*t0 + t1 + 2)>>2;
1951 src[3+3*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1952 src[3+1*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1953 src[0+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
1954 src[0+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
1957 static void pred4x4_vertical_left_c(uint8_t *src, uint8_t *topright, int stride){
1960 const __attribute__((unused)) int unu= t7;
1962 src[0+0*stride]=(t0 + t1 + 1)>>1;
1964 src[0+2*stride]=(t1 + t2 + 1)>>1;
1966 src[1+2*stride]=(t2 + t3 + 1)>>1;
1968 src[2+2*stride]=(t3 + t4+ 1)>>1;
1969 src[3+2*stride]=(t4 + t5+ 1)>>1;
1970 src[0+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1972 src[0+3*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1974 src[1+3*stride]=(t2 + 2*t3 + t4 + 2)>>2;
1976 src[2+3*stride]=(t3 + 2*t4 + t5 + 2)>>2;
1977 src[3+3*stride]=(t4 + 2*t5 + t6 + 2)>>2;
1980 static void pred4x4_horizontal_up_c(uint8_t *src, uint8_t *topright, int stride){
1983 src[0+0*stride]=(l0 + l1 + 1)>>1;
1984 src[1+0*stride]=(l0 + 2*l1 + l2 + 2)>>2;
1986 src[0+1*stride]=(l1 + l2 + 1)>>1;
1988 src[1+1*stride]=(l1 + 2*l2 + l3 + 2)>>2;
1990 src[0+2*stride]=(l2 + l3 + 1)>>1;
1992 src[1+2*stride]=(l2 + 2*l3 + l3 + 2)>>2;
2001 static void pred4x4_horizontal_down_c(uint8_t *src, uint8_t *topright, int stride){
2002 const int lt= src[-1-1*stride];
2005 const __attribute__((unused)) int unu= t3;
2008 src[2+1*stride]=(lt + l0 + 1)>>1;
2010 src[3+1*stride]=(l0 + 2*lt + t0 + 2)>>2;
2011 src[2+0*stride]=(lt + 2*t0 + t1 + 2)>>2;
2012 src[3+0*stride]=(t0 + 2*t1 + t2 + 2)>>2;
2014 src[2+2*stride]=(l0 + l1 + 1)>>1;
2016 src[3+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
2018 src[2+3*stride]=(l1 + l2+ 1)>>1;
2020 src[3+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
2021 src[0+3*stride]=(l2 + l3 + 1)>>1;
2022 src[1+3*stride]=(l1 + 2*l2 + l3 + 2)>>2;
2025 static void pred16x16_vertical_c(uint8_t *src, int stride){
2027 const uint32_t a= ((uint32_t*)(src-stride))[0];
2028 const uint32_t b= ((uint32_t*)(src-stride))[1];
2029 const uint32_t c= ((uint32_t*)(src-stride))[2];
2030 const uint32_t d= ((uint32_t*)(src-stride))[3];
2032 for(i=0; i<16; i++){
2033 ((uint32_t*)(src+i*stride))[0]= a;
2034 ((uint32_t*)(src+i*stride))[1]= b;
2035 ((uint32_t*)(src+i*stride))[2]= c;
2036 ((uint32_t*)(src+i*stride))[3]= d;
2040 static void pred16x16_horizontal_c(uint8_t *src, int stride){
2043 for(i=0; i<16; i++){
2044 ((uint32_t*)(src+i*stride))[0]=
2045 ((uint32_t*)(src+i*stride))[1]=
2046 ((uint32_t*)(src+i*stride))[2]=
2047 ((uint32_t*)(src+i*stride))[3]= src[-1+i*stride]*0x01010101;
2051 static void pred16x16_dc_c(uint8_t *src, int stride){
2055 dc+= src[-1+i*stride];
2062 dc= 0x01010101*((dc + 16)>>5);
2064 for(i=0; i<16; i++){
2065 ((uint32_t*)(src+i*stride))[0]=
2066 ((uint32_t*)(src+i*stride))[1]=
2067 ((uint32_t*)(src+i*stride))[2]=
2068 ((uint32_t*)(src+i*stride))[3]= dc;
2072 static void pred16x16_left_dc_c(uint8_t *src, int stride){
2076 dc+= src[-1+i*stride];
2079 dc= 0x01010101*((dc + 8)>>4);
2081 for(i=0; i<16; i++){
2082 ((uint32_t*)(src+i*stride))[0]=
2083 ((uint32_t*)(src+i*stride))[1]=
2084 ((uint32_t*)(src+i*stride))[2]=
2085 ((uint32_t*)(src+i*stride))[3]= dc;
2089 static void pred16x16_top_dc_c(uint8_t *src, int stride){
2095 dc= 0x01010101*((dc + 8)>>4);
2097 for(i=0; i<16; i++){
2098 ((uint32_t*)(src+i*stride))[0]=
2099 ((uint32_t*)(src+i*stride))[1]=
2100 ((uint32_t*)(src+i*stride))[2]=
2101 ((uint32_t*)(src+i*stride))[3]= dc;
2105 static void pred16x16_128_dc_c(uint8_t *src, int stride){
2108 for(i=0; i<16; i++){
2109 ((uint32_t*)(src+i*stride))[0]=
2110 ((uint32_t*)(src+i*stride))[1]=
2111 ((uint32_t*)(src+i*stride))[2]=
2112 ((uint32_t*)(src+i*stride))[3]= 0x01010101U*128U;
2116 static inline void pred16x16_plane_compat_c(uint8_t *src, int stride, const int svq3){
2119 uint8_t *cm = cropTbl + MAX_NEG_CROP;
2120 const uint8_t * const src0 = src+7-stride;
2121 const uint8_t *src1 = src+8*stride-1;
2122 const uint8_t *src2 = src1-2*stride; // == src+6*stride-1;
2123 int H = src0[1] - src0[-1];
2124 int V = src1[0] - src2[ 0];
2125 for(k=2; k<=8; ++k) {
2126 src1 += stride; src2 -= stride;
2127 H += k*(src0[k] - src0[-k]);
2128 V += k*(src1[0] - src2[ 0]);
2131 H = ( 5*(H/4) ) / 16;
2132 V = ( 5*(V/4) ) / 16;
2134 /* required for 100% accuracy */
2135 i = H; H = V; V = i;
2137 H = ( 5*H+32 ) >> 6;
2138 V = ( 5*V+32 ) >> 6;
2141 a = 16*(src1[0] + src2[16] + 1) - 7*(V+H);
2142 for(j=16; j>0; --j) {
2145 for(i=-16; i<0; i+=4) {
2146 src[16+i] = cm[ (b ) >> 5 ];
2147 src[17+i] = cm[ (b+ H) >> 5 ];
2148 src[18+i] = cm[ (b+2*H) >> 5 ];
2149 src[19+i] = cm[ (b+3*H) >> 5 ];
2156 static void pred16x16_plane_c(uint8_t *src, int stride){
2157 pred16x16_plane_compat_c(src, stride, 0);
2160 static void pred8x8_vertical_c(uint8_t *src, int stride){
2162 const uint32_t a= ((uint32_t*)(src-stride))[0];
2163 const uint32_t b= ((uint32_t*)(src-stride))[1];
2166 ((uint32_t*)(src+i*stride))[0]= a;
2167 ((uint32_t*)(src+i*stride))[1]= b;
2171 static void pred8x8_horizontal_c(uint8_t *src, int stride){
2175 ((uint32_t*)(src+i*stride))[0]=
2176 ((uint32_t*)(src+i*stride))[1]= src[-1+i*stride]*0x01010101;
2180 static void pred8x8_128_dc_c(uint8_t *src, int stride){
2184 ((uint32_t*)(src+i*stride))[0]=
2185 ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
2188 ((uint32_t*)(src+i*stride))[0]=
2189 ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
2193 static void pred8x8_left_dc_c(uint8_t *src, int stride){
2199 dc0+= src[-1+i*stride];
2200 dc2+= src[-1+(i+4)*stride];
2202 dc0= 0x01010101*((dc0 + 2)>>2);
2203 dc2= 0x01010101*((dc2 + 2)>>2);
2206 ((uint32_t*)(src+i*stride))[0]=
2207 ((uint32_t*)(src+i*stride))[1]= dc0;
2210 ((uint32_t*)(src+i*stride))[0]=
2211 ((uint32_t*)(src+i*stride))[1]= dc2;
2215 static void pred8x8_top_dc_c(uint8_t *src, int stride){
2221 dc0+= src[i-stride];
2222 dc1+= src[4+i-stride];
2224 dc0= 0x01010101*((dc0 + 2)>>2);
2225 dc1= 0x01010101*((dc1 + 2)>>2);
2228 ((uint32_t*)(src+i*stride))[0]= dc0;
2229 ((uint32_t*)(src+i*stride))[1]= dc1;
2232 ((uint32_t*)(src+i*stride))[0]= dc0;
2233 ((uint32_t*)(src+i*stride))[1]= dc1;
2238 static void pred8x8_dc_c(uint8_t *src, int stride){
2240 int dc0, dc1, dc2, dc3;
2244 dc0+= src[-1+i*stride] + src[i-stride];
2245 dc1+= src[4+i-stride];
2246 dc2+= src[-1+(i+4)*stride];
2248 dc3= 0x01010101*((dc1 + dc2 + 4)>>3);
2249 dc0= 0x01010101*((dc0 + 4)>>3);
2250 dc1= 0x01010101*((dc1 + 2)>>2);
2251 dc2= 0x01010101*((dc2 + 2)>>2);
2254 ((uint32_t*)(src+i*stride))[0]= dc0;
2255 ((uint32_t*)(src+i*stride))[1]= dc1;
2258 ((uint32_t*)(src+i*stride))[0]= dc2;
2259 ((uint32_t*)(src+i*stride))[1]= dc3;
2263 static void pred8x8_plane_c(uint8_t *src, int stride){
2266 uint8_t *cm = cropTbl + MAX_NEG_CROP;
2267 const uint8_t * const src0 = src+3-stride;
2268 const uint8_t *src1 = src+4*stride-1;
2269 const uint8_t *src2 = src1-2*stride; // == src+2*stride-1;
2270 int H = src0[1] - src0[-1];
2271 int V = src1[0] - src2[ 0];
2272 for(k=2; k<=4; ++k) {
2273 src1 += stride; src2 -= stride;
2274 H += k*(src0[k] - src0[-k]);
2275 V += k*(src1[0] - src2[ 0]);
2277 H = ( 17*H+16 ) >> 5;
2278 V = ( 17*V+16 ) >> 5;
2280 a = 16*(src1[0] + src2[8]+1) - 3*(V+H);
2281 for(j=8; j>0; --j) {
2284 src[0] = cm[ (b ) >> 5 ];
2285 src[1] = cm[ (b+ H) >> 5 ];
2286 src[2] = cm[ (b+2*H) >> 5 ];
2287 src[3] = cm[ (b+3*H) >> 5 ];
2288 src[4] = cm[ (b+4*H) >> 5 ];
2289 src[5] = cm[ (b+5*H) >> 5 ];
2290 src[6] = cm[ (b+6*H) >> 5 ];
2291 src[7] = cm[ (b+7*H) >> 5 ];
2296 static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
2297 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2298 int src_x_offset, int src_y_offset,
2299 qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
2300 MpegEncContext * const s = &h->s;
2301 const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
2302 const int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
2303 const int luma_xy= (mx&3) + ((my&3)<<2);
2304 uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*s->linesize;
2305 uint8_t * src_cb= pic->data[1] + (mx>>3) + (my>>3)*s->uvlinesize;
2306 uint8_t * src_cr= pic->data[2] + (mx>>3) + (my>>3)*s->uvlinesize;
2307 int extra_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16; //FIXME increase edge?, IMHO not worth it
2308 int extra_height= extra_width;
2310 const int full_mx= mx>>2;
2311 const int full_my= my>>2;
2313 assert(pic->data[0]);
2315 if(mx&7) extra_width -= 3;
2316 if(my&7) extra_height -= 3;
2318 if( full_mx < 0-extra_width
2319 || full_my < 0-extra_height
2320 || full_mx + 16/*FIXME*/ > s->width + extra_width
2321 || full_my + 16/*FIXME*/ > s->height + extra_height){
2322 ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*s->linesize, s->linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, s->width, s->height);
2323 src_y= s->edge_emu_buffer + 2 + 2*s->linesize;
2327 qpix_op[luma_xy](dest_y, src_y, s->linesize); //FIXME try variable height perhaps?
2329 qpix_op[luma_xy](dest_y + delta, src_y + delta, s->linesize);
2332 if(s->flags&CODEC_FLAG_GRAY) return;
2335 ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), s->width>>1, s->height>>1);
2336 src_cb= s->edge_emu_buffer;
2338 chroma_op(dest_cb, src_cb, s->uvlinesize, chroma_height, mx&7, my&7);
2341 ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), s->width>>1, s->height>>1);
2342 src_cr= s->edge_emu_buffer;
2344 chroma_op(dest_cr, src_cr, s->uvlinesize, chroma_height, mx&7, my&7);
2347 static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
2348 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2349 int x_offset, int y_offset,
2350 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
2351 qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
2352 int list0, int list1){
2353 MpegEncContext * const s = &h->s;
2354 qpel_mc_func *qpix_op= qpix_put;
2355 h264_chroma_mc_func chroma_op= chroma_put;
2357 dest_y += 2*x_offset + 2*y_offset*s-> linesize;
2358 dest_cb += x_offset + y_offset*s->uvlinesize;
2359 dest_cr += x_offset + y_offset*s->uvlinesize;
2360 x_offset += 8*s->mb_x;
2361 y_offset += 8*s->mb_y;
2364 Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
2365 mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
2366 dest_y, dest_cb, dest_cr, x_offset, y_offset,
2367 qpix_op, chroma_op);
2370 chroma_op= chroma_avg;
2374 Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
2375 mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
2376 dest_y, dest_cb, dest_cr, x_offset, y_offset,
2377 qpix_op, chroma_op);
2381 static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
2382 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2383 int x_offset, int y_offset,
2384 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
2385 h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
2386 h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
2387 int list0, int list1){
2388 MpegEncContext * const s = &h->s;
2390 dest_y += 2*x_offset + 2*y_offset*s-> linesize;
2391 dest_cb += x_offset + y_offset*s->uvlinesize;
2392 dest_cr += x_offset + y_offset*s->uvlinesize;
2393 x_offset += 8*s->mb_x;
2394 y_offset += 8*s->mb_y;
2397 /* don't optimize for luma-only case, since B-frames usually
2398 * use implicit weights => chroma too. */
2399 uint8_t *tmp_cb = s->obmc_scratchpad;
2400 uint8_t *tmp_cr = tmp_cb + 8*s->uvlinesize;
2401 uint8_t *tmp_y = tmp_cr + 8*s->uvlinesize;
2402 int refn0 = h->ref_cache[0][ scan8[n] ];
2403 int refn1 = h->ref_cache[1][ scan8[n] ];
2405 mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
2406 dest_y, dest_cb, dest_cr,
2407 x_offset, y_offset, qpix_put, chroma_put);
2408 mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
2409 tmp_y, tmp_cb, tmp_cr,
2410 x_offset, y_offset, qpix_put, chroma_put);
2412 if(h->use_weight == 2){
2413 int weight0 = h->implicit_weight[refn0][refn1];
2414 int weight1 = 64 - weight0;
2415 luma_weight_avg( dest_y, tmp_y, s-> linesize, 5, weight0, weight1, 0, 0);
2416 chroma_weight_avg(dest_cb, tmp_cb, s->uvlinesize, 5, weight0, weight1, 0, 0);
2417 chroma_weight_avg(dest_cr, tmp_cr, s->uvlinesize, 5, weight0, weight1, 0, 0);
2419 luma_weight_avg(dest_y, tmp_y, s->linesize, h->luma_log2_weight_denom,
2420 h->luma_weight[0][refn0], h->luma_weight[1][refn1],
2421 h->luma_offset[0][refn0], h->luma_offset[1][refn1]);
2422 chroma_weight_avg(dest_cb, tmp_cb, s->uvlinesize, h->chroma_log2_weight_denom,
2423 h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0],
2424 h->chroma_offset[0][refn0][0], h->chroma_offset[1][refn1][0]);
2425 chroma_weight_avg(dest_cr, tmp_cr, s->uvlinesize, h->chroma_log2_weight_denom,
2426 h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1],
2427 h->chroma_offset[0][refn0][1], h->chroma_offset[1][refn1][1]);
2430 int list = list1 ? 1 : 0;
2431 int refn = h->ref_cache[list][ scan8[n] ];
2432 Picture *ref= &h->ref_list[list][refn];
2433 mc_dir_part(h, ref, n, square, chroma_height, delta, list,
2434 dest_y, dest_cb, dest_cr, x_offset, y_offset,
2435 qpix_put, chroma_put);
2437 luma_weight_op(dest_y, s->linesize, h->luma_log2_weight_denom,
2438 h->luma_weight[list][refn], h->luma_offset[list][refn]);
2439 if(h->use_weight_chroma){
2440 chroma_weight_op(dest_cb, s->uvlinesize, h->chroma_log2_weight_denom,
2441 h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]);
2442 chroma_weight_op(dest_cr, s->uvlinesize, h->chroma_log2_weight_denom,
2443 h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]);
2448 static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
2449 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2450 int x_offset, int y_offset,
2451 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
2452 qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
2453 h264_weight_func *weight_op, h264_biweight_func *weight_avg,
2454 int list0, int list1){
2455 if((h->use_weight==2 && list0 && list1
2456 && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32))
2457 || h->use_weight==1)
2458 mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
2459 x_offset, y_offset, qpix_put, chroma_put,
2460 weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
2462 mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
2463 x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
2466 static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2467 qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
2468 qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
2469 h264_weight_func *weight_op, h264_biweight_func *weight_avg){
2470 MpegEncContext * const s = &h->s;
2471 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
2472 const int mb_type= s->current_picture.mb_type[mb_xy];
2474 assert(IS_INTER(mb_type));
2476 if(IS_16X16(mb_type)){
2477 mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
2478 qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
2479 &weight_op[0], &weight_avg[0],
2480 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
2481 }else if(IS_16X8(mb_type)){
2482 mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
2483 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
2484 &weight_op[1], &weight_avg[1],
2485 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
2486 mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
2487 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
2488 &weight_op[1], &weight_avg[1],
2489 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
2490 }else if(IS_8X16(mb_type)){
2491 mc_part(h, 0, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 0, 0,
2492 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
2493 &weight_op[2], &weight_avg[2],
2494 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
2495 mc_part(h, 4, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 4, 0,
2496 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
2497 &weight_op[2], &weight_avg[2],
2498 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
2502 assert(IS_8X8(mb_type));
2505 const int sub_mb_type= h->sub_mb_type[i];
2507 int x_offset= (i&1)<<2;
2508 int y_offset= (i&2)<<1;
2510 if(IS_SUB_8X8(sub_mb_type)){
2511 mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
2512 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
2513 &weight_op[3], &weight_avg[3],
2514 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2515 }else if(IS_SUB_8X4(sub_mb_type)){
2516 mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
2517 qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
2518 &weight_op[4], &weight_avg[4],
2519 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2520 mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
2521 qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
2522 &weight_op[4], &weight_avg[4],
2523 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2524 }else if(IS_SUB_4X8(sub_mb_type)){
2525 mc_part(h, n , 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
2526 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2527 &weight_op[5], &weight_avg[5],
2528 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2529 mc_part(h, n+1, 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
2530 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2531 &weight_op[5], &weight_avg[5],
2532 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2535 assert(IS_SUB_4X4(sub_mb_type));
2537 int sub_x_offset= x_offset + 2*(j&1);
2538 int sub_y_offset= y_offset + (j&2);
2539 mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
2540 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2541 &weight_op[6], &weight_avg[6],
2542 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2549 static void decode_init_vlc(H264Context *h){
2550 static int done = 0;
2556 init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
2557 &chroma_dc_coeff_token_len [0], 1, 1,
2558 &chroma_dc_coeff_token_bits[0], 1, 1, 1);
2561 init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
2562 &coeff_token_len [i][0], 1, 1,
2563 &coeff_token_bits[i][0], 1, 1, 1);
2567 init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
2568 &chroma_dc_total_zeros_len [i][0], 1, 1,
2569 &chroma_dc_total_zeros_bits[i][0], 1, 1, 1);
2571 for(i=0; i<15; i++){
2572 init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16,
2573 &total_zeros_len [i][0], 1, 1,
2574 &total_zeros_bits[i][0], 1, 1, 1);
2578 init_vlc(&run_vlc[i], RUN_VLC_BITS, 7,
2579 &run_len [i][0], 1, 1,
2580 &run_bits[i][0], 1, 1, 1);
2582 init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
2583 &run_len [6][0], 1, 1,
2584 &run_bits[6][0], 1, 1, 1);
2589 * Sets the intra prediction function pointers.
2591 static void init_pred_ptrs(H264Context *h){
2592 // MpegEncContext * const s = &h->s;
2594 h->pred4x4[VERT_PRED ]= pred4x4_vertical_c;
2595 h->pred4x4[HOR_PRED ]= pred4x4_horizontal_c;
2596 h->pred4x4[DC_PRED ]= pred4x4_dc_c;
2597 h->pred4x4[DIAG_DOWN_LEFT_PRED ]= pred4x4_down_left_c;
2598 h->pred4x4[DIAG_DOWN_RIGHT_PRED]= pred4x4_down_right_c;
2599 h->pred4x4[VERT_RIGHT_PRED ]= pred4x4_vertical_right_c;
2600 h->pred4x4[HOR_DOWN_PRED ]= pred4x4_horizontal_down_c;
2601 h->pred4x4[VERT_LEFT_PRED ]= pred4x4_vertical_left_c;
2602 h->pred4x4[HOR_UP_PRED ]= pred4x4_horizontal_up_c;
2603 h->pred4x4[LEFT_DC_PRED ]= pred4x4_left_dc_c;
2604 h->pred4x4[TOP_DC_PRED ]= pred4x4_top_dc_c;
2605 h->pred4x4[DC_128_PRED ]= pred4x4_128_dc_c;
2607 h->pred8x8[DC_PRED8x8 ]= pred8x8_dc_c;
2608 h->pred8x8[VERT_PRED8x8 ]= pred8x8_vertical_c;
2609 h->pred8x8[HOR_PRED8x8 ]= pred8x8_horizontal_c;
2610 h->pred8x8[PLANE_PRED8x8 ]= pred8x8_plane_c;
2611 h->pred8x8[LEFT_DC_PRED8x8]= pred8x8_left_dc_c;
2612 h->pred8x8[TOP_DC_PRED8x8 ]= pred8x8_top_dc_c;
2613 h->pred8x8[DC_128_PRED8x8 ]= pred8x8_128_dc_c;
2615 h->pred16x16[DC_PRED8x8 ]= pred16x16_dc_c;
2616 h->pred16x16[VERT_PRED8x8 ]= pred16x16_vertical_c;
2617 h->pred16x16[HOR_PRED8x8 ]= pred16x16_horizontal_c;
2618 h->pred16x16[PLANE_PRED8x8 ]= pred16x16_plane_c;
2619 h->pred16x16[LEFT_DC_PRED8x8]= pred16x16_left_dc_c;
2620 h->pred16x16[TOP_DC_PRED8x8 ]= pred16x16_top_dc_c;
2621 h->pred16x16[DC_128_PRED8x8 ]= pred16x16_128_dc_c;
2624 static void free_tables(H264Context *h){
2625 av_freep(&h->intra4x4_pred_mode);
2626 av_freep(&h->chroma_pred_mode_table);
2627 av_freep(&h->cbp_table);
2628 av_freep(&h->mvd_table[0]);
2629 av_freep(&h->mvd_table[1]);
2630 av_freep(&h->direct_table);
2631 av_freep(&h->non_zero_count);
2632 av_freep(&h->slice_table_base);
2633 av_freep(&h->top_borders[1]);
2634 av_freep(&h->top_borders[0]);
2635 h->slice_table= NULL;
2637 av_freep(&h->mb2b_xy);
2638 av_freep(&h->mb2b8_xy);
2640 av_freep(&h->s.obmc_scratchpad);
2645 * needs widzh/height
2647 static int alloc_tables(H264Context *h){
2648 MpegEncContext * const s = &h->s;
2649 const int big_mb_num= s->mb_stride * (s->mb_height+1);
2652 CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t))
2654 CHECKED_ALLOCZ(h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t))
2655 CHECKED_ALLOCZ(h->slice_table_base , big_mb_num * sizeof(uint8_t))
2656 CHECKED_ALLOCZ(h->top_borders[0] , s->mb_width * (16+8+8) * sizeof(uint8_t))
2657 CHECKED_ALLOCZ(h->top_borders[1] , s->mb_width * (16+8+8) * sizeof(uint8_t))
2658 CHECKED_ALLOCZ(h->cbp_table, big_mb_num * sizeof(uint16_t))
2660 if( h->pps.cabac ) {
2661 CHECKED_ALLOCZ(h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t))
2662 CHECKED_ALLOCZ(h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t));
2663 CHECKED_ALLOCZ(h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t));
2664 CHECKED_ALLOCZ(h->direct_table, 32*big_mb_num * sizeof(uint8_t));
2667 memset(h->slice_table_base, -1, big_mb_num * sizeof(uint8_t));
2668 h->slice_table= h->slice_table_base + s->mb_stride + 1;
2670 CHECKED_ALLOCZ(h->mb2b_xy , big_mb_num * sizeof(uint16_t));
2671 CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint16_t));
2672 for(y=0; y<s->mb_height; y++){
2673 for(x=0; x<s->mb_width; x++){
2674 const int mb_xy= x + y*s->mb_stride;
2675 const int b_xy = 4*x + 4*y*h->b_stride;
2676 const int b8_xy= 2*x + 2*y*h->b8_stride;
2678 h->mb2b_xy [mb_xy]= b_xy;
2679 h->mb2b8_xy[mb_xy]= b8_xy;
2683 s->obmc_scratchpad = NULL;
2691 static void common_init(H264Context *h){
2692 MpegEncContext * const s = &h->s;
2694 s->width = s->avctx->width;
2695 s->height = s->avctx->height;
2696 s->codec_id= s->avctx->codec->id;
2700 s->unrestricted_mv=1;
2701 s->decode=1; //FIXME
2704 static int decode_init(AVCodecContext *avctx){
2705 H264Context *h= avctx->priv_data;
2706 MpegEncContext * const s = &h->s;
2708 MPV_decode_defaults(s);
2713 s->out_format = FMT_H264;
2714 s->workaround_bugs= avctx->workaround_bugs;
2717 // s->decode_mb= ff_h263_decode_mb;
2719 avctx->pix_fmt= PIX_FMT_YUV420P;
2723 if(avctx->extradata_size > 0 && avctx->extradata &&
2724 *(char *)avctx->extradata == 1){
2734 static void frame_start(H264Context *h){
2735 MpegEncContext * const s = &h->s;
2738 MPV_frame_start(s, s->avctx);
2739 ff_er_frame_start(s);
2741 assert(s->linesize && s->uvlinesize);
2743 for(i=0; i<16; i++){
2744 h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
2745 h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
2748 h->block_offset[16+i]=
2749 h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2750 h->block_offset[24+16+i]=
2751 h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2754 /* can't be in alloc_tables because linesize isn't known there.
2755 * FIXME: redo bipred weight to not require extra buffer? */
2756 if(!s->obmc_scratchpad)
2757 s->obmc_scratchpad = av_malloc(16*s->linesize + 2*8*s->uvlinesize);
2759 // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
2762 static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
2763 MpegEncContext * const s = &h->s;
2767 src_cb -= uvlinesize;
2768 src_cr -= uvlinesize;
2770 // There is two lines saved, the line above the the top macroblock of a pair,
2771 // and the line above the bottom macroblock
2772 h->left_border[0]= h->top_borders[0][s->mb_x][15];
2773 for(i=1; i<17; i++){
2774 h->left_border[i]= src_y[15+i* linesize];
2777 *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 16*linesize);
2778 *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
2780 if(!(s->flags&CODEC_FLAG_GRAY)){
2781 h->left_border[17 ]= h->top_borders[0][s->mb_x][16+7];
2782 h->left_border[17+9]= h->top_borders[0][s->mb_x][24+7];
2784 h->left_border[i+17 ]= src_cb[7+i*uvlinesize];
2785 h->left_border[i+17+9]= src_cr[7+i*uvlinesize];
2787 *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
2788 *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
2792 static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
2793 MpegEncContext * const s = &h->s;
2796 int deblock_left = (s->mb_x > 0);
2797 int deblock_top = (s->mb_y > 0);
2799 src_y -= linesize + 1;
2800 src_cb -= uvlinesize + 1;
2801 src_cr -= uvlinesize + 1;
2803 #define XCHG(a,b,t,xchg)\
2810 for(i = !deblock_top; i<17; i++){
2811 XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
2816 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
2817 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
2820 if(!(s->flags&CODEC_FLAG_GRAY)){
2822 for(i = !deblock_top; i<9; i++){
2823 XCHG(h->left_border[i+17 ], src_cb[i*uvlinesize], temp8, xchg);
2824 XCHG(h->left_border[i+17+9], src_cr[i*uvlinesize], temp8, xchg);
2828 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
2829 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
2834 static inline void backup_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
2835 MpegEncContext * const s = &h->s;
2838 src_y -= 2 * linesize;
2839 src_cb -= 2 * uvlinesize;
2840 src_cr -= 2 * uvlinesize;
2842 // There is two lines saved, the line above the the top macroblock of a pair,
2843 // and the line above the bottom macroblock
2844 h->left_border[0]= h->top_borders[0][s->mb_x][15];
2845 h->left_border[1]= h->top_borders[1][s->mb_x][15];
2846 for(i=2; i<34; i++){
2847 h->left_border[i]= src_y[15+i* linesize];
2850 *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 32*linesize);
2851 *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+32*linesize);
2852 *(uint64_t*)(h->top_borders[1][s->mb_x]+0)= *(uint64_t*)(src_y + 33*linesize);
2853 *(uint64_t*)(h->top_borders[1][s->mb_x]+8)= *(uint64_t*)(src_y +8+33*linesize);
2855 if(!(s->flags&CODEC_FLAG_GRAY)){
2856 h->left_border[34 ]= h->top_borders[0][s->mb_x][16+7];
2857 h->left_border[34+ 1]= h->top_borders[1][s->mb_x][16+7];
2858 h->left_border[34+18 ]= h->top_borders[0][s->mb_x][24+7];
2859 h->left_border[34+18+1]= h->top_borders[1][s->mb_x][24+7];
2860 for(i=2; i<18; i++){
2861 h->left_border[i+34 ]= src_cb[7+i*uvlinesize];
2862 h->left_border[i+34+18]= src_cr[7+i*uvlinesize];
2864 *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+16*uvlinesize);
2865 *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+16*uvlinesize);
2866 *(uint64_t*)(h->top_borders[1][s->mb_x]+16)= *(uint64_t*)(src_cb+17*uvlinesize);
2867 *(uint64_t*)(h->top_borders[1][s->mb_x]+24)= *(uint64_t*)(src_cr+17*uvlinesize);
2871 static inline void xchg_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
2872 MpegEncContext * const s = &h->s;
2875 int deblock_left = (s->mb_x > 0);
2876 int deblock_top = (s->mb_y > 0);
2878 tprintf("xchg_pair_border: src_y:%p src_cb:%p src_cr:%p ls:%d uvls:%d\n", src_y, src_cb, src_cr, linesize, uvlinesize);
2880 src_y -= 2 * linesize + 1;
2881 src_cb -= 2 * uvlinesize + 1;
2882 src_cr -= 2 * uvlinesize + 1;
2884 #define XCHG(a,b,t,xchg)\
2891 for(i = (!deblock_top)<<1; i<34; i++){
2892 XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
2897 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
2898 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
2899 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+0), *(uint64_t*)(src_y +1 +linesize), temp64, xchg);
2900 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+8), *(uint64_t*)(src_y +9 +linesize), temp64, 1);
2903 if(!(s->flags&CODEC_FLAG_GRAY)){
2905 for(i = (!deblock_top) << 1; i<18; i++){
2906 XCHG(h->left_border[i+34 ], src_cb[i*uvlinesize], temp8, xchg);
2907 XCHG(h->left_border[i+34+18], src_cr[i*uvlinesize], temp8, xchg);
2911 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
2912 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
2913 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+16), *(uint64_t*)(src_cb+1 +uvlinesize), temp64, 1);
2914 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+24), *(uint64_t*)(src_cr+1 +uvlinesize), temp64, 1);
2919 static void hl_decode_mb(H264Context *h){
2920 MpegEncContext * const s = &h->s;
2921 const int mb_x= s->mb_x;
2922 const int mb_y= s->mb_y;
2923 const int mb_xy= mb_x + mb_y*s->mb_stride;
2924 const int mb_type= s->current_picture.mb_type[mb_xy];
2925 uint8_t *dest_y, *dest_cb, *dest_cr;
2926 int linesize, uvlinesize /*dct_offset*/;
2928 int *block_offset = &h->block_offset[0];
2929 const unsigned int bottom = mb_y & 1;
2934 dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
2935 dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2936 dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2938 if (h->mb_field_decoding_flag) {
2939 linesize = s->linesize * 2;
2940 uvlinesize = s->uvlinesize * 2;
2941 block_offset = &h->block_offset[24];
2942 if(mb_y&1){ //FIXME move out of this func?
2943 dest_y -= s->linesize*15;
2944 dest_cb-= s->uvlinesize*7;
2945 dest_cr-= s->uvlinesize*7;
2948 linesize = s->linesize;
2949 uvlinesize = s->uvlinesize;
2950 // dct_offset = s->linesize * 16;
2953 if (IS_INTRA_PCM(mb_type)) {
2956 // The pixels are stored in h->mb array in the same order as levels,
2957 // copy them in output in the correct order.
2958 for(i=0; i<16; i++) {
2959 for (y=0; y<4; y++) {
2960 for (x=0; x<4; x++) {
2961 *(dest_y + block_offset[i] + y*linesize + x) = h->mb[i*16+y*4+x];
2965 for(i=16; i<16+4; i++) {
2966 for (y=0; y<4; y++) {
2967 for (x=0; x<4; x++) {
2968 *(dest_cb + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
2972 for(i=20; i<20+4; i++) {
2973 for (y=0; y<4; y++) {
2974 for (x=0; x<4; x++) {
2975 *(dest_cr + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
2980 if(IS_INTRA(mb_type)){
2981 if(h->deblocking_filter) {
2982 if (h->mb_aff_frame) {
2984 xchg_pair_border(h, dest_y, dest_cb, dest_cr, s->linesize, s->uvlinesize, 1);
2986 xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1);
2990 if(!(s->flags&CODEC_FLAG_GRAY)){
2991 h->pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
2992 h->pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
2995 if(IS_INTRA4x4(mb_type)){
2997 for(i=0; i<16; i++){
2998 uint8_t * const ptr= dest_y + block_offset[i];
3000 const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
3003 if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
3004 const int topright_avail= (h->topright_samples_available<<i)&0x8000;
3005 assert(mb_y || linesize <= block_offset[i]);
3006 if(!topright_avail){
3007 tr= ptr[3 - linesize]*0x01010101;
3008 topright= (uint8_t*) &tr;
3009 }else if(i==5 && h->deblocking_filter){
3010 tr= *(uint32_t*)h->top_borders[h->mb_aff_frame ? IS_INTERLACED(mb_type) ? bottom : 1 : 0][mb_x+1];
3011 topright= (uint8_t*) &tr;
3013 topright= ptr + 4 - linesize;
3017 h->pred4x4[ dir ](ptr, topright, linesize);
3018 if(h->non_zero_count_cache[ scan8[i] ]){
3019 if(s->codec_id == CODEC_ID_H264)
3020 s->dsp.h264_idct_add(ptr, h->mb + i*16, linesize);
3022 svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
3027 h->pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
3028 if(s->codec_id == CODEC_ID_H264)
3029 h264_luma_dc_dequant_idct_c(h->mb, s->qscale);
3031 svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
3033 if(h->deblocking_filter) {
3034 if (h->mb_aff_frame) {
3036 uint8_t *pair_dest_y = s->current_picture.data[0] + ((mb_y-1) * 16* s->linesize ) + mb_x * 16;
3037 uint8_t *pair_dest_cb = s->current_picture.data[1] + ((mb_y-1) * 8 * s->uvlinesize) + mb_x * 8;
3038 uint8_t *pair_dest_cr = s->current_picture.data[2] + ((mb_y-1) * 8 * s->uvlinesize) + mb_x * 8;
3040 xchg_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize, 0);
3044 xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0);
3047 }else if(s->codec_id == CODEC_ID_H264){
3048 hl_motion(h, dest_y, dest_cb, dest_cr,
3049 s->dsp.put_h264_qpel_pixels_tab, s->dsp.put_h264_chroma_pixels_tab,
3050 s->dsp.avg_h264_qpel_pixels_tab, s->dsp.avg_h264_chroma_pixels_tab,
3051 s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab);
3055 if(!IS_INTRA4x4(mb_type)){
3056 if(s->codec_id == CODEC_ID_H264){
3057 for(i=0; i<16; i++){
3058 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
3059 uint8_t * const ptr= dest_y + block_offset[i];
3060 s->dsp.h264_idct_add(ptr, h->mb + i*16, linesize);
3064 for(i=0; i<16; i++){
3065 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
3066 uint8_t * const ptr= dest_y + block_offset[i];
3067 svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
3073 if(!(s->flags&CODEC_FLAG_GRAY)){
3074 chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp);
3075 chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp);
3076 if(s->codec_id == CODEC_ID_H264){
3077 for(i=16; i<16+4; i++){
3078 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
3079 uint8_t * const ptr= dest_cb + block_offset[i];
3080 s->dsp.h264_idct_add(ptr, h->mb + i*16, uvlinesize);
3083 for(i=20; i<20+4; i++){
3084 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
3085 uint8_t * const ptr= dest_cr + block_offset[i];
3086 s->dsp.h264_idct_add(ptr, h->mb + i*16, uvlinesize);
3090 for(i=16; i<16+4; i++){
3091 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
3092 uint8_t * const ptr= dest_cb + block_offset[i];
3093 svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
3096 for(i=20; i<20+4; i++){
3097 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
3098 uint8_t * const ptr= dest_cr + block_offset[i];
3099 svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
3105 if(h->deblocking_filter) {
3106 if (h->mb_aff_frame) {
3107 const int mb_y = s->mb_y - 1;
3108 uint8_t *pair_dest_y, *pair_dest_cb, *pair_dest_cr;
3109 const int mb_xy= mb_x + mb_y*s->mb_stride;
3110 const int mb_type_top = s->current_picture.mb_type[mb_xy];
3111 const int mb_type_bottom= s->current_picture.mb_type[mb_xy+s->mb_stride];
3112 uint8_t tmp = s->current_picture.data[1][384];
3113 if (!bottom) return;
3114 pair_dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
3115 pair_dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
3116 pair_dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
3118 backup_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize);
3119 // TODO deblock a pair
3122 tprintf("call mbaff filter_mb mb_x:%d mb_y:%d pair_dest_y = %p, dest_y = %p\n", mb_x, mb_y, pair_dest_y, dest_y);
3123 fill_caches(h, mb_type_top, 1); //FIXME dont fill stuff which isnt used by filter_mb
3124 filter_mb(h, mb_x, mb_y, pair_dest_y, pair_dest_cb, pair_dest_cr, linesize, uvlinesize);
3125 if (tmp != s->current_picture.data[1][384]) {
3126 tprintf("modified pixel 8,1 (1)\n");
3130 tprintf("call mbaff filter_mb\n");
3131 fill_caches(h, mb_type_bottom, 1); //FIXME dont fill stuff which isnt used by filter_mb
3132 filter_mb(h, mb_x, mb_y+1, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
3133 if (tmp != s->current_picture.data[1][384]) {
3134 tprintf("modified pixel 8,1 (2)\n");
3137 tprintf("call filter_mb\n");
3138 backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
3139 fill_caches(h, mb_type, 1); //FIXME dont fill stuff which isnt used by filter_mb
3140 filter_mb(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
3146 * fills the default_ref_list.
3148 static int fill_default_ref_list(H264Context *h){
3149 MpegEncContext * const s = &h->s;
3151 int smallest_poc_greater_than_current = -1;
3152 Picture sorted_short_ref[32];
3154 if(h->slice_type==B_TYPE){
3158 /* sort frame according to poc in B slice */
3159 for(out_i=0; out_i<h->short_ref_count; out_i++){
3161 int best_poc=INT_MAX;
3163 for(i=0; i<h->short_ref_count; i++){
3164 const int poc= h->short_ref[i]->poc;
3165 if(poc > limit && poc < best_poc){
3171 assert(best_i != -1);
3174 sorted_short_ref[out_i]= *h->short_ref[best_i];
3175 tprintf("sorted poc: %d->%d poc:%d fn:%d\n", best_i, out_i, sorted_short_ref[out_i].poc, sorted_short_ref[out_i].frame_num);
3176 if (-1 == smallest_poc_greater_than_current) {
3177 if (h->short_ref[best_i]->poc >= s->current_picture_ptr->poc) {
3178 smallest_poc_greater_than_current = out_i;
3184 if(s->picture_structure == PICT_FRAME){
3185 if(h->slice_type==B_TYPE){
3187 tprintf("current poc: %d, smallest_poc_greater_than_current: %d\n", s->current_picture_ptr->poc, smallest_poc_greater_than_current);
3189 // find the largest poc
3190 for(list=0; list<2; list++){
3193 int step= list ? -1 : 1;
3195 for(i=0; i<h->short_ref_count && index < h->ref_count[list]; i++, j+=step) {
3196 while(j<0 || j>= h->short_ref_count){
3198 j= smallest_poc_greater_than_current + (step>>1);
3200 if(sorted_short_ref[j].reference != 3) continue;
3201 h->default_ref_list[list][index ]= sorted_short_ref[j];
3202 h->default_ref_list[list][index++].pic_id= sorted_short_ref[j].frame_num;
3205 for(i = 0; i < 16 && index < h->ref_count[ list ]; i++){
3206 if(h->long_ref[i] == NULL) continue;
3207 if(h->long_ref[i]->reference != 3) continue;
3209 h->default_ref_list[ list ][index ]= *h->long_ref[i];
3210 h->default_ref_list[ list ][index++].pic_id= i;;
3213 if(list && (smallest_poc_greater_than_current<=0 || smallest_poc_greater_than_current>=h->short_ref_count) && (1 < index)){
3214 // swap the two first elements of L1 when
3215 // L0 and L1 are identical
3216 Picture temp= h->default_ref_list[1][0];
3217 h->default_ref_list[1][0] = h->default_ref_list[1][1];
3218 h->default_ref_list[1][0] = temp;
3221 if(index < h->ref_count[ list ])
3222 memset(&h->default_ref_list[list][index], 0, sizeof(Picture)*(h->ref_count[ list ] - index));
3226 for(i=0; i<h->short_ref_count; i++){
3227 if(h->short_ref[i]->reference != 3) continue; //FIXME refernce field shit
3228 h->default_ref_list[0][index ]= *h->short_ref[i];
3229 h->default_ref_list[0][index++].pic_id= h->short_ref[i]->frame_num;
3231 for(i = 0; i < 16; i++){
3232 if(h->long_ref[i] == NULL) continue;
3233 if(h->long_ref[i]->reference != 3) continue;
3234 h->default_ref_list[0][index ]= *h->long_ref[i];
3235 h->default_ref_list[0][index++].pic_id= i;;
3237 if(index < h->ref_count[0])
3238 memset(&h->default_ref_list[0][index], 0, sizeof(Picture)*(h->ref_count[0] - index));
3241 if(h->slice_type==B_TYPE){
3243 //FIXME second field balh
3247 for (i=0; i<h->ref_count[0]; i++) {
3248 tprintf("List0: %s fn:%d 0x%p\n", (h->default_ref_list[0][i].long_ref ? "LT" : "ST"), h->default_ref_list[0][i].pic_id, h->default_ref_list[0][i].data[0]);
3250 if(h->slice_type==B_TYPE){
3251 for (i=0; i<h->ref_count[1]; i++) {
3252 tprintf("List1: %s fn:%d 0x%p\n", (h->default_ref_list[1][i].long_ref ? "LT" : "ST"), h->default_ref_list[1][i].pic_id, h->default_ref_list[0][i].data[0]);
3259 static void print_short_term(H264Context *h);
3260 static void print_long_term(H264Context *h);
3262 static int decode_ref_pic_list_reordering(H264Context *h){
3263 MpegEncContext * const s = &h->s;
3266 print_short_term(h);
3268 if(h->slice_type==I_TYPE || h->slice_type==SI_TYPE) return 0; //FIXME move beofre func
3270 for(list=0; list<2; list++){
3271 memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
3273 if(get_bits1(&s->gb)){
3274 int pred= h->curr_pic_num;
3277 for(index=0; ; index++){
3278 int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb);
3281 Picture *ref = NULL;
3283 if(reordering_of_pic_nums_idc==3)
3286 if(index >= h->ref_count[list]){
3287 av_log(h->s.avctx, AV_LOG_ERROR, "reference count overflow\n");
3291 if(reordering_of_pic_nums_idc<3){
3292 if(reordering_of_pic_nums_idc<2){
3293 const int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1;
3295 if(abs_diff_pic_num >= h->max_pic_num){
3296 av_log(h->s.avctx, AV_LOG_ERROR, "abs_diff_pic_num overflow\n");
3300 if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num;
3301 else pred+= abs_diff_pic_num;
3302 pred &= h->max_pic_num - 1;
3304 for(i= h->short_ref_count-1; i>=0; i--){
3305 ref = h->short_ref[i];
3306 if(ref->data[0] != NULL && ref->frame_num == pred && ref->long_ref == 0) // ignore non existing pictures by testing data[0] pointer
3310 pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx
3311 ref = h->long_ref[pic_id];
3315 av_log(h->s.avctx, AV_LOG_ERROR, "reference picture missing during reorder\n");
3316 memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME
3318 h->ref_list[list][index]= *ref;
3321 av_log(h->s.avctx, AV_LOG_ERROR, "illegal reordering_of_pic_nums_idc\n");
3327 if(h->slice_type!=B_TYPE) break;
3330 if(h->slice_type==B_TYPE && !h->direct_spatial_mv_pred)
3331 direct_dist_scale_factor(h);
3332 direct_ref_list_init(h);
3336 static int pred_weight_table(H264Context *h){
3337 MpegEncContext * const s = &h->s;
3339 int luma_def, chroma_def;
3342 h->use_weight_chroma= 0;
3343 h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
3344 h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
3345 luma_def = 1<<h->luma_log2_weight_denom;
3346 chroma_def = 1<<h->chroma_log2_weight_denom;
3348 for(list=0; list<2; list++){
3349 for(i=0; i<h->ref_count[list]; i++){
3350 int luma_weight_flag, chroma_weight_flag;
3352 luma_weight_flag= get_bits1(&s->gb);
3353 if(luma_weight_flag){
3354 h->luma_weight[list][i]= get_se_golomb(&s->gb);
3355 h->luma_offset[list][i]= get_se_golomb(&s->gb);
3356 if( h->luma_weight[list][i] != luma_def
3357 || h->luma_offset[list][i] != 0)
3360 h->luma_weight[list][i]= luma_def;
3361 h->luma_offset[list][i]= 0;
3364 chroma_weight_flag= get_bits1(&s->gb);
3365 if(chroma_weight_flag){
3368 h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
3369 h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
3370 if( h->chroma_weight[list][i][j] != chroma_def
3371 || h->chroma_offset[list][i][j] != 0)
3372 h->use_weight_chroma= 1;
3377 h->chroma_weight[list][i][j]= chroma_def;
3378 h->chroma_offset[list][i][j]= 0;
3382 if(h->slice_type != B_TYPE) break;
3384 h->use_weight= h->use_weight || h->use_weight_chroma;
3388 static void implicit_weight_table(H264Context *h){
3389 MpegEncContext * const s = &h->s;
3391 int cur_poc = s->current_picture_ptr->poc;
3393 if( h->ref_count[0] == 1 && h->ref_count[1] == 1
3394 && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
3396 h->use_weight_chroma= 0;
3401 h->use_weight_chroma= 2;
3402 h->luma_log2_weight_denom= 5;
3403 h->chroma_log2_weight_denom= 5;
3406 for(ref0=0; ref0 < h->ref_count[0]; ref0++){
3407 int poc0 = h->ref_list[0][ref0].poc;
3408 for(ref1=0; ref1 < h->ref_count[1]; ref1++){
3409 int poc1 = h->ref_list[1][ref1].poc;
3410 int td = clip(poc1 - poc0, -128, 127);
3412 int tb = clip(cur_poc - poc0, -128, 127);
3413 int tx = (16384 + (ABS(td) >> 1)) / td;
3414 int dist_scale_factor = clip((tb*tx + 32) >> 6, -1024, 1023) >> 2;
3415 if(dist_scale_factor < -64 || dist_scale_factor > 128)
3416 h->implicit_weight[ref0][ref1] = 32;
3418 h->implicit_weight[ref0][ref1] = 64 - dist_scale_factor;
3420 h->implicit_weight[ref0][ref1] = 32;
3425 static inline void unreference_pic(H264Context *h, Picture *pic){
3428 if(pic == h->delayed_output_pic)
3431 for(i = 0; h->delayed_pic[i]; i++)
3432 if(pic == h->delayed_pic[i]){
3440 * instantaneous decoder refresh.
3442 static void idr(H264Context *h){
3445 for(i=0; i<16; i++){
3446 if (h->long_ref[i] != NULL) {
3447 unreference_pic(h, h->long_ref[i]);
3448 h->long_ref[i]= NULL;
3451 h->long_ref_count=0;
3453 for(i=0; i<h->short_ref_count; i++){
3454 unreference_pic(h, h->short_ref[i]);
3455 h->short_ref[i]= NULL;
3457 h->short_ref_count=0;
3462 * @return the removed picture or NULL if an error occures
3464 static Picture * remove_short(H264Context *h, int frame_num){
3465 MpegEncContext * const s = &h->s;
3468 if(s->avctx->debug&FF_DEBUG_MMCO)
3469 av_log(h->s.avctx, AV_LOG_DEBUG, "remove short %d count %d\n", frame_num, h->short_ref_count);
3471 for(i=0; i<h->short_ref_count; i++){
3472 Picture *pic= h->short_ref[i];
3473 if(s->avctx->debug&FF_DEBUG_MMCO)
3474 av_log(h->s.avctx, AV_LOG_DEBUG, "%d %d %p\n", i, pic->frame_num, pic);
3475 if(pic->frame_num == frame_num){
3476 h->short_ref[i]= NULL;
3477 memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i - 1)*sizeof(Picture*));
3478 h->short_ref_count--;
3487 * @return the removed picture or NULL if an error occures
3489 static Picture * remove_long(H264Context *h, int i){
3492 pic= h->long_ref[i];
3493 h->long_ref[i]= NULL;
3494 if(pic) h->long_ref_count--;
3500 * print short term list
3502 static void print_short_term(H264Context *h) {
3504 if(h->s.avctx->debug&FF_DEBUG_MMCO) {
3505 av_log(h->s.avctx, AV_LOG_DEBUG, "short term list:\n");
3506 for(i=0; i<h->short_ref_count; i++){
3507 Picture *pic= h->short_ref[i];
3508 av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
3514 * print long term list
3516 static void print_long_term(H264Context *h) {
3518 if(h->s.avctx->debug&FF_DEBUG_MMCO) {
3519 av_log(h->s.avctx, AV_LOG_DEBUG, "long term list:\n");
3520 for(i = 0; i < 16; i++){
3521 Picture *pic= h->long_ref[i];
3523 av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
3530 * Executes the reference picture marking (memory management control operations).
3532 static int execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count){
3533 MpegEncContext * const s = &h->s;
3535 int current_is_long=0;
3538 if((s->avctx->debug&FF_DEBUG_MMCO) && mmco_count==0)
3539 av_log(h->s.avctx, AV_LOG_DEBUG, "no mmco here\n");
3541 for(i=0; i<mmco_count; i++){
3542 if(s->avctx->debug&FF_DEBUG_MMCO)
3543 av_log(h->s.avctx, AV_LOG_DEBUG, "mmco:%d %d %d\n", h->mmco[i].opcode, h->mmco[i].short_frame_num, h->mmco[i].long_index);
3545 switch(mmco[i].opcode){
3546 case MMCO_SHORT2UNUSED:
3547 pic= remove_short(h, mmco[i].short_frame_num);
3548 if(pic==NULL) return -1;
3549 unreference_pic(h, pic);
3551 case MMCO_SHORT2LONG:
3552 pic= remove_long(h, mmco[i].long_index);
3553 if(pic) unreference_pic(h, pic);
3555 h->long_ref[ mmco[i].long_index ]= remove_short(h, mmco[i].short_frame_num);
3556 h->long_ref[ mmco[i].long_index ]->long_ref=1;
3557 h->long_ref_count++;
3559 case MMCO_LONG2UNUSED:
3560 pic= remove_long(h, mmco[i].long_index);