2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 * H.264 / AVC / MPEG4 part10 codec.
25 * @author Michael Niedermayer <michaelni@gmx.at>
30 #include "mpegvideo.h"
33 #include "h264_parser.h"
42 * Value of Picture.reference when Picture is not a reference picture, but
43 * is held for delayed output.
45 #define DELAYED_PIC_REF 4
47 static VLC coeff_token_vlc[4];
48 static VLC chroma_dc_coeff_token_vlc;
50 static VLC total_zeros_vlc[15];
51 static VLC chroma_dc_total_zeros_vlc[3];
53 static VLC run_vlc[6];
56 static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
57 static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
58 static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
59 static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
61 static av_always_inline uint32_t pack16to32(int a, int b){
62 #ifdef WORDS_BIGENDIAN
63 return (b&0xFFFF) + (a<<16);
65 return (a&0xFFFF) + (b<<16);
69 const uint8_t ff_rem6[52]={
70 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
73 const uint8_t ff_div6[52]={
74 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,
80 * @param h height of the rectangle, should be a constant
81 * @param w width of the rectangle, should be a constant
82 * @param size the size of val (1 or 4), should be a constant
84 static av_always_inline void fill_rectangle(void *vp, int w, int h, int stride, uint32_t val, int size){
85 uint8_t *p= (uint8_t*)vp;
86 assert(size==1 || size==4);
92 assert((((long)vp)&(FFMIN(w, STRIDE_ALIGN)-1)) == 0);
93 assert((stride&(w-1))==0);
95 const uint16_t v= size==4 ? val : val*0x0101;
96 *(uint16_t*)(p + 0*stride)= v;
98 *(uint16_t*)(p + 1*stride)= v;
100 *(uint16_t*)(p + 2*stride)= v;
101 *(uint16_t*)(p + 3*stride)= v;
103 const uint32_t v= size==4 ? val : val*0x01010101;
104 *(uint32_t*)(p + 0*stride)= v;
106 *(uint32_t*)(p + 1*stride)= v;
108 *(uint32_t*)(p + 2*stride)= v;
109 *(uint32_t*)(p + 3*stride)= v;
111 //gcc can't optimize 64bit math on x86_32
112 #if defined(ARCH_X86_64) || (defined(MP_WORDSIZE) && MP_WORDSIZE >= 64)
113 const uint64_t v= val*0x0100000001ULL;
114 *(uint64_t*)(p + 0*stride)= v;
116 *(uint64_t*)(p + 1*stride)= v;
118 *(uint64_t*)(p + 2*stride)= v;
119 *(uint64_t*)(p + 3*stride)= v;
121 const uint64_t v= val*0x0100000001ULL;
122 *(uint64_t*)(p + 0+0*stride)= v;
123 *(uint64_t*)(p + 8+0*stride)= v;
124 *(uint64_t*)(p + 0+1*stride)= v;
125 *(uint64_t*)(p + 8+1*stride)= v;
127 *(uint64_t*)(p + 0+2*stride)= v;
128 *(uint64_t*)(p + 8+2*stride)= v;
129 *(uint64_t*)(p + 0+3*stride)= v;
130 *(uint64_t*)(p + 8+3*stride)= v;
132 *(uint32_t*)(p + 0+0*stride)= val;
133 *(uint32_t*)(p + 4+0*stride)= val;
135 *(uint32_t*)(p + 0+1*stride)= val;
136 *(uint32_t*)(p + 4+1*stride)= val;
138 *(uint32_t*)(p + 0+2*stride)= val;
139 *(uint32_t*)(p + 4+2*stride)= val;
140 *(uint32_t*)(p + 0+3*stride)= val;
141 *(uint32_t*)(p + 4+3*stride)= val;
143 *(uint32_t*)(p + 0+0*stride)= val;
144 *(uint32_t*)(p + 4+0*stride)= val;
145 *(uint32_t*)(p + 8+0*stride)= val;
146 *(uint32_t*)(p +12+0*stride)= val;
147 *(uint32_t*)(p + 0+1*stride)= val;
148 *(uint32_t*)(p + 4+1*stride)= val;
149 *(uint32_t*)(p + 8+1*stride)= val;
150 *(uint32_t*)(p +12+1*stride)= val;
152 *(uint32_t*)(p + 0+2*stride)= val;
153 *(uint32_t*)(p + 4+2*stride)= val;
154 *(uint32_t*)(p + 8+2*stride)= val;
155 *(uint32_t*)(p +12+2*stride)= val;
156 *(uint32_t*)(p + 0+3*stride)= val;
157 *(uint32_t*)(p + 4+3*stride)= val;
158 *(uint32_t*)(p + 8+3*stride)= val;
159 *(uint32_t*)(p +12+3*stride)= val;
166 static void fill_caches(H264Context *h, int mb_type, int for_deblock){
167 MpegEncContext * const s = &h->s;
168 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
169 int topleft_xy, top_xy, topright_xy, left_xy[2];
170 int topleft_type, top_type, topright_type, left_type[2];
174 //FIXME deblocking could skip the intra and nnz parts.
175 if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[mb_xy-s->mb_stride]) && !FRAME_MBAFF)
178 //wow what a mess, why didn't they simplify the interlacing&intra stuff, i can't imagine that these complex rules are worth it
180 top_xy = mb_xy - (s->mb_stride << FIELD_PICTURE);
181 topleft_xy = top_xy - 1;
182 topright_xy= top_xy + 1;
183 left_xy[1] = left_xy[0] = mb_xy-1;
193 const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
194 const int top_pair_xy = pair_xy - s->mb_stride;
195 const int topleft_pair_xy = top_pair_xy - 1;
196 const int topright_pair_xy = top_pair_xy + 1;
197 const int topleft_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
198 const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
199 const int topright_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
200 const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
201 const int curr_mb_frame_flag = !IS_INTERLACED(mb_type);
202 const int bottom = (s->mb_y & 1);
203 tprintf(s->avctx, "fill_caches: curr_mb_frame_flag:%d, left_mb_frame_flag:%d, topleft_mb_frame_flag:%d, top_mb_frame_flag:%d, topright_mb_frame_flag:%d\n", curr_mb_frame_flag, left_mb_frame_flag, topleft_mb_frame_flag, top_mb_frame_flag, topright_mb_frame_flag);
205 ? !curr_mb_frame_flag // bottom macroblock
206 : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
208 top_xy -= s->mb_stride;
211 ? !curr_mb_frame_flag // bottom macroblock
212 : (!curr_mb_frame_flag && !topleft_mb_frame_flag) // top macroblock
214 topleft_xy -= s->mb_stride;
217 ? !curr_mb_frame_flag // bottom macroblock
218 : (!curr_mb_frame_flag && !topright_mb_frame_flag) // top macroblock
220 topright_xy -= s->mb_stride;
222 if (left_mb_frame_flag != curr_mb_frame_flag) {
223 left_xy[1] = left_xy[0] = pair_xy - 1;
224 if (curr_mb_frame_flag) {
245 left_xy[1] += s->mb_stride;
258 h->top_mb_xy = top_xy;
259 h->left_mb_xy[0] = left_xy[0];
260 h->left_mb_xy[1] = left_xy[1];
264 top_type = h->slice_table[top_xy ] < 255 ? s->current_picture.mb_type[top_xy] : 0;
265 left_type[0] = h->slice_table[left_xy[0] ] < 255 ? s->current_picture.mb_type[left_xy[0]] : 0;
266 left_type[1] = h->slice_table[left_xy[1] ] < 255 ? s->current_picture.mb_type[left_xy[1]] : 0;
268 if(FRAME_MBAFF && !IS_INTRA(mb_type)){
270 int v = *(uint16_t*)&h->non_zero_count[mb_xy][14];
272 h->non_zero_count_cache[scan8[i]] = (v>>i)&1;
273 for(list=0; list<h->list_count; list++){
274 if(USES_LIST(mb_type,list)){
275 uint32_t *src = (uint32_t*)s->current_picture.motion_val[list][h->mb2b_xy[mb_xy]];
276 uint32_t *dst = (uint32_t*)h->mv_cache[list][scan8[0]];
277 int8_t *ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
278 for(i=0; i<4; i++, dst+=8, src+=h->b_stride){
284 *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
285 *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = pack16to32(ref[0],ref[1])*0x0101;
287 *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
288 *(uint32_t*)&h->ref_cache[list][scan8[10]] = pack16to32(ref[0],ref[1])*0x0101;
290 fill_rectangle(&h-> mv_cache[list][scan8[ 0]], 4, 4, 8, 0, 4);
291 fill_rectangle(&h->ref_cache[list][scan8[ 0]], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1);
296 topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
297 top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
298 topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
299 left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
300 left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
303 if(IS_INTRA(mb_type)){
304 h->topleft_samples_available=
305 h->top_samples_available=
306 h->left_samples_available= 0xFFFF;
307 h->topright_samples_available= 0xEEEA;
309 if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
310 h->topleft_samples_available= 0xB3FF;
311 h->top_samples_available= 0x33FF;
312 h->topright_samples_available= 0x26EA;
315 if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
316 h->topleft_samples_available&= 0xDF5F;
317 h->left_samples_available&= 0x5F5F;
321 if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
322 h->topleft_samples_available&= 0x7FFF;
324 if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
325 h->topright_samples_available&= 0xFBFF;
327 if(IS_INTRA4x4(mb_type)){
328 if(IS_INTRA4x4(top_type)){
329 h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
330 h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
331 h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
332 h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
335 if(!top_type || (IS_INTER(top_type) && h->pps.constrained_intra_pred))
340 h->intra4x4_pred_mode_cache[4+8*0]=
341 h->intra4x4_pred_mode_cache[5+8*0]=
342 h->intra4x4_pred_mode_cache[6+8*0]=
343 h->intra4x4_pred_mode_cache[7+8*0]= pred;
346 if(IS_INTRA4x4(left_type[i])){
347 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
348 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
351 if(!left_type[i] || (IS_INTER(left_type[i]) && h->pps.constrained_intra_pred))
356 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
357 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
372 //FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
374 h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4];
375 h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5];
376 h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6];
377 h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
379 h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9];
380 h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
382 h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12];
383 h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
386 h->non_zero_count_cache[4+8*0]=
387 h->non_zero_count_cache[5+8*0]=
388 h->non_zero_count_cache[6+8*0]=
389 h->non_zero_count_cache[7+8*0]=
391 h->non_zero_count_cache[1+8*0]=
392 h->non_zero_count_cache[2+8*0]=
394 h->non_zero_count_cache[1+8*3]=
395 h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
399 for (i=0; i<2; i++) {
401 h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]];
402 h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]];
403 h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]];
404 h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]];
406 h->non_zero_count_cache[3+8*1 + 2*8*i]=
407 h->non_zero_count_cache[3+8*2 + 2*8*i]=
408 h->non_zero_count_cache[0+8*1 + 8*i]=
409 h->non_zero_count_cache[0+8*4 + 8*i]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
416 h->top_cbp = h->cbp_table[top_xy];
417 } else if(IS_INTRA(mb_type)) {
424 h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
425 } else if(IS_INTRA(mb_type)) {
431 h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
434 h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
439 if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
441 for(list=0; list<h->list_count; list++){
442 if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
443 /*if(!h->mv_cache_clean[list]){
444 memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
445 memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
446 h->mv_cache_clean[list]= 1;
450 h->mv_cache_clean[list]= 0;
452 if(USES_LIST(top_type, list)){
453 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
454 const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
455 *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
456 *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
457 *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
458 *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
459 h->ref_cache[list][scan8[0] + 0 - 1*8]=
460 h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
461 h->ref_cache[list][scan8[0] + 2 - 1*8]=
462 h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
464 *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
465 *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
466 *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
467 *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
468 *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
472 int cache_idx = scan8[0] - 1 + i*2*8;
473 if(USES_LIST(left_type[i], list)){
474 const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
475 const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
476 *(uint32_t*)h->mv_cache[list][cache_idx ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
477 *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
478 h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
479 h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
481 *(uint32_t*)h->mv_cache [list][cache_idx ]=
482 *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
483 h->ref_cache[list][cache_idx ]=
484 h->ref_cache[list][cache_idx+8]= left_type[i] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
488 if((for_deblock || (IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred)) && !FRAME_MBAFF)
491 if(USES_LIST(topleft_type, list)){
492 const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
493 const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + h->b8_stride;
494 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
495 h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
497 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
498 h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
501 if(USES_LIST(topright_type, list)){
502 const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
503 const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
504 *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
505 h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
507 *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
508 h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
511 if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
514 h->ref_cache[list][scan8[5 ]+1] =
515 h->ref_cache[list][scan8[7 ]+1] =
516 h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
517 h->ref_cache[list][scan8[4 ]] =
518 h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
519 *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
520 *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
521 *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
522 *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
523 *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
526 /* XXX beurk, Load mvd */
527 if(USES_LIST(top_type, list)){
528 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
529 *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
530 *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
531 *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
532 *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
534 *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
535 *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
536 *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
537 *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
539 if(USES_LIST(left_type[0], list)){
540 const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
541 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
542 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
544 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
545 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
547 if(USES_LIST(left_type[1], list)){
548 const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
549 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
550 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
552 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
553 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
555 *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
556 *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
557 *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
558 *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
559 *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
561 if(h->slice_type == B_TYPE){
562 fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
564 if(IS_DIRECT(top_type)){
565 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
566 }else if(IS_8X8(top_type)){
567 int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
568 h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
569 h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
571 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
574 if(IS_DIRECT(left_type[0]))
575 h->direct_cache[scan8[0] - 1 + 0*8]= 1;
576 else if(IS_8X8(left_type[0]))
577 h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
579 h->direct_cache[scan8[0] - 1 + 0*8]= 0;
581 if(IS_DIRECT(left_type[1]))
582 h->direct_cache[scan8[0] - 1 + 2*8]= 1;
583 else if(IS_8X8(left_type[1]))
584 h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
586 h->direct_cache[scan8[0] - 1 + 2*8]= 0;
592 MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
593 MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
594 MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
595 MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
596 MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
597 MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
598 MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
599 MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
600 MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
601 MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
603 #define MAP_F2F(idx, mb_type)\
604 if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
605 h->ref_cache[list][idx] <<= 1;\
606 h->mv_cache[list][idx][1] /= 2;\
607 h->mvd_cache[list][idx][1] /= 2;\
612 #define MAP_F2F(idx, mb_type)\
613 if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
614 h->ref_cache[list][idx] >>= 1;\
615 h->mv_cache[list][idx][1] <<= 1;\
616 h->mvd_cache[list][idx][1] <<= 1;\
626 h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
629 static inline void write_back_intra_pred_mode(H264Context *h){
630 MpegEncContext * const s = &h->s;
631 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
633 h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
634 h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
635 h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
636 h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
637 h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
638 h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
639 h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
643 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
645 static inline int check_intra4x4_pred_mode(H264Context *h){
646 MpegEncContext * const s = &h->s;
647 static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
648 static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
651 if(!(h->top_samples_available&0x8000)){
653 int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
655 av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
658 h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
663 if(!(h->left_samples_available&0x8000)){
665 int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
667 av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
670 h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
676 } //FIXME cleanup like next
679 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
681 static inline int check_intra_pred_mode(H264Context *h, int mode){
682 MpegEncContext * const s = &h->s;
683 static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
684 static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
687 av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
691 if(!(h->top_samples_available&0x8000)){
694 av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
699 if(!(h->left_samples_available&0x8000)){
702 av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
711 * gets the predicted intra4x4 prediction mode.
713 static inline int pred_intra_mode(H264Context *h, int n){
714 const int index8= scan8[n];
715 const int left= h->intra4x4_pred_mode_cache[index8 - 1];
716 const int top = h->intra4x4_pred_mode_cache[index8 - 8];
717 const int min= FFMIN(left, top);
719 tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
721 if(min<0) return DC_PRED;
725 static inline void write_back_non_zero_count(H264Context *h){
726 MpegEncContext * const s = &h->s;
727 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
729 h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[7+8*1];
730 h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[7+8*2];
731 h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[7+8*3];
732 h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
733 h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[4+8*4];
734 h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[5+8*4];
735 h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[6+8*4];
737 h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[1+8*2];
738 h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
739 h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[2+8*1];
741 h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5];
742 h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
743 h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4];
746 // store all luma nnzs, for deblocking
749 v += (!!h->non_zero_count_cache[scan8[i]]) << i;
750 *(uint16_t*)&h->non_zero_count[mb_xy][14] = v;
755 * gets the predicted number of non zero coefficients.
756 * @param n block index
758 static inline int pred_non_zero_count(H264Context *h, int n){
759 const int index8= scan8[n];
760 const int left= h->non_zero_count_cache[index8 - 1];
761 const int top = h->non_zero_count_cache[index8 - 8];
764 if(i<64) i= (i+1)>>1;
766 tprintf(h->s.avctx, "pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
771 static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
772 const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
773 MpegEncContext *s = &h->s;
775 /* there is no consistent mapping of mvs to neighboring locations that will
776 * make mbaff happy, so we can't move all this logic to fill_caches */
778 const uint32_t *mb_types = s->current_picture_ptr->mb_type;
780 *(uint32_t*)h->mv_cache[list][scan8[0]-2] = 0;
781 *C = h->mv_cache[list][scan8[0]-2];
784 && (s->mb_y&1) && i < scan8[0]+8 && topright_ref != PART_NOT_AVAILABLE){
785 int topright_xy = s->mb_x + (s->mb_y-1)*s->mb_stride + (i == scan8[0]+3);
786 if(IS_INTERLACED(mb_types[topright_xy])){
787 #define SET_DIAG_MV(MV_OP, REF_OP, X4, Y4)\
788 const int x4 = X4, y4 = Y4;\
789 const int mb_type = mb_types[(x4>>2)+(y4>>2)*s->mb_stride];\
790 if(!USES_LIST(mb_type,list) && !IS_8X8(mb_type))\
791 return LIST_NOT_USED;\
792 mv = s->current_picture_ptr->motion_val[list][x4 + y4*h->b_stride];\
793 h->mv_cache[list][scan8[0]-2][0] = mv[0];\
794 h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\
795 return s->current_picture_ptr->ref_index[list][(x4>>1) + (y4>>1)*h->b8_stride] REF_OP;
797 SET_DIAG_MV(*2, >>1, s->mb_x*4+(i&7)-4+part_width, s->mb_y*4-1);
800 if(topright_ref == PART_NOT_AVAILABLE
801 && ((s->mb_y&1) || i >= scan8[0]+8) && (i&7)==4
802 && h->ref_cache[list][scan8[0]-1] != PART_NOT_AVAILABLE){
804 && IS_INTERLACED(mb_types[h->left_mb_xy[0]])){
805 SET_DIAG_MV(*2, >>1, s->mb_x*4-1, (s->mb_y|1)*4+(s->mb_y&1)*2+(i>>4)-1);
808 && !IS_INTERLACED(mb_types[h->left_mb_xy[0]])
810 // leftshift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's ok.
811 SET_DIAG_MV(>>1, <<1, s->mb_x*4-1, (s->mb_y&~1)*4 - 1 + ((i-scan8[0])>>3)*2);
817 if(topright_ref != PART_NOT_AVAILABLE){
818 *C= h->mv_cache[list][ i - 8 + part_width ];
821 tprintf(s->avctx, "topright MV not available\n");
823 *C= h->mv_cache[list][ i - 8 - 1 ];
824 return h->ref_cache[list][ i - 8 - 1 ];
829 * gets the predicted MV.
830 * @param n the block index
831 * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
832 * @param mx the x component of the predicted motion vector
833 * @param my the y component of the predicted motion vector
835 static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
836 const int index8= scan8[n];
837 const int top_ref= h->ref_cache[list][ index8 - 8 ];
838 const int left_ref= h->ref_cache[list][ index8 - 1 ];
839 const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
840 const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
842 int diagonal_ref, match_count;
844 assert(part_width==1 || part_width==2 || part_width==4);
854 diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
855 match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
856 tprintf(h->s.avctx, "pred_motion match_count=%d\n", match_count);
857 if(match_count > 1){ //most common
858 *mx= mid_pred(A[0], B[0], C[0]);
859 *my= mid_pred(A[1], B[1], C[1]);
860 }else if(match_count==1){
864 }else if(top_ref==ref){
872 if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
876 *mx= mid_pred(A[0], B[0], C[0]);
877 *my= mid_pred(A[1], B[1], C[1]);
881 tprintf(h->s.avctx, "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
885 * gets the directionally predicted 16x8 MV.
886 * @param n the block index
887 * @param mx the x component of the predicted motion vector
888 * @param my the y component of the predicted motion vector
890 static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
892 const int top_ref= h->ref_cache[list][ scan8[0] - 8 ];
893 const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
895 tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
903 const int left_ref= h->ref_cache[list][ scan8[8] - 1 ];
904 const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
906 tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
916 pred_motion(h, n, 4, list, ref, mx, my);
920 * gets the directionally predicted 8x16 MV.
921 * @param n the block index
922 * @param mx the x component of the predicted motion vector
923 * @param my the y component of the predicted motion vector
925 static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
927 const int left_ref= h->ref_cache[list][ scan8[0] - 1 ];
928 const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
930 tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
941 diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
943 tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
945 if(diagonal_ref == ref){
953 pred_motion(h, n, 2, list, ref, mx, my);
956 static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
957 const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
958 const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
960 tprintf(h->s.avctx, "pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
962 if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
963 || (top_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
964 || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
970 pred_motion(h, 0, 4, 0, 0, mx, my);
975 static inline void direct_dist_scale_factor(H264Context * const h){
976 const int poc = h->s.current_picture_ptr->poc;
977 const int poc1 = h->ref_list[1][0].poc;
979 for(i=0; i<h->ref_count[0]; i++){
980 int poc0 = h->ref_list[0][i].poc;
981 int td = av_clip(poc1 - poc0, -128, 127);
982 if(td == 0 /* FIXME || pic0 is a long-term ref */){
983 h->dist_scale_factor[i] = 256;
985 int tb = av_clip(poc - poc0, -128, 127);
986 int tx = (16384 + (FFABS(td) >> 1)) / td;
987 h->dist_scale_factor[i] = av_clip((tb*tx + 32) >> 6, -1024, 1023);
991 for(i=0; i<h->ref_count[0]; i++){
992 h->dist_scale_factor_field[2*i] =
993 h->dist_scale_factor_field[2*i+1] = h->dist_scale_factor[i];
997 static inline void direct_ref_list_init(H264Context * const h){
998 MpegEncContext * const s = &h->s;
999 Picture * const ref1 = &h->ref_list[1][0];
1000 Picture * const cur = s->current_picture_ptr;
1002 if(cur->pict_type == I_TYPE)
1003 cur->ref_count[0] = 0;
1004 if(cur->pict_type != B_TYPE)
1005 cur->ref_count[1] = 0;
1006 for(list=0; list<2; list++){
1007 cur->ref_count[list] = h->ref_count[list];
1008 for(j=0; j<h->ref_count[list]; j++)
1009 cur->ref_poc[list][j] = h->ref_list[list][j].poc;
1011 if(cur->pict_type != B_TYPE || h->direct_spatial_mv_pred)
1013 for(list=0; list<2; list++){
1014 for(i=0; i<ref1->ref_count[list]; i++){
1015 const int poc = ref1->ref_poc[list][i];
1016 h->map_col_to_list0[list][i] = 0; /* bogus; fills in for missing frames */
1017 for(j=0; j<h->ref_count[list]; j++)
1018 if(h->ref_list[list][j].poc == poc){
1019 h->map_col_to_list0[list][i] = j;
1025 for(list=0; list<2; list++){
1026 for(i=0; i<ref1->ref_count[list]; i++){
1027 j = h->map_col_to_list0[list][i];
1028 h->map_col_to_list0_field[list][2*i] = 2*j;
1029 h->map_col_to_list0_field[list][2*i+1] = 2*j+1;
1035 static inline void pred_direct_motion(H264Context * const h, int *mb_type){
1036 MpegEncContext * const s = &h->s;
1037 const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
1038 const int b8_xy = 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1039 const int b4_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1040 const int mb_type_col = h->ref_list[1][0].mb_type[mb_xy];
1041 const int16_t (*l1mv0)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[0][b4_xy];
1042 const int16_t (*l1mv1)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[1][b4_xy];
1043 const int8_t *l1ref0 = &h->ref_list[1][0].ref_index[0][b8_xy];
1044 const int8_t *l1ref1 = &h->ref_list[1][0].ref_index[1][b8_xy];
1045 const int is_b8x8 = IS_8X8(*mb_type);
1046 unsigned int sub_mb_type;
1049 #define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16|MB_TYPE_INTRA4x4|MB_TYPE_INTRA16x16|MB_TYPE_INTRA_PCM)
1050 if(IS_8X8(mb_type_col) && !h->sps.direct_8x8_inference_flag){
1051 /* FIXME save sub mb types from previous frames (or derive from MVs)
1052 * so we know exactly what block size to use */
1053 sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
1054 *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
1055 }else if(!is_b8x8 && (mb_type_col & MB_TYPE_16x16_OR_INTRA)){
1056 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1057 *mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
1059 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1060 *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
1063 *mb_type |= MB_TYPE_DIRECT2;
1065 *mb_type |= MB_TYPE_INTERLACED;
1067 tprintf(s->avctx, "mb_type = %08x, sub_mb_type = %08x, is_b8x8 = %d, mb_type_col = %08x\n", *mb_type, sub_mb_type, is_b8x8, mb_type_col);
1069 if(h->direct_spatial_mv_pred){
1074 /* FIXME interlacing + spatial direct uses wrong colocated block positions */
1076 /* ref = min(neighbors) */
1077 for(list=0; list<2; list++){
1078 int refa = h->ref_cache[list][scan8[0] - 1];
1079 int refb = h->ref_cache[list][scan8[0] - 8];
1080 int refc = h->ref_cache[list][scan8[0] - 8 + 4];
1082 refc = h->ref_cache[list][scan8[0] - 8 - 1];
1084 if(ref[list] < 0 || (refb < ref[list] && refb >= 0))
1086 if(ref[list] < 0 || (refc < ref[list] && refc >= 0))
1092 if(ref[0] < 0 && ref[1] < 0){
1093 ref[0] = ref[1] = 0;
1094 mv[0][0] = mv[0][1] =
1095 mv[1][0] = mv[1][1] = 0;
1097 for(list=0; list<2; list++){
1099 pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]);
1101 mv[list][0] = mv[list][1] = 0;
1106 *mb_type &= ~MB_TYPE_P0L1;
1107 sub_mb_type &= ~MB_TYPE_P0L1;
1108 }else if(ref[0] < 0){
1109 *mb_type &= ~MB_TYPE_P0L0;
1110 sub_mb_type &= ~MB_TYPE_P0L0;
1113 if(IS_16X16(*mb_type)){
1116 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
1117 fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
1118 if(!IS_INTRA(mb_type_col)
1119 && ( (l1ref0[0] == 0 && FFABS(l1mv0[0][0]) <= 1 && FFABS(l1mv0[0][1]) <= 1)
1120 || (l1ref0[0] < 0 && l1ref1[0] == 0 && FFABS(l1mv1[0][0]) <= 1 && FFABS(l1mv1[0][1]) <= 1
1121 && (h->x264_build>33 || !h->x264_build)))){
1123 a= pack16to32(mv[0][0],mv[0][1]);
1125 b= pack16to32(mv[1][0],mv[1][1]);
1127 a= pack16to32(mv[0][0],mv[0][1]);
1128 b= pack16to32(mv[1][0],mv[1][1]);
1130 fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, a, 4);
1131 fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, b, 4);
1133 for(i8=0; i8<4; i8++){
1134 const int x8 = i8&1;
1135 const int y8 = i8>>1;
1137 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1139 h->sub_mb_type[i8] = sub_mb_type;
1141 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1142 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1143 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
1144 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
1147 if(!IS_INTRA(mb_type_col) && ( l1ref0[x8 + y8*h->b8_stride] == 0
1148 || (l1ref0[x8 + y8*h->b8_stride] < 0 && l1ref1[x8 + y8*h->b8_stride] == 0
1149 && (h->x264_build>33 || !h->x264_build)))){
1150 const int16_t (*l1mv)[2]= l1ref0[x8 + y8*h->b8_stride] == 0 ? l1mv0 : l1mv1;
1151 if(IS_SUB_8X8(sub_mb_type)){
1152 const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
1153 if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
1155 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1157 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1160 for(i4=0; i4<4; i4++){
1161 const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
1162 if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
1164 *(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0;
1166 *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0;
1172 }else{ /* direct temporal mv pred */
1173 const int *map_col_to_list0[2] = {h->map_col_to_list0[0], h->map_col_to_list0[1]};
1174 const int *dist_scale_factor = h->dist_scale_factor;
1177 if(IS_INTERLACED(*mb_type)){
1178 map_col_to_list0[0] = h->map_col_to_list0_field[0];
1179 map_col_to_list0[1] = h->map_col_to_list0_field[1];
1180 dist_scale_factor = h->dist_scale_factor_field;
1182 if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col)){
1183 /* FIXME assumes direct_8x8_inference == 1 */
1184 const int pair_xy = s->mb_x + (s->mb_y&~1)*s->mb_stride;
1185 int mb_types_col[2];
1188 *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1
1189 | (is_b8x8 ? 0 : MB_TYPE_DIRECT2)
1190 | (*mb_type & MB_TYPE_INTERLACED);
1191 sub_mb_type = MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_16x16;
1193 if(IS_INTERLACED(*mb_type)){
1194 /* frame to field scaling */
1195 mb_types_col[0] = h->ref_list[1][0].mb_type[pair_xy];
1196 mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
1198 l1ref0 -= 2*h->b8_stride;
1199 l1ref1 -= 2*h->b8_stride;
1200 l1mv0 -= 4*h->b_stride;
1201 l1mv1 -= 4*h->b_stride;
1205 if( (mb_types_col[0] & MB_TYPE_16x16_OR_INTRA)
1206 && (mb_types_col[1] & MB_TYPE_16x16_OR_INTRA)
1208 *mb_type |= MB_TYPE_16x8;
1210 *mb_type |= MB_TYPE_8x8;
1212 /* field to frame scaling */
1213 /* col_mb_y = (mb_y&~1) + (topAbsDiffPOC < bottomAbsDiffPOC ? 0 : 1)
1214 * but in MBAFF, top and bottom POC are equal */
1215 int dy = (s->mb_y&1) ? 1 : 2;
1217 mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
1218 l1ref0 += dy*h->b8_stride;
1219 l1ref1 += dy*h->b8_stride;
1220 l1mv0 += 2*dy*h->b_stride;
1221 l1mv1 += 2*dy*h->b_stride;
1224 if((mb_types_col[0] & (MB_TYPE_16x16_OR_INTRA|MB_TYPE_16x8))
1226 *mb_type |= MB_TYPE_16x16;
1228 *mb_type |= MB_TYPE_8x8;
1231 for(i8=0; i8<4; i8++){
1232 const int x8 = i8&1;
1233 const int y8 = i8>>1;
1235 const int16_t (*l1mv)[2]= l1mv0;
1237 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1239 h->sub_mb_type[i8] = sub_mb_type;
1241 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1242 if(IS_INTRA(mb_types_col[y8])){
1243 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
1244 fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1245 fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1249 ref0 = l1ref0[x8 + (y8*2>>y_shift)*h->b8_stride];
1251 ref0 = map_col_to_list0[0][ref0*2>>y_shift];
1253 ref0 = map_col_to_list0[1][l1ref1[x8 + (y8*2>>y_shift)*h->b8_stride]*2>>y_shift];
1256 scale = dist_scale_factor[ref0];
1257 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
1260 const int16_t *mv_col = l1mv[x8*3 + (y8*6>>y_shift)*h->b_stride];
1261 int my_col = (mv_col[1]<<y_shift)/2;
1262 int mx = (scale * mv_col[0] + 128) >> 8;
1263 int my = (scale * my_col + 128) >> 8;
1264 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
1265 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-my_col), 4);
1272 /* one-to-one mv scaling */
1274 if(IS_16X16(*mb_type)){
1277 fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
1278 if(IS_INTRA(mb_type_col)){
1281 const int ref0 = l1ref0[0] >= 0 ? map_col_to_list0[0][l1ref0[0]]
1282 : map_col_to_list0[1][l1ref1[0]];
1283 const int scale = dist_scale_factor[ref0];
1284 const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0];
1286 mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
1287 mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
1289 mv0= pack16to32(mv_l0[0],mv_l0[1]);
1290 mv1= pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
1292 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1);
1293 fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, mv0, 4);
1294 fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, mv1, 4);
1296 for(i8=0; i8<4; i8++){
1297 const int x8 = i8&1;
1298 const int y8 = i8>>1;
1300 const int16_t (*l1mv)[2]= l1mv0;
1302 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1304 h->sub_mb_type[i8] = sub_mb_type;
1305 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1306 if(IS_INTRA(mb_type_col)){
1307 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
1308 fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1309 fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1313 ref0 = l1ref0[x8 + y8*h->b8_stride];
1315 ref0 = map_col_to_list0[0][ref0];
1317 ref0 = map_col_to_list0[1][l1ref1[x8 + y8*h->b8_stride]];
1320 scale = dist_scale_factor[ref0];
1322 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
1323 if(IS_SUB_8X8(sub_mb_type)){
1324 const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
1325 int mx = (scale * mv_col[0] + 128) >> 8;
1326 int my = (scale * mv_col[1] + 128) >> 8;
1327 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
1328 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-mv_col[1]), 4);
1330 for(i4=0; i4<4; i4++){
1331 const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
1332 int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
1333 mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
1334 mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
1335 *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] =
1336 pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
1343 static inline void write_back_motion(H264Context *h, int mb_type){
1344 MpegEncContext * const s = &h->s;
1345 const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1346 const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1349 if(!USES_LIST(mb_type, 0))
1350 fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
1352 for(list=0; list<h->list_count; list++){
1354 if(!USES_LIST(mb_type, list))
1358 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
1359 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
1361 if( h->pps.cabac ) {
1362 if(IS_SKIP(mb_type))
1363 fill_rectangle(h->mvd_table[list][b_xy], 4, 4, h->b_stride, 0, 4);
1366 *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
1367 *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
1372 int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
1373 ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
1374 ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
1375 ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
1376 ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
1380 if(h->slice_type == B_TYPE && h->pps.cabac){
1381 if(IS_8X8(mb_type)){
1382 uint8_t *direct_table = &h->direct_table[b8_xy];
1383 direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
1384 direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
1385 direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
1391 * Decodes a network abstraction layer unit.
1392 * @param consumed is the number of bytes used as input
1393 * @param length is the length of the array
1394 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
1395 * @returns decoded bytes, might be src+1 if no escapes
1397 static uint8_t *decode_nal(H264Context *h, uint8_t *src, int *dst_length, int *consumed, int length){
1402 // src[0]&0x80; //forbidden bit
1403 h->nal_ref_idc= src[0]>>5;
1404 h->nal_unit_type= src[0]&0x1F;
1408 for(i=0; i<length; i++)
1409 printf("%2X ", src[i]);
1411 for(i=0; i+1<length; i+=2){
1412 if(src[i]) continue;
1413 if(i>0 && src[i-1]==0) i--;
1414 if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1416 /* startcode, so we must be past the end */
1423 if(i>=length-1){ //no escaped 0
1424 *dst_length= length;
1425 *consumed= length+1; //+1 for the header
1429 bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; // use second escape buffer for inter data
1430 h->rbsp_buffer[bufidx]= av_fast_realloc(h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length);
1431 dst= h->rbsp_buffer[bufidx];
1437 //printf("decoding esc\n");
1440 //remove escapes (very rare 1:2^22)
1441 if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
1442 if(src[si+2]==3){ //escape
1447 }else //next start code
1451 dst[di++]= src[si++];
1455 *consumed= si + 1;//+1 for the header
1456 //FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
1461 * identifies the exact end of the bitstream
1462 * @return the length of the trailing, or 0 if damaged
1464 static int decode_rbsp_trailing(H264Context *h, uint8_t *src){
1468 tprintf(h->s.avctx, "rbsp trailing %X\n", v);
1478 * idct tranforms the 16 dc values and dequantize them.
1479 * @param qp quantization parameter
1481 static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
1484 int temp[16]; //FIXME check if this is a good idea
1485 static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
1486 static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1488 //memset(block, 64, 2*256);
1491 const int offset= y_offset[i];
1492 const int z0= block[offset+stride*0] + block[offset+stride*4];
1493 const int z1= block[offset+stride*0] - block[offset+stride*4];
1494 const int z2= block[offset+stride*1] - block[offset+stride*5];
1495 const int z3= block[offset+stride*1] + block[offset+stride*5];
1504 const int offset= x_offset[i];
1505 const int z0= temp[4*0+i] + temp[4*2+i];
1506 const int z1= temp[4*0+i] - temp[4*2+i];
1507 const int z2= temp[4*1+i] - temp[4*3+i];
1508 const int z3= temp[4*1+i] + temp[4*3+i];
1510 block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_resdual
1511 block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8));
1512 block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8));
1513 block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8));
1519 * dct tranforms the 16 dc values.
1520 * @param qp quantization parameter ??? FIXME
1522 static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
1523 // const int qmul= dequant_coeff[qp][0];
1525 int temp[16]; //FIXME check if this is a good idea
1526 static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
1527 static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1530 const int offset= y_offset[i];
1531 const int z0= block[offset+stride*0] + block[offset+stride*4];
1532 const int z1= block[offset+stride*0] - block[offset+stride*4];
1533 const int z2= block[offset+stride*1] - block[offset+stride*5];
1534 const int z3= block[offset+stride*1] + block[offset+stride*5];
1543 const int offset= x_offset[i];
1544 const int z0= temp[4*0+i] + temp[4*2+i];
1545 const int z1= temp[4*0+i] - temp[4*2+i];
1546 const int z2= temp[4*1+i] - temp[4*3+i];
1547 const int z3= temp[4*1+i] + temp[4*3+i];
1549 block[stride*0 +offset]= (z0 + z3)>>1;
1550 block[stride*2 +offset]= (z1 + z2)>>1;
1551 block[stride*8 +offset]= (z1 - z2)>>1;
1552 block[stride*10+offset]= (z0 - z3)>>1;
1560 static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
1561 const int stride= 16*2;
1562 const int xStride= 16;
1565 a= block[stride*0 + xStride*0];
1566 b= block[stride*0 + xStride*1];
1567 c= block[stride*1 + xStride*0];
1568 d= block[stride*1 + xStride*1];
1575 block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7;
1576 block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7;
1577 block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7;
1578 block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7;
1582 static void chroma_dc_dct_c(DCTELEM *block){
1583 const int stride= 16*2;
1584 const int xStride= 16;
1587 a= block[stride*0 + xStride*0];
1588 b= block[stride*0 + xStride*1];
1589 c= block[stride*1 + xStride*0];
1590 d= block[stride*1 + xStride*1];
1597 block[stride*0 + xStride*0]= (a+c);
1598 block[stride*0 + xStride*1]= (e+b);
1599 block[stride*1 + xStride*0]= (a-c);
1600 block[stride*1 + xStride*1]= (e-b);
1605 * gets the chroma qp.
1607 static inline int get_chroma_qp(H264Context *h, int t, int qscale){
1608 return h->pps.chroma_qp_table[t][qscale & 0xff];
1611 //FIXME need to check that this does not overflow signed 32 bit for low qp, i am not sure, it's very close
1612 //FIXME check that gcc inlines this (and optimizes intra & separate_dc stuff away)
1613 static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int separate_dc){
1615 const int * const quant_table= quant_coeff[qscale];
1616 const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
1617 const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
1618 const unsigned int threshold2= (threshold1<<1);
1624 const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
1625 const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
1626 const unsigned int dc_threshold2= (dc_threshold1<<1);
1628 int level= block[0]*quant_coeff[qscale+18][0];
1629 if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1631 level= (dc_bias + level)>>(QUANT_SHIFT-2);
1634 level= (dc_bias - level)>>(QUANT_SHIFT-2);
1637 // last_non_zero = i;
1642 const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
1643 const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
1644 const unsigned int dc_threshold2= (dc_threshold1<<1);
1646 int level= block[0]*quant_table[0];
1647 if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1649 level= (dc_bias + level)>>(QUANT_SHIFT+1);
1652 level= (dc_bias - level)>>(QUANT_SHIFT+1);
1655 // last_non_zero = i;
1668 const int j= scantable[i];
1669 int level= block[j]*quant_table[j];
1671 // if( bias+level >= (1<<(QMAT_SHIFT - 3))
1672 // || bias-level >= (1<<(QMAT_SHIFT - 3))){
1673 if(((unsigned)(level+threshold1))>threshold2){
1675 level= (bias + level)>>QUANT_SHIFT;
1678 level= (bias - level)>>QUANT_SHIFT;
1687 return last_non_zero;
1690 static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
1691 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1692 int src_x_offset, int src_y_offset,
1693 qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
1694 MpegEncContext * const s = &h->s;
1695 const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
1696 int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
1697 const int luma_xy= (mx&3) + ((my&3)<<2);
1698 uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->mb_linesize;
1699 uint8_t * src_cb, * src_cr;
1700 int extra_width= h->emu_edge_width;
1701 int extra_height= h->emu_edge_height;
1703 const int full_mx= mx>>2;
1704 const int full_my= my>>2;
1705 const int pic_width = 16*s->mb_width;
1706 const int pic_height = 16*s->mb_height >> MB_FIELD;
1708 if(!pic->data[0]) //FIXME this is unacceptable, some senseable error concealment must be done for missing reference frames
1711 if(mx&7) extra_width -= 3;
1712 if(my&7) extra_height -= 3;
1714 if( full_mx < 0-extra_width
1715 || full_my < 0-extra_height
1716 || full_mx + 16/*FIXME*/ > pic_width + extra_width
1717 || full_my + 16/*FIXME*/ > pic_height + extra_height){
1718 ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->mb_linesize, h->mb_linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
1719 src_y= s->edge_emu_buffer + 2 + 2*h->mb_linesize;
1723 qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps?
1725 qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize);
1728 if(ENABLE_GRAY && s->flags&CODEC_FLAG_GRAY) return;
1731 // chroma offset when predicting from a field of opposite parity
1732 my += 2 * ((s->mb_y & 1) - (pic->reference - 1));
1733 emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1);
1735 src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
1736 src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
1739 ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
1740 src_cb= s->edge_emu_buffer;
1742 chroma_op(dest_cb, src_cb, h->mb_uvlinesize, chroma_height, mx&7, my&7);
1745 ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
1746 src_cr= s->edge_emu_buffer;
1748 chroma_op(dest_cr, src_cr, h->mb_uvlinesize, chroma_height, mx&7, my&7);
1751 static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
1752 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1753 int x_offset, int y_offset,
1754 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
1755 qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
1756 int list0, int list1){
1757 MpegEncContext * const s = &h->s;
1758 qpel_mc_func *qpix_op= qpix_put;
1759 h264_chroma_mc_func chroma_op= chroma_put;
1761 dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
1762 dest_cb += x_offset + y_offset*h->mb_uvlinesize;
1763 dest_cr += x_offset + y_offset*h->mb_uvlinesize;
1764 x_offset += 8*s->mb_x;
1765 y_offset += 8*(s->mb_y >> MB_FIELD);
1768 Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
1769 mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
1770 dest_y, dest_cb, dest_cr, x_offset, y_offset,
1771 qpix_op, chroma_op);
1774 chroma_op= chroma_avg;
1778 Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
1779 mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
1780 dest_y, dest_cb, dest_cr, x_offset, y_offset,
1781 qpix_op, chroma_op);
1785 static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
1786 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1787 int x_offset, int y_offset,
1788 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
1789 h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
1790 h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
1791 int list0, int list1){
1792 MpegEncContext * const s = &h->s;
1794 dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
1795 dest_cb += x_offset + y_offset*h->mb_uvlinesize;
1796 dest_cr += x_offset + y_offset*h->mb_uvlinesize;
1797 x_offset += 8*s->mb_x;
1798 y_offset += 8*(s->mb_y >> MB_FIELD);
1801 /* don't optimize for luma-only case, since B-frames usually
1802 * use implicit weights => chroma too. */
1803 uint8_t *tmp_cb = s->obmc_scratchpad;
1804 uint8_t *tmp_cr = s->obmc_scratchpad + 8;
1805 uint8_t *tmp_y = s->obmc_scratchpad + 8*h->mb_uvlinesize;
1806 int refn0 = h->ref_cache[0][ scan8[n] ];
1807 int refn1 = h->ref_cache[1][ scan8[n] ];
1809 mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
1810 dest_y, dest_cb, dest_cr,
1811 x_offset, y_offset, qpix_put, chroma_put);
1812 mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
1813 tmp_y, tmp_cb, tmp_cr,
1814 x_offset, y_offset, qpix_put, chroma_put);
1816 if(h->use_weight == 2){
1817 int weight0 = h->implicit_weight[refn0][refn1];
1818 int weight1 = 64 - weight0;
1819 luma_weight_avg( dest_y, tmp_y, h-> mb_linesize, 5, weight0, weight1, 0);
1820 chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, 5, weight0, weight1, 0);
1821 chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, 5, weight0, weight1, 0);
1823 luma_weight_avg(dest_y, tmp_y, h->mb_linesize, h->luma_log2_weight_denom,
1824 h->luma_weight[0][refn0], h->luma_weight[1][refn1],
1825 h->luma_offset[0][refn0] + h->luma_offset[1][refn1]);
1826 chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
1827 h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0],
1828 h->chroma_offset[0][refn0][0] + h->chroma_offset[1][refn1][0]);
1829 chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
1830 h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1],
1831 h->chroma_offset[0][refn0][1] + h->chroma_offset[1][refn1][1]);
1834 int list = list1 ? 1 : 0;
1835 int refn = h->ref_cache[list][ scan8[n] ];
1836 Picture *ref= &h->ref_list[list][refn];
1837 mc_dir_part(h, ref, n, square, chroma_height, delta, list,
1838 dest_y, dest_cb, dest_cr, x_offset, y_offset,
1839 qpix_put, chroma_put);
1841 luma_weight_op(dest_y, h->mb_linesize, h->luma_log2_weight_denom,
1842 h->luma_weight[list][refn], h->luma_offset[list][refn]);
1843 if(h->use_weight_chroma){
1844 chroma_weight_op(dest_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
1845 h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]);
1846 chroma_weight_op(dest_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
1847 h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]);
1852 static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
1853 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1854 int x_offset, int y_offset,
1855 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
1856 qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
1857 h264_weight_func *weight_op, h264_biweight_func *weight_avg,
1858 int list0, int list1){
1859 if((h->use_weight==2 && list0 && list1
1860 && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32))
1861 || h->use_weight==1)
1862 mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
1863 x_offset, y_offset, qpix_put, chroma_put,
1864 weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
1866 mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
1867 x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
1870 static inline void prefetch_motion(H264Context *h, int list){
1871 /* fetch pixels for estimated mv 4 macroblocks ahead
1872 * optimized for 64byte cache lines */
1873 MpegEncContext * const s = &h->s;
1874 const int refn = h->ref_cache[list][scan8[0]];
1876 const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8;
1877 const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y;
1878 uint8_t **src= h->ref_list[list][refn].data;
1879 int off= mx + (my + (s->mb_x&3)*4)*h->mb_linesize + 64;
1880 s->dsp.prefetch(src[0]+off, s->linesize, 4);
1881 off= (mx>>1) + ((my>>1) + (s->mb_x&7))*s->uvlinesize + 64;
1882 s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
1886 static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1887 qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
1888 qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
1889 h264_weight_func *weight_op, h264_biweight_func *weight_avg){
1890 MpegEncContext * const s = &h->s;
1891 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
1892 const int mb_type= s->current_picture.mb_type[mb_xy];
1894 assert(IS_INTER(mb_type));
1896 prefetch_motion(h, 0);
1898 if(IS_16X16(mb_type)){
1899 mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
1900 qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
1901 &weight_op[0], &weight_avg[0],
1902 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1903 }else if(IS_16X8(mb_type)){
1904 mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
1905 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
1906 &weight_op[1], &weight_avg[1],
1907 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1908 mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
1909 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
1910 &weight_op[1], &weight_avg[1],
1911 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
1912 }else if(IS_8X16(mb_type)){
1913 mc_part(h, 0, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0,
1914 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1915 &weight_op[2], &weight_avg[2],
1916 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1917 mc_part(h, 4, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0,
1918 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1919 &weight_op[2], &weight_avg[2],
1920 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
1924 assert(IS_8X8(mb_type));
1927 const int sub_mb_type= h->sub_mb_type[i];
1929 int x_offset= (i&1)<<2;
1930 int y_offset= (i&2)<<1;
1932 if(IS_SUB_8X8(sub_mb_type)){
1933 mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
1934 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1935 &weight_op[3], &weight_avg[3],
1936 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1937 }else if(IS_SUB_8X4(sub_mb_type)){
1938 mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
1939 qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
1940 &weight_op[4], &weight_avg[4],
1941 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1942 mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
1943 qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
1944 &weight_op[4], &weight_avg[4],
1945 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1946 }else if(IS_SUB_4X8(sub_mb_type)){
1947 mc_part(h, n , 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
1948 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
1949 &weight_op[5], &weight_avg[5],
1950 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1951 mc_part(h, n+1, 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
1952 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
1953 &weight_op[5], &weight_avg[5],
1954 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1957 assert(IS_SUB_4X4(sub_mb_type));
1959 int sub_x_offset= x_offset + 2*(j&1);
1960 int sub_y_offset= y_offset + (j&2);
1961 mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
1962 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
1963 &weight_op[6], &weight_avg[6],
1964 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1970 prefetch_motion(h, 1);
1973 static void decode_init_vlc(void){
1974 static int done = 0;
1980 init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
1981 &chroma_dc_coeff_token_len [0], 1, 1,
1982 &chroma_dc_coeff_token_bits[0], 1, 1, 1);
1985 init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
1986 &coeff_token_len [i][0], 1, 1,
1987 &coeff_token_bits[i][0], 1, 1, 1);
1991 init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
1992 &chroma_dc_total_zeros_len [i][0], 1, 1,
1993 &chroma_dc_total_zeros_bits[i][0], 1, 1, 1);
1995 for(i=0; i<15; i++){
1996 init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16,
1997 &total_zeros_len [i][0], 1, 1,
1998 &total_zeros_bits[i][0], 1, 1, 1);
2002 init_vlc(&run_vlc[i], RUN_VLC_BITS, 7,
2003 &run_len [i][0], 1, 1,
2004 &run_bits[i][0], 1, 1, 1);
2006 init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
2007 &run_len [6][0], 1, 1,
2008 &run_bits[6][0], 1, 1, 1);
2012 static void free_tables(H264Context *h){
2015 av_freep(&h->intra4x4_pred_mode);
2016 av_freep(&h->chroma_pred_mode_table);
2017 av_freep(&h->cbp_table);
2018 av_freep(&h->mvd_table[0]);
2019 av_freep(&h->mvd_table[1]);
2020 av_freep(&h->direct_table);
2021 av_freep(&h->non_zero_count);
2022 av_freep(&h->slice_table_base);
2023 h->slice_table= NULL;
2025 av_freep(&h->mb2b_xy);
2026 av_freep(&h->mb2b8_xy);
2028 for(i = 0; i < MAX_SPS_COUNT; i++)
2029 av_freep(h->sps_buffers + i);
2031 for(i = 0; i < MAX_PPS_COUNT; i++)
2032 av_freep(h->pps_buffers + i);
2034 for(i = 0; i < h->s.avctx->thread_count; i++) {
2035 hx = h->thread_context[i];
2037 av_freep(&hx->top_borders[1]);
2038 av_freep(&hx->top_borders[0]);
2039 av_freep(&hx->s.obmc_scratchpad);
2040 av_freep(&hx->s.allocated_edge_emu_buffer);
2044 static void init_dequant8_coeff_table(H264Context *h){
2046 const int transpose = (h->s.dsp.h264_idct8_add != ff_h264_idct8_add_c); //FIXME ugly
2047 h->dequant8_coeff[0] = h->dequant8_buffer[0];
2048 h->dequant8_coeff[1] = h->dequant8_buffer[1];
2050 for(i=0; i<2; i++ ){
2051 if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){
2052 h->dequant8_coeff[1] = h->dequant8_buffer[0];
2056 for(q=0; q<52; q++){
2057 int shift = ff_div6[q];
2058 int idx = ff_rem6[q];
2060 h->dequant8_coeff[i][q][transpose ? (x>>3)|((x&7)<<3) : x] =
2061 ((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] *
2062 h->pps.scaling_matrix8[i][x]) << shift;
2067 static void init_dequant4_coeff_table(H264Context *h){
2069 const int transpose = (h->s.dsp.h264_idct_add != ff_h264_idct_add_c); //FIXME ugly
2070 for(i=0; i<6; i++ ){
2071 h->dequant4_coeff[i] = h->dequant4_buffer[i];
2073 if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
2074 h->dequant4_coeff[i] = h->dequant4_buffer[j];
2081 for(q=0; q<52; q++){
2082 int shift = ff_div6[q] + 2;
2083 int idx = ff_rem6[q];
2085 h->dequant4_coeff[i][q][transpose ? (x>>2)|((x<<2)&0xF) : x] =
2086 ((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
2087 h->pps.scaling_matrix4[i][x]) << shift;
2092 static void init_dequant_tables(H264Context *h){
2094 init_dequant4_coeff_table(h);
2095 if(h->pps.transform_8x8_mode)
2096 init_dequant8_coeff_table(h);
2097 if(h->sps.transform_bypass){
2100 h->dequant4_coeff[i][0][x] = 1<<6;
2101 if(h->pps.transform_8x8_mode)
2104 h->dequant8_coeff[i][0][x] = 1<<6;
2111 * needs width/height
2113 static int alloc_tables(H264Context *h){
2114 MpegEncContext * const s = &h->s;
2115 const int big_mb_num= s->mb_stride * (s->mb_height+1);
2118 CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t))
2120 CHECKED_ALLOCZ(h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t))
2121 CHECKED_ALLOCZ(h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(uint8_t))
2122 CHECKED_ALLOCZ(h->cbp_table, big_mb_num * sizeof(uint16_t))
2124 if( h->pps.cabac ) {
2125 CHECKED_ALLOCZ(h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t))
2126 CHECKED_ALLOCZ(h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t));
2127 CHECKED_ALLOCZ(h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t));
2128 CHECKED_ALLOCZ(h->direct_table, 32*big_mb_num * sizeof(uint8_t));
2131 memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(uint8_t));
2132 h->slice_table= h->slice_table_base + s->mb_stride*2 + 1;
2134 CHECKED_ALLOCZ(h->mb2b_xy , big_mb_num * sizeof(uint32_t));
2135 CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint32_t));
2136 for(y=0; y<s->mb_height; y++){
2137 for(x=0; x<s->mb_width; x++){
2138 const int mb_xy= x + y*s->mb_stride;
2139 const int b_xy = 4*x + 4*y*h->b_stride;
2140 const int b8_xy= 2*x + 2*y*h->b8_stride;
2142 h->mb2b_xy [mb_xy]= b_xy;
2143 h->mb2b8_xy[mb_xy]= b8_xy;
2147 s->obmc_scratchpad = NULL;
2149 if(!h->dequant4_coeff[0])
2150 init_dequant_tables(h);
2159 * Mimic alloc_tables(), but for every context thread.
2161 static void clone_tables(H264Context *dst, H264Context *src){
2162 dst->intra4x4_pred_mode = src->intra4x4_pred_mode;
2163 dst->non_zero_count = src->non_zero_count;
2164 dst->slice_table = src->slice_table;
2165 dst->cbp_table = src->cbp_table;
2166 dst->mb2b_xy = src->mb2b_xy;
2167 dst->mb2b8_xy = src->mb2b8_xy;
2168 dst->chroma_pred_mode_table = src->chroma_pred_mode_table;
2169 dst->mvd_table[0] = src->mvd_table[0];
2170 dst->mvd_table[1] = src->mvd_table[1];
2171 dst->direct_table = src->direct_table;
2173 dst->s.obmc_scratchpad = NULL;
2174 ff_h264_pred_init(&dst->hpc, src->s.codec_id);
2179 * Allocate buffers which are not shared amongst multiple threads.
2181 static int context_init(H264Context *h){
2182 MpegEncContext * const s = &h->s;
2184 CHECKED_ALLOCZ(h->top_borders[0], h->s.mb_width * (16+8+8) * sizeof(uint8_t))
2185 CHECKED_ALLOCZ(h->top_borders[1], h->s.mb_width * (16+8+8) * sizeof(uint8_t))
2187 // edge emu needs blocksize + filter length - 1 (=17x17 for halfpel / 21x21 for h264)
2188 CHECKED_ALLOCZ(s->allocated_edge_emu_buffer,
2189 (s->width+64)*2*21*2); //(width + edge + align)*interlaced*MBsize*tolerance
2190 s->edge_emu_buffer= s->allocated_edge_emu_buffer + (s->width+64)*2*21;
2193 return -1; // free_tables will clean up for us
2196 static void common_init(H264Context *h){
2197 MpegEncContext * const s = &h->s;
2199 s->width = s->avctx->width;
2200 s->height = s->avctx->height;
2201 s->codec_id= s->avctx->codec->id;
2203 ff_h264_pred_init(&h->hpc, s->codec_id);
2205 h->dequant_coeff_pps= -1;
2206 s->unrestricted_mv=1;
2207 s->decode=1; //FIXME
2209 memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
2210 memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
2213 static int decode_init(AVCodecContext *avctx){
2214 H264Context *h= avctx->priv_data;
2215 MpegEncContext * const s = &h->s;
2217 MPV_decode_defaults(s);
2222 s->out_format = FMT_H264;
2223 s->workaround_bugs= avctx->workaround_bugs;
2226 // s->decode_mb= ff_h263_decode_mb;
2227 s->quarter_sample = 1;
2229 avctx->pix_fmt= PIX_FMT_YUV420P;
2233 if(avctx->extradata_size > 0 && avctx->extradata &&
2234 *(char *)avctx->extradata == 1){
2241 h->thread_context[0] = h;
2245 static int frame_start(H264Context *h){
2246 MpegEncContext * const s = &h->s;
2249 if(MPV_frame_start(s, s->avctx) < 0)
2251 ff_er_frame_start(s);
2253 * MPV_frame_start uses pict_type to derive key_frame.
2254 * This is incorrect for H.264; IDR markings must be used.
2255 * Zero here; IDR markings per slice in frame or fields are OR'd in later.
2256 * See decode_nal_units().
2258 s->current_picture_ptr->key_frame= 0;
2260 assert(s->linesize && s->uvlinesize);
2262 for(i=0; i<16; i++){
2263 h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
2264 h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
2267 h->block_offset[16+i]=
2268 h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2269 h->block_offset[24+16+i]=
2270 h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2273 /* can't be in alloc_tables because linesize isn't known there.
2274 * FIXME: redo bipred weight to not require extra buffer? */
2275 for(i = 0; i < s->avctx->thread_count; i++)
2276 if(!h->thread_context[i]->s.obmc_scratchpad)
2277 h->thread_context[i]->s.obmc_scratchpad = av_malloc(16*2*s->linesize + 8*2*s->uvlinesize);
2279 /* some macroblocks will be accessed before they're available */
2280 if(FRAME_MBAFF || s->avctx->thread_count > 1)
2281 memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(uint8_t));
2283 // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
2287 static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple){
2288 MpegEncContext * const s = &h->s;
2292 src_cb -= uvlinesize;
2293 src_cr -= uvlinesize;
2295 // There are two lines saved, the line above the the top macroblock of a pair,
2296 // and the line above the bottom macroblock
2297 h->left_border[0]= h->top_borders[0][s->mb_x][15];
2298 for(i=1; i<17; i++){
2299 h->left_border[i]= src_y[15+i* linesize];
2302 *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 16*linesize);
2303 *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
2305 if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2306 h->left_border[17 ]= h->top_borders[0][s->mb_x][16+7];
2307 h->left_border[17+9]= h->top_borders[0][s->mb_x][24+7];
2309 h->left_border[i+17 ]= src_cb[7+i*uvlinesize];
2310 h->left_border[i+17+9]= src_cr[7+i*uvlinesize];
2312 *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
2313 *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
2317 static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg, int simple){
2318 MpegEncContext * const s = &h->s;
2325 if(h->deblocking_filter == 2) {
2326 mb_xy = s->mb_x + s->mb_y*s->mb_stride;
2327 deblock_left = h->slice_table[mb_xy] == h->slice_table[mb_xy - 1];
2328 deblock_top = h->slice_table[mb_xy] == h->slice_table[h->top_mb_xy];
2330 deblock_left = (s->mb_x > 0);
2331 deblock_top = (s->mb_y > 0);
2334 src_y -= linesize + 1;
2335 src_cb -= uvlinesize + 1;
2336 src_cr -= uvlinesize + 1;
2338 #define XCHG(a,b,t,xchg)\
2345 for(i = !deblock_top; i<17; i++){
2346 XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
2351 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
2352 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
2353 if(s->mb_x+1 < s->mb_width){
2354 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
2358 if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2360 for(i = !deblock_top; i<9; i++){
2361 XCHG(h->left_border[i+17 ], src_cb[i*uvlinesize], temp8, xchg);
2362 XCHG(h->left_border[i+17+9], src_cr[i*uvlinesize], temp8, xchg);
2366 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
2367 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
2372 static inline void backup_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
2373 MpegEncContext * const s = &h->s;
2376 src_y -= 2 * linesize;
2377 src_cb -= 2 * uvlinesize;
2378 src_cr -= 2 * uvlinesize;
2380 // There are two lines saved, the line above the the top macroblock of a pair,
2381 // and the line above the bottom macroblock
2382 h->left_border[0]= h->top_borders[0][s->mb_x][15];
2383 h->left_border[1]= h->top_borders[1][s->mb_x][15];
2384 for(i=2; i<34; i++){
2385 h->left_border[i]= src_y[15+i* linesize];
2388 *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 32*linesize);
2389 *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+32*linesize);
2390 *(uint64_t*)(h->top_borders[1][s->mb_x]+0)= *(uint64_t*)(src_y + 33*linesize);
2391 *(uint64_t*)(h->top_borders[1][s->mb_x]+8)= *(uint64_t*)(src_y +8+33*linesize);
2393 if(!ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2394 h->left_border[34 ]= h->top_borders[0][s->mb_x][16+7];
2395 h->left_border[34+ 1]= h->top_borders[1][s->mb_x][16+7];
2396 h->left_border[34+18 ]= h->top_borders[0][s->mb_x][24+7];
2397 h->left_border[34+18+1]= h->top_borders[1][s->mb_x][24+7];
2398 for(i=2; i<18; i++){
2399 h->left_border[i+34 ]= src_cb[7+i*uvlinesize];
2400 h->left_border[i+34+18]= src_cr[7+i*uvlinesize];
2402 *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+16*uvlinesize);
2403 *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+16*uvlinesize);
2404 *(uint64_t*)(h->top_borders[1][s->mb_x]+16)= *(uint64_t*)(src_cb+17*uvlinesize);
2405 *(uint64_t*)(h->top_borders[1][s->mb_x]+24)= *(uint64_t*)(src_cr+17*uvlinesize);
2409 static inline void xchg_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
2410 MpegEncContext * const s = &h->s;
2413 int deblock_left = (s->mb_x > 0);
2414 int deblock_top = (s->mb_y > 1);
2416 tprintf(s->avctx, "xchg_pair_border: src_y:%p src_cb:%p src_cr:%p ls:%d uvls:%d\n", src_y, src_cb, src_cr, linesize, uvlinesize);
2418 src_y -= 2 * linesize + 1;
2419 src_cb -= 2 * uvlinesize + 1;
2420 src_cr -= 2 * uvlinesize + 1;
2422 #define XCHG(a,b,t,xchg)\
2429 for(i = (!deblock_top)<<1; i<34; i++){
2430 XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
2435 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
2436 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
2437 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+0), *(uint64_t*)(src_y +1 +linesize), temp64, xchg);
2438 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+8), *(uint64_t*)(src_y +9 +linesize), temp64, 1);
2439 if(s->mb_x+1 < s->mb_width){
2440 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
2441 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x+1]), *(uint64_t*)(src_y +17 +linesize), temp64, 1);
2445 if(!ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2447 for(i = (!deblock_top) << 1; i<18; i++){
2448 XCHG(h->left_border[i+34 ], src_cb[i*uvlinesize], temp8, xchg);
2449 XCHG(h->left_border[i+34+18], src_cr[i*uvlinesize], temp8, xchg);
2453 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
2454 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
2455 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+16), *(uint64_t*)(src_cb+1 +uvlinesize), temp64, 1);
2456 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+24), *(uint64_t*)(src_cr+1 +uvlinesize), temp64, 1);
2461 static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple){
2462 MpegEncContext * const s = &h->s;
2463 const int mb_x= s->mb_x;
2464 const int mb_y= s->mb_y;
2465 const int mb_xy= mb_x + mb_y*s->mb_stride;
2466 const int mb_type= s->current_picture.mb_type[mb_xy];
2467 uint8_t *dest_y, *dest_cb, *dest_cr;
2468 int linesize, uvlinesize /*dct_offset*/;
2470 int *block_offset = &h->block_offset[0];
2471 const unsigned int bottom = mb_y & 1;
2472 const int transform_bypass = (s->qscale == 0 && h->sps.transform_bypass), is_h264 = (simple || s->codec_id == CODEC_ID_H264);
2473 void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
2474 void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
2476 dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
2477 dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2478 dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2480 s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + 64, s->linesize, 4);
2481 s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + 64, dest_cr - dest_cb, 2);
2483 if (!simple && MB_FIELD) {
2484 linesize = h->mb_linesize = s->linesize * 2;
2485 uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
2486 block_offset = &h->block_offset[24];
2487 if(mb_y&1){ //FIXME move out of this func?
2488 dest_y -= s->linesize*15;
2489 dest_cb-= s->uvlinesize*7;
2490 dest_cr-= s->uvlinesize*7;
2494 for(list=0; list<h->list_count; list++){
2495 if(!USES_LIST(mb_type, list))
2497 if(IS_16X16(mb_type)){
2498 int8_t *ref = &h->ref_cache[list][scan8[0]];
2499 fill_rectangle(ref, 4, 4, 8, 16+*ref^(s->mb_y&1), 1);
2501 for(i=0; i<16; i+=4){
2502 //FIXME can refs be smaller than 8x8 when !direct_8x8_inference ?
2503 int ref = h->ref_cache[list][scan8[i]];
2505 fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, 16+ref^(s->mb_y&1), 1);
2511 linesize = h->mb_linesize = s->linesize;
2512 uvlinesize = h->mb_uvlinesize = s->uvlinesize;
2513 // dct_offset = s->linesize * 16;
2516 if(transform_bypass){
2518 idct_add = IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4;
2519 }else if(IS_8x8DCT(mb_type)){
2520 idct_dc_add = s->dsp.h264_idct8_dc_add;
2521 idct_add = s->dsp.h264_idct8_add;
2523 idct_dc_add = s->dsp.h264_idct_dc_add;
2524 idct_add = s->dsp.h264_idct_add;
2527 if(!simple && FRAME_MBAFF && h->deblocking_filter && IS_INTRA(mb_type)
2528 && (!bottom || !IS_INTRA(s->current_picture.mb_type[mb_xy-s->mb_stride]))){
2529 int mbt_y = mb_y&~1;
2530 uint8_t *top_y = s->current_picture.data[0] + (mbt_y * 16* s->linesize ) + mb_x * 16;
2531 uint8_t *top_cb = s->current_picture.data[1] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8;
2532 uint8_t *top_cr = s->current_picture.data[2] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8;
2533 xchg_pair_border(h, top_y, top_cb, top_cr, s->linesize, s->uvlinesize, 1);
2536 if (!simple && IS_INTRA_PCM(mb_type)) {
2539 // The pixels are stored in h->mb array in the same order as levels,
2540 // copy them in output in the correct order.
2541 for(i=0; i<16; i++) {
2542 for (y=0; y<4; y++) {
2543 for (x=0; x<4; x++) {
2544 *(dest_y + block_offset[i] + y*linesize + x) = h->mb[i*16+y*4+x];
2548 for(i=16; i<16+4; i++) {
2549 for (y=0; y<4; y++) {
2550 for (x=0; x<4; x++) {
2551 *(dest_cb + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
2555 for(i=20; i<20+4; i++) {
2556 for (y=0; y<4; y++) {
2557 for (x=0; x<4; x++) {
2558 *(dest_cr + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
2563 if(IS_INTRA(mb_type)){
2564 if(h->deblocking_filter && (simple || !FRAME_MBAFF))
2565 xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1, simple);
2567 if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2568 h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
2569 h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
2572 if(IS_INTRA4x4(mb_type)){
2573 if(simple || !s->encoding){
2574 if(IS_8x8DCT(mb_type)){
2575 for(i=0; i<16; i+=4){
2576 uint8_t * const ptr= dest_y + block_offset[i];
2577 const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
2578 const int nnz = h->non_zero_count_cache[ scan8[i] ];
2579 h->hpc.pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
2580 (h->topright_samples_available<<i)&0x4000, linesize);
2582 if(nnz == 1 && h->mb[i*16])
2583 idct_dc_add(ptr, h->mb + i*16, linesize);
2585 idct_add(ptr, h->mb + i*16, linesize);
2589 for(i=0; i<16; i++){
2590 uint8_t * const ptr= dest_y + block_offset[i];
2592 const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
2595 if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
2596 const int topright_avail= (h->topright_samples_available<<i)&0x8000;
2597 assert(mb_y || linesize <= block_offset[i]);
2598 if(!topright_avail){
2599 tr= ptr[3 - linesize]*0x01010101;
2600 topright= (uint8_t*) &tr;
2602 topright= ptr + 4 - linesize;
2606 h->hpc.pred4x4[ dir ](ptr, topright, linesize);
2607 nnz = h->non_zero_count_cache[ scan8[i] ];
2610 if(nnz == 1 && h->mb[i*16])
2611 idct_dc_add(ptr, h->mb + i*16, linesize);
2613 idct_add(ptr, h->mb + i*16, linesize);
2615 svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
2620 h->hpc.pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
2622 if(!transform_bypass)
2623 h264_luma_dc_dequant_idct_c(h->mb, s->qscale, h->dequant4_coeff[0][s->qscale][0]);
2625 svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
2627 if(h->deblocking_filter && (simple || !FRAME_MBAFF))
2628 xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0, simple);
2630 hl_motion(h, dest_y, dest_cb, dest_cr,
2631 s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
2632 s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
2633 s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab);
2637 if(!IS_INTRA4x4(mb_type)){
2639 if(IS_INTRA16x16(mb_type)){
2640 for(i=0; i<16; i++){
2641 if(h->non_zero_count_cache[ scan8[i] ])
2642 idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
2643 else if(h->mb[i*16])
2644 idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
2647 const int di = IS_8x8DCT(mb_type) ? 4 : 1;
2648 for(i=0; i<16; i+=di){
2649 int nnz = h->non_zero_count_cache[ scan8[i] ];
2651 if(nnz==1 && h->mb[i*16])
2652 idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
2654 idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
2659 for(i=0; i<16; i++){
2660 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
2661 uint8_t * const ptr= dest_y + block_offset[i];
2662 svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
2668 if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2669 uint8_t *dest[2] = {dest_cb, dest_cr};
2670 if(transform_bypass){
2671 idct_add = idct_dc_add = s->dsp.add_pixels4;
2673 idct_add = s->dsp.h264_idct_add;
2674 idct_dc_add = s->dsp.h264_idct_dc_add;
2675 chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp[0], h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp[0]][0]);
2676 chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp[1], h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp[1]][0]);
2679 for(i=16; i<16+8; i++){
2680 if(h->non_zero_count_cache[ scan8[i] ])
2681 idct_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
2682 else if(h->mb[i*16])
2683 idct_dc_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
2686 for(i=16; i<16+8; i++){
2687 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2688 uint8_t * const ptr= dest[(i&4)>>2] + block_offset[i];
2689 svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
2695 if(h->deblocking_filter) {
2696 if (!simple && FRAME_MBAFF) {
2697 //FIXME try deblocking one mb at a time?
2698 // the reduction in load/storing mvs and such might outweigh the extra backup/xchg_border
2699 const int mb_y = s->mb_y - 1;
2700 uint8_t *pair_dest_y, *pair_dest_cb, *pair_dest_cr;
2701 const int mb_xy= mb_x + mb_y*s->mb_stride;
2702 const int mb_type_top = s->current_picture.mb_type[mb_xy];
2703 const int mb_type_bottom= s->current_picture.mb_type[mb_xy+s->mb_stride];
2704 if (!bottom) return;
2705 pair_dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
2706 pair_dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2707 pair_dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2709 if(IS_INTRA(mb_type_top | mb_type_bottom))
2710 xchg_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize, 0);
2712 backup_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize);
2716 tprintf(h->s.avctx, "call mbaff filter_mb mb_x:%d mb_y:%d pair_dest_y = %p, dest_y = %p\n", mb_x, mb_y, pair_dest_y, dest_y);
2717 fill_caches(h, mb_type_top, 1); //FIXME don't fill stuff which isn't used by filter_mb
2718 h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy]);
2719 h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy]);
2720 filter_mb(h, mb_x, mb_y, pair_dest_y, pair_dest_cb, pair_dest_cr, linesize, uvlinesize);
2723 tprintf(h->s.avctx, "call mbaff filter_mb\n");
2724 fill_caches(h, mb_type_bottom, 1); //FIXME don't fill stuff which isn't used by filter_mb
2725 h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy+s->mb_stride]);
2726 h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy+s->mb_stride]);
2727 filter_mb(h, mb_x, mb_y+1, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
2729 tprintf(h->s.avctx, "call filter_mb\n");
2730 backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, simple);
2731 fill_caches(h, mb_type, 1); //FIXME don't fill stuff which isn't used by filter_mb
2732 filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
2738 * Process a macroblock; this case avoids checks for expensive uncommon cases.
2740 static void hl_decode_mb_simple(H264Context *h){
2741 hl_decode_mb_internal(h, 1);
2745 * Process a macroblock; this handles edge cases, such as interlacing.
2747 static void av_noinline hl_decode_mb_complex(H264Context *h){
2748 hl_decode_mb_internal(h, 0);
2751 static void hl_decode_mb(H264Context *h){
2752 MpegEncContext * const s = &h->s;
2753 const int mb_x= s->mb_x;
2754 const int mb_y= s->mb_y;
2755 const int mb_xy= mb_x + mb_y*s->mb_stride;
2756 const int mb_type= s->current_picture.mb_type[mb_xy];
2757 int is_complex = FRAME_MBAFF || MB_FIELD || IS_INTRA_PCM(mb_type) || s->codec_id != CODEC_ID_H264 || (ENABLE_GRAY && (s->flags&CODEC_FLAG_GRAY)) || s->encoding;
2763 hl_decode_mb_complex(h);
2764 else hl_decode_mb_simple(h);
2767 static void pic_as_field(Picture *pic, const int parity){
2769 for (i = 0; i < 4; ++i) {
2770 if (parity == PICT_BOTTOM_FIELD)
2771 pic->data[i] += pic->linesize[i];
2772 pic->reference = parity;
2773 pic->linesize[i] *= 2;
2777 static int split_field_copy(Picture *dest, Picture *src,
2778 int parity, int id_add){
2779 int match = !!(src->reference & parity);
2783 pic_as_field(dest, parity);
2785 dest->pic_id += id_add;
2792 * Split one reference list into field parts, interleaving by parity
2793 * as per H.264 spec section 8.2.4.2.5. Output fields have their data pointers
2794 * set to look at the actual start of data for that field.
2796 * @param dest output list
2797 * @param dest_len maximum number of fields to put in dest
2798 * @param src the source reference list containing fields and/or field pairs
2799 * (aka short_ref/long_ref, or
2800 * refFrameListXShortTerm/refFrameListLongTerm in spec-speak)
2801 * @param src_len number of Picture's in source (pairs and unmatched fields)
2802 * @param parity the parity of the picture being decoded/needing
2803 * these ref pics (PICT_{TOP,BOTTOM}_FIELD)
2804 * @return number of fields placed in dest
2806 static int split_field_half_ref_list(Picture *dest, int dest_len,
2807 Picture *src, int src_len, int parity){
2808 int same_parity = 1;
2814 for (out_i = 0; out_i < dest_len; out_i += field_output) {
2815 if (same_parity && same_i < src_len) {
2816 field_output = split_field_copy(dest + out_i, src + same_i,
2818 same_parity = !field_output;
2821 } else if (opp_i < src_len) {
2822 field_output = split_field_copy(dest + out_i, src + opp_i,
2823 PICT_FRAME - parity, 0);
2824 same_parity = field_output;
2836 * Split the reference frame list into a reference field list.
2837 * This implements H.264 spec 8.2.4.2.5 for a combined input list.
2838 * The input list contains both reference field pairs and
2839 * unmatched reference fields; it is ordered as spec describes
2840 * RefPicListX for frames in 8.2.4.2.1 and 8.2.4.2.3, except that
2841 * unmatched field pairs are also present. Conceptually this is equivalent
2842 * to concatenation of refFrameListXShortTerm with refFrameListLongTerm.
2844 * @param dest output reference list where ordered fields are to be placed
2845 * @param dest_len max number of fields to place at dest
2846 * @param src source reference list, as described above
2847 * @param src_len number of pictures (pairs and unmatched fields) in src
2848 * @param parity parity of field being currently decoded
2849 * (one of PICT_{TOP,BOTTOM}_FIELD)
2850 * @param long_i index into src array that holds first long reference picture,
2851 * or src_len if no long refs present.
2853 static int split_field_ref_list(Picture *dest, int dest_len,
2854 Picture *src, int src_len,
2855 int parity, int long_i){
2857 int i = split_field_half_ref_list(dest, dest_len, src, long_i, parity);
2861 i += split_field_half_ref_list(dest, dest_len, src + long_i,
2862 src_len - long_i, parity);
2867 * fills the default_ref_list.
2869 static int fill_default_ref_list(H264Context *h){
2870 MpegEncContext * const s = &h->s;
2872 int smallest_poc_greater_than_current = -1;
2874 Picture sorted_short_ref[32];
2875 Picture field_entry_list[2][32];
2876 Picture *frame_list[2];
2878 if (FIELD_PICTURE) {
2879 structure_sel = PICT_FRAME;
2880 frame_list[0] = field_entry_list[0];
2881 frame_list[1] = field_entry_list[1];
2884 frame_list[0] = h->default_ref_list[0];
2885 frame_list[1] = h->default_ref_list[1];
2888 if(h->slice_type==B_TYPE){
2895 /* sort frame according to poc in B slice */
2896 for(out_i=0; out_i<h->short_ref_count; out_i++){
2898 int best_poc=INT_MAX;
2900 for(i=0; i<h->short_ref_count; i++){
2901 const int poc= h->short_ref[i]->poc;
2902 if(poc > limit && poc < best_poc){
2908 assert(best_i != INT_MIN);
2911 sorted_short_ref[out_i]= *h->short_ref[best_i];
2912 tprintf(h->s.avctx, "sorted poc: %d->%d poc:%d fn:%d\n", best_i, out_i, sorted_short_ref[out_i].poc, sorted_short_ref[out_i].frame_num);
2913 if (-1 == smallest_poc_greater_than_current) {
2914 if (h->short_ref[best_i]->poc >= s->current_picture_ptr->poc) {
2915 smallest_poc_greater_than_current = out_i;
2920 tprintf(h->s.avctx, "current poc: %d, smallest_poc_greater_than_current: %d\n", s->current_picture_ptr->poc, smallest_poc_greater_than_current);
2922 // find the largest poc
2923 for(list=0; list<2; list++){
2926 int step= list ? -1 : 1;
2928 for(i=0; i<h->short_ref_count && index < h->ref_count[list]; i++, j+=step) {
2930 while(j<0 || j>= h->short_ref_count){
2931 if(j != -99 && step == (list ? -1 : 1))
2934 j= smallest_poc_greater_than_current + (step>>1);
2936 sel = sorted_short_ref[j].reference | structure_sel;
2937 if(sel != PICT_FRAME) continue;
2938 frame_list[list][index ]= sorted_short_ref[j];
2939 frame_list[list][index++].pic_id= sorted_short_ref[j].frame_num;
2941 short_len[list] = index;
2943 for(i = 0; i < 16 && index < h->ref_count[ list ]; i++){
2945 if(h->long_ref[i] == NULL) continue;
2946 sel = h->long_ref[i]->reference | structure_sel;
2947 if(sel != PICT_FRAME) continue;
2949 frame_list[ list ][index ]= *h->long_ref[i];
2950 frame_list[ list ][index++].pic_id= i;;
2954 if(list && (smallest_poc_greater_than_current<=0 || smallest_poc_greater_than_current>=h->short_ref_count) && (1 < index)){
2955 // swap the two first elements of L1 when
2956 // L0 and L1 are identical
2957 Picture temp= frame_list[1][0];
2958 frame_list[1][0] = frame_list[1][1];
2959 frame_list[1][1] = temp;
2964 for(list=0; list<2; list++){
2966 len[list] = split_field_ref_list(h->default_ref_list[list],
2970 s->picture_structure,
2973 if(len[list] < h->ref_count[ list ])
2974 memset(&h->default_ref_list[list][len[list]], 0, sizeof(Picture)*(h->ref_count[ list ] - len[list]));
2981 for(i=0; i<h->short_ref_count; i++){
2983 sel = h->short_ref[i]->reference | structure_sel;
2984 if(sel != PICT_FRAME) continue;
2985 frame_list[0][index ]= *h->short_ref[i];
2986 frame_list[0][index++].pic_id= h->short_ref[i]->frame_num;
2989 for(i = 0; i < 16; i++){
2991 if(h->long_ref[i] == NULL) continue;
2992 sel = h->long_ref[i]->reference | structure_sel;
2993 if(sel != PICT_FRAME) continue;
2994 frame_list[0][index ]= *h->long_ref[i];
2995 frame_list[0][index++].pic_id= i;;
2999 index = split_field_ref_list(h->default_ref_list[0],
3000 h->ref_count[0], frame_list[0],
3001 index, s->picture_structure,
3004 if(index < h->ref_count[0])
3005 memset(&h->default_ref_list[0][index], 0, sizeof(Picture)*(h->ref_count[0] - index));
3008 for (i=0; i<h->ref_count[0]; i++) {
3009 tprintf(h->s.avctx, "List0: %s fn:%d 0x%p\n", (h->default_ref_list[0][i].long_ref ? "LT" : "ST"), h->default_ref_list[0][i].pic_id, h->default_ref_list[0][i].data[0]);
3011 if(h->slice_type==B_TYPE){
3012 for (i=0; i<h->ref_count[1]; i++) {
3013 tprintf(h->s.avctx, "List1: %s fn:%d 0x%p\n", (h->default_ref_list[1][i].long_ref ? "LT" : "ST"), h->default_ref_list[1][i].pic_id, h->default_ref_list[0][i].data[0]);
3020 static void print_short_term(H264Context *h);
3021 static void print_long_term(H264Context *h);
3024 * Extract structure information about the picture described by pic_num in
3025 * the current decoding context (frame or field). Note that pic_num is
3026 * picture number without wrapping (so, 0<=pic_num<max_pic_num).
3027 * @param pic_num picture number for which to extract structure information
3028 * @param structure one of PICT_XXX describing structure of picture
3030 * @return frame number (short term) or long term index of picture
3031 * described by pic_num
3033 static int pic_num_extract(H264Context *h, int pic_num, int *structure){
3034 MpegEncContext * const s = &h->s;
3036 *structure = s->picture_structure;
3039 /* opposite field */
3040 *structure ^= PICT_FRAME;
3047 static int decode_ref_pic_list_reordering(H264Context *h){
3048 MpegEncContext * const s = &h->s;
3049 int list, index, pic_structure;
3051 print_short_term(h);
3053 if(h->slice_type==I_TYPE || h->slice_type==SI_TYPE) return 0; //FIXME move before func
3055 for(list=0; list<h->list_count; list++){
3056 memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
3058 if(get_bits1(&s->gb)){
3059 int pred= h->curr_pic_num;
3061 for(index=0; ; index++){
3062 unsigned int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb);
3063 unsigned int pic_id;
3065 Picture *ref = NULL;
3067 if(reordering_of_pic_nums_idc==3)
3070 if(index >= h->ref_count[list]){
3071 av_log(h->s.avctx, AV_LOG_ERROR, "reference count overflow\n");
3075 if(reordering_of_pic_nums_idc<3){
3076 if(reordering_of_pic_nums_idc<2){
3077 const unsigned int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1;
3080 if(abs_diff_pic_num > h->max_pic_num){
3081 av_log(h->s.avctx, AV_LOG_ERROR, "abs_diff_pic_num overflow\n");
3085 if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num;
3086 else pred+= abs_diff_pic_num;
3087 pred &= h->max_pic_num - 1;
3089 frame_num = pic_num_extract(h, pred, &pic_structure);
3091 for(i= h->short_ref_count-1; i>=0; i--){
3092 ref = h->short_ref[i];
3093 assert(ref->reference);
3094 assert(!ref->long_ref);
3095 if(ref->data[0] != NULL &&
3096 ref->frame_num == frame_num &&
3097 (ref->reference & pic_structure) &&
3098 ref->long_ref == 0) // ignore non existing pictures by testing data[0] pointer
3105 pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx
3107 long_idx= pic_num_extract(h, pic_id, &pic_structure);
3110 av_log(h->s.avctx, AV_LOG_ERROR, "long_term_pic_idx overflow\n");
3113 ref = h->long_ref[long_idx];
3114 assert(!(ref && !ref->reference));
3115 if(ref && (ref->reference & pic_structure)){
3116 ref->pic_id= pic_id;
3117 assert(ref->long_ref);
3125 av_log(h->s.avctx, AV_LOG_ERROR, "reference picture missing during reorder\n");
3126 memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME
3128 for(i=index; i+1<h->ref_count[list]; i++){
3129 if(ref->long_ref == h->ref_list[list][i].long_ref && ref->pic_id == h->ref_list[list][i].pic_id)
3132 for(; i > index; i--){
3133 h->ref_list[list][i]= h->ref_list[list][i-1];
3135 h->ref_list[list][index]= *ref;
3137 pic_as_field(&h->ref_list[list][index], pic_structure);
3141 av_log(h->s.avctx, AV_LOG_ERROR, "illegal reordering_of_pic_nums_idc\n");
3147 for(list=0; list<h->list_count; list++){
3148 for(index= 0; index < h->ref_count[list]; index++){
3149 if(!h->ref_list[list][index].data[0])
3150 h->ref_list[list][index]= s->current_picture;
3154 if(h->slice_type==B_TYPE && !h->direct_spatial_mv_pred)
3155 direct_dist_scale_factor(h);
3156 direct_ref_list_init(h);
3160 static void fill_mbaff_ref_list(H264Context *h){
3162 for(list=0; list<2; list++){ //FIXME try list_count
3163 for(i=0; i<h->ref_count[list]; i++){
3164 Picture *frame = &h->ref_list[list][i];
3165 Picture *field = &h->ref_list[list][16+2*i];
3168 field[0].linesize[j] <<= 1;
3169 field[0].reference = PICT_TOP_FIELD;
3170 field[1] = field[0];
3172 field[1].data[j] += frame->linesize[j];
3173 field[1].reference = PICT_BOTTOM_FIELD;
3175 h->luma_weight[list][16+2*i] = h->luma_weight[list][16+2*i+1] = h->luma_weight[list][i];
3176 h->luma_offset[list][16+2*i] = h->luma_offset[list][16+2*i+1] = h->luma_offset[list][i];
3178 h->chroma_weight[list][16+2*i][j] = h->chroma_weight[list][16+2*i+1][j] = h->chroma_weight[list][i][j];
3179 h->chroma_offset[list][16+2*i][j] = h->chroma_offset[list][16+2*i+1][j] = h->chroma_offset[list][i][j];
3183 for(j=0; j<h->ref_count[1]; j++){
3184 for(i=0; i<h->ref_count[0]; i++)
3185 h->implicit_weight[j][16+2*i] = h->implicit_weight[j][16+2*i+1] = h->implicit_weight[j][i];
3186 memcpy(h->implicit_weight[16+2*j], h->implicit_weight[j], sizeof(*h->implicit_weight));
3187 memcpy(h->implicit_weight[16+2*j+1], h->implicit_weight[j], sizeof(*h->implicit_weight));
3191 static int pred_weight_table(H264Context *h){
3192 MpegEncContext * const s = &h->s;
3194 int luma_def, chroma_def;
3197 h->use_weight_chroma= 0;
3198 h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
3199 h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
3200 luma_def = 1<<h->luma_log2_weight_denom;
3201 chroma_def = 1<<h->chroma_log2_weight_denom;
3203 for(list=0; list<2; list++){
3204 for(i=0; i<h->ref_count[list]; i++){
3205 int luma_weight_flag, chroma_weight_flag;
3207 luma_weight_flag= get_bits1(&s->gb);
3208 if(luma_weight_flag){
3209 h->luma_weight[list][i]= get_se_golomb(&s->gb);
3210 h->luma_offset[list][i]= get_se_golomb(&s->gb);
3211 if( h->luma_weight[list][i] != luma_def
3212 || h->luma_offset[list][i] != 0)
3215 h->luma_weight[list][i]= luma_def;
3216 h->luma_offset[list][i]= 0;
3219 chroma_weight_flag= get_bits1(&s->gb);
3220 if(chroma_weight_flag){
3223 h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
3224 h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
3225 if( h->chroma_weight[list][i][j] != chroma_def
3226 || h->chroma_offset[list][i][j] != 0)
3227 h->use_weight_chroma= 1;
3232 h->chroma_weight[list][i][j]= chroma_def;
3233 h->chroma_offset[list][i][j]= 0;
3237 if(h->slice_type != B_TYPE) break;
3239 h->use_weight= h->use_weight || h->use_weight_chroma;
3243 static void implicit_weight_table(H264Context *h){
3244 MpegEncContext * const s = &h->s;
3246 int cur_poc = s->current_picture_ptr->poc;
3248 if( h->ref_count[0] == 1 && h->ref_count[1] == 1
3249 && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
3251 h->use_weight_chroma= 0;
3256 h->use_weight_chroma= 2;
3257 h->luma_log2_weight_denom= 5;
3258 h->chroma_log2_weight_denom= 5;
3260 for(ref0=0; ref0 < h->ref_count[0]; ref0++){
3261 int poc0 = h->ref_list[0][ref0].poc;
3262 for(ref1=0; ref1 < h->ref_count[1]; ref1++){
3263 int poc1 = h->ref_list[1][ref1].poc;
3264 int td = av_clip(poc1 - poc0, -128, 127);
3266 int tb = av_clip(cur_poc - poc0, -128, 127);
3267 int tx = (16384 + (FFABS(td) >> 1)) / td;
3268 int dist_scale_factor = av_clip((tb*tx + 32) >> 6, -1024, 1023) >> 2;
3269 if(dist_scale_factor < -64 || dist_scale_factor > 128)
3270 h->implicit_weight[ref0][ref1] = 32;
3272 h->implicit_weight[ref0][ref1] = 64 - dist_scale_factor;
3274 h->implicit_weight[ref0][ref1] = 32;
3280 * Mark a picture as no longer needed for reference. The refmask
3281 * argument allows unreferencing of individual fields or the whole frame.
3282 * If the picture becomes entirely unreferenced, but is being held for
3283 * display purposes, it is marked as such.
3284 * @param refmask mask of fields to unreference; the mask is bitwise
3285 * anded with the reference marking of pic
3286 * @return non-zero if pic becomes entirely unreferenced (except possibly
3287 * for display purposes) zero if one of the fields remains in
3290 static inline int unreference_pic(H264Context *h, Picture *pic, int refmask){
3292 if (pic->reference &= refmask) {
3295 if(pic == h->delayed_output_pic)
3296 pic->reference=DELAYED_PIC_REF;
3298 for(i = 0; h->delayed_pic[i]; i++)
3299 if(pic == h->delayed_pic[i]){
3300 pic->reference=DELAYED_PIC_REF;
3309 * instantaneous decoder refresh.
3311 static void idr(H264Context *h){
3314 for(i=0; i<16; i++){
3315 if (h->long_ref[i] != NULL) {
3316 unreference_pic(h, h->long_ref[i], 0);
3317 h->long_ref[i]= NULL;
3320 h->long_ref_count=0;
3322 for(i=0; i<h->short_ref_count; i++){
3323 unreference_pic(h, h->short_ref[i], 0);
3324 h->short_ref[i]= NULL;
3326 h->short_ref_count=0;
3329 /* forget old pics after a seek */
3330 static void flush_dpb(AVCodecContext *avctx){
3331 H264Context *h= avctx->priv_data;
3333 for(i=0; i<16; i++) {
3334 if(h->delayed_pic[i])
3335 h->delayed_pic[i]->reference= 0;
3336 h->delayed_pic[i]= NULL;
3338 if(h->delayed_output_pic)
3339 h->delayed_output_pic->reference= 0;
3340 h->delayed_output_pic= NULL;
3342 if(h->s.current_picture_ptr)
3343 h->s.current_picture_ptr->reference= 0;
3344 h->s.first_field= 0;
3345 ff_mpeg_flush(avctx);
3349 * Find a Picture in the short term reference list by frame number.
3350 * @param frame_num frame number to search for
3351 * @param idx the index into h->short_ref where returned picture is found
3352 * undefined if no picture found.
3353 * @return pointer to the found picture, or NULL if no pic with the provided
3354 * frame number is found
3356 static Picture * find_short(H264Context *h, int frame_num, int *idx){
3357 MpegEncContext * const s = &h->s;
3360 for(i=0; i<h->short_ref_count; i++){
3361 Picture *pic= h->short_ref[i];
3362 if(s->avctx->debug&FF_DEBUG_MMCO)
3363 av_log(h->s.avctx, AV_LOG_DEBUG, "%d %d %p\n", i, pic->frame_num, pic);
3364 if(pic->frame_num == frame_num) {
3373 * Remove a picture from the short term reference list by its index in
3374 * that list. This does no checking on the provided index; it is assumed
3375 * to be valid. Other list entries are shifted down.
3376 * @param i index into h->short_ref of picture to remove.
3378 static void remove_short_at_index(H264Context *h, int i){
3379 assert(i > 0 && i < h->short_ref_count);
3380 h->short_ref[i]= NULL;
3381 if (--h->short_ref_count)
3382 memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i)*sizeof(Picture*));
3387 * @return the removed picture or NULL if an error occurs
3389 static Picture * remove_short(H264Context *h, int frame_num){
3390 MpegEncContext * const s = &h->s;
3394 if(s->avctx->debug&FF_DEBUG_MMCO)
3395 av_log(h->s.avctx, AV_LOG_DEBUG, "remove short %d count %d\n", frame_num, h->short_ref_count);
3397 pic = find_short(h, frame_num, &i);
3399 remove_short_at_index(h, i);
3405 * Remove a picture from the long term reference list by its index in
3406 * that list. This does no checking on the provided index; it is assumed
3407 * to be valid. The removed entry is set to NULL. Other entries are unaffected.
3408 * @param i index into h->long_ref of picture to remove.
3410 static void remove_long_at_index(H264Context *h, int i){
3411 h->long_ref[i]= NULL;
3412 h->long_ref_count--;
3417 * @return the removed picture or NULL if an error occurs
3419 static Picture * remove_long(H264Context *h, int i){
3422 pic= h->long_ref[i];
3424 remove_long_at_index(h, i);
3430 * print short term list
3432 static void print_short_term(H264Context *h) {
3434 if(h->s.avctx->debug&FF_DEBUG_MMCO) {
3435 av_log(h->s.avctx, AV_LOG_DEBUG, "short term list:\n");
3436 for(i=0; i<h->short_ref_count; i++){