2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 * H.264 / AVC / MPEG4 part10 codec.
25 * @author Michael Niedermayer <michaelni@gmx.at>
30 #include "mpegvideo.h"
33 #include "h264_parser.h"
35 #include "rectangle.h"
39 #include "i386/h264_i386.h"
46 * Value of Picture.reference when Picture is not a reference picture, but
47 * is held for delayed output.
49 #define DELAYED_PIC_REF 4
51 static VLC coeff_token_vlc[4];
52 static VLC chroma_dc_coeff_token_vlc;
54 static VLC total_zeros_vlc[15];
55 static VLC chroma_dc_total_zeros_vlc[3];
57 static VLC run_vlc[6];
60 static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
61 static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
62 static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
63 static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
65 static av_always_inline uint32_t pack16to32(int a, int b){
66 #ifdef WORDS_BIGENDIAN
67 return (b&0xFFFF) + (a<<16);
69 return (a&0xFFFF) + (b<<16);
73 const uint8_t ff_rem6[52]={
74 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
77 const uint8_t ff_div6[52]={
78 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,
82 static void fill_caches(H264Context *h, int mb_type, int for_deblock){
83 MpegEncContext * const s = &h->s;
84 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
85 int topleft_xy, top_xy, topright_xy, left_xy[2];
86 int topleft_type, top_type, topright_type, left_type[2];
88 int topleft_partition= -1;
91 top_xy = mb_xy - (s->mb_stride << FIELD_PICTURE);
93 //FIXME deblocking could skip the intra and nnz parts.
94 if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[top_xy]) && !FRAME_MBAFF)
97 /* Wow, what a mess, why didn't they simplify the interlacing & intra
98 * stuff, I can't imagine that these complex rules are worth it. */
100 topleft_xy = top_xy - 1;
101 topright_xy= top_xy + 1;
102 left_xy[1] = left_xy[0] = mb_xy-1;
112 const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
113 const int top_pair_xy = pair_xy - s->mb_stride;
114 const int topleft_pair_xy = top_pair_xy - 1;
115 const int topright_pair_xy = top_pair_xy + 1;
116 const int topleft_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
117 const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
118 const int topright_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
119 const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
120 const int curr_mb_frame_flag = !IS_INTERLACED(mb_type);
121 const int bottom = (s->mb_y & 1);
122 tprintf(s->avctx, "fill_caches: curr_mb_frame_flag:%d, left_mb_frame_flag:%d, topleft_mb_frame_flag:%d, top_mb_frame_flag:%d, topright_mb_frame_flag:%d\n", curr_mb_frame_flag, left_mb_frame_flag, topleft_mb_frame_flag, top_mb_frame_flag, topright_mb_frame_flag);
124 ? !curr_mb_frame_flag // bottom macroblock
125 : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
127 top_xy -= s->mb_stride;
130 ? !curr_mb_frame_flag // bottom macroblock
131 : (!curr_mb_frame_flag && !topleft_mb_frame_flag) // top macroblock
133 topleft_xy -= s->mb_stride;
134 } else if(bottom && curr_mb_frame_flag && !left_mb_frame_flag) {
135 topleft_xy += s->mb_stride;
136 // take topleft mv from the middle of the mb, as opposed to all other modes which use the bottom-right partition
137 topleft_partition = 0;
140 ? !curr_mb_frame_flag // bottom macroblock
141 : (!curr_mb_frame_flag && !topright_mb_frame_flag) // top macroblock
143 topright_xy -= s->mb_stride;
145 if (left_mb_frame_flag != curr_mb_frame_flag) {
146 left_xy[1] = left_xy[0] = pair_xy - 1;
147 if (curr_mb_frame_flag) {
168 left_xy[1] += s->mb_stride;
181 h->top_mb_xy = top_xy;
182 h->left_mb_xy[0] = left_xy[0];
183 h->left_mb_xy[1] = left_xy[1];
187 top_type = h->slice_table[top_xy ] < 255 ? s->current_picture.mb_type[top_xy] : 0;
188 left_type[0] = h->slice_table[left_xy[0] ] < 255 ? s->current_picture.mb_type[left_xy[0]] : 0;
189 left_type[1] = h->slice_table[left_xy[1] ] < 255 ? s->current_picture.mb_type[left_xy[1]] : 0;
191 if(FRAME_MBAFF && !IS_INTRA(mb_type)){
193 int v = *(uint16_t*)&h->non_zero_count[mb_xy][14];
195 h->non_zero_count_cache[scan8[i]] = (v>>i)&1;
196 for(list=0; list<h->list_count; list++){
197 if(USES_LIST(mb_type,list)){
198 uint32_t *src = (uint32_t*)s->current_picture.motion_val[list][h->mb2b_xy[mb_xy]];
199 uint32_t *dst = (uint32_t*)h->mv_cache[list][scan8[0]];
200 int8_t *ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
201 for(i=0; i<4; i++, dst+=8, src+=h->b_stride){
207 *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
208 *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = pack16to32(ref[0],ref[1])*0x0101;
210 *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
211 *(uint32_t*)&h->ref_cache[list][scan8[10]] = pack16to32(ref[0],ref[1])*0x0101;
213 fill_rectangle(&h-> mv_cache[list][scan8[ 0]], 4, 4, 8, 0, 4);
214 fill_rectangle(&h->ref_cache[list][scan8[ 0]], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1);
219 topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
220 top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
221 topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
222 left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
223 left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
226 if(IS_INTRA(mb_type)){
227 h->topleft_samples_available=
228 h->top_samples_available=
229 h->left_samples_available= 0xFFFF;
230 h->topright_samples_available= 0xEEEA;
232 if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
233 h->topleft_samples_available= 0xB3FF;
234 h->top_samples_available= 0x33FF;
235 h->topright_samples_available= 0x26EA;
238 if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
239 h->topleft_samples_available&= 0xDF5F;
240 h->left_samples_available&= 0x5F5F;
244 if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
245 h->topleft_samples_available&= 0x7FFF;
247 if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
248 h->topright_samples_available&= 0xFBFF;
250 if(IS_INTRA4x4(mb_type)){
251 if(IS_INTRA4x4(top_type)){
252 h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
253 h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
254 h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
255 h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
258 if(!top_type || (IS_INTER(top_type) && h->pps.constrained_intra_pred))
263 h->intra4x4_pred_mode_cache[4+8*0]=
264 h->intra4x4_pred_mode_cache[5+8*0]=
265 h->intra4x4_pred_mode_cache[6+8*0]=
266 h->intra4x4_pred_mode_cache[7+8*0]= pred;
269 if(IS_INTRA4x4(left_type[i])){
270 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
271 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
274 if(!left_type[i] || (IS_INTER(left_type[i]) && h->pps.constrained_intra_pred))
279 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
280 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
295 //FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
297 h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4];
298 h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5];
299 h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6];
300 h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
302 h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9];
303 h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
305 h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12];
306 h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
309 h->non_zero_count_cache[4+8*0]=
310 h->non_zero_count_cache[5+8*0]=
311 h->non_zero_count_cache[6+8*0]=
312 h->non_zero_count_cache[7+8*0]=
314 h->non_zero_count_cache[1+8*0]=
315 h->non_zero_count_cache[2+8*0]=
317 h->non_zero_count_cache[1+8*3]=
318 h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
322 for (i=0; i<2; i++) {
324 h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]];
325 h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]];
326 h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]];
327 h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]];
329 h->non_zero_count_cache[3+8*1 + 2*8*i]=
330 h->non_zero_count_cache[3+8*2 + 2*8*i]=
331 h->non_zero_count_cache[0+8*1 + 8*i]=
332 h->non_zero_count_cache[0+8*4 + 8*i]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
339 h->top_cbp = h->cbp_table[top_xy];
340 } else if(IS_INTRA(mb_type)) {
347 h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
348 } else if(IS_INTRA(mb_type)) {
354 h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
357 h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
362 if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
364 for(list=0; list<h->list_count; list++){
365 if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
366 /*if(!h->mv_cache_clean[list]){
367 memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
368 memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
369 h->mv_cache_clean[list]= 1;
373 h->mv_cache_clean[list]= 0;
375 if(USES_LIST(top_type, list)){
376 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
377 const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
378 *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
379 *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
380 *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
381 *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
382 h->ref_cache[list][scan8[0] + 0 - 1*8]=
383 h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
384 h->ref_cache[list][scan8[0] + 2 - 1*8]=
385 h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
387 *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
388 *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
389 *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
390 *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
391 *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
395 int cache_idx = scan8[0] - 1 + i*2*8;
396 if(USES_LIST(left_type[i], list)){
397 const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
398 const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
399 *(uint32_t*)h->mv_cache[list][cache_idx ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
400 *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
401 h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
402 h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
404 *(uint32_t*)h->mv_cache [list][cache_idx ]=
405 *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
406 h->ref_cache[list][cache_idx ]=
407 h->ref_cache[list][cache_idx+8]= left_type[i] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
411 if((for_deblock || (IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred)) && !FRAME_MBAFF)
414 if(USES_LIST(topleft_type, list)){
415 const int b_xy = h->mb2b_xy[topleft_xy] + 3 + h->b_stride + (topleft_partition & 2*h->b_stride);
416 const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (topleft_partition & h->b8_stride);
417 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
418 h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
420 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
421 h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
424 if(USES_LIST(topright_type, list)){
425 const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
426 const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
427 *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
428 h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
430 *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
431 h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
434 if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
437 h->ref_cache[list][scan8[5 ]+1] =
438 h->ref_cache[list][scan8[7 ]+1] =
439 h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
440 h->ref_cache[list][scan8[4 ]] =
441 h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
442 *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
443 *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
444 *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
445 *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
446 *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
449 /* XXX beurk, Load mvd */
450 if(USES_LIST(top_type, list)){
451 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
452 *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
453 *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
454 *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
455 *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
457 *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
458 *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
459 *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
460 *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
462 if(USES_LIST(left_type[0], list)){
463 const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
464 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
465 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
467 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
468 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
470 if(USES_LIST(left_type[1], list)){
471 const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
472 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
473 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
475 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
476 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
478 *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
479 *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
480 *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
481 *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
482 *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
484 if(h->slice_type == FF_B_TYPE){
485 fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
487 if(IS_DIRECT(top_type)){
488 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
489 }else if(IS_8X8(top_type)){
490 int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
491 h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
492 h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
494 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
497 if(IS_DIRECT(left_type[0]))
498 h->direct_cache[scan8[0] - 1 + 0*8]= 1;
499 else if(IS_8X8(left_type[0]))
500 h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
502 h->direct_cache[scan8[0] - 1 + 0*8]= 0;
504 if(IS_DIRECT(left_type[1]))
505 h->direct_cache[scan8[0] - 1 + 2*8]= 1;
506 else if(IS_8X8(left_type[1]))
507 h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
509 h->direct_cache[scan8[0] - 1 + 2*8]= 0;
515 MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
516 MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
517 MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
518 MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
519 MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
520 MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
521 MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
522 MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
523 MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
524 MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
526 #define MAP_F2F(idx, mb_type)\
527 if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
528 h->ref_cache[list][idx] <<= 1;\
529 h->mv_cache[list][idx][1] /= 2;\
530 h->mvd_cache[list][idx][1] /= 2;\
535 #define MAP_F2F(idx, mb_type)\
536 if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
537 h->ref_cache[list][idx] >>= 1;\
538 h->mv_cache[list][idx][1] <<= 1;\
539 h->mvd_cache[list][idx][1] <<= 1;\
549 h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
552 static inline void write_back_intra_pred_mode(H264Context *h){
553 MpegEncContext * const s = &h->s;
554 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
556 h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
557 h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
558 h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
559 h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
560 h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
561 h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
562 h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
566 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
568 static inline int check_intra4x4_pred_mode(H264Context *h){
569 MpegEncContext * const s = &h->s;
570 static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
571 static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
574 if(!(h->top_samples_available&0x8000)){
576 int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
578 av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
581 h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
586 if(!(h->left_samples_available&0x8000)){
588 int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
590 av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
593 h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
599 } //FIXME cleanup like next
602 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
604 static inline int check_intra_pred_mode(H264Context *h, int mode){
605 MpegEncContext * const s = &h->s;
606 static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
607 static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
610 av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
614 if(!(h->top_samples_available&0x8000)){
617 av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
622 if(!(h->left_samples_available&0x8000)){
625 av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
634 * gets the predicted intra4x4 prediction mode.
636 static inline int pred_intra_mode(H264Context *h, int n){
637 const int index8= scan8[n];
638 const int left= h->intra4x4_pred_mode_cache[index8 - 1];
639 const int top = h->intra4x4_pred_mode_cache[index8 - 8];
640 const int min= FFMIN(left, top);
642 tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
644 if(min<0) return DC_PRED;
648 static inline void write_back_non_zero_count(H264Context *h){
649 MpegEncContext * const s = &h->s;
650 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
652 h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[7+8*1];
653 h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[7+8*2];
654 h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[7+8*3];
655 h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
656 h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[4+8*4];
657 h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[5+8*4];
658 h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[6+8*4];
660 h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[1+8*2];
661 h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
662 h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[2+8*1];
664 h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5];
665 h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
666 h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4];
669 // store all luma nnzs, for deblocking
672 v += (!!h->non_zero_count_cache[scan8[i]]) << i;
673 *(uint16_t*)&h->non_zero_count[mb_xy][14] = v;
678 * gets the predicted number of non zero coefficients.
679 * @param n block index
681 static inline int pred_non_zero_count(H264Context *h, int n){
682 const int index8= scan8[n];
683 const int left= h->non_zero_count_cache[index8 - 1];
684 const int top = h->non_zero_count_cache[index8 - 8];
687 if(i<64) i= (i+1)>>1;
689 tprintf(h->s.avctx, "pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
694 static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
695 const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
696 MpegEncContext *s = &h->s;
698 /* there is no consistent mapping of mvs to neighboring locations that will
699 * make mbaff happy, so we can't move all this logic to fill_caches */
701 const uint32_t *mb_types = s->current_picture_ptr->mb_type;
703 *(uint32_t*)h->mv_cache[list][scan8[0]-2] = 0;
704 *C = h->mv_cache[list][scan8[0]-2];
707 && (s->mb_y&1) && i < scan8[0]+8 && topright_ref != PART_NOT_AVAILABLE){
708 int topright_xy = s->mb_x + (s->mb_y-1)*s->mb_stride + (i == scan8[0]+3);
709 if(IS_INTERLACED(mb_types[topright_xy])){
710 #define SET_DIAG_MV(MV_OP, REF_OP, X4, Y4)\
711 const int x4 = X4, y4 = Y4;\
712 const int mb_type = mb_types[(x4>>2)+(y4>>2)*s->mb_stride];\
713 if(!USES_LIST(mb_type,list))\
714 return LIST_NOT_USED;\
715 mv = s->current_picture_ptr->motion_val[list][x4 + y4*h->b_stride];\
716 h->mv_cache[list][scan8[0]-2][0] = mv[0];\
717 h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\
718 return s->current_picture_ptr->ref_index[list][(x4>>1) + (y4>>1)*h->b8_stride] REF_OP;
720 SET_DIAG_MV(*2, >>1, s->mb_x*4+(i&7)-4+part_width, s->mb_y*4-1);
723 if(topright_ref == PART_NOT_AVAILABLE
724 && ((s->mb_y&1) || i >= scan8[0]+8) && (i&7)==4
725 && h->ref_cache[list][scan8[0]-1] != PART_NOT_AVAILABLE){
727 && IS_INTERLACED(mb_types[h->left_mb_xy[0]])){
728 SET_DIAG_MV(*2, >>1, s->mb_x*4-1, (s->mb_y|1)*4+(s->mb_y&1)*2+(i>>4)-1);
731 && !IS_INTERLACED(mb_types[h->left_mb_xy[0]])
733 // leftshift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's ok.
734 SET_DIAG_MV(/2, <<1, s->mb_x*4-1, (s->mb_y&~1)*4 - 1 + ((i-scan8[0])>>3)*2);
740 if(topright_ref != PART_NOT_AVAILABLE){
741 *C= h->mv_cache[list][ i - 8 + part_width ];
744 tprintf(s->avctx, "topright MV not available\n");
746 *C= h->mv_cache[list][ i - 8 - 1 ];
747 return h->ref_cache[list][ i - 8 - 1 ];
752 * gets the predicted MV.
753 * @param n the block index
754 * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
755 * @param mx the x component of the predicted motion vector
756 * @param my the y component of the predicted motion vector
758 static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
759 const int index8= scan8[n];
760 const int top_ref= h->ref_cache[list][ index8 - 8 ];
761 const int left_ref= h->ref_cache[list][ index8 - 1 ];
762 const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
763 const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
765 int diagonal_ref, match_count;
767 assert(part_width==1 || part_width==2 || part_width==4);
777 diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
778 match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
779 tprintf(h->s.avctx, "pred_motion match_count=%d\n", match_count);
780 if(match_count > 1){ //most common
781 *mx= mid_pred(A[0], B[0], C[0]);
782 *my= mid_pred(A[1], B[1], C[1]);
783 }else if(match_count==1){
787 }else if(top_ref==ref){
795 if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
799 *mx= mid_pred(A[0], B[0], C[0]);
800 *my= mid_pred(A[1], B[1], C[1]);
804 tprintf(h->s.avctx, "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
808 * gets the directionally predicted 16x8 MV.
809 * @param n the block index
810 * @param mx the x component of the predicted motion vector
811 * @param my the y component of the predicted motion vector
813 static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
815 const int top_ref= h->ref_cache[list][ scan8[0] - 8 ];
816 const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
818 tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
826 const int left_ref= h->ref_cache[list][ scan8[8] - 1 ];
827 const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
829 tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
839 pred_motion(h, n, 4, list, ref, mx, my);
843 * gets the directionally predicted 8x16 MV.
844 * @param n the block index
845 * @param mx the x component of the predicted motion vector
846 * @param my the y component of the predicted motion vector
848 static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
850 const int left_ref= h->ref_cache[list][ scan8[0] - 1 ];
851 const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
853 tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
864 diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
866 tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
868 if(diagonal_ref == ref){
876 pred_motion(h, n, 2, list, ref, mx, my);
879 static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
880 const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
881 const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
883 tprintf(h->s.avctx, "pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
885 if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
886 || (top_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
887 || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
893 pred_motion(h, 0, 4, 0, 0, mx, my);
898 static inline void direct_dist_scale_factor(H264Context * const h){
899 const int poc = h->s.current_picture_ptr->poc;
900 const int poc1 = h->ref_list[1][0].poc;
902 for(i=0; i<h->ref_count[0]; i++){
903 int poc0 = h->ref_list[0][i].poc;
904 int td = av_clip(poc1 - poc0, -128, 127);
905 if(td == 0 /* FIXME || pic0 is a long-term ref */){
906 h->dist_scale_factor[i] = 256;
908 int tb = av_clip(poc - poc0, -128, 127);
909 int tx = (16384 + (FFABS(td) >> 1)) / td;
910 h->dist_scale_factor[i] = av_clip((tb*tx + 32) >> 6, -1024, 1023);
914 for(i=0; i<h->ref_count[0]; i++){
915 h->dist_scale_factor_field[2*i] =
916 h->dist_scale_factor_field[2*i+1] = h->dist_scale_factor[i];
920 static inline void direct_ref_list_init(H264Context * const h){
921 MpegEncContext * const s = &h->s;
922 Picture * const ref1 = &h->ref_list[1][0];
923 Picture * const cur = s->current_picture_ptr;
925 if(cur->pict_type == FF_I_TYPE)
926 cur->ref_count[0] = 0;
927 if(cur->pict_type != FF_B_TYPE)
928 cur->ref_count[1] = 0;
929 for(list=0; list<2; list++){
930 cur->ref_count[list] = h->ref_count[list];
931 for(j=0; j<h->ref_count[list]; j++)
932 cur->ref_poc[list][j] = h->ref_list[list][j].poc;
934 if(cur->pict_type != FF_B_TYPE || h->direct_spatial_mv_pred)
936 for(list=0; list<2; list++){
937 for(i=0; i<ref1->ref_count[list]; i++){
938 const int poc = ref1->ref_poc[list][i];
939 h->map_col_to_list0[list][i] = 0; /* bogus; fills in for missing frames */
940 for(j=0; j<h->ref_count[list]; j++)
941 if(h->ref_list[list][j].poc == poc){
942 h->map_col_to_list0[list][i] = j;
948 for(list=0; list<2; list++){
949 for(i=0; i<ref1->ref_count[list]; i++){
950 j = h->map_col_to_list0[list][i];
951 h->map_col_to_list0_field[list][2*i] = 2*j;
952 h->map_col_to_list0_field[list][2*i+1] = 2*j+1;
958 static inline void pred_direct_motion(H264Context * const h, int *mb_type){
959 MpegEncContext * const s = &h->s;
960 const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
961 const int b8_xy = 2*s->mb_x + 2*s->mb_y*h->b8_stride;
962 const int b4_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
963 const int mb_type_col = h->ref_list[1][0].mb_type[mb_xy];
964 const int16_t (*l1mv0)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[0][b4_xy];
965 const int16_t (*l1mv1)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[1][b4_xy];
966 const int8_t *l1ref0 = &h->ref_list[1][0].ref_index[0][b8_xy];
967 const int8_t *l1ref1 = &h->ref_list[1][0].ref_index[1][b8_xy];
968 const int is_b8x8 = IS_8X8(*mb_type);
969 unsigned int sub_mb_type;
972 #define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16|MB_TYPE_INTRA4x4|MB_TYPE_INTRA16x16|MB_TYPE_INTRA_PCM)
973 if(IS_8X8(mb_type_col) && !h->sps.direct_8x8_inference_flag){
974 /* FIXME save sub mb types from previous frames (or derive from MVs)
975 * so we know exactly what block size to use */
976 sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
977 *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
978 }else if(!is_b8x8 && (mb_type_col & MB_TYPE_16x16_OR_INTRA)){
979 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
980 *mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
982 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
983 *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
986 *mb_type |= MB_TYPE_DIRECT2;
988 *mb_type |= MB_TYPE_INTERLACED;
990 tprintf(s->avctx, "mb_type = %08x, sub_mb_type = %08x, is_b8x8 = %d, mb_type_col = %08x\n", *mb_type, sub_mb_type, is_b8x8, mb_type_col);
992 if(h->direct_spatial_mv_pred){
997 /* FIXME interlacing + spatial direct uses wrong colocated block positions */
999 /* ref = min(neighbors) */
1000 for(list=0; list<2; list++){
1001 int refa = h->ref_cache[list][scan8[0] - 1];
1002 int refb = h->ref_cache[list][scan8[0] - 8];
1003 int refc = h->ref_cache[list][scan8[0] - 8 + 4];
1005 refc = h->ref_cache[list][scan8[0] - 8 - 1];
1007 if(ref[list] < 0 || (refb < ref[list] && refb >= 0))
1009 if(ref[list] < 0 || (refc < ref[list] && refc >= 0))
1015 if(ref[0] < 0 && ref[1] < 0){
1016 ref[0] = ref[1] = 0;
1017 mv[0][0] = mv[0][1] =
1018 mv[1][0] = mv[1][1] = 0;
1020 for(list=0; list<2; list++){
1022 pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]);
1024 mv[list][0] = mv[list][1] = 0;
1030 *mb_type &= ~MB_TYPE_L1;
1031 sub_mb_type &= ~MB_TYPE_L1;
1032 }else if(ref[0] < 0){
1034 *mb_type &= ~MB_TYPE_L0;
1035 sub_mb_type &= ~MB_TYPE_L0;
1038 if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col)){
1039 int pair_xy = s->mb_x + (s->mb_y&~1)*s->mb_stride;
1040 int mb_types_col[2];
1041 int b8_stride = h->b8_stride;
1042 int b4_stride = h->b_stride;
1044 *mb_type = (*mb_type & ~MB_TYPE_16x16) | MB_TYPE_8x8;
1046 if(IS_INTERLACED(*mb_type)){
1047 mb_types_col[0] = h->ref_list[1][0].mb_type[pair_xy];
1048 mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
1050 l1ref0 -= 2*b8_stride;
1051 l1ref1 -= 2*b8_stride;
1052 l1mv0 -= 4*b4_stride;
1053 l1mv1 -= 4*b4_stride;
1058 int cur_poc = s->current_picture_ptr->poc;
1059 int *col_poc = h->ref_list[1]->field_poc;
1060 int col_parity = FFABS(col_poc[0] - cur_poc) >= FFABS(col_poc[1] - cur_poc);
1061 int dy = 2*col_parity - (s->mb_y&1);
1063 mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy + col_parity*s->mb_stride];
1064 l1ref0 += dy*b8_stride;
1065 l1ref1 += dy*b8_stride;
1066 l1mv0 += 2*dy*b4_stride;
1067 l1mv1 += 2*dy*b4_stride;
1071 for(i8=0; i8<4; i8++){
1074 int xy8 = x8+y8*b8_stride;
1075 int xy4 = 3*x8+y8*b4_stride;
1078 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1080 h->sub_mb_type[i8] = sub_mb_type;
1082 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
1083 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
1084 if(!IS_INTRA(mb_types_col[y8])
1085 && ( (l1ref0[xy8] == 0 && FFABS(l1mv0[xy4][0]) <= 1 && FFABS(l1mv0[xy4][1]) <= 1)
1086 || (l1ref0[xy8] < 0 && l1ref1[xy8] == 0 && FFABS(l1mv1[xy4][0]) <= 1 && FFABS(l1mv1[xy4][1]) <= 1))){
1088 a= pack16to32(mv[0][0],mv[0][1]);
1090 b= pack16to32(mv[1][0],mv[1][1]);
1092 a= pack16to32(mv[0][0],mv[0][1]);
1093 b= pack16to32(mv[1][0],mv[1][1]);
1095 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, a, 4);
1096 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, b, 4);
1098 }else if(IS_16X16(*mb_type)){
1101 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
1102 fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
1103 if(!IS_INTRA(mb_type_col)
1104 && ( (l1ref0[0] == 0 && FFABS(l1mv0[0][0]) <= 1 && FFABS(l1mv0[0][1]) <= 1)
1105 || (l1ref0[0] < 0 && l1ref1[0] == 0 && FFABS(l1mv1[0][0]) <= 1 && FFABS(l1mv1[0][1]) <= 1
1106 && (h->x264_build>33 || !h->x264_build)))){
1108 a= pack16to32(mv[0][0],mv[0][1]);
1110 b= pack16to32(mv[1][0],mv[1][1]);
1112 a= pack16to32(mv[0][0],mv[0][1]);
1113 b= pack16to32(mv[1][0],mv[1][1]);
1115 fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, a, 4);
1116 fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, b, 4);
1118 for(i8=0; i8<4; i8++){
1119 const int x8 = i8&1;
1120 const int y8 = i8>>1;
1122 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1124 h->sub_mb_type[i8] = sub_mb_type;
1126 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1127 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1128 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
1129 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
1132 if(!IS_INTRA(mb_type_col) && ( l1ref0[x8 + y8*h->b8_stride] == 0
1133 || (l1ref0[x8 + y8*h->b8_stride] < 0 && l1ref1[x8 + y8*h->b8_stride] == 0
1134 && (h->x264_build>33 || !h->x264_build)))){
1135 const int16_t (*l1mv)[2]= l1ref0[x8 + y8*h->b8_stride] == 0 ? l1mv0 : l1mv1;
1136 if(IS_SUB_8X8(sub_mb_type)){
1137 const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
1138 if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
1140 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1142 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1145 for(i4=0; i4<4; i4++){
1146 const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
1147 if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
1149 *(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0;
1151 *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0;
1157 }else{ /* direct temporal mv pred */
1158 const int *map_col_to_list0[2] = {h->map_col_to_list0[0], h->map_col_to_list0[1]};
1159 const int *dist_scale_factor = h->dist_scale_factor;
1162 if(IS_INTERLACED(*mb_type)){
1163 map_col_to_list0[0] = h->map_col_to_list0_field[0];
1164 map_col_to_list0[1] = h->map_col_to_list0_field[1];
1165 dist_scale_factor = h->dist_scale_factor_field;
1167 if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col)){
1168 /* FIXME assumes direct_8x8_inference == 1 */
1169 const int pair_xy = s->mb_x + (s->mb_y&~1)*s->mb_stride;
1170 int mb_types_col[2];
1173 *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1
1174 | (is_b8x8 ? 0 : MB_TYPE_DIRECT2)
1175 | (*mb_type & MB_TYPE_INTERLACED);
1176 sub_mb_type = MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_16x16;
1178 if(IS_INTERLACED(*mb_type)){
1179 /* frame to field scaling */
1180 mb_types_col[0] = h->ref_list[1][0].mb_type[pair_xy];
1181 mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
1183 l1ref0 -= 2*h->b8_stride;
1184 l1ref1 -= 2*h->b8_stride;
1185 l1mv0 -= 4*h->b_stride;
1186 l1mv1 -= 4*h->b_stride;
1190 if( (mb_types_col[0] & MB_TYPE_16x16_OR_INTRA)
1191 && (mb_types_col[1] & MB_TYPE_16x16_OR_INTRA)
1193 *mb_type |= MB_TYPE_16x8;
1195 *mb_type |= MB_TYPE_8x8;
1197 /* field to frame scaling */
1198 /* col_mb_y = (mb_y&~1) + (topAbsDiffPOC < bottomAbsDiffPOC ? 0 : 1)
1199 * but in MBAFF, top and bottom POC are equal */
1200 int dy = (s->mb_y&1) ? 1 : 2;
1202 mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
1203 l1ref0 += dy*h->b8_stride;
1204 l1ref1 += dy*h->b8_stride;
1205 l1mv0 += 2*dy*h->b_stride;
1206 l1mv1 += 2*dy*h->b_stride;
1209 if((mb_types_col[0] & (MB_TYPE_16x16_OR_INTRA|MB_TYPE_16x8))
1211 *mb_type |= MB_TYPE_16x16;
1213 *mb_type |= MB_TYPE_8x8;
1216 for(i8=0; i8<4; i8++){
1217 const int x8 = i8&1;
1218 const int y8 = i8>>1;
1220 const int16_t (*l1mv)[2]= l1mv0;
1222 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1224 h->sub_mb_type[i8] = sub_mb_type;
1226 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1227 if(IS_INTRA(mb_types_col[y8])){
1228 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
1229 fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1230 fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1234 ref0 = l1ref0[x8 + (y8*2>>y_shift)*h->b8_stride];
1236 ref0 = map_col_to_list0[0][ref0*2>>y_shift];
1238 ref0 = map_col_to_list0[1][l1ref1[x8 + (y8*2>>y_shift)*h->b8_stride]*2>>y_shift];
1241 scale = dist_scale_factor[ref0];
1242 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
1245 const int16_t *mv_col = l1mv[x8*3 + (y8*6>>y_shift)*h->b_stride];
1246 int my_col = (mv_col[1]<<y_shift)/2;
1247 int mx = (scale * mv_col[0] + 128) >> 8;
1248 int my = (scale * my_col + 128) >> 8;
1249 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
1250 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-my_col), 4);
1257 /* one-to-one mv scaling */
1259 if(IS_16X16(*mb_type)){
1262 fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
1263 if(IS_INTRA(mb_type_col)){
1266 const int ref0 = l1ref0[0] >= 0 ? map_col_to_list0[0][l1ref0[0]]
1267 : map_col_to_list0[1][l1ref1[0]];
1268 const int scale = dist_scale_factor[ref0];
1269 const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0];
1271 mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
1272 mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
1274 mv0= pack16to32(mv_l0[0],mv_l0[1]);
1275 mv1= pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
1277 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1);
1278 fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, mv0, 4);
1279 fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, mv1, 4);
1281 for(i8=0; i8<4; i8++){
1282 const int x8 = i8&1;
1283 const int y8 = i8>>1;
1285 const int16_t (*l1mv)[2]= l1mv0;
1287 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1289 h->sub_mb_type[i8] = sub_mb_type;
1290 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1291 if(IS_INTRA(mb_type_col)){
1292 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
1293 fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1294 fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1298 ref0 = l1ref0[x8 + y8*h->b8_stride];
1300 ref0 = map_col_to_list0[0][ref0];
1302 ref0 = map_col_to_list0[1][l1ref1[x8 + y8*h->b8_stride]];
1305 scale = dist_scale_factor[ref0];
1307 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
1308 if(IS_SUB_8X8(sub_mb_type)){
1309 const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
1310 int mx = (scale * mv_col[0] + 128) >> 8;
1311 int my = (scale * mv_col[1] + 128) >> 8;
1312 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
1313 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-mv_col[1]), 4);
1315 for(i4=0; i4<4; i4++){
1316 const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
1317 int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
1318 mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
1319 mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
1320 *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] =
1321 pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
1328 static inline void write_back_motion(H264Context *h, int mb_type){
1329 MpegEncContext * const s = &h->s;
1330 const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1331 const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1334 if(!USES_LIST(mb_type, 0))
1335 fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
1337 for(list=0; list<h->list_count; list++){
1339 if(!USES_LIST(mb_type, list))
1343 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
1344 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
1346 if( h->pps.cabac ) {
1347 if(IS_SKIP(mb_type))
1348 fill_rectangle(h->mvd_table[list][b_xy], 4, 4, h->b_stride, 0, 4);
1351 *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
1352 *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
1357 int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
1358 ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
1359 ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
1360 ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
1361 ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
1365 if(h->slice_type == FF_B_TYPE && h->pps.cabac){
1366 if(IS_8X8(mb_type)){
1367 uint8_t *direct_table = &h->direct_table[b8_xy];
1368 direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
1369 direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
1370 direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
1376 * Decodes a network abstraction layer unit.
1377 * @param consumed is the number of bytes used as input
1378 * @param length is the length of the array
1379 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
1380 * @returns decoded bytes, might be src+1 if no escapes
1382 static const uint8_t *decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length){
1387 // src[0]&0x80; //forbidden bit
1388 h->nal_ref_idc= src[0]>>5;
1389 h->nal_unit_type= src[0]&0x1F;
1393 for(i=0; i<length; i++)
1394 printf("%2X ", src[i]);
1396 for(i=0; i+1<length; i+=2){
1397 if(src[i]) continue;
1398 if(i>0 && src[i-1]==0) i--;
1399 if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1401 /* startcode, so we must be past the end */
1408 if(i>=length-1){ //no escaped 0
1409 *dst_length= length;
1410 *consumed= length+1; //+1 for the header
1414 bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; // use second escape buffer for inter data
1415 h->rbsp_buffer[bufidx]= av_fast_realloc(h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length);
1416 dst= h->rbsp_buffer[bufidx];
1422 //printf("decoding esc\n");
1425 //remove escapes (very rare 1:2^22)
1426 if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
1427 if(src[si+2]==3){ //escape
1432 }else //next start code
1436 dst[di++]= src[si++];
1440 *consumed= si + 1;//+1 for the header
1441 //FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
1446 * identifies the exact end of the bitstream
1447 * @return the length of the trailing, or 0 if damaged
1449 static int decode_rbsp_trailing(H264Context *h, const uint8_t *src){
1453 tprintf(h->s.avctx, "rbsp trailing %X\n", v);
1463 * idct tranforms the 16 dc values and dequantize them.
1464 * @param qp quantization parameter
1466 static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
1469 int temp[16]; //FIXME check if this is a good idea
1470 static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
1471 static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1473 //memset(block, 64, 2*256);
1476 const int offset= y_offset[i];
1477 const int z0= block[offset+stride*0] + block[offset+stride*4];
1478 const int z1= block[offset+stride*0] - block[offset+stride*4];
1479 const int z2= block[offset+stride*1] - block[offset+stride*5];
1480 const int z3= block[offset+stride*1] + block[offset+stride*5];
1489 const int offset= x_offset[i];
1490 const int z0= temp[4*0+i] + temp[4*2+i];
1491 const int z1= temp[4*0+i] - temp[4*2+i];
1492 const int z2= temp[4*1+i] - temp[4*3+i];
1493 const int z3= temp[4*1+i] + temp[4*3+i];
1495 block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_resdual
1496 block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8));
1497 block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8));
1498 block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8));
1504 * dct tranforms the 16 dc values.
1505 * @param qp quantization parameter ??? FIXME
1507 static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
1508 // const int qmul= dequant_coeff[qp][0];
1510 int temp[16]; //FIXME check if this is a good idea
1511 static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
1512 static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1515 const int offset= y_offset[i];
1516 const int z0= block[offset+stride*0] + block[offset+stride*4];
1517 const int z1= block[offset+stride*0] - block[offset+stride*4];
1518 const int z2= block[offset+stride*1] - block[offset+stride*5];
1519 const int z3= block[offset+stride*1] + block[offset+stride*5];
1528 const int offset= x_offset[i];
1529 const int z0= temp[4*0+i] + temp[4*2+i];
1530 const int z1= temp[4*0+i] - temp[4*2+i];
1531 const int z2= temp[4*1+i] - temp[4*3+i];
1532 const int z3= temp[4*1+i] + temp[4*3+i];
1534 block[stride*0 +offset]= (z0 + z3)>>1;
1535 block[stride*2 +offset]= (z1 + z2)>>1;
1536 block[stride*8 +offset]= (z1 - z2)>>1;
1537 block[stride*10+offset]= (z0 - z3)>>1;
1545 static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
1546 const int stride= 16*2;
1547 const int xStride= 16;
1550 a= block[stride*0 + xStride*0];
1551 b= block[stride*0 + xStride*1];
1552 c= block[stride*1 + xStride*0];
1553 d= block[stride*1 + xStride*1];
1560 block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7;
1561 block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7;
1562 block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7;
1563 block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7;
1567 static void chroma_dc_dct_c(DCTELEM *block){
1568 const int stride= 16*2;
1569 const int xStride= 16;
1572 a= block[stride*0 + xStride*0];
1573 b= block[stride*0 + xStride*1];
1574 c= block[stride*1 + xStride*0];
1575 d= block[stride*1 + xStride*1];
1582 block[stride*0 + xStride*0]= (a+c);
1583 block[stride*0 + xStride*1]= (e+b);
1584 block[stride*1 + xStride*0]= (a-c);
1585 block[stride*1 + xStride*1]= (e-b);
1590 * gets the chroma qp.
1592 static inline int get_chroma_qp(H264Context *h, int t, int qscale){
1593 return h->pps.chroma_qp_table[t][qscale & 0xff];
1596 //FIXME need to check that this does not overflow signed 32 bit for low qp, I am not sure, it's very close
1597 //FIXME check that gcc inlines this (and optimizes intra & separate_dc stuff away)
1598 static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int separate_dc){
1600 const int * const quant_table= quant_coeff[qscale];
1601 const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
1602 const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
1603 const unsigned int threshold2= (threshold1<<1);
1609 const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
1610 const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
1611 const unsigned int dc_threshold2= (dc_threshold1<<1);
1613 int level= block[0]*quant_coeff[qscale+18][0];
1614 if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1616 level= (dc_bias + level)>>(QUANT_SHIFT-2);
1619 level= (dc_bias - level)>>(QUANT_SHIFT-2);
1622 // last_non_zero = i;
1627 const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
1628 const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
1629 const unsigned int dc_threshold2= (dc_threshold1<<1);
1631 int level= block[0]*quant_table[0];
1632 if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1634 level= (dc_bias + level)>>(QUANT_SHIFT+1);
1637 level= (dc_bias - level)>>(QUANT_SHIFT+1);
1640 // last_non_zero = i;
1653 const int j= scantable[i];
1654 int level= block[j]*quant_table[j];
1656 // if( bias+level >= (1<<(QMAT_SHIFT - 3))
1657 // || bias-level >= (1<<(QMAT_SHIFT - 3))){
1658 if(((unsigned)(level+threshold1))>threshold2){
1660 level= (bias + level)>>QUANT_SHIFT;
1663 level= (bias - level)>>QUANT_SHIFT;
1672 return last_non_zero;
1675 static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
1676 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1677 int src_x_offset, int src_y_offset,
1678 qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
1679 MpegEncContext * const s = &h->s;
1680 const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
1681 int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
1682 const int luma_xy= (mx&3) + ((my&3)<<2);
1683 uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->mb_linesize;
1684 uint8_t * src_cb, * src_cr;
1685 int extra_width= h->emu_edge_width;
1686 int extra_height= h->emu_edge_height;
1688 const int full_mx= mx>>2;
1689 const int full_my= my>>2;
1690 const int pic_width = 16*s->mb_width;
1691 const int pic_height = 16*s->mb_height >> MB_FIELD;
1693 if(!pic->data[0]) //FIXME this is unacceptable, some senseable error concealment must be done for missing reference frames
1696 if(mx&7) extra_width -= 3;
1697 if(my&7) extra_height -= 3;
1699 if( full_mx < 0-extra_width
1700 || full_my < 0-extra_height
1701 || full_mx + 16/*FIXME*/ > pic_width + extra_width
1702 || full_my + 16/*FIXME*/ > pic_height + extra_height){
1703 ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->mb_linesize, h->mb_linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
1704 src_y= s->edge_emu_buffer + 2 + 2*h->mb_linesize;
1708 qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps?
1710 qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize);
1713 if(ENABLE_GRAY && s->flags&CODEC_FLAG_GRAY) return;
1716 // chroma offset when predicting from a field of opposite parity
1717 my += 2 * ((s->mb_y & 1) - (pic->reference - 1));
1718 emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1);
1720 src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
1721 src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
1724 ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
1725 src_cb= s->edge_emu_buffer;
1727 chroma_op(dest_cb, src_cb, h->mb_uvlinesize, chroma_height, mx&7, my&7);
1730 ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
1731 src_cr= s->edge_emu_buffer;
1733 chroma_op(dest_cr, src_cr, h->mb_uvlinesize, chroma_height, mx&7, my&7);
1736 static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
1737 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1738 int x_offset, int y_offset,
1739 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
1740 qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
1741 int list0, int list1){
1742 MpegEncContext * const s = &h->s;
1743 qpel_mc_func *qpix_op= qpix_put;
1744 h264_chroma_mc_func chroma_op= chroma_put;
1746 dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
1747 dest_cb += x_offset + y_offset*h->mb_uvlinesize;
1748 dest_cr += x_offset + y_offset*h->mb_uvlinesize;
1749 x_offset += 8*s->mb_x;
1750 y_offset += 8*(s->mb_y >> MB_FIELD);
1753 Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
1754 mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
1755 dest_y, dest_cb, dest_cr, x_offset, y_offset,
1756 qpix_op, chroma_op);
1759 chroma_op= chroma_avg;
1763 Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
1764 mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
1765 dest_y, dest_cb, dest_cr, x_offset, y_offset,
1766 qpix_op, chroma_op);
1770 static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
1771 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1772 int x_offset, int y_offset,
1773 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
1774 h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
1775 h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
1776 int list0, int list1){
1777 MpegEncContext * const s = &h->s;
1779 dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
1780 dest_cb += x_offset + y_offset*h->mb_uvlinesize;
1781 dest_cr += x_offset + y_offset*h->mb_uvlinesize;
1782 x_offset += 8*s->mb_x;
1783 y_offset += 8*(s->mb_y >> MB_FIELD);
1786 /* don't optimize for luma-only case, since B-frames usually
1787 * use implicit weights => chroma too. */
1788 uint8_t *tmp_cb = s->obmc_scratchpad;
1789 uint8_t *tmp_cr = s->obmc_scratchpad + 8;
1790 uint8_t *tmp_y = s->obmc_scratchpad + 8*h->mb_uvlinesize;
1791 int refn0 = h->ref_cache[0][ scan8[n] ];
1792 int refn1 = h->ref_cache[1][ scan8[n] ];
1794 mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
1795 dest_y, dest_cb, dest_cr,
1796 x_offset, y_offset, qpix_put, chroma_put);
1797 mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
1798 tmp_y, tmp_cb, tmp_cr,
1799 x_offset, y_offset, qpix_put, chroma_put);
1801 if(h->use_weight == 2){
1802 int weight0 = h->implicit_weight[refn0][refn1];
1803 int weight1 = 64 - weight0;
1804 luma_weight_avg( dest_y, tmp_y, h-> mb_linesize, 5, weight0, weight1, 0);
1805 chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, 5, weight0, weight1, 0);
1806 chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, 5, weight0, weight1, 0);
1808 luma_weight_avg(dest_y, tmp_y, h->mb_linesize, h->luma_log2_weight_denom,
1809 h->luma_weight[0][refn0], h->luma_weight[1][refn1],
1810 h->luma_offset[0][refn0] + h->luma_offset[1][refn1]);
1811 chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
1812 h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0],
1813 h->chroma_offset[0][refn0][0] + h->chroma_offset[1][refn1][0]);
1814 chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
1815 h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1],
1816 h->chroma_offset[0][refn0][1] + h->chroma_offset[1][refn1][1]);
1819 int list = list1 ? 1 : 0;
1820 int refn = h->ref_cache[list][ scan8[n] ];
1821 Picture *ref= &h->ref_list[list][refn];
1822 mc_dir_part(h, ref, n, square, chroma_height, delta, list,
1823 dest_y, dest_cb, dest_cr, x_offset, y_offset,
1824 qpix_put, chroma_put);
1826 luma_weight_op(dest_y, h->mb_linesize, h->luma_log2_weight_denom,
1827 h->luma_weight[list][refn], h->luma_offset[list][refn]);
1828 if(h->use_weight_chroma){
1829 chroma_weight_op(dest_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
1830 h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]);
1831 chroma_weight_op(dest_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
1832 h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]);
1837 static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
1838 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1839 int x_offset, int y_offset,
1840 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
1841 qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
1842 h264_weight_func *weight_op, h264_biweight_func *weight_avg,
1843 int list0, int list1){
1844 if((h->use_weight==2 && list0 && list1
1845 && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32))
1846 || h->use_weight==1)
1847 mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
1848 x_offset, y_offset, qpix_put, chroma_put,
1849 weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
1851 mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
1852 x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
1855 static inline void prefetch_motion(H264Context *h, int list){
1856 /* fetch pixels for estimated mv 4 macroblocks ahead
1857 * optimized for 64byte cache lines */
1858 MpegEncContext * const s = &h->s;
1859 const int refn = h->ref_cache[list][scan8[0]];
1861 const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8;
1862 const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y;
1863 uint8_t **src= h->ref_list[list][refn].data;
1864 int off= mx + (my + (s->mb_x&3)*4)*h->mb_linesize + 64;
1865 s->dsp.prefetch(src[0]+off, s->linesize, 4);
1866 off= (mx>>1) + ((my>>1) + (s->mb_x&7))*s->uvlinesize + 64;
1867 s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
1871 static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1872 qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
1873 qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
1874 h264_weight_func *weight_op, h264_biweight_func *weight_avg){
1875 MpegEncContext * const s = &h->s;
1876 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
1877 const int mb_type= s->current_picture.mb_type[mb_xy];
1879 assert(IS_INTER(mb_type));
1881 prefetch_motion(h, 0);
1883 if(IS_16X16(mb_type)){
1884 mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
1885 qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
1886 &weight_op[0], &weight_avg[0],
1887 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1888 }else if(IS_16X8(mb_type)){
1889 mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
1890 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
1891 &weight_op[1], &weight_avg[1],
1892 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1893 mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
1894 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
1895 &weight_op[1], &weight_avg[1],
1896 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
1897 }else if(IS_8X16(mb_type)){
1898 mc_part(h, 0, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0,
1899 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1900 &weight_op[2], &weight_avg[2],
1901 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1902 mc_part(h, 4, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0,
1903 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1904 &weight_op[2], &weight_avg[2],
1905 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
1909 assert(IS_8X8(mb_type));
1912 const int sub_mb_type= h->sub_mb_type[i];
1914 int x_offset= (i&1)<<2;
1915 int y_offset= (i&2)<<1;
1917 if(IS_SUB_8X8(sub_mb_type)){
1918 mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
1919 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1920 &weight_op[3], &weight_avg[3],
1921 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1922 }else if(IS_SUB_8X4(sub_mb_type)){
1923 mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
1924 qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
1925 &weight_op[4], &weight_avg[4],
1926 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1927 mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
1928 qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
1929 &weight_op[4], &weight_avg[4],
1930 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1931 }else if(IS_SUB_4X8(sub_mb_type)){
1932 mc_part(h, n , 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
1933 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
1934 &weight_op[5], &weight_avg[5],
1935 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1936 mc_part(h, n+1, 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
1937 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
1938 &weight_op[5], &weight_avg[5],
1939 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1942 assert(IS_SUB_4X4(sub_mb_type));
1944 int sub_x_offset= x_offset + 2*(j&1);
1945 int sub_y_offset= y_offset + (j&2);
1946 mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
1947 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
1948 &weight_op[6], &weight_avg[6],
1949 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1955 prefetch_motion(h, 1);
1958 static av_cold void decode_init_vlc(void){
1959 static int done = 0;
1965 init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
1966 &chroma_dc_coeff_token_len [0], 1, 1,
1967 &chroma_dc_coeff_token_bits[0], 1, 1, 1);
1970 init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
1971 &coeff_token_len [i][0], 1, 1,
1972 &coeff_token_bits[i][0], 1, 1, 1);
1976 init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
1977 &chroma_dc_total_zeros_len [i][0], 1, 1,
1978 &chroma_dc_total_zeros_bits[i][0], 1, 1, 1);
1980 for(i=0; i<15; i++){
1981 init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16,
1982 &total_zeros_len [i][0], 1, 1,
1983 &total_zeros_bits[i][0], 1, 1, 1);
1987 init_vlc(&run_vlc[i], RUN_VLC_BITS, 7,
1988 &run_len [i][0], 1, 1,
1989 &run_bits[i][0], 1, 1, 1);
1991 init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
1992 &run_len [6][0], 1, 1,
1993 &run_bits[6][0], 1, 1, 1);
1997 static void free_tables(H264Context *h){
2000 av_freep(&h->intra4x4_pred_mode);
2001 av_freep(&h->chroma_pred_mode_table);
2002 av_freep(&h->cbp_table);
2003 av_freep(&h->mvd_table[0]);
2004 av_freep(&h->mvd_table[1]);
2005 av_freep(&h->direct_table);
2006 av_freep(&h->non_zero_count);
2007 av_freep(&h->slice_table_base);
2008 h->slice_table= NULL;
2010 av_freep(&h->mb2b_xy);
2011 av_freep(&h->mb2b8_xy);
2013 for(i = 0; i < MAX_SPS_COUNT; i++)
2014 av_freep(h->sps_buffers + i);
2016 for(i = 0; i < MAX_PPS_COUNT; i++)
2017 av_freep(h->pps_buffers + i);
2019 for(i = 0; i < h->s.avctx->thread_count; i++) {
2020 hx = h->thread_context[i];
2022 av_freep(&hx->top_borders[1]);
2023 av_freep(&hx->top_borders[0]);
2024 av_freep(&hx->s.obmc_scratchpad);
2028 static void init_dequant8_coeff_table(H264Context *h){
2030 const int transpose = (h->s.dsp.h264_idct8_add != ff_h264_idct8_add_c); //FIXME ugly
2031 h->dequant8_coeff[0] = h->dequant8_buffer[0];
2032 h->dequant8_coeff[1] = h->dequant8_buffer[1];
2034 for(i=0; i<2; i++ ){
2035 if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){
2036 h->dequant8_coeff[1] = h->dequant8_buffer[0];
2040 for(q=0; q<52; q++){
2041 int shift = ff_div6[q];
2042 int idx = ff_rem6[q];
2044 h->dequant8_coeff[i][q][transpose ? (x>>3)|((x&7)<<3) : x] =
2045 ((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] *
2046 h->pps.scaling_matrix8[i][x]) << shift;
2051 static void init_dequant4_coeff_table(H264Context *h){
2053 const int transpose = (h->s.dsp.h264_idct_add != ff_h264_idct_add_c); //FIXME ugly
2054 for(i=0; i<6; i++ ){
2055 h->dequant4_coeff[i] = h->dequant4_buffer[i];
2057 if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
2058 h->dequant4_coeff[i] = h->dequant4_buffer[j];
2065 for(q=0; q<52; q++){
2066 int shift = ff_div6[q] + 2;
2067 int idx = ff_rem6[q];
2069 h->dequant4_coeff[i][q][transpose ? (x>>2)|((x<<2)&0xF) : x] =
2070 ((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
2071 h->pps.scaling_matrix4[i][x]) << shift;
2076 static void init_dequant_tables(H264Context *h){
2078 init_dequant4_coeff_table(h);
2079 if(h->pps.transform_8x8_mode)
2080 init_dequant8_coeff_table(h);
2081 if(h->sps.transform_bypass){
2084 h->dequant4_coeff[i][0][x] = 1<<6;
2085 if(h->pps.transform_8x8_mode)
2088 h->dequant8_coeff[i][0][x] = 1<<6;
2095 * needs width/height
2097 static int alloc_tables(H264Context *h){
2098 MpegEncContext * const s = &h->s;
2099 const int big_mb_num= s->mb_stride * (s->mb_height+1);
2102 CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t))
2104 CHECKED_ALLOCZ(h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t))
2105 CHECKED_ALLOCZ(h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(uint8_t))
2106 CHECKED_ALLOCZ(h->cbp_table, big_mb_num * sizeof(uint16_t))
2108 CHECKED_ALLOCZ(h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t))
2109 CHECKED_ALLOCZ(h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t));
2110 CHECKED_ALLOCZ(h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t));
2111 CHECKED_ALLOCZ(h->direct_table, 32*big_mb_num * sizeof(uint8_t));
2113 memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(uint8_t));
2114 h->slice_table= h->slice_table_base + s->mb_stride*2 + 1;
2116 CHECKED_ALLOCZ(h->mb2b_xy , big_mb_num * sizeof(uint32_t));
2117 CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint32_t));
2118 for(y=0; y<s->mb_height; y++){
2119 for(x=0; x<s->mb_width; x++){
2120 const int mb_xy= x + y*s->mb_stride;
2121 const int b_xy = 4*x + 4*y*h->b_stride;
2122 const int b8_xy= 2*x + 2*y*h->b8_stride;
2124 h->mb2b_xy [mb_xy]= b_xy;
2125 h->mb2b8_xy[mb_xy]= b8_xy;
2129 s->obmc_scratchpad = NULL;
2131 if(!h->dequant4_coeff[0])
2132 init_dequant_tables(h);
2141 * Mimic alloc_tables(), but for every context thread.
2143 static void clone_tables(H264Context *dst, H264Context *src){
2144 dst->intra4x4_pred_mode = src->intra4x4_pred_mode;
2145 dst->non_zero_count = src->non_zero_count;
2146 dst->slice_table = src->slice_table;
2147 dst->cbp_table = src->cbp_table;
2148 dst->mb2b_xy = src->mb2b_xy;
2149 dst->mb2b8_xy = src->mb2b8_xy;
2150 dst->chroma_pred_mode_table = src->chroma_pred_mode_table;
2151 dst->mvd_table[0] = src->mvd_table[0];
2152 dst->mvd_table[1] = src->mvd_table[1];
2153 dst->direct_table = src->direct_table;
2155 dst->s.obmc_scratchpad = NULL;
2156 ff_h264_pred_init(&dst->hpc, src->s.codec_id);
2161 * Allocate buffers which are not shared amongst multiple threads.
2163 static int context_init(H264Context *h){
2164 CHECKED_ALLOCZ(h->top_borders[0], h->s.mb_width * (16+8+8) * sizeof(uint8_t))
2165 CHECKED_ALLOCZ(h->top_borders[1], h->s.mb_width * (16+8+8) * sizeof(uint8_t))
2169 return -1; // free_tables will clean up for us
2172 static av_cold void common_init(H264Context *h){
2173 MpegEncContext * const s = &h->s;
2175 s->width = s->avctx->width;
2176 s->height = s->avctx->height;
2177 s->codec_id= s->avctx->codec->id;
2179 ff_h264_pred_init(&h->hpc, s->codec_id);
2181 h->dequant_coeff_pps= -1;
2182 s->unrestricted_mv=1;
2183 s->decode=1; //FIXME
2185 memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
2186 memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
2189 static av_cold int decode_init(AVCodecContext *avctx){
2190 H264Context *h= avctx->priv_data;
2191 MpegEncContext * const s = &h->s;
2193 MPV_decode_defaults(s);
2198 s->out_format = FMT_H264;
2199 s->workaround_bugs= avctx->workaround_bugs;
2202 // s->decode_mb= ff_h263_decode_mb;
2203 s->quarter_sample = 1;
2205 avctx->pix_fmt= PIX_FMT_YUV420P;
2209 if(avctx->extradata_size > 0 && avctx->extradata &&
2210 *(char *)avctx->extradata == 1){
2217 h->thread_context[0] = h;
2221 static int frame_start(H264Context *h){
2222 MpegEncContext * const s = &h->s;
2225 if(MPV_frame_start(s, s->avctx) < 0)
2227 ff_er_frame_start(s);
2229 * MPV_frame_start uses pict_type to derive key_frame.
2230 * This is incorrect for H.264; IDR markings must be used.
2231 * Zero here; IDR markings per slice in frame or fields are OR'd in later.
2232 * See decode_nal_units().
2234 s->current_picture_ptr->key_frame= 0;
2236 assert(s->linesize && s->uvlinesize);
2238 for(i=0; i<16; i++){
2239 h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
2240 h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
2243 h->block_offset[16+i]=
2244 h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2245 h->block_offset[24+16+i]=
2246 h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2249 /* can't be in alloc_tables because linesize isn't known there.
2250 * FIXME: redo bipred weight to not require extra buffer? */
2251 for(i = 0; i < s->avctx->thread_count; i++)
2252 if(!h->thread_context[i]->s.obmc_scratchpad)
2253 h->thread_context[i]->s.obmc_scratchpad = av_malloc(16*2*s->linesize + 8*2*s->uvlinesize);
2255 /* some macroblocks will be accessed before they're available */
2256 if(FRAME_MBAFF || s->avctx->thread_count > 1)
2257 memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(uint8_t));
2259 // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
2263 static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple){
2264 MpegEncContext * const s = &h->s;
2268 src_cb -= uvlinesize;
2269 src_cr -= uvlinesize;
2271 // There are two lines saved, the line above the the top macroblock of a pair,
2272 // and the line above the bottom macroblock
2273 h->left_border[0]= h->top_borders[0][s->mb_x][15];
2274 for(i=1; i<17; i++){
2275 h->left_border[i]= src_y[15+i* linesize];
2278 *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 16*linesize);
2279 *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
2281 if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2282 h->left_border[17 ]= h->top_borders[0][s->mb_x][16+7];
2283 h->left_border[17+9]= h->top_borders[0][s->mb_x][24+7];
2285 h->left_border[i+17 ]= src_cb[7+i*uvlinesize];
2286 h->left_border[i+17+9]= src_cr[7+i*uvlinesize];
2288 *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
2289 *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
2293 static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg, int simple){
2294 MpegEncContext * const s = &h->s;
2301 if(h->deblocking_filter == 2) {
2302 mb_xy = s->mb_x + s->mb_y*s->mb_stride;
2303 deblock_left = h->slice_table[mb_xy] == h->slice_table[mb_xy - 1];
2304 deblock_top = h->slice_table[mb_xy] == h->slice_table[h->top_mb_xy];
2306 deblock_left = (s->mb_x > 0);
2307 deblock_top = (s->mb_y > 0);
2310 src_y -= linesize + 1;
2311 src_cb -= uvlinesize + 1;
2312 src_cr -= uvlinesize + 1;
2314 #define XCHG(a,b,t,xchg)\
2321 for(i = !deblock_top; i<17; i++){
2322 XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
2327 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
2328 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
2329 if(s->mb_x+1 < s->mb_width){
2330 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
2334 if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2336 for(i = !deblock_top; i<9; i++){
2337 XCHG(h->left_border[i+17 ], src_cb[i*uvlinesize], temp8, xchg);
2338 XCHG(h->left_border[i+17+9], src_cr[i*uvlinesize], temp8, xchg);
2342 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
2343 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
2348 static inline void backup_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
2349 MpegEncContext * const s = &h->s;
2352 src_y -= 2 * linesize;
2353 src_cb -= 2 * uvlinesize;
2354 src_cr -= 2 * uvlinesize;
2356 // There are two lines saved, the line above the the top macroblock of a pair,
2357 // and the line above the bottom macroblock
2358 h->left_border[0]= h->top_borders[0][s->mb_x][15];
2359 h->left_border[1]= h->top_borders[1][s->mb_x][15];
2360 for(i=2; i<34; i++){
2361 h->left_border[i]= src_y[15+i* linesize];
2364 *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 32*linesize);
2365 *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+32*linesize);
2366 *(uint64_t*)(h->top_borders[1][s->mb_x]+0)= *(uint64_t*)(src_y + 33*linesize);
2367 *(uint64_t*)(h->top_borders[1][s->mb_x]+8)= *(uint64_t*)(src_y +8+33*linesize);
2369 if(!ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2370 h->left_border[34 ]= h->top_borders[0][s->mb_x][16+7];
2371 h->left_border[34+ 1]= h->top_borders[1][s->mb_x][16+7];
2372 h->left_border[34+18 ]= h->top_borders[0][s->mb_x][24+7];
2373 h->left_border[34+18+1]= h->top_borders[1][s->mb_x][24+7];
2374 for(i=2; i<18; i++){
2375 h->left_border[i+34 ]= src_cb[7+i*uvlinesize];
2376 h->left_border[i+34+18]= src_cr[7+i*uvlinesize];
2378 *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+16*uvlinesize);
2379 *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+16*uvlinesize);
2380 *(uint64_t*)(h->top_borders[1][s->mb_x]+16)= *(uint64_t*)(src_cb+17*uvlinesize);
2381 *(uint64_t*)(h->top_borders[1][s->mb_x]+24)= *(uint64_t*)(src_cr+17*uvlinesize);
2385 static inline void xchg_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
2386 MpegEncContext * const s = &h->s;
2389 int deblock_left = (s->mb_x > 0);
2390 int deblock_top = (s->mb_y > 1);
2392 tprintf(s->avctx, "xchg_pair_border: src_y:%p src_cb:%p src_cr:%p ls:%d uvls:%d\n", src_y, src_cb, src_cr, linesize, uvlinesize);
2394 src_y -= 2 * linesize + 1;
2395 src_cb -= 2 * uvlinesize + 1;
2396 src_cr -= 2 * uvlinesize + 1;
2398 #define XCHG(a,b,t,xchg)\
2405 for(i = (!deblock_top)<<1; i<34; i++){
2406 XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
2411 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
2412 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
2413 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+0), *(uint64_t*)(src_y +1 +linesize), temp64, xchg);
2414 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+8), *(uint64_t*)(src_y +9 +linesize), temp64, 1);
2415 if(s->mb_x+1 < s->mb_width){
2416 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
2417 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x+1]), *(uint64_t*)(src_y +17 +linesize), temp64, 1);
2421 if(!ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2423 for(i = (!deblock_top) << 1; i<18; i++){
2424 XCHG(h->left_border[i+34 ], src_cb[i*uvlinesize], temp8, xchg);
2425 XCHG(h->left_border[i+34+18], src_cr[i*uvlinesize], temp8, xchg);
2429 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
2430 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
2431 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+16), *(uint64_t*)(src_cb+1 +uvlinesize), temp64, 1);
2432 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+24), *(uint64_t*)(src_cr+1 +uvlinesize), temp64, 1);
2437 static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple){
2438 MpegEncContext * const s = &h->s;
2439 const int mb_x= s->mb_x;
2440 const int mb_y= s->mb_y;
2441 const int mb_xy= mb_x + mb_y*s->mb_stride;
2442 const int mb_type= s->current_picture.mb_type[mb_xy];
2443 uint8_t *dest_y, *dest_cb, *dest_cr;
2444 int linesize, uvlinesize /*dct_offset*/;
2446 int *block_offset = &h->block_offset[0];
2447 const unsigned int bottom = mb_y & 1;
2448 const int transform_bypass = (s->qscale == 0 && h->sps.transform_bypass), is_h264 = (simple || s->codec_id == CODEC_ID_H264);
2449 void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
2450 void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
2452 dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
2453 dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2454 dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2456 s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + 64, s->linesize, 4);
2457 s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + 64, dest_cr - dest_cb, 2);
2459 if (!simple && MB_FIELD) {
2460 linesize = h->mb_linesize = s->linesize * 2;
2461 uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
2462 block_offset = &h->block_offset[24];
2463 if(mb_y&1){ //FIXME move out of this func?
2464 dest_y -= s->linesize*15;
2465 dest_cb-= s->uvlinesize*7;
2466 dest_cr-= s->uvlinesize*7;
2470 for(list=0; list<h->list_count; list++){
2471 if(!USES_LIST(mb_type, list))
2473 if(IS_16X16(mb_type)){
2474 int8_t *ref = &h->ref_cache[list][scan8[0]];
2475 fill_rectangle(ref, 4, 4, 8, (16+*ref)^(s->mb_y&1), 1);
2477 for(i=0; i<16; i+=4){
2478 //FIXME can refs be smaller than 8x8 when !direct_8x8_inference ?
2479 int ref = h->ref_cache[list][scan8[i]];
2481 fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, (16+ref)^(s->mb_y&1), 1);
2487 linesize = h->mb_linesize = s->linesize;
2488 uvlinesize = h->mb_uvlinesize = s->uvlinesize;
2489 // dct_offset = s->linesize * 16;
2492 if(transform_bypass){
2494 idct_add = IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4;
2495 }else if(IS_8x8DCT(mb_type)){
2496 idct_dc_add = s->dsp.h264_idct8_dc_add;
2497 idct_add = s->dsp.h264_idct8_add;
2499 idct_dc_add = s->dsp.h264_idct_dc_add;
2500 idct_add = s->dsp.h264_idct_add;
2503 if(!simple && FRAME_MBAFF && h->deblocking_filter && IS_INTRA(mb_type)
2504 && (!bottom || !IS_INTRA(s->current_picture.mb_type[mb_xy-s->mb_stride]))){
2505 int mbt_y = mb_y&~1;
2506 uint8_t *top_y = s->current_picture.data[0] + (mbt_y * 16* s->linesize ) + mb_x * 16;
2507 uint8_t *top_cb = s->current_picture.data[1] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8;
2508 uint8_t *top_cr = s->current_picture.data[2] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8;
2509 xchg_pair_border(h, top_y, top_cb, top_cr, s->linesize, s->uvlinesize, 1);
2512 if (!simple && IS_INTRA_PCM(mb_type)) {
2515 // The pixels are stored in h->mb array in the same order as levels,
2516 // copy them in output in the correct order.
2517 for(i=0; i<16; i++) {
2518 for (y=0; y<4; y++) {
2519 for (x=0; x<4; x++) {
2520 *(dest_y + block_offset[i] + y*linesize + x) = h->mb[i*16+y*4+x];
2524 for(i=16; i<16+4; i++) {
2525 for (y=0; y<4; y++) {
2526 for (x=0; x<4; x++) {
2527 *(dest_cb + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
2531 for(i=20; i<20+4; i++) {
2532 for (y=0; y<4; y++) {
2533 for (x=0; x<4; x++) {
2534 *(dest_cr + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
2539 if(IS_INTRA(mb_type)){
2540 if(h->deblocking_filter && (simple || !FRAME_MBAFF))
2541 xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1, simple);
2543 if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2544 h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
2545 h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
2548 if(IS_INTRA4x4(mb_type)){
2549 if(simple || !s->encoding){
2550 if(IS_8x8DCT(mb_type)){
2551 for(i=0; i<16; i+=4){
2552 uint8_t * const ptr= dest_y + block_offset[i];
2553 const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
2554 const int nnz = h->non_zero_count_cache[ scan8[i] ];
2555 h->hpc.pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
2556 (h->topright_samples_available<<i)&0x4000, linesize);
2558 if(nnz == 1 && h->mb[i*16])
2559 idct_dc_add(ptr, h->mb + i*16, linesize);
2561 idct_add(ptr, h->mb + i*16, linesize);
2565 for(i=0; i<16; i++){
2566 uint8_t * const ptr= dest_y + block_offset[i];
2568 const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
2571 if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
2572 const int topright_avail= (h->topright_samples_available<<i)&0x8000;
2573 assert(mb_y || linesize <= block_offset[i]);
2574 if(!topright_avail){
2575 tr= ptr[3 - linesize]*0x01010101;
2576 topright= (uint8_t*) &tr;
2578 topright= ptr + 4 - linesize;
2582 h->hpc.pred4x4[ dir ](ptr, topright, linesize);
2583 nnz = h->non_zero_count_cache[ scan8[i] ];
2586 if(nnz == 1 && h->mb[i*16])
2587 idct_dc_add(ptr, h->mb + i*16, linesize);
2589 idct_add(ptr, h->mb + i*16, linesize);
2591 svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
2596 h->hpc.pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
2598 if(!transform_bypass)
2599 h264_luma_dc_dequant_idct_c(h->mb, s->qscale, h->dequant4_coeff[0][s->qscale][0]);
2601 svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
2603 if(h->deblocking_filter && (simple || !FRAME_MBAFF))
2604 xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0, simple);
2606 hl_motion(h, dest_y, dest_cb, dest_cr,
2607 s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
2608 s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
2609 s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab);
2613 if(!IS_INTRA4x4(mb_type)){
2615 if(IS_INTRA16x16(mb_type)){
2616 for(i=0; i<16; i++){
2617 if(h->non_zero_count_cache[ scan8[i] ])
2618 idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
2619 else if(h->mb[i*16])
2620 idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
2623 const int di = IS_8x8DCT(mb_type) ? 4 : 1;
2624 for(i=0; i<16; i+=di){
2625 int nnz = h->non_zero_count_cache[ scan8[i] ];
2627 if(nnz==1 && h->mb[i*16])
2628 idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
2630 idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
2635 for(i=0; i<16; i++){
2636 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
2637 uint8_t * const ptr= dest_y + block_offset[i];
2638 svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
2644 if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2645 uint8_t *dest[2] = {dest_cb, dest_cr};
2646 if(transform_bypass){
2647 idct_add = idct_dc_add = s->dsp.add_pixels4;
2649 idct_add = s->dsp.h264_idct_add;
2650 idct_dc_add = s->dsp.h264_idct_dc_add;
2651 chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp[0], h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp[0]][0]);
2652 chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp[1], h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp[1]][0]);
2655 for(i=16; i<16+8; i++){
2656 if(h->non_zero_count_cache[ scan8[i] ])
2657 idct_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
2658 else if(h->mb[i*16])
2659 idct_dc_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
2662 for(i=16; i<16+8; i++){
2663 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2664 uint8_t * const ptr= dest[(i&4)>>2] + block_offset[i];
2665 svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
2671 if(h->deblocking_filter) {
2672 if (!simple && FRAME_MBAFF) {
2673 //FIXME try deblocking one mb at a time?
2674 // the reduction in load/storing mvs and such might outweigh the extra backup/xchg_border
2675 const int mb_y = s->mb_y - 1;
2676 uint8_t *pair_dest_y, *pair_dest_cb, *pair_dest_cr;
2677 const int mb_xy= mb_x + mb_y*s->mb_stride;
2678 const int mb_type_top = s->current_picture.mb_type[mb_xy];
2679 const int mb_type_bottom= s->current_picture.mb_type[mb_xy+s->mb_stride];
2680 if (!bottom) return;
2681 pair_dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
2682 pair_dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2683 pair_dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2685 if(IS_INTRA(mb_type_top | mb_type_bottom))
2686 xchg_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize, 0);
2688 backup_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize);
2692 tprintf(h->s.avctx, "call mbaff filter_mb mb_x:%d mb_y:%d pair_dest_y = %p, dest_y = %p\n", mb_x, mb_y, pair_dest_y, dest_y);
2693 fill_caches(h, mb_type_top, 1); //FIXME don't fill stuff which isn't used by filter_mb
2694 h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy]);
2695 h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy]);
2696 filter_mb(h, mb_x, mb_y, pair_dest_y, pair_dest_cb, pair_dest_cr, linesize, uvlinesize);
2699 tprintf(h->s.avctx, "call mbaff filter_mb\n");
2700 fill_caches(h, mb_type_bottom, 1); //FIXME don't fill stuff which isn't used by filter_mb
2701 h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy+s->mb_stride]);
2702 h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy+s->mb_stride]);
2703 filter_mb(h, mb_x, mb_y+1, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
2705 tprintf(h->s.avctx, "call filter_mb\n");
2706 backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, simple);
2707 fill_caches(h, mb_type, 1); //FIXME don't fill stuff which isn't used by filter_mb
2708 filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
2714 * Process a macroblock; this case avoids checks for expensive uncommon cases.
2716 static void hl_decode_mb_simple(H264Context *h){
2717 hl_decode_mb_internal(h, 1);
2721 * Process a macroblock; this handles edge cases, such as interlacing.
2723 static void av_noinline hl_decode_mb_complex(H264Context *h){
2724 hl_decode_mb_internal(h, 0);
2727 static void hl_decode_mb(H264Context *h){
2728 MpegEncContext * const s = &h->s;
2729 const int mb_x= s->mb_x;
2730 const int mb_y= s->mb_y;
2731 const int mb_xy= mb_x + mb_y*s->mb_stride;
2732 const int mb_type= s->current_picture.mb_type[mb_xy];
2733 int is_complex = FRAME_MBAFF || MB_FIELD || IS_INTRA_PCM(mb_type) || s->codec_id != CODEC_ID_H264 || (ENABLE_GRAY && (s->flags&CODEC_FLAG_GRAY)) || s->encoding;
2739 hl_decode_mb_complex(h);
2740 else hl_decode_mb_simple(h);
2743 static void pic_as_field(Picture *pic, const int parity){
2745 for (i = 0; i < 4; ++i) {
2746 if (parity == PICT_BOTTOM_FIELD)
2747 pic->data[i] += pic->linesize[i];
2748 pic->reference = parity;
2749 pic->linesize[i] *= 2;
2753 static int split_field_copy(Picture *dest, Picture *src,
2754 int parity, int id_add){
2755 int match = !!(src->reference & parity);
2759 pic_as_field(dest, parity);
2761 dest->pic_id += id_add;
2768 * Split one reference list into field parts, interleaving by parity
2769 * as per H.264 spec section 8.2.4.2.5. Output fields have their data pointers
2770 * set to look at the actual start of data for that field.
2772 * @param dest output list
2773 * @param dest_len maximum number of fields to put in dest
2774 * @param src the source reference list containing fields and/or field pairs
2775 * (aka short_ref/long_ref, or
2776 * refFrameListXShortTerm/refFrameListLongTerm in spec-speak)
2777 * @param src_len number of Picture's in source (pairs and unmatched fields)
2778 * @param parity the parity of the picture being decoded/needing
2779 * these ref pics (PICT_{TOP,BOTTOM}_FIELD)
2780 * @return number of fields placed in dest
2782 static int split_field_half_ref_list(Picture *dest, int dest_len,
2783 Picture *src, int src_len, int parity){
2784 int same_parity = 1;
2790 for (out_i = 0; out_i < dest_len; out_i += field_output) {
2791 if (same_parity && same_i < src_len) {
2792 field_output = split_field_copy(dest + out_i, src + same_i,
2794 same_parity = !field_output;
2797 } else if (opp_i < src_len) {
2798 field_output = split_field_copy(dest + out_i, src + opp_i,
2799 PICT_FRAME - parity, 0);
2800 same_parity = field_output;
2812 * Split the reference frame list into a reference field list.
2813 * This implements H.264 spec 8.2.4.2.5 for a combined input list.
2814 * The input list contains both reference field pairs and
2815 * unmatched reference fields; it is ordered as spec describes
2816 * RefPicListX for frames in 8.2.4.2.1 and 8.2.4.2.3, except that
2817 * unmatched field pairs are also present. Conceptually this is equivalent
2818 * to concatenation of refFrameListXShortTerm with refFrameListLongTerm.
2820 * @param dest output reference list where ordered fields are to be placed
2821 * @param dest_len max number of fields to place at dest
2822 * @param src source reference list, as described above
2823 * @param src_len number of pictures (pairs and unmatched fields) in src
2824 * @param parity parity of field being currently decoded
2825 * (one of PICT_{TOP,BOTTOM}_FIELD)
2826 * @param long_i index into src array that holds first long reference picture,
2827 * or src_len if no long refs present.
2829 static int split_field_ref_list(Picture *dest, int dest_len,
2830 Picture *src, int src_len,
2831 int parity, int long_i){
2833 int i = split_field_half_ref_list(dest, dest_len, src, long_i, parity);
2837 i += split_field_half_ref_list(dest, dest_len, src + long_i,
2838 src_len - long_i, parity);
2843 * fills the default_ref_list.
2845 static int fill_default_ref_list(H264Context *h){
2846 MpegEncContext * const s = &h->s;
2848 int smallest_poc_greater_than_current = -1;
2850 Picture sorted_short_ref[32];
2851 Picture field_entry_list[2][32];
2852 Picture *frame_list[2];
2854 if (FIELD_PICTURE) {
2855 structure_sel = PICT_FRAME;
2856 frame_list[0] = field_entry_list[0];
2857 frame_list[1] = field_entry_list[1];
2860 frame_list[0] = h->default_ref_list[0];
2861 frame_list[1] = h->default_ref_list[1];
2864 if(h->slice_type==FF_B_TYPE){
2871 /* sort frame according to poc in B slice */
2872 for(out_i=0; out_i<h->short_ref_count; out_i++){
2874 int best_poc=INT_MAX;
2876 for(i=0; i<h->short_ref_count; i++){
2877 const int poc= h->short_ref[i]->poc;
2878 if(poc > limit && poc < best_poc){
2884 assert(best_i != INT_MIN);
2887 sorted_short_ref[out_i]= *h->short_ref[best_i];
2888 tprintf(h->s.avctx, "sorted poc: %d->%d poc:%d fn:%d\n", best_i, out_i, sorted_short_ref[out_i].poc, sorted_short_ref[out_i].frame_num);
2889 if (-1 == smallest_poc_greater_than_current) {
2890 if (h->short_ref[best_i]->poc >= s->current_picture_ptr->poc) {
2891 smallest_poc_greater_than_current = out_i;
2896 tprintf(h->s.avctx, "current poc: %d, smallest_poc_greater_than_current: %d\n", s->current_picture_ptr->poc, smallest_poc_greater_than_current);
2898 // find the largest poc
2899 for(list=0; list<2; list++){
2902 int step= list ? -1 : 1;
2904 for(i=0; i<h->short_ref_count && index < h->ref_count[list]; i++, j+=step) {
2906 while(j<0 || j>= h->short_ref_count){
2907 if(j != -99 && step == (list ? -1 : 1))
2910 j= smallest_poc_greater_than_current + (step>>1);
2912 sel = sorted_short_ref[j].reference | structure_sel;
2913 if(sel != PICT_FRAME) continue;
2914 frame_list[list][index ]= sorted_short_ref[j];
2915 frame_list[list][index++].pic_id= sorted_short_ref[j].frame_num;
2917 short_len[list] = index;
2919 for(i = 0; i < 16 && index < h->ref_count[ list ]; i++){
2921 if(h->long_ref[i] == NULL) continue;
2922 sel = h->long_ref[i]->reference | structure_sel;
2923 if(sel != PICT_FRAME) continue;
2925 frame_list[ list ][index ]= *h->long_ref[i];
2926 frame_list[ list ][index++].pic_id= i;
2931 for(list=0; list<2; list++){
2933 len[list] = split_field_ref_list(h->default_ref_list[list],
2937 s->picture_structure,
2940 // swap the two first elements of L1 when L0 and L1 are identical
2941 if(list && len[0] > 1 && len[0] == len[1])
2942 for(i=0; h->default_ref_list[0][i].data[0] == h->default_ref_list[1][i].data[0]; i++)
2944 FFSWAP(Picture, h->default_ref_list[1][0], h->default_ref_list[1][1]);
2948 if(len[list] < h->ref_count[ list ])
2949 memset(&h->default_ref_list[list][len[list]], 0, sizeof(Picture)*(h->ref_count[ list ] - len[list]));
2956 for(i=0; i<h->short_ref_count; i++){
2958 sel = h->short_ref[i]->reference | structure_sel;
2959 if(sel != PICT_FRAME) continue;
2960 frame_list[0][index ]= *h->short_ref[i];
2961 frame_list[0][index++].pic_id= h->short_ref[i]->frame_num;
2964 for(i = 0; i < 16; i++){
2966 if(h->long_ref[i] == NULL) continue;
2967 sel = h->long_ref[i]->reference | structure_sel;
2968 if(sel != PICT_FRAME) continue;
2969 frame_list[0][index ]= *h->long_ref[i];
2970 frame_list[0][index++].pic_id= i;
2974 index = split_field_ref_list(h->default_ref_list[0],
2975 h->ref_count[0], frame_list[0],
2976 index, s->picture_structure,
2979 if(index < h->ref_count[0])
2980 memset(&h->default_ref_list[0][index], 0, sizeof(Picture)*(h->ref_count[0] - index));
2983 for (i=0; i<h->ref_count[0]; i++) {
2984 tprintf(h->s.avctx, "List0: %s fn:%d 0x%p\n", (h->default_ref_list[0][i].long_ref ? "LT" : "ST"), h->default_ref_list[0][i].pic_id, h->default_ref_list[0][i].data[0]);
2986 if(h->slice_type==FF_B_TYPE){
2987 for (i=0; i<h->ref_count[1]; i++) {
2988 tprintf(h->s.avctx, "List1: %s fn:%d 0x%p\n", (h->default_ref_list[1][i].long_ref ? "LT" : "ST"), h->default_ref_list[1][i].pic_id, h->default_ref_list[1][i].data[0]);
2995 static void print_short_term(H264Context *h);
2996 static void print_long_term(H264Context *h);
2999 * Extract structure information about the picture described by pic_num in
3000 * the current decoding context (frame or field). Note that pic_num is
3001 * picture number without wrapping (so, 0<=pic_num<max_pic_num).
3002 * @param pic_num picture number for which to extract structure information
3003 * @param structure one of PICT_XXX describing structure of picture
3005 * @return frame number (short term) or long term index of picture
3006 * described by pic_num
3008 static int pic_num_extract(H264Context *h, int pic_num, int *structure){
3009 MpegEncContext * const s = &h->s;
3011 *structure = s->picture_structure;
3014 /* opposite field */
3015 *structure ^= PICT_FRAME;
3022 static int decode_ref_pic_list_reordering(H264Context *h){
3023 MpegEncContext * const s = &h->s;
3024 int list, index, pic_structure;
3026 print_short_term(h);
3028 if(h->slice_type==FF_I_TYPE || h->slice_type==FF_SI_TYPE) return 0; //FIXME move before func
3030 for(list=0; list<h->list_count; list++){
3031 memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
3033 if(get_bits1(&s->gb)){
3034 int pred= h->curr_pic_num;
3036 for(index=0; ; index++){
3037 unsigned int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb);
3038 unsigned int pic_id;
3040 Picture *ref = NULL;
3042 if(reordering_of_pic_nums_idc==3)
3045 if(index >= h->ref_count[list]){
3046 av_log(h->s.avctx, AV_LOG_ERROR, "reference count overflow\n");
3050 if(reordering_of_pic_nums_idc<3){
3051 if(reordering_of_pic_nums_idc<2){
3052 const unsigned int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1;
3055 if(abs_diff_pic_num > h->max_pic_num){
3056 av_log(h->s.avctx, AV_LOG_ERROR, "abs_diff_pic_num overflow\n");
3060 if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num;
3061 else pred+= abs_diff_pic_num;
3062 pred &= h->max_pic_num - 1;
3064 frame_num = pic_num_extract(h, pred, &pic_structure);
3066 for(i= h->short_ref_count-1; i>=0; i--){
3067 ref = h->short_ref[i];
3068 assert(ref->reference);
3069 assert(!ref->long_ref);
3070 if(ref->data[0] != NULL &&
3071 ref->frame_num == frame_num &&
3072 (ref->reference & pic_structure) &&
3073 ref->long_ref == 0) // ignore non existing pictures by testing data[0] pointer
3080 pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx
3082 long_idx= pic_num_extract(h, pic_id, &pic_structure);
3085 av_log(h->s.avctx, AV_LOG_ERROR, "long_term_pic_idx overflow\n");
3088 ref = h->long_ref[long_idx];
3089 assert(!(ref && !ref->reference));
3090 if(ref && (ref->reference & pic_structure)){
3091 ref->pic_id= pic_id;
3092 assert(ref->long_ref);
3100 av_log(h->s.avctx, AV_LOG_ERROR, "reference picture missing during reorder\n");
3101 memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME
3103 for(i=index; i+1<h->ref_count[list]; i++){
3104 if(ref->long_ref == h->ref_list[list][i].long_ref && ref->pic_id == h->ref_list[list][i].pic_id)
3107 for(; i > index; i--){
3108 h->ref_list[list][i]= h->ref_list[list][i-1];
3110 h->ref_list[list][index]= *ref;
3112 pic_as_field(&h->ref_list[list][index], pic_structure);
3116 av_log(h->s.avctx, AV_LOG_ERROR, "illegal reordering_of_pic_nums_idc\n");
3122 for(list=0; list<h->list_count; list++){
3123 for(index= 0; index < h->ref_count[list]; index++){
3124 if(!h->ref_list[list][index].data[0])
3125 h->ref_list[list][index]= s->current_picture;
3129 if(h->slice_type==FF_B_TYPE && !h->direct_spatial_mv_pred)
3130 direct_dist_scale_factor(h);
3131 direct_ref_list_init(h);
3135 static void fill_mbaff_ref_list(H264Context *h){
3137 for(list=0; list<2; list++){ //FIXME try list_count
3138 for(i=0; i<h->ref_count[list]; i++){
3139 Picture *frame = &h->ref_list[list][i];
3140 Picture *field = &h->ref_list[list][16+2*i];
3143 field[0].linesize[j] <<= 1;
3144 field[0].reference = PICT_TOP_FIELD;
3145 field[1] = field[0];
3147 field[1].data[j] += frame->linesize[j];
3148 field[1].reference = PICT_BOTTOM_FIELD;
3150 h->luma_weight[list][16+2*i] = h->luma_weight[list][16+2*i+1] = h->luma_weight[list][i];
3151 h->luma_offset[list][16+2*i] = h->luma_offset[list][16+2*i+1] = h->luma_offset[list][i];
3153 h->chroma_weight[list][16+2*i][j] = h->chroma_weight[list][16+2*i+1][j] = h->chroma_weight[list][i][j];
3154 h->chroma_offset[list][16+2*i][j] = h->chroma_offset[list][16+2*i+1][j] = h->chroma_offset[list][i][j];
3158 for(j=0; j<h->ref_count[1]; j++){
3159 for(i=0; i<h->ref_count[0]; i++)
3160 h->implicit_weight[j][16+2*i] = h->implicit_weight[j][16+2*i+1] = h->implicit_weight[j][i];
3161 memcpy(h->implicit_weight[16+2*j], h->implicit_weight[j], sizeof(*h->implicit_weight));
3162 memcpy(h->implicit_weight[16+2*j+1], h->implicit_weight[j], sizeof(*h->implicit_weight));
3166 static int pred_weight_table(H264Context *h){
3167 MpegEncContext * const s = &h->s;
3169 int luma_def, chroma_def;
3172 h->use_weight_chroma= 0;
3173 h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
3174 h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
3175 luma_def = 1<<h->luma_log2_weight_denom;
3176 chroma_def = 1<<h->chroma_log2_weight_denom;
3178 for(list=0; list<2; list++){
3179 for(i=0; i<h->ref_count[list]; i++){
3180 int luma_weight_flag, chroma_weight_flag;
3182 luma_weight_flag= get_bits1(&s->gb);
3183 if(luma_weight_flag){
3184 h->luma_weight[list][i]= get_se_golomb(&s->gb);
3185 h->luma_offset[list][i]= get_se_golomb(&s->gb);
3186 if( h->luma_weight[list][i] != luma_def
3187 || h->luma_offset[list][i] != 0)
3190 h->luma_weight[list][i]= luma_def;
3191 h->luma_offset[list][i]= 0;
3194 chroma_weight_flag= get_bits1(&s->gb);
3195 if(chroma_weight_flag){
3198 h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
3199 h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
3200 if( h->chroma_weight[list][i][j] != chroma_def
3201 || h->chroma_offset[list][i][j] != 0)
3202 h->use_weight_chroma= 1;
3207 h->chroma_weight[list][i][j]= chroma_def;
3208 h->chroma_offset[list][i][j]= 0;
3212 if(h->slice_type != FF_B_TYPE) break;
3214 h->use_weight= h->use_weight || h->use_weight_chroma;
3218 static void implicit_weight_table(H264Context *h){
3219 MpegEncContext * const s = &h->s;
3221 int cur_poc = s->current_picture_ptr->poc;
3223 if( h->ref_count[0] == 1 && h->ref_count[1] == 1
3224 && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
3226 h->use_weight_chroma= 0;
3231 h->use_weight_chroma= 2;
3232 h->luma_log2_weight_denom= 5;
3233 h->chroma_log2_weight_denom= 5;
3235 for(ref0=0; ref0 < h->ref_count[0]; ref0++){
3236 int poc0 = h->ref_list[0][ref0].poc;
3237 for(ref1=0; ref1 < h->ref_count[1]; ref1++){
3238 int poc1 = h->ref_list[1][ref1].poc;
3239 int td = av_clip(poc1 - poc0, -128, 127);
3241 int tb = av_clip(cur_poc - poc0, -128, 127);
3242 int tx = (16384 + (FFABS(td) >> 1)) / td;
3243 int dist_scale_factor = av_clip((tb*tx + 32) >> 6, -1024, 1023) >> 2;
3244 if(dist_scale_factor < -64 || dist_scale_factor > 128)
3245 h->implicit_weight[ref0][ref1] = 32;
3247 h->implicit_weight[ref0][ref1] = 64 - dist_scale_factor;
3249 h->implicit_weight[ref0][ref1] = 32;
3255 * Mark a picture as no longer needed for reference. The refmask
3256 * argument allows unreferencing of individual fields or the whole frame.
3257 * If the picture becomes entirely unreferenced, but is being held for
3258 * display purposes, it is marked as such.
3259 * @param refmask mask of fields to unreference; the mask is bitwise
3260 * anded with the reference marking of pic
3261 * @return non-zero if pic becomes entirely unreferenced (except possibly
3262 * for display purposes) zero if one of the fields remains in
3265 static inline int unreference_pic(H264Context *h, Picture *pic, int refmask){
3267 if (pic->reference &= refmask) {
3270 if(pic == h->delayed_output_pic)
3271 pic->reference=DELAYED_PIC_REF;
3273 for(i = 0; h->delayed_pic[i]; i++)
3274 if(pic == h->delayed_pic[i]){
3275 pic->reference=DELAYED_PIC_REF;
3284 * instantaneous decoder refresh.
3286 static void idr(H264Context *h){
3289 for(i=0; i<16; i++){
3290 if (h->long_ref[i] != NULL) {
3291 unreference_pic(h, h->long_ref[i], 0);
3292 h->long_ref[i]= NULL;
3295 h->long_ref_count=0;
3297 for(i=0; i<h->short_ref_count; i++){
3298 unreference_pic(h, h->short_ref[i], 0);
3299 h->short_ref[i]= NULL;
3301 h->short_ref_count=0;
3304 /* forget old pics after a seek */
3305 static void flush_dpb(AVCodecContext *avctx){
3306 H264Context *h= avctx->priv_data;
3308 for(i=0; i<16; i++) {
3309 if(h->delayed_pic[i])
3310 h->delayed_pic[i]->reference= 0;
3311 h->delayed_pic[i]= NULL;
3313 if(h->delayed_output_pic)
3314 h->delayed_output_pic->reference= 0;
3315 h->delayed_output_pic= NULL;
3317 if(h->s.current_picture_ptr)
3318 h->s.current_picture_ptr->reference= 0;
3319 h->s.first_field= 0;
3320 ff_mpeg_flush(avctx);
3324 * Find a Picture in the short term reference list by frame number.
3325 * @param frame_num frame number to search for
3326 * @param idx the index into h->short_ref where returned picture is found
3327 * undefined if no picture found.
3328 * @return pointer to the found picture, or NULL if no pic with the provided
3329 * frame number is found
3331 static Picture * find_short(H264Context *h, int frame_num, int *idx){
3332 MpegEncContext * const s = &h->s;
3335 for(i=0; i<h->short_ref_count; i++){
3336 Picture *pic= h->short_ref[i];
3337 if(s->avctx->debug&FF_DEBUG_MMCO)
3338 av_log(h->s.avctx, AV_LOG_DEBUG, "%d %d %p\n", i, pic->frame_num, pic);
3339 if(pic->frame_num == frame_num) {
3348 * Remove a picture from the short term reference list by its index in
3349 * that list. This does no checking on the provided index; it is assumed
3350 * to be valid. Other list entries are shifted down.
3351 * @param i index into h->short_ref of picture to remove.
3353 static void remove_short_at_index(H264Context *h, int i){
3354 assert(i > 0 && i < h->short_ref_count);
3355 h->short_ref[i]= NULL;
3356 if (--h->short_ref_count)
3357 memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i)*sizeof(Picture*));
3362 * @return the removed picture or NULL if an error occurs
3364 static Picture * remove_short(H264Context *h, int frame_num){
3365 MpegEncContext * const s = &h->s;
3369 if(s->avctx->debug&FF_DEBUG_MMCO)
3370 av_log(h->s.avctx, AV_LOG_DEBUG, "remove short %d count %d\n", frame_num, h->short_ref_count);
3372 pic = find_short(h, frame_num, &i);
3374 remove_short_at_index(h, i);
3380 * Remove a picture from the long term reference list by its index in
3381 * that list. This does no checking on the provided index; it is assumed
3382 * to be valid. The removed entry is set to NULL. Other entries are unaffected.
3383 * @param i index into h->long_ref of picture to remove.
3385 static void remove_long_at_index(H264Context *h, int i){
3386 h->long_ref[i]= NULL;
3387 h->long_ref_count--;
3392 * @return the removed picture or NULL if an error occurs
3394 static Picture * remove_long(H264Context *h, int i){
3397 pic= h->long_ref[i];
3399 remove_long_at_index(h, i);
3405 * print short term list
3407 static void print_short_term(H264Context *h) {
3409 if(h->s.avctx->debug&FF_DEBUG_MMCO) {
3410 av_log(h->s.avctx, AV_LOG_DEBUG, "short term list:\n");
3411 for(i=0; i<h->short_ref_count; i++){
3412 Picture *pic= h->short_ref[i];
3413 av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
3419 * print long term list
3421 static void print_long_term(H264Context *h) {
3423 if(h->s.avctx->debug&FF_DEBUG_MMCO) {
3424 av_log(h->s.avctx, AV_LOG_DEBUG, "long term list:\n");