2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25 * H.264 / AVC / MPEG4 part10 codec.
26 * @author Michael Niedermayer <michaelni@gmx.at>
32 #include "mpegvideo.h"
41 #define interlaced_dct interlaced_dct_is_a_bad_name
42 #define mb_intra mb_intra_isnt_initalized_see_mb_type
44 #define LUMA_DC_BLOCK_INDEX 25
45 #define CHROMA_DC_BLOCK_INDEX 26
47 #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
48 #define COEFF_TOKEN_VLC_BITS 8
49 #define TOTAL_ZEROS_VLC_BITS 9
50 #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
51 #define RUN_VLC_BITS 3
52 #define RUN7_VLC_BITS 6
54 #define MAX_SPS_COUNT 32
55 #define MAX_PPS_COUNT 256
57 #define MAX_MMCO_COUNT 66
59 /* Compiling in interlaced support reduces the speed
60 * of progressive decoding by about 2%. */
61 #define ALLOW_INTERLACE
63 #ifdef ALLOW_INTERLACE
64 #define MB_MBAFF h->mb_mbaff
65 #define MB_FIELD h->mb_field_decoding_flag
66 #define FRAME_MBAFF h->mb_aff_frame
72 #define IS_INTERLACED(mb_type) 0
76 * Sequence parameter set
82 int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
83 int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
84 int poc_type; ///< pic_order_cnt_type
85 int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
86 int delta_pic_order_always_zero_flag;
87 int offset_for_non_ref_pic;
88 int offset_for_top_to_bottom_field;
89 int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
90 int ref_frame_count; ///< num_ref_frames
91 int gaps_in_frame_num_allowed_flag;
92 int mb_width; ///< frame_width_in_mbs_minus1 + 1
93 int mb_height; ///< frame_height_in_mbs_minus1 + 1
94 int frame_mbs_only_flag;
95 int mb_aff; ///<mb_adaptive_frame_field_flag
96 int direct_8x8_inference_flag;
97 int crop; ///< frame_cropping_flag
98 int crop_left; ///< frame_cropping_rect_left_offset
99 int crop_right; ///< frame_cropping_rect_right_offset
100 int crop_top; ///< frame_cropping_rect_top_offset
101 int crop_bottom; ///< frame_cropping_rect_bottom_offset
102 int vui_parameters_present_flag;
104 int timing_info_present_flag;
105 uint32_t num_units_in_tick;
107 int fixed_frame_rate_flag;
108 short offset_for_ref_frame[256]; //FIXME dyn aloc?
109 int bitstream_restriction_flag;
110 int num_reorder_frames;
111 int scaling_matrix_present;
112 uint8_t scaling_matrix4[6][16];
113 uint8_t scaling_matrix8[2][64];
117 * Picture parameter set
121 int cabac; ///< entropy_coding_mode_flag
122 int pic_order_present; ///< pic_order_present_flag
123 int slice_group_count; ///< num_slice_groups_minus1 + 1
124 int mb_slice_group_map_type;
125 int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
126 int weighted_pred; ///< weighted_pred_flag
127 int weighted_bipred_idc;
128 int init_qp; ///< pic_init_qp_minus26 + 26
129 int init_qs; ///< pic_init_qs_minus26 + 26
130 int chroma_qp_index_offset;
131 int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
132 int constrained_intra_pred; ///< constrained_intra_pred_flag
133 int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
134 int transform_8x8_mode; ///< transform_8x8_mode_flag
135 uint8_t scaling_matrix4[6][16];
136 uint8_t scaling_matrix8[2][64];
140 * Memory management control operation opcode.
142 typedef enum MMCOOpcode{
153 * Memory management control operation.
164 typedef struct H264Context{
172 #define NAL_IDR_SLICE 5
177 #define NAL_END_SEQUENCE 10
178 #define NAL_END_STREAM 11
179 #define NAL_FILLER_DATA 12
180 #define NAL_SPS_EXT 13
181 #define NAL_AUXILIARY_SLICE 19
182 uint8_t *rbsp_buffer;
183 unsigned int rbsp_buffer_size;
186 * Used to parse AVC variant of h264
188 int is_avc; ///< this flag is != 0 if codec is avc1
189 int got_avcC; ///< flag used to parse avcC data only once
190 int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
198 int chroma_pred_mode;
199 int intra16x16_pred_mode;
204 int8_t intra4x4_pred_mode_cache[5*8];
205 int8_t (*intra4x4_pred_mode)[8];
206 void (*pred4x4 [9+3])(uint8_t *src, uint8_t *topright, int stride);//FIXME move to dsp?
207 void (*pred8x8l [9+3])(uint8_t *src, int topleft, int topright, int stride);
208 void (*pred8x8 [4+3])(uint8_t *src, int stride);
209 void (*pred16x16[4+3])(uint8_t *src, int stride);
210 unsigned int topleft_samples_available;
211 unsigned int top_samples_available;
212 unsigned int topright_samples_available;
213 unsigned int left_samples_available;
214 uint8_t (*top_borders[2])[16+2*8];
215 uint8_t left_border[2*(17+2*9)];
218 * non zero coeff count cache.
219 * is 64 if not available.
221 DECLARE_ALIGNED_8(uint8_t, non_zero_count_cache[6*8]);
222 uint8_t (*non_zero_count)[16];
225 * Motion vector cache.
227 DECLARE_ALIGNED_8(int16_t, mv_cache[2][5*8][2]);
228 DECLARE_ALIGNED_8(int8_t, ref_cache[2][5*8]);
229 #define LIST_NOT_USED -1 //FIXME rename?
230 #define PART_NOT_AVAILABLE -2
233 * is 1 if the specific list MV&references are set to 0,0,-2.
235 int mv_cache_clean[2];
238 * number of neighbors (top and/or left) that used 8x8 dct
240 int neighbor_transform_size;
243 * block_offset[ 0..23] for frame macroblocks
244 * block_offset[24..47] for field macroblocks
246 int block_offset[2*(16+8)];
248 uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
250 int b_stride; //FIXME use s->b4_stride
253 int mb_linesize; ///< may be equal to s->linesize or s->linesize*2, for mbaff
262 int unknown_svq3_flag;
263 int next_slice_index;
265 SPS sps_buffer[MAX_SPS_COUNT];
266 SPS sps; ///< current sps
268 PPS pps_buffer[MAX_PPS_COUNT];
272 PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
274 uint32_t dequant4_buffer[6][52][16];
275 uint32_t dequant8_buffer[2][52][64];
276 uint32_t (*dequant4_coeff[6])[16];
277 uint32_t (*dequant8_coeff[2])[64];
278 int dequant_coeff_pps; ///< reinit tables when pps changes
281 uint8_t *slice_table_base;
282 uint8_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
284 int slice_type_fixed;
286 //interlacing specific flags
288 int mb_field_decoding_flag;
289 int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
296 int delta_poc_bottom;
299 int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
300 int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
301 int frame_num_offset; ///< for POC type 2
302 int prev_frame_num_offset; ///< for POC type 2
303 int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
306 * frame_num for frames or 2*frame_num for field pics.
311 * max_frame_num or 2*max_frame_num for field pics.
315 //Weighted pred stuff
317 int use_weight_chroma;
318 int luma_log2_weight_denom;
319 int chroma_log2_weight_denom;
320 int luma_weight[2][48];
321 int luma_offset[2][48];
322 int chroma_weight[2][48][2];
323 int chroma_offset[2][48][2];
324 int implicit_weight[48][48];
327 int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0
328 int slice_alpha_c0_offset;
329 int slice_beta_offset;
331 int redundant_pic_count;
333 int direct_spatial_mv_pred;
334 int dist_scale_factor[16];
335 int dist_scale_factor_field[32];
336 int map_col_to_list0[2][16];
337 int map_col_to_list0_field[2][32];
340 * num_ref_idx_l0/1_active_minus1 + 1
342 int ref_count[2]; ///< counts frames or fields, depending on current mb mode
343 Picture *short_ref[32];
344 Picture *long_ref[32];
345 Picture default_ref_list[2][32];
346 Picture ref_list[2][48]; ///< 0..15: frame refs, 16..47: mbaff field refs
347 Picture *delayed_pic[16]; //FIXME size?
348 Picture *delayed_output_pic;
351 * memory management control operations buffer.
353 MMCO mmco[MAX_MMCO_COUNT];
356 int long_ref_count; ///< number of actual long term references
357 int short_ref_count; ///< number of actual short term references
360 GetBitContext intra_gb;
361 GetBitContext inter_gb;
362 GetBitContext *intra_gb_ptr;
363 GetBitContext *inter_gb_ptr;
365 DECLARE_ALIGNED_8(DCTELEM, mb[16*24]);
371 uint8_t cabac_state[460];
374 /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
379 /* chroma_pred_mode for i4x4 or i16x16, else 0 */
380 uint8_t *chroma_pred_mode_table;
381 int last_qscale_diff;
382 int16_t (*mvd_table[2])[2];
383 DECLARE_ALIGNED_8(int16_t, mvd_cache[2][5*8][2]);
384 uint8_t *direct_table;
385 uint8_t direct_cache[5*8];
387 uint8_t zigzag_scan[16];
388 uint8_t zigzag_scan8x8[64];
389 uint8_t zigzag_scan8x8_cavlc[64];
390 uint8_t field_scan[16];
391 uint8_t field_scan8x8[64];
392 uint8_t field_scan8x8_cavlc[64];
393 const uint8_t *zigzag_scan_q0;
394 const uint8_t *zigzag_scan8x8_q0;
395 const uint8_t *zigzag_scan8x8_cavlc_q0;
396 const uint8_t *field_scan_q0;
397 const uint8_t *field_scan8x8_q0;
398 const uint8_t *field_scan8x8_cavlc_q0;
403 static VLC coeff_token_vlc[4];
404 static VLC chroma_dc_coeff_token_vlc;
406 static VLC total_zeros_vlc[15];
407 static VLC chroma_dc_total_zeros_vlc[3];
409 static VLC run_vlc[6];
412 static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
413 static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
414 static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
415 static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
417 static always_inline uint32_t pack16to32(int a, int b){
418 #ifdef WORDS_BIGENDIAN
419 return (b&0xFFFF) + (a<<16);
421 return (a&0xFFFF) + (b<<16);
427 * @param h height of the rectangle, should be a constant
428 * @param w width of the rectangle, should be a constant
429 * @param size the size of val (1 or 4), should be a constant
431 static always_inline void fill_rectangle(void *vp, int w, int h, int stride, uint32_t val, int size){
432 uint8_t *p= (uint8_t*)vp;
433 assert(size==1 || size==4);
439 assert((((long)vp)&(FFMIN(w, STRIDE_ALIGN)-1)) == 0);
440 assert((stride&(w-1))==0);
442 const uint16_t v= size==4 ? val : val*0x0101;
443 *(uint16_t*)(p + 0*stride)= v;
445 *(uint16_t*)(p + 1*stride)= v;
447 *(uint16_t*)(p + 2*stride)=
448 *(uint16_t*)(p + 3*stride)= v;
450 const uint32_t v= size==4 ? val : val*0x01010101;
451 *(uint32_t*)(p + 0*stride)= v;
453 *(uint32_t*)(p + 1*stride)= v;
455 *(uint32_t*)(p + 2*stride)=
456 *(uint32_t*)(p + 3*stride)= v;
458 //gcc can't optimize 64bit math on x86_32
459 #if defined(ARCH_X86_64) || (defined(MP_WORDSIZE) && MP_WORDSIZE >= 64)
460 const uint64_t v= val*0x0100000001ULL;
461 *(uint64_t*)(p + 0*stride)= v;
463 *(uint64_t*)(p + 1*stride)= v;
465 *(uint64_t*)(p + 2*stride)=
466 *(uint64_t*)(p + 3*stride)= v;
468 const uint64_t v= val*0x0100000001ULL;
469 *(uint64_t*)(p + 0+0*stride)=
470 *(uint64_t*)(p + 8+0*stride)=
471 *(uint64_t*)(p + 0+1*stride)=
472 *(uint64_t*)(p + 8+1*stride)= v;
474 *(uint64_t*)(p + 0+2*stride)=
475 *(uint64_t*)(p + 8+2*stride)=
476 *(uint64_t*)(p + 0+3*stride)=
477 *(uint64_t*)(p + 8+3*stride)= v;
479 *(uint32_t*)(p + 0+0*stride)=
480 *(uint32_t*)(p + 4+0*stride)= val;
482 *(uint32_t*)(p + 0+1*stride)=
483 *(uint32_t*)(p + 4+1*stride)= val;
485 *(uint32_t*)(p + 0+2*stride)=
486 *(uint32_t*)(p + 4+2*stride)=
487 *(uint32_t*)(p + 0+3*stride)=
488 *(uint32_t*)(p + 4+3*stride)= val;
490 *(uint32_t*)(p + 0+0*stride)=
491 *(uint32_t*)(p + 4+0*stride)=
492 *(uint32_t*)(p + 8+0*stride)=
493 *(uint32_t*)(p +12+0*stride)=
494 *(uint32_t*)(p + 0+1*stride)=
495 *(uint32_t*)(p + 4+1*stride)=
496 *(uint32_t*)(p + 8+1*stride)=
497 *(uint32_t*)(p +12+1*stride)= val;
499 *(uint32_t*)(p + 0+2*stride)=
500 *(uint32_t*)(p + 4+2*stride)=
501 *(uint32_t*)(p + 8+2*stride)=
502 *(uint32_t*)(p +12+2*stride)=
503 *(uint32_t*)(p + 0+3*stride)=
504 *(uint32_t*)(p + 4+3*stride)=
505 *(uint32_t*)(p + 8+3*stride)=
506 *(uint32_t*)(p +12+3*stride)= val;
513 static void fill_caches(H264Context *h, int mb_type, int for_deblock){
514 MpegEncContext * const s = &h->s;
515 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
516 int topleft_xy, top_xy, topright_xy, left_xy[2];
517 int topleft_type, top_type, topright_type, left_type[2];
521 //FIXME deblocking could skip the intra and nnz parts.
522 if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[mb_xy-s->mb_stride]) && !FRAME_MBAFF)
525 //wow what a mess, why didn't they simplify the interlacing&intra stuff, i can't imagine that these complex rules are worth it
527 top_xy = mb_xy - s->mb_stride;
528 topleft_xy = top_xy - 1;
529 topright_xy= top_xy + 1;
530 left_xy[1] = left_xy[0] = mb_xy-1;
540 const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
541 const int top_pair_xy = pair_xy - s->mb_stride;
542 const int topleft_pair_xy = top_pair_xy - 1;
543 const int topright_pair_xy = top_pair_xy + 1;
544 const int topleft_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
545 const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
546 const int topright_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
547 const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
548 const int curr_mb_frame_flag = !IS_INTERLACED(mb_type);
549 const int bottom = (s->mb_y & 1);
550 tprintf("fill_caches: curr_mb_frame_flag:%d, left_mb_frame_flag:%d, topleft_mb_frame_flag:%d, top_mb_frame_flag:%d, topright_mb_frame_flag:%d\n", curr_mb_frame_flag, left_mb_frame_flag, topleft_mb_frame_flag, top_mb_frame_flag, topright_mb_frame_flag);
552 ? !curr_mb_frame_flag // bottom macroblock
553 : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
555 top_xy -= s->mb_stride;
558 ? !curr_mb_frame_flag // bottom macroblock
559 : (!curr_mb_frame_flag && !topleft_mb_frame_flag) // top macroblock
561 topleft_xy -= s->mb_stride;
564 ? !curr_mb_frame_flag // bottom macroblock
565 : (!curr_mb_frame_flag && !topright_mb_frame_flag) // top macroblock
567 topright_xy -= s->mb_stride;
569 if (left_mb_frame_flag != curr_mb_frame_flag) {
570 left_xy[1] = left_xy[0] = pair_xy - 1;
571 if (curr_mb_frame_flag) {
592 left_xy[1] += s->mb_stride;
605 h->top_mb_xy = top_xy;
606 h->left_mb_xy[0] = left_xy[0];
607 h->left_mb_xy[1] = left_xy[1];
611 top_type = h->slice_table[top_xy ] < 255 ? s->current_picture.mb_type[top_xy] : 0;
612 left_type[0] = h->slice_table[left_xy[0] ] < 255 ? s->current_picture.mb_type[left_xy[0]] : 0;
613 left_type[1] = h->slice_table[left_xy[1] ] < 255 ? s->current_picture.mb_type[left_xy[1]] : 0;
615 if(FRAME_MBAFF && !IS_INTRA(mb_type)){
617 int v = *(uint16_t*)&h->non_zero_count[mb_xy][14];
619 h->non_zero_count_cache[scan8[i]] = (v>>i)&1;
620 for(list=0; list<1+(h->slice_type==B_TYPE); list++){
621 if(USES_LIST(mb_type,list)){
622 uint32_t *src = (uint32_t*)s->current_picture.motion_val[list][h->mb2b_xy[mb_xy]];
623 uint32_t *dst = (uint32_t*)h->mv_cache[list][scan8[0]];
624 int8_t *ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
625 for(i=0; i<4; i++, dst+=8, src+=h->b_stride){
631 *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
632 *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = pack16to32(ref[0],ref[1])*0x0101;
634 *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
635 *(uint32_t*)&h->ref_cache[list][scan8[10]] = pack16to32(ref[0],ref[1])*0x0101;
637 fill_rectangle(&h-> mv_cache[list][scan8[ 0]], 4, 4, 8, 0, 4);
638 fill_rectangle(&h->ref_cache[list][scan8[ 0]], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1);
643 topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
644 top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
645 topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
646 left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
647 left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
650 if(IS_INTRA(mb_type)){
651 h->topleft_samples_available=
652 h->top_samples_available=
653 h->left_samples_available= 0xFFFF;
654 h->topright_samples_available= 0xEEEA;
656 if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
657 h->topleft_samples_available= 0xB3FF;
658 h->top_samples_available= 0x33FF;
659 h->topright_samples_available= 0x26EA;
662 if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
663 h->topleft_samples_available&= 0xDF5F;
664 h->left_samples_available&= 0x5F5F;
668 if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
669 h->topleft_samples_available&= 0x7FFF;
671 if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
672 h->topright_samples_available&= 0xFBFF;
674 if(IS_INTRA4x4(mb_type)){
675 if(IS_INTRA4x4(top_type)){
676 h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
677 h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
678 h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
679 h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
682 if(!top_type || (IS_INTER(top_type) && h->pps.constrained_intra_pred))
687 h->intra4x4_pred_mode_cache[4+8*0]=
688 h->intra4x4_pred_mode_cache[5+8*0]=
689 h->intra4x4_pred_mode_cache[6+8*0]=
690 h->intra4x4_pred_mode_cache[7+8*0]= pred;
693 if(IS_INTRA4x4(left_type[i])){
694 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
695 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
698 if(!left_type[i] || (IS_INTER(left_type[i]) && h->pps.constrained_intra_pred))
703 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
704 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
719 //FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
721 h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4];
722 h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5];
723 h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6];
724 h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
726 h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9];
727 h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
729 h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12];
730 h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
733 h->non_zero_count_cache[4+8*0]=
734 h->non_zero_count_cache[5+8*0]=
735 h->non_zero_count_cache[6+8*0]=
736 h->non_zero_count_cache[7+8*0]=
738 h->non_zero_count_cache[1+8*0]=
739 h->non_zero_count_cache[2+8*0]=
741 h->non_zero_count_cache[1+8*3]=
742 h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
746 for (i=0; i<2; i++) {
748 h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]];
749 h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]];
750 h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]];
751 h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]];
753 h->non_zero_count_cache[3+8*1 + 2*8*i]=
754 h->non_zero_count_cache[3+8*2 + 2*8*i]=
755 h->non_zero_count_cache[0+8*1 + 8*i]=
756 h->non_zero_count_cache[0+8*4 + 8*i]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
763 h->top_cbp = h->cbp_table[top_xy];
764 } else if(IS_INTRA(mb_type)) {
771 h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
772 } else if(IS_INTRA(mb_type)) {
778 h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
781 h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
786 if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
788 for(list=0; list<1+(h->slice_type==B_TYPE); list++){
789 if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
790 /*if(!h->mv_cache_clean[list]){
791 memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
792 memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
793 h->mv_cache_clean[list]= 1;
797 h->mv_cache_clean[list]= 0;
799 if(USES_LIST(top_type, list)){
800 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
801 const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
802 *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
803 *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
804 *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
805 *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
806 h->ref_cache[list][scan8[0] + 0 - 1*8]=
807 h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
808 h->ref_cache[list][scan8[0] + 2 - 1*8]=
809 h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
811 *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
812 *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
813 *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
814 *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
815 *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
818 //FIXME unify cleanup or sth
819 if(USES_LIST(left_type[0], list)){
820 const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
821 const int b8_xy= h->mb2b8_xy[left_xy[0]] + 1;
822 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]];
823 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1]];
824 h->ref_cache[list][scan8[0] - 1 + 0*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0]>>1)];
825 h->ref_cache[list][scan8[0] - 1 + 1*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1]>>1)];
827 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 0*8]=
828 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 1*8]= 0;
829 h->ref_cache[list][scan8[0] - 1 + 0*8]=
830 h->ref_cache[list][scan8[0] - 1 + 1*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
833 if(USES_LIST(left_type[1], list)){
834 const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
835 const int b8_xy= h->mb2b8_xy[left_xy[1]] + 1;
836 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[2]];
837 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[3]];
838 h->ref_cache[list][scan8[0] - 1 + 2*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[2]>>1)];
839 h->ref_cache[list][scan8[0] - 1 + 3*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[3]>>1)];
841 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 2*8]=
842 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 3*8]= 0;
843 h->ref_cache[list][scan8[0] - 1 + 2*8]=
844 h->ref_cache[list][scan8[0] - 1 + 3*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
845 assert((!left_type[0]) == (!left_type[1]));
848 if((for_deblock || (IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred)) && !FRAME_MBAFF)
851 if(USES_LIST(topleft_type, list)){
852 const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
853 const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + h->b8_stride;
854 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
855 h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
857 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
858 h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
861 if(USES_LIST(topright_type, list)){
862 const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
863 const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
864 *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
865 h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
867 *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
868 h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
871 if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
874 h->ref_cache[list][scan8[5 ]+1] =
875 h->ref_cache[list][scan8[7 ]+1] =
876 h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
877 h->ref_cache[list][scan8[4 ]] =
878 h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
879 *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
880 *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
881 *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
882 *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
883 *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
886 /* XXX beurk, Load mvd */
887 if(USES_LIST(top_type, list)){
888 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
889 *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
890 *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
891 *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
892 *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
894 *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
895 *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
896 *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
897 *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
899 if(USES_LIST(left_type[0], list)){
900 const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
901 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
902 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
904 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
905 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
907 if(USES_LIST(left_type[1], list)){
908 const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
909 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
910 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
912 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
913 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
915 *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
916 *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
917 *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
918 *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
919 *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
921 if(h->slice_type == B_TYPE){
922 fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
924 if(IS_DIRECT(top_type)){
925 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
926 }else if(IS_8X8(top_type)){
927 int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
928 h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
929 h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
931 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
934 if(IS_DIRECT(left_type[0]))
935 h->direct_cache[scan8[0] - 1 + 0*8]= 1;
936 else if(IS_8X8(left_type[0]))
937 h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
939 h->direct_cache[scan8[0] - 1 + 0*8]= 0;
941 if(IS_DIRECT(left_type[1]))
942 h->direct_cache[scan8[0] - 1 + 2*8]= 1;
943 else if(IS_8X8(left_type[1]))
944 h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
946 h->direct_cache[scan8[0] - 1 + 2*8]= 0;
952 MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
953 MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
954 MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
955 MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
956 MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
957 MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
958 MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
959 MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
960 MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
961 MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
963 #define MAP_F2F(idx, mb_type)\
964 if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
965 h->ref_cache[list][idx] <<= 1;\
966 h->mv_cache[list][idx][1] /= 2;\
967 h->mvd_cache[list][idx][1] /= 2;\
972 #define MAP_F2F(idx, mb_type)\
973 if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
974 h->ref_cache[list][idx] >>= 1;\
975 h->mv_cache[list][idx][1] <<= 1;\
976 h->mvd_cache[list][idx][1] <<= 1;\
986 h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
989 static inline void write_back_intra_pred_mode(H264Context *h){
990 MpegEncContext * const s = &h->s;
991 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
993 h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
994 h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
995 h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
996 h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
997 h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
998 h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
999 h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
1003 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
1005 static inline int check_intra4x4_pred_mode(H264Context *h){
1006 MpegEncContext * const s = &h->s;
1007 static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
1008 static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
1011 if(!(h->top_samples_available&0x8000)){
1013 int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
1015 av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
1018 h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
1023 if(!(h->left_samples_available&0x8000)){
1025 int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
1027 av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
1030 h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
1036 } //FIXME cleanup like next
1039 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
1041 static inline int check_intra_pred_mode(H264Context *h, int mode){
1042 MpegEncContext * const s = &h->s;
1043 static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
1044 static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
1046 if(mode < 0 || mode > 6) {
1047 av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
1051 if(!(h->top_samples_available&0x8000)){
1054 av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
1059 if(!(h->left_samples_available&0x8000)){
1062 av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
1071 * gets the predicted intra4x4 prediction mode.
1073 static inline int pred_intra_mode(H264Context *h, int n){
1074 const int index8= scan8[n];
1075 const int left= h->intra4x4_pred_mode_cache[index8 - 1];
1076 const int top = h->intra4x4_pred_mode_cache[index8 - 8];
1077 const int min= FFMIN(left, top);
1079 tprintf("mode:%d %d min:%d\n", left ,top, min);
1081 if(min<0) return DC_PRED;
1085 static inline void write_back_non_zero_count(H264Context *h){
1086 MpegEncContext * const s = &h->s;
1087 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
1089 h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[7+8*1];
1090 h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[7+8*2];
1091 h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[7+8*3];
1092 h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
1093 h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[4+8*4];
1094 h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[5+8*4];
1095 h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[6+8*4];
1097 h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[1+8*2];
1098 h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
1099 h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[2+8*1];
1101 h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5];
1102 h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
1103 h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4];
1106 // store all luma nnzs, for deblocking
1109 v += (!!h->non_zero_count_cache[scan8[i]]) << i;
1110 *(uint16_t*)&h->non_zero_count[mb_xy][14] = v;
1115 * gets the predicted number of non zero coefficients.
1116 * @param n block index
1118 static inline int pred_non_zero_count(H264Context *h, int n){
1119 const int index8= scan8[n];
1120 const int left= h->non_zero_count_cache[index8 - 1];
1121 const int top = h->non_zero_count_cache[index8 - 8];
1124 if(i<64) i= (i+1)>>1;
1126 tprintf("pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
1131 static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
1132 const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
1134 /* there is no consistent mapping of mvs to neighboring locations that will
1135 * make mbaff happy, so we can't move all this logic to fill_caches */
1137 MpegEncContext *s = &h->s;
1138 const uint32_t *mb_types = s->current_picture_ptr->mb_type;
1140 *(uint32_t*)h->mv_cache[list][scan8[0]-2] = 0;
1141 *C = h->mv_cache[list][scan8[0]-2];
1144 && (s->mb_y&1) && i < scan8[0]+8 && topright_ref != PART_NOT_AVAILABLE){
1145 int topright_xy = s->mb_x + (s->mb_y-1)*s->mb_stride + (i == scan8[0]+3);
1146 if(IS_INTERLACED(mb_types[topright_xy])){
1147 #define SET_DIAG_MV(MV_OP, REF_OP, X4, Y4)\
1148 const int x4 = X4, y4 = Y4;\
1149 const int mb_type = mb_types[(x4>>2)+(y4>>2)*s->mb_stride];\
1150 if(!USES_LIST(mb_type,list) && !IS_8X8(mb_type))\
1151 return LIST_NOT_USED;\
1152 mv = s->current_picture_ptr->motion_val[list][x4 + y4*h->b_stride];\
1153 h->mv_cache[list][scan8[0]-2][0] = mv[0];\
1154 h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\
1155 return s->current_picture_ptr->ref_index[list][(x4>>1) + (y4>>1)*h->b8_stride] REF_OP;
1157 SET_DIAG_MV(*2, >>1, s->mb_x*4+(i&7)-4+part_width, s->mb_y*4-1);
1160 if(topright_ref == PART_NOT_AVAILABLE
1161 && ((s->mb_y&1) || i >= scan8[0]+8) && (i&7)==4
1162 && h->ref_cache[list][scan8[0]-1] != PART_NOT_AVAILABLE){
1164 && IS_INTERLACED(mb_types[h->left_mb_xy[0]])){
1165 SET_DIAG_MV(*2, >>1, s->mb_x*4-1, (s->mb_y|1)*4+(s->mb_y&1)*2+(i>>4)-1);
1168 && !IS_INTERLACED(mb_types[h->left_mb_xy[0]])
1169 && i >= scan8[0]+8){
1170 // leftshift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's ok.
1171 SET_DIAG_MV(>>1, <<1, s->mb_x*4-1, (s->mb_y&~1)*4 - 1 + ((i-scan8[0])>>3)*2);
1177 if(topright_ref != PART_NOT_AVAILABLE){
1178 *C= h->mv_cache[list][ i - 8 + part_width ];
1179 return topright_ref;
1181 tprintf("topright MV not available\n");
1183 *C= h->mv_cache[list][ i - 8 - 1 ];
1184 return h->ref_cache[list][ i - 8 - 1 ];
1189 * gets the predicted MV.
1190 * @param n the block index
1191 * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
1192 * @param mx the x component of the predicted motion vector
1193 * @param my the y component of the predicted motion vector
1195 static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
1196 const int index8= scan8[n];
1197 const int top_ref= h->ref_cache[list][ index8 - 8 ];
1198 const int left_ref= h->ref_cache[list][ index8 - 1 ];
1199 const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
1200 const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
1202 int diagonal_ref, match_count;
1204 assert(part_width==1 || part_width==2 || part_width==4);
1214 diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
1215 match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
1216 tprintf("pred_motion match_count=%d\n", match_count);
1217 if(match_count > 1){ //most common
1218 *mx= mid_pred(A[0], B[0], C[0]);
1219 *my= mid_pred(A[1], B[1], C[1]);
1220 }else if(match_count==1){
1224 }else if(top_ref==ref){
1232 if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
1236 *mx= mid_pred(A[0], B[0], C[0]);
1237 *my= mid_pred(A[1], B[1], C[1]);
1241 tprintf("pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
1245 * gets the directionally predicted 16x8 MV.
1246 * @param n the block index
1247 * @param mx the x component of the predicted motion vector
1248 * @param my the y component of the predicted motion vector
1250 static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
1252 const int top_ref= h->ref_cache[list][ scan8[0] - 8 ];
1253 const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
1255 tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
1263 const int left_ref= h->ref_cache[list][ scan8[8] - 1 ];
1264 const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
1266 tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
1268 if(left_ref == ref){
1276 pred_motion(h, n, 4, list, ref, mx, my);
1280 * gets the directionally predicted 8x16 MV.
1281 * @param n the block index
1282 * @param mx the x component of the predicted motion vector
1283 * @param my the y component of the predicted motion vector
1285 static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
1287 const int left_ref= h->ref_cache[list][ scan8[0] - 1 ];
1288 const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
1290 tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
1292 if(left_ref == ref){
1301 diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
1303 tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
1305 if(diagonal_ref == ref){
1313 pred_motion(h, n, 2, list, ref, mx, my);
1316 static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
1317 const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
1318 const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
1320 tprintf("pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
1322 if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
1323 || (top_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
1324 || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
1330 pred_motion(h, 0, 4, 0, 0, mx, my);
1335 static inline void direct_dist_scale_factor(H264Context * const h){
1336 const int poc = h->s.current_picture_ptr->poc;
1337 const int poc1 = h->ref_list[1][0].poc;
1339 for(i=0; i<h->ref_count[0]; i++){
1340 int poc0 = h->ref_list[0][i].poc;
1341 int td = clip(poc1 - poc0, -128, 127);
1342 if(td == 0 /* FIXME || pic0 is a long-term ref */){
1343 h->dist_scale_factor[i] = 256;
1345 int tb = clip(poc - poc0, -128, 127);
1346 int tx = (16384 + (ABS(td) >> 1)) / td;
1347 h->dist_scale_factor[i] = clip((tb*tx + 32) >> 6, -1024, 1023);
1351 for(i=0; i<h->ref_count[0]; i++){
1352 h->dist_scale_factor_field[2*i] =
1353 h->dist_scale_factor_field[2*i+1] = h->dist_scale_factor[i];
1357 static inline void direct_ref_list_init(H264Context * const h){
1358 MpegEncContext * const s = &h->s;
1359 Picture * const ref1 = &h->ref_list[1][0];
1360 Picture * const cur = s->current_picture_ptr;
1362 if(cur->pict_type == I_TYPE)
1363 cur->ref_count[0] = 0;
1364 if(cur->pict_type != B_TYPE)
1365 cur->ref_count[1] = 0;
1366 for(list=0; list<2; list++){
1367 cur->ref_count[list] = h->ref_count[list];
1368 for(j=0; j<h->ref_count[list]; j++)
1369 cur->ref_poc[list][j] = h->ref_list[list][j].poc;
1371 if(cur->pict_type != B_TYPE || h->direct_spatial_mv_pred)
1373 for(list=0; list<2; list++){
1374 for(i=0; i<ref1->ref_count[list]; i++){
1375 const int poc = ref1->ref_poc[list][i];
1376 h->map_col_to_list0[list][i] = 0; /* bogus; fills in for missing frames */
1377 for(j=0; j<h->ref_count[list]; j++)
1378 if(h->ref_list[list][j].poc == poc){
1379 h->map_col_to_list0[list][i] = j;
1385 for(list=0; list<2; list++){
1386 for(i=0; i<ref1->ref_count[list]; i++){
1387 j = h->map_col_to_list0[list][i];
1388 h->map_col_to_list0_field[list][2*i] = 2*j;
1389 h->map_col_to_list0_field[list][2*i+1] = 2*j+1;
1395 static inline void pred_direct_motion(H264Context * const h, int *mb_type){
1396 MpegEncContext * const s = &h->s;
1397 const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
1398 const int b8_xy = 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1399 const int b4_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1400 const int mb_type_col = h->ref_list[1][0].mb_type[mb_xy];
1401 const int16_t (*l1mv0)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[0][b4_xy];
1402 const int16_t (*l1mv1)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[1][b4_xy];
1403 const int8_t *l1ref0 = &h->ref_list[1][0].ref_index[0][b8_xy];
1404 const int8_t *l1ref1 = &h->ref_list[1][0].ref_index[1][b8_xy];
1405 const int is_b8x8 = IS_8X8(*mb_type);
1409 #define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16|MB_TYPE_INTRA4x4|MB_TYPE_INTRA16x16|MB_TYPE_INTRA_PCM)
1410 if(IS_8X8(mb_type_col) && !h->sps.direct_8x8_inference_flag){
1411 /* FIXME save sub mb types from previous frames (or derive from MVs)
1412 * so we know exactly what block size to use */
1413 sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
1414 *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
1415 }else if(!is_b8x8 && (mb_type_col & MB_TYPE_16x16_OR_INTRA)){
1416 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1417 *mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
1419 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1420 *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
1423 *mb_type |= MB_TYPE_DIRECT2;
1425 *mb_type |= MB_TYPE_INTERLACED;
1427 tprintf("mb_type = %08x, sub_mb_type = %08x, is_b8x8 = %d, mb_type_col = %08x\n", *mb_type, sub_mb_type, is_b8x8, mb_type_col);
1429 if(h->direct_spatial_mv_pred){
1434 /* FIXME interlacing + spatial direct uses wrong colocated block positions */
1436 /* ref = min(neighbors) */
1437 for(list=0; list<2; list++){
1438 int refa = h->ref_cache[list][scan8[0] - 1];
1439 int refb = h->ref_cache[list][scan8[0] - 8];
1440 int refc = h->ref_cache[list][scan8[0] - 8 + 4];
1442 refc = h->ref_cache[list][scan8[0] - 8 - 1];
1444 if(ref[list] < 0 || (refb < ref[list] && refb >= 0))
1446 if(ref[list] < 0 || (refc < ref[list] && refc >= 0))
1452 if(ref[0] < 0 && ref[1] < 0){
1453 ref[0] = ref[1] = 0;
1454 mv[0][0] = mv[0][1] =
1455 mv[1][0] = mv[1][1] = 0;
1457 for(list=0; list<2; list++){
1459 pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]);
1461 mv[list][0] = mv[list][1] = 0;
1466 *mb_type &= ~MB_TYPE_P0L1;
1467 sub_mb_type &= ~MB_TYPE_P0L1;
1468 }else if(ref[0] < 0){
1469 *mb_type &= ~MB_TYPE_P0L0;
1470 sub_mb_type &= ~MB_TYPE_P0L0;
1473 if(IS_16X16(*mb_type)){
1474 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
1475 fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
1476 if(!IS_INTRA(mb_type_col)
1477 && ( (l1ref0[0] == 0 && ABS(l1mv0[0][0]) <= 1 && ABS(l1mv0[0][1]) <= 1)
1478 || (l1ref0[0] < 0 && l1ref1[0] == 0 && ABS(l1mv1[0][0]) <= 1 && ABS(l1mv1[0][1]) <= 1
1479 && (h->x264_build>33 || !h->x264_build)))){
1481 fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1483 fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
1485 fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1487 fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, 0, 4);
1489 fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1490 fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1493 for(i8=0; i8<4; i8++){
1494 const int x8 = i8&1;
1495 const int y8 = i8>>1;
1497 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1499 h->sub_mb_type[i8] = sub_mb_type;
1501 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1502 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1503 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
1504 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
1507 if(!IS_INTRA(mb_type_col) && ( l1ref0[x8 + y8*h->b8_stride] == 0
1508 || (l1ref0[x8 + y8*h->b8_stride] < 0 && l1ref1[x8 + y8*h->b8_stride] == 0
1509 && (h->x264_build>33 || !h->x264_build)))){
1510 const int16_t (*l1mv)[2]= l1ref0[x8 + y8*h->b8_stride] == 0 ? l1mv0 : l1mv1;
1511 if(IS_SUB_8X8(sub_mb_type)){
1512 const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
1513 if(ABS(mv_col[0]) <= 1 && ABS(mv_col[1]) <= 1){
1515 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1517 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1520 for(i4=0; i4<4; i4++){
1521 const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
1522 if(ABS(mv_col[0]) <= 1 && ABS(mv_col[1]) <= 1){
1524 *(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0;
1526 *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0;
1532 }else{ /* direct temporal mv pred */
1533 const int *map_col_to_list0[2] = {h->map_col_to_list0[0], h->map_col_to_list0[1]};
1534 const int *dist_scale_factor = h->dist_scale_factor;
1537 if(IS_INTERLACED(*mb_type)){
1538 map_col_to_list0[0] = h->map_col_to_list0_field[0];
1539 map_col_to_list0[1] = h->map_col_to_list0_field[1];
1540 dist_scale_factor = h->dist_scale_factor_field;
1542 if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col)){
1543 /* FIXME assumes direct_8x8_inference == 1 */
1544 const int pair_xy = s->mb_x + (s->mb_y&~1)*s->mb_stride;
1545 int mb_types_col[2];
1548 *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1
1549 | (is_b8x8 ? 0 : MB_TYPE_DIRECT2)
1550 | (*mb_type & MB_TYPE_INTERLACED);
1551 sub_mb_type = MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_16x16;
1553 if(IS_INTERLACED(*mb_type)){
1554 /* frame to field scaling */
1555 mb_types_col[0] = h->ref_list[1][0].mb_type[pair_xy];
1556 mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
1558 l1ref0 -= 2*h->b8_stride;
1559 l1ref1 -= 2*h->b8_stride;
1560 l1mv0 -= 4*h->b_stride;
1561 l1mv1 -= 4*h->b_stride;
1565 if( (mb_types_col[0] & MB_TYPE_16x16_OR_INTRA)
1566 && (mb_types_col[1] & MB_TYPE_16x16_OR_INTRA)
1568 *mb_type |= MB_TYPE_16x8;
1570 *mb_type |= MB_TYPE_8x8;
1572 /* field to frame scaling */
1573 /* col_mb_y = (mb_y&~1) + (topAbsDiffPOC < bottomAbsDiffPOC ? 0 : 1)
1574 * but in MBAFF, top and bottom POC are equal */
1575 int dy = (s->mb_y&1) ? 1 : 2;
1577 mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
1578 l1ref0 += dy*h->b8_stride;
1579 l1ref1 += dy*h->b8_stride;
1580 l1mv0 += 2*dy*h->b_stride;
1581 l1mv1 += 2*dy*h->b_stride;
1584 if((mb_types_col[0] & (MB_TYPE_16x16_OR_INTRA|MB_TYPE_16x8))
1586 *mb_type |= MB_TYPE_16x16;
1588 *mb_type |= MB_TYPE_8x8;
1591 for(i8=0; i8<4; i8++){
1592 const int x8 = i8&1;
1593 const int y8 = i8>>1;
1595 const int16_t (*l1mv)[2]= l1mv0;
1597 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1599 h->sub_mb_type[i8] = sub_mb_type;
1601 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1602 if(IS_INTRA(mb_types_col[y8])){
1603 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
1604 fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1605 fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1609 ref0 = l1ref0[x8 + (y8*2>>y_shift)*h->b8_stride];
1611 ref0 = map_col_to_list0[0][ref0*2>>y_shift];
1613 ref0 = map_col_to_list0[1][l1ref1[x8 + (y8*2>>y_shift)*h->b8_stride]*2>>y_shift];
1616 scale = dist_scale_factor[ref0];
1617 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
1620 const int16_t *mv_col = l1mv[x8*3 + (y8*6>>y_shift)*h->b_stride];
1621 int my_col = (mv_col[1]<<y_shift)/2;
1622 int mx = (scale * mv_col[0] + 128) >> 8;
1623 int my = (scale * my_col + 128) >> 8;
1624 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
1625 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-my_col), 4);
1632 /* one-to-one mv scaling */
1634 if(IS_16X16(*mb_type)){
1635 fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
1636 if(IS_INTRA(mb_type_col)){
1637 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
1638 fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
1639 fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, 0, 4);
1641 const int ref0 = l1ref0[0] >= 0 ? map_col_to_list0[0][l1ref0[0]]
1642 : map_col_to_list0[1][l1ref1[0]];
1643 const int scale = dist_scale_factor[ref0];
1644 const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0];
1646 mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
1647 mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
1648 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref0, 1);
1649 fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv_l0[0],mv_l0[1]), 4);
1650 fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]), 4);
1653 for(i8=0; i8<4; i8++){
1654 const int x8 = i8&1;
1655 const int y8 = i8>>1;
1657 const int16_t (*l1mv)[2]= l1mv0;
1659 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1661 h->sub_mb_type[i8] = sub_mb_type;
1662 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1663 if(IS_INTRA(mb_type_col)){
1664 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
1665 fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1666 fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1670 ref0 = l1ref0[x8 + y8*h->b8_stride];
1672 ref0 = map_col_to_list0[0][ref0];
1674 ref0 = map_col_to_list0[1][l1ref1[x8 + y8*h->b8_stride]];
1677 scale = dist_scale_factor[ref0];
1679 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
1680 if(IS_SUB_8X8(sub_mb_type)){
1681 const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
1682 int mx = (scale * mv_col[0] + 128) >> 8;
1683 int my = (scale * mv_col[1] + 128) >> 8;
1684 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
1685 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-mv_col[1]), 4);
1687 for(i4=0; i4<4; i4++){
1688 const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
1689 int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
1690 mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
1691 mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
1692 *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] =
1693 pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
1700 static inline void write_back_motion(H264Context *h, int mb_type){
1701 MpegEncContext * const s = &h->s;
1702 const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1703 const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1706 if(!USES_LIST(mb_type, 0))
1707 fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
1709 for(list=0; list<2; list++){
1711 if(!USES_LIST(mb_type, list))
1715 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
1716 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
1718 if( h->pps.cabac ) {
1719 if(IS_SKIP(mb_type))
1720 fill_rectangle(h->mvd_table[list][b_xy], 4, 4, h->b_stride, 0, 4);
1723 *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
1724 *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
1729 int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
1730 ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
1731 ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
1732 ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
1733 ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
1737 if(h->slice_type == B_TYPE && h->pps.cabac){
1738 if(IS_8X8(mb_type)){
1739 uint8_t *direct_table = &h->direct_table[b8_xy];
1740 direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
1741 direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
1742 direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
1748 * Decodes a network abstraction layer unit.
1749 * @param consumed is the number of bytes used as input
1750 * @param length is the length of the array
1751 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
1752 * @returns decoded bytes, might be src+1 if no escapes
1754 static uint8_t *decode_nal(H264Context *h, uint8_t *src, int *dst_length, int *consumed, int length){
1758 // src[0]&0x80; //forbidden bit
1759 h->nal_ref_idc= src[0]>>5;
1760 h->nal_unit_type= src[0]&0x1F;
1764 for(i=0; i<length; i++)
1765 printf("%2X ", src[i]);
1767 for(i=0; i+1<length; i+=2){
1768 if(src[i]) continue;
1769 if(i>0 && src[i-1]==0) i--;
1770 if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1772 /* startcode, so we must be past the end */
1779 if(i>=length-1){ //no escaped 0
1780 *dst_length= length;
1781 *consumed= length+1; //+1 for the header
1785 h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length);
1786 dst= h->rbsp_buffer;
1788 //printf("decoding esc\n");
1791 //remove escapes (very rare 1:2^22)
1792 if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
1793 if(src[si+2]==3){ //escape
1798 }else //next start code
1802 dst[di++]= src[si++];
1806 *consumed= si + 1;//+1 for the header
1807 //FIXME store exact number of bits in the getbitcontext (its needed for decoding)
1813 * @param src the data which should be escaped
1814 * @param dst the target buffer, dst+1 == src is allowed as a special case
1815 * @param length the length of the src data
1816 * @param dst_length the length of the dst array
1817 * @returns length of escaped data in bytes or -1 if an error occured
1819 static int encode_nal(H264Context *h, uint8_t *dst, uint8_t *src, int length, int dst_length){
1820 int i, escape_count, si, di;
1824 assert(dst_length>0);
1826 dst[0]= (h->nal_ref_idc<<5) + h->nal_unit_type;
1828 if(length==0) return 1;
1831 for(i=0; i<length; i+=2){
1832 if(src[i]) continue;
1833 if(i>0 && src[i-1]==0)
1835 if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1841 if(escape_count==0){
1843 memcpy(dst+1, src, length);
1847 if(length + escape_count + 1> dst_length)
1850 //this should be damn rare (hopefully)
1852 h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length + escape_count);
1853 temp= h->rbsp_buffer;
1854 //printf("encoding esc\n");
1859 if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
1860 temp[di++]= 0; si++;
1861 temp[di++]= 0; si++;
1863 temp[di++]= src[si++];
1866 temp[di++]= src[si++];
1868 memcpy(dst+1, temp, length+escape_count);
1870 assert(di == length+escape_count);
1876 * write 1,10,100,1000,... for alignment, yes its exactly inverse to mpeg4
1878 static void encode_rbsp_trailing(PutBitContext *pb){
1881 length= (-put_bits_count(pb))&7;
1882 if(length) put_bits(pb, length, 0);
1887 * identifies the exact end of the bitstream
1888 * @return the length of the trailing, or 0 if damaged
1890 static int decode_rbsp_trailing(uint8_t *src){
1894 tprintf("rbsp trailing %X\n", v);
1904 * idct tranforms the 16 dc values and dequantize them.
1905 * @param qp quantization parameter
1907 static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
1910 int temp[16]; //FIXME check if this is a good idea
1911 static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
1912 static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1914 //memset(block, 64, 2*256);
1917 const int offset= y_offset[i];
1918 const int z0= block[offset+stride*0] + block[offset+stride*4];
1919 const int z1= block[offset+stride*0] - block[offset+stride*4];
1920 const int z2= block[offset+stride*1] - block[offset+stride*5];
1921 const int z3= block[offset+stride*1] + block[offset+stride*5];
1930 const int offset= x_offset[i];
1931 const int z0= temp[4*0+i] + temp[4*2+i];
1932 const int z1= temp[4*0+i] - temp[4*2+i];
1933 const int z2= temp[4*1+i] - temp[4*3+i];
1934 const int z3= temp[4*1+i] + temp[4*3+i];
1936 block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_resdual
1937 block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8));
1938 block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8));
1939 block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8));
1945 * dct tranforms the 16 dc values.
1946 * @param qp quantization parameter ??? FIXME
1948 static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
1949 // const int qmul= dequant_coeff[qp][0];
1951 int temp[16]; //FIXME check if this is a good idea
1952 static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
1953 static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1956 const int offset= y_offset[i];
1957 const int z0= block[offset+stride*0] + block[offset+stride*4];
1958 const int z1= block[offset+stride*0] - block[offset+stride*4];
1959 const int z2= block[offset+stride*1] - block[offset+stride*5];
1960 const int z3= block[offset+stride*1] + block[offset+stride*5];
1969 const int offset= x_offset[i];
1970 const int z0= temp[4*0+i] + temp[4*2+i];
1971 const int z1= temp[4*0+i] - temp[4*2+i];
1972 const int z2= temp[4*1+i] - temp[4*3+i];
1973 const int z3= temp[4*1+i] + temp[4*3+i];
1975 block[stride*0 +offset]= (z0 + z3)>>1;
1976 block[stride*2 +offset]= (z1 + z2)>>1;
1977 block[stride*8 +offset]= (z1 - z2)>>1;
1978 block[stride*10+offset]= (z0 - z3)>>1;
1986 static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
1987 const int stride= 16*2;
1988 const int xStride= 16;
1991 a= block[stride*0 + xStride*0];
1992 b= block[stride*0 + xStride*1];
1993 c= block[stride*1 + xStride*0];
1994 d= block[stride*1 + xStride*1];
2001 block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7;
2002 block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7;
2003 block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7;
2004 block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7;
2008 static void chroma_dc_dct_c(DCTELEM *block){
2009 const int stride= 16*2;
2010 const int xStride= 16;
2013 a= block[stride*0 + xStride*0];
2014 b= block[stride*0 + xStride*1];
2015 c= block[stride*1 + xStride*0];
2016 d= block[stride*1 + xStride*1];
2023 block[stride*0 + xStride*0]= (a+c);
2024 block[stride*0 + xStride*1]= (e+b);
2025 block[stride*1 + xStride*0]= (a-c);
2026 block[stride*1 + xStride*1]= (e-b);
2031 * gets the chroma qp.
2033 static inline int get_chroma_qp(int chroma_qp_index_offset, int qscale){
2035 return chroma_qp[clip(qscale + chroma_qp_index_offset, 0, 51)];
2040 static void h264_diff_dct_c(DCTELEM *block, uint8_t *src1, uint8_t *src2, int stride){
2042 //FIXME try int temp instead of block
2045 const int d0= src1[0 + i*stride] - src2[0 + i*stride];
2046 const int d1= src1[1 + i*stride] - src2[1 + i*stride];
2047 const int d2= src1[2 + i*stride] - src2[2 + i*stride];
2048 const int d3= src1[3 + i*stride] - src2[3 + i*stride];
2049 const int z0= d0 + d3;
2050 const int z3= d0 - d3;
2051 const int z1= d1 + d2;
2052 const int z2= d1 - d2;
2054 block[0 + 4*i]= z0 + z1;
2055 block[1 + 4*i]= 2*z3 + z2;
2056 block[2 + 4*i]= z0 - z1;
2057 block[3 + 4*i]= z3 - 2*z2;
2061 const int z0= block[0*4 + i] + block[3*4 + i];
2062 const int z3= block[0*4 + i] - block[3*4 + i];
2063 const int z1= block[1*4 + i] + block[2*4 + i];
2064 const int z2= block[1*4 + i] - block[2*4 + i];
2066 block[0*4 + i]= z0 + z1;
2067 block[1*4 + i]= 2*z3 + z2;
2068 block[2*4 + i]= z0 - z1;
2069 block[3*4 + i]= z3 - 2*z2;
2074 //FIXME need to check that this doesnt overflow signed 32 bit for low qp, i am not sure, it's very close
2075 //FIXME check that gcc inlines this (and optimizes intra & seperate_dc stuff away)
2076 static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int seperate_dc){
2078 const int * const quant_table= quant_coeff[qscale];
2079 const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
2080 const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
2081 const unsigned int threshold2= (threshold1<<1);
2087 const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
2088 const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
2089 const unsigned int dc_threshold2= (dc_threshold1<<1);
2091 int level= block[0]*quant_coeff[qscale+18][0];
2092 if(((unsigned)(level+dc_threshold1))>dc_threshold2){
2094 level= (dc_bias + level)>>(QUANT_SHIFT-2);
2097 level= (dc_bias - level)>>(QUANT_SHIFT-2);
2100 // last_non_zero = i;
2105 const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
2106 const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
2107 const unsigned int dc_threshold2= (dc_threshold1<<1);
2109 int level= block[0]*quant_table[0];
2110 if(((unsigned)(level+dc_threshold1))>dc_threshold2){
2112 level= (dc_bias + level)>>(QUANT_SHIFT+1);
2115 level= (dc_bias - level)>>(QUANT_SHIFT+1);
2118 // last_non_zero = i;
2131 const int j= scantable[i];
2132 int level= block[j]*quant_table[j];
2134 // if( bias+level >= (1<<(QMAT_SHIFT - 3))
2135 // || bias-level >= (1<<(QMAT_SHIFT - 3))){
2136 if(((unsigned)(level+threshold1))>threshold2){
2138 level= (bias + level)>>QUANT_SHIFT;
2141 level= (bias - level)>>QUANT_SHIFT;
2150 return last_non_zero;
2153 static void pred4x4_vertical_c(uint8_t *src, uint8_t *topright, int stride){
2154 const uint32_t a= ((uint32_t*)(src-stride))[0];
2155 ((uint32_t*)(src+0*stride))[0]= a;
2156 ((uint32_t*)(src+1*stride))[0]= a;
2157 ((uint32_t*)(src+2*stride))[0]= a;
2158 ((uint32_t*)(src+3*stride))[0]= a;
2161 static void pred4x4_horizontal_c(uint8_t *src, uint8_t *topright, int stride){
2162 ((uint32_t*)(src+0*stride))[0]= src[-1+0*stride]*0x01010101;
2163 ((uint32_t*)(src+1*stride))[0]= src[-1+1*stride]*0x01010101;
2164 ((uint32_t*)(src+2*stride))[0]= src[-1+2*stride]*0x01010101;
2165 ((uint32_t*)(src+3*stride))[0]= src[-1+3*stride]*0x01010101;
2168 static void pred4x4_dc_c(uint8_t *src, uint8_t *topright, int stride){
2169 const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride]
2170 + src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 4) >>3;
2172 ((uint32_t*)(src+0*stride))[0]=
2173 ((uint32_t*)(src+1*stride))[0]=
2174 ((uint32_t*)(src+2*stride))[0]=
2175 ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
2178 static void pred4x4_left_dc_c(uint8_t *src, uint8_t *topright, int stride){
2179 const int dc= ( src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 2) >>2;
2181 ((uint32_t*)(src+0*stride))[0]=
2182 ((uint32_t*)(src+1*stride))[0]=
2183 ((uint32_t*)(src+2*stride))[0]=
2184 ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
2187 static void pred4x4_top_dc_c(uint8_t *src, uint8_t *topright, int stride){
2188 const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride] + 2) >>2;
2190 ((uint32_t*)(src+0*stride))[0]=
2191 ((uint32_t*)(src+1*stride))[0]=
2192 ((uint32_t*)(src+2*stride))[0]=
2193 ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
2196 static void pred4x4_128_dc_c(uint8_t *src, uint8_t *topright, int stride){
2197 ((uint32_t*)(src+0*stride))[0]=
2198 ((uint32_t*)(src+1*stride))[0]=
2199 ((uint32_t*)(src+2*stride))[0]=
2200 ((uint32_t*)(src+3*stride))[0]= 128U*0x01010101U;
2204 #define LOAD_TOP_RIGHT_EDGE\
2205 const int t4= topright[0];\
2206 const int t5= topright[1];\
2207 const int t6= topright[2];\
2208 const int t7= topright[3];\
2210 #define LOAD_LEFT_EDGE\
2211 const int l0= src[-1+0*stride];\
2212 const int l1= src[-1+1*stride];\
2213 const int l2= src[-1+2*stride];\
2214 const int l3= src[-1+3*stride];\
2216 #define LOAD_TOP_EDGE\
2217 const int t0= src[ 0-1*stride];\
2218 const int t1= src[ 1-1*stride];\
2219 const int t2= src[ 2-1*stride];\
2220 const int t3= src[ 3-1*stride];\
2222 static void pred4x4_down_right_c(uint8_t *src, uint8_t *topright, int stride){
2223 const int lt= src[-1-1*stride];
2227 src[0+3*stride]=(l3 + 2*l2 + l1 + 2)>>2;
2229 src[1+3*stride]=(l2 + 2*l1 + l0 + 2)>>2;
2232 src[2+3*stride]=(l1 + 2*l0 + lt + 2)>>2;
2236 src[3+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
2239 src[3+2*stride]=(lt + 2*t0 + t1 + 2)>>2;
2241 src[3+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
2242 src[3+0*stride]=(t1 + 2*t2 + t3 + 2)>>2;
2245 static void pred4x4_down_left_c(uint8_t *src, uint8_t *topright, int stride){
2250 src[0+0*stride]=(t0 + t2 + 2*t1 + 2)>>2;
2252 src[0+1*stride]=(t1 + t3 + 2*t2 + 2)>>2;
2255 src[0+2*stride]=(t2 + t4 + 2*t3 + 2)>>2;
2259 src[0+3*stride]=(t3 + t5 + 2*t4 + 2)>>2;
2262 src[1+3*stride]=(t4 + t6 + 2*t5 + 2)>>2;
2264 src[2+3*stride]=(t5 + t7 + 2*t6 + 2)>>2;
2265 src[3+3*stride]=(t6 + 3*t7 + 2)>>2;
2268 static void pred4x4_vertical_right_c(uint8_t *src, uint8_t *topright, int stride){
2269 const int lt= src[-1-1*stride];
2272 const __attribute__((unused)) int unu= l3;
2275 src[1+2*stride]=(lt + t0 + 1)>>1;
2277 src[2+2*stride]=(t0 + t1 + 1)>>1;
2279 src[3+2*stride]=(t1 + t2 + 1)>>1;
2280 src[3+0*stride]=(t2 + t3 + 1)>>1;
2282 src[1+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
2284 src[2+3*stride]=(lt + 2*t0 + t1 + 2)>>2;
2286 src[3+3*stride]=(t0 + 2*t1 + t2 + 2)>>2;
2287 src[3+1*stride]=(t1 + 2*t2 + t3 + 2)>>2;
2288 src[0+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
2289 src[0+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
2292 static void pred4x4_vertical_left_c(uint8_t *src, uint8_t *topright, int stride){
2295 const __attribute__((unused)) int unu= t7;
2297 src[0+0*stride]=(t0 + t1 + 1)>>1;
2299 src[0+2*stride]=(t1 + t2 + 1)>>1;
2301 src[1+2*stride]=(t2 + t3 + 1)>>1;
2303 src[2+2*stride]=(t3 + t4+ 1)>>1;
2304 src[3+2*stride]=(t4 + t5+ 1)>>1;
2305 src[0+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
2307 src[0+3*stride]=(t1 + 2*t2 + t3 + 2)>>2;
2309 src[1+3*stride]=(t2 + 2*t3 + t4 + 2)>>2;
2311 src[2+3*stride]=(t3 + 2*t4 + t5 + 2)>>2;
2312 src[3+3*stride]=(t4 + 2*t5 + t6 + 2)>>2;
2315 static void pred4x4_horizontal_up_c(uint8_t *src, uint8_t *topright, int stride){
2318 src[0+0*stride]=(l0 + l1 + 1)>>1;
2319 src[1+0*stride]=(l0 + 2*l1 + l2 + 2)>>2;
2321 src[0+1*stride]=(l1 + l2 + 1)>>1;
2323 src[1+1*stride]=(l1 + 2*l2 + l3 + 2)>>2;
2325 src[0+2*stride]=(l2 + l3 + 1)>>1;
2327 src[1+2*stride]=(l2 + 2*l3 + l3 + 2)>>2;
2336 static void pred4x4_horizontal_down_c(uint8_t *src, uint8_t *topright, int stride){
2337 const int lt= src[-1-1*stride];
2340 const __attribute__((unused)) int unu= t3;
2343 src[2+1*stride]=(lt + l0 + 1)>>1;
2345 src[3+1*stride]=(l0 + 2*lt + t0 + 2)>>2;
2346 src[2+0*stride]=(lt + 2*t0 + t1 + 2)>>2;
2347 src[3+0*stride]=(t0 + 2*t1 + t2 + 2)>>2;
2349 src[2+2*stride]=(l0 + l1 + 1)>>1;
2351 src[3+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
2353 src[2+3*stride]=(l1 + l2+ 1)>>1;
2355 src[3+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
2356 src[0+3*stride]=(l2 + l3 + 1)>>1;
2357 src[1+3*stride]=(l1 + 2*l2 + l3 + 2)>>2;
2360 static void pred16x16_vertical_c(uint8_t *src, int stride){
2362 const uint32_t a= ((uint32_t*)(src-stride))[0];
2363 const uint32_t b= ((uint32_t*)(src-stride))[1];
2364 const uint32_t c= ((uint32_t*)(src-stride))[2];
2365 const uint32_t d= ((uint32_t*)(src-stride))[3];
2367 for(i=0; i<16; i++){
2368 ((uint32_t*)(src+i*stride))[0]= a;
2369 ((uint32_t*)(src+i*stride))[1]= b;
2370 ((uint32_t*)(src+i*stride))[2]= c;
2371 ((uint32_t*)(src+i*stride))[3]= d;
2375 static void pred16x16_horizontal_c(uint8_t *src, int stride){
2378 for(i=0; i<16; i++){
2379 ((uint32_t*)(src+i*stride))[0]=
2380 ((uint32_t*)(src+i*stride))[1]=
2381 ((uint32_t*)(src+i*stride))[2]=
2382 ((uint32_t*)(src+i*stride))[3]= src[-1+i*stride]*0x01010101;
2386 static void pred16x16_dc_c(uint8_t *src, int stride){
2390 dc+= src[-1+i*stride];
2397 dc= 0x01010101*((dc + 16)>>5);
2399 for(i=0; i<16; i++){
2400 ((uint32_t*)(src+i*stride))[0]=
2401 ((uint32_t*)(src+i*stride))[1]=
2402 ((uint32_t*)(src+i*stride))[2]=
2403 ((uint32_t*)(src+i*stride))[3]= dc;
2407 static void pred16x16_left_dc_c(uint8_t *src, int stride){
2411 dc+= src[-1+i*stride];
2414 dc= 0x01010101*((dc + 8)>>4);
2416 for(i=0; i<16; i++){
2417 ((uint32_t*)(src+i*stride))[0]=
2418 ((uint32_t*)(src+i*stride))[1]=
2419 ((uint32_t*)(src+i*stride))[2]=
2420 ((uint32_t*)(src+i*stride))[3]= dc;
2424 static void pred16x16_top_dc_c(uint8_t *src, int stride){
2430 dc= 0x01010101*((dc + 8)>>4);
2432 for(i=0; i<16; i++){
2433 ((uint32_t*)(src+i*stride))[0]=
2434 ((uint32_t*)(src+i*stride))[1]=
2435 ((uint32_t*)(src+i*stride))[2]=
2436 ((uint32_t*)(src+i*stride))[3]= dc;
2440 static void pred16x16_128_dc_c(uint8_t *src, int stride){
2443 for(i=0; i<16; i++){
2444 ((uint32_t*)(src+i*stride))[0]=
2445 ((uint32_t*)(src+i*stride))[1]=
2446 ((uint32_t*)(src+i*stride))[2]=
2447 ((uint32_t*)(src+i*stride))[3]= 0x01010101U*128U;
2451 static inline void pred16x16_plane_compat_c(uint8_t *src, int stride, const int svq3){
2454 uint8_t *cm = cropTbl + MAX_NEG_CROP;
2455 const uint8_t * const src0 = src+7-stride;
2456 const uint8_t *src1 = src+8*stride-1;
2457 const uint8_t *src2 = src1-2*stride; // == src+6*stride-1;
2458 int H = src0[1] - src0[-1];
2459 int V = src1[0] - src2[ 0];
2460 for(k=2; k<=8; ++k) {
2461 src1 += stride; src2 -= stride;
2462 H += k*(src0[k] - src0[-k]);
2463 V += k*(src1[0] - src2[ 0]);
2466 H = ( 5*(H/4) ) / 16;
2467 V = ( 5*(V/4) ) / 16;
2469 /* required for 100% accuracy */
2470 i = H; H = V; V = i;
2472 H = ( 5*H+32 ) >> 6;
2473 V = ( 5*V+32 ) >> 6;
2476 a = 16*(src1[0] + src2[16] + 1) - 7*(V+H);
2477 for(j=16; j>0; --j) {
2480 for(i=-16; i<0; i+=4) {
2481 src[16+i] = cm[ (b ) >> 5 ];
2482 src[17+i] = cm[ (b+ H) >> 5 ];
2483 src[18+i] = cm[ (b+2*H) >> 5 ];
2484 src[19+i] = cm[ (b+3*H) >> 5 ];
2491 static void pred16x16_plane_c(uint8_t *src, int stride){
2492 pred16x16_plane_compat_c(src, stride, 0);
2495 static void pred8x8_vertical_c(uint8_t *src, int stride){
2497 const uint32_t a= ((uint32_t*)(src-stride))[0];
2498 const uint32_t b= ((uint32_t*)(src-stride))[1];
2501 ((uint32_t*)(src+i*stride))[0]= a;
2502 ((uint32_t*)(src+i*stride))[1]= b;
2506 static void pred8x8_horizontal_c(uint8_t *src, int stride){
2510 ((uint32_t*)(src+i*stride))[0]=
2511 ((uint32_t*)(src+i*stride))[1]= src[-1+i*stride]*0x01010101;
2515 static void pred8x8_128_dc_c(uint8_t *src, int stride){
2519 ((uint32_t*)(src+i*stride))[0]=
2520 ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
2524 static void pred8x8_left_dc_c(uint8_t *src, int stride){
2530 dc0+= src[-1+i*stride];
2531 dc2+= src[-1+(i+4)*stride];
2533 dc0= 0x01010101*((dc0 + 2)>>2);
2534 dc2= 0x01010101*((dc2 + 2)>>2);
2537 ((uint32_t*)(src+i*stride))[0]=
2538 ((uint32_t*)(src+i*stride))[1]= dc0;
2541 ((uint32_t*)(src+i*stride))[0]=
2542 ((uint32_t*)(src+i*stride))[1]= dc2;
2546 static void pred8x8_top_dc_c(uint8_t *src, int stride){
2552 dc0+= src[i-stride];
2553 dc1+= src[4+i-stride];
2555 dc0= 0x01010101*((dc0 + 2)>>2);
2556 dc1= 0x01010101*((dc1 + 2)>>2);
2559 ((uint32_t*)(src+i*stride))[0]= dc0;
2560 ((uint32_t*)(src+i*stride))[1]= dc1;
2563 ((uint32_t*)(src+i*stride))[0]= dc0;
2564 ((uint32_t*)(src+i*stride))[1]= dc1;
2569 static void pred8x8_dc_c(uint8_t *src, int stride){
2571 int dc0, dc1, dc2, dc3;
2575 dc0+= src[-1+i*stride] + src[i-stride];
2576 dc1+= src[4+i-stride];
2577 dc2+= src[-1+(i+4)*stride];
2579 dc3= 0x01010101*((dc1 + dc2 + 4)>>3);
2580 dc0= 0x01010101*((dc0 + 4)>>3);
2581 dc1= 0x01010101*((dc1 + 2)>>2);
2582 dc2= 0x01010101*((dc2 + 2)>>2);
2585 ((uint32_t*)(src+i*stride))[0]= dc0;
2586 ((uint32_t*)(src+i*stride))[1]= dc1;
2589 ((uint32_t*)(src+i*stride))[0]= dc2;
2590 ((uint32_t*)(src+i*stride))[1]= dc3;
2594 static void pred8x8_plane_c(uint8_t *src, int stride){
2597 uint8_t *cm = cropTbl + MAX_NEG_CROP;
2598 const uint8_t * const src0 = src+3-stride;
2599 const uint8_t *src1 = src+4*stride-1;
2600 const uint8_t *src2 = src1-2*stride; // == src+2*stride-1;
2601 int H = src0[1] - src0[-1];
2602 int V = src1[0] - src2[ 0];
2603 for(k=2; k<=4; ++k) {
2604 src1 += stride; src2 -= stride;
2605 H += k*(src0[k] - src0[-k]);
2606 V += k*(src1[0] - src2[ 0]);
2608 H = ( 17*H+16 ) >> 5;
2609 V = ( 17*V+16 ) >> 5;
2611 a = 16*(src1[0] + src2[8]+1) - 3*(V+H);
2612 for(j=8; j>0; --j) {
2615 src[0] = cm[ (b ) >> 5 ];
2616 src[1] = cm[ (b+ H) >> 5 ];
2617 src[2] = cm[ (b+2*H) >> 5 ];
2618 src[3] = cm[ (b+3*H) >> 5 ];
2619 src[4] = cm[ (b+4*H) >> 5 ];
2620 src[5] = cm[ (b+5*H) >> 5 ];
2621 src[6] = cm[ (b+6*H) >> 5 ];
2622 src[7] = cm[ (b+7*H) >> 5 ];
2627 #define SRC(x,y) src[(x)+(y)*stride]
2629 const int l##y = (SRC(-1,y-1) + 2*SRC(-1,y) + SRC(-1,y+1) + 2) >> 2;
2630 #define PREDICT_8x8_LOAD_LEFT \
2631 const int l0 = ((has_topleft ? SRC(-1,-1) : SRC(-1,0)) \
2632 + 2*SRC(-1,0) + SRC(-1,1) + 2) >> 2; \
2633 PL(1) PL(2) PL(3) PL(4) PL(5) PL(6) \
2634 const int l7 attribute_unused = (SRC(-1,6) + 3*SRC(-1,7) + 2) >> 2
2637 const int t##x = (SRC(x-1,-1) + 2*SRC(x,-1) + SRC(x+1,-1) + 2) >> 2;
2638 #define PREDICT_8x8_LOAD_TOP \
2639 const int t0 = ((has_topleft ? SRC(-1,-1) : SRC(0,-1)) \
2640 + 2*SRC(0,-1) + SRC(1,-1) + 2) >> 2; \
2641 PT(1) PT(2) PT(3) PT(4) PT(5) PT(6) \
2642 const int t7 attribute_unused = ((has_topright ? SRC(8,-1) : SRC(7,-1)) \
2643 + 2*SRC(7,-1) + SRC(6,-1) + 2) >> 2
2646 t##x = (SRC(x-1,-1) + 2*SRC(x,-1) + SRC(x+1,-1) + 2) >> 2;
2647 #define PREDICT_8x8_LOAD_TOPRIGHT \
2648 int t8, t9, t10, t11, t12, t13, t14, t15; \
2649 if(has_topright) { \
2650 PTR(8) PTR(9) PTR(10) PTR(11) PTR(12) PTR(13) PTR(14) \
2651 t15 = (SRC(14,-1) + 3*SRC(15,-1) + 2) >> 2; \
2652 } else t8=t9=t10=t11=t12=t13=t14=t15= SRC(7,-1);
2654 #define PREDICT_8x8_LOAD_TOPLEFT \
2655 const int lt = (SRC(-1,0) + 2*SRC(-1,-1) + SRC(0,-1) + 2) >> 2
2657 #define PREDICT_8x8_DC(v) \
2659 for( y = 0; y < 8; y++ ) { \
2660 ((uint32_t*)src)[0] = \
2661 ((uint32_t*)src)[1] = v; \
2665 static void pred8x8l_128_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2667 PREDICT_8x8_DC(0x80808080);
2669 static void pred8x8l_left_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2671 PREDICT_8x8_LOAD_LEFT;
2672 const uint32_t dc = ((l0+l1+l2+l3+l4+l5+l6+l7+4) >> 3) * 0x01010101;
2675 static void pred8x8l_top_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2677 PREDICT_8x8_LOAD_TOP;
2678 const uint32_t dc = ((t0+t1+t2+t3+t4+t5+t6+t7+4) >> 3) * 0x01010101;
2681 static void pred8x8l_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2683 PREDICT_8x8_LOAD_LEFT;
2684 PREDICT_8x8_LOAD_TOP;
2685 const uint32_t dc = ((l0+l1+l2+l3+l4+l5+l6+l7
2686 +t0+t1+t2+t3+t4+t5+t6+t7+8) >> 4) * 0x01010101;
2689 static void pred8x8l_horizontal_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2691 PREDICT_8x8_LOAD_LEFT;
2692 #define ROW(y) ((uint32_t*)(src+y*stride))[0] =\
2693 ((uint32_t*)(src+y*stride))[1] = 0x01010101 * l##y
2694 ROW(0); ROW(1); ROW(2); ROW(3); ROW(4); ROW(5); ROW(6); ROW(7);
2697 static void pred8x8l_vertical_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2700 PREDICT_8x8_LOAD_TOP;
2709 for( y = 1; y < 8; y++ )
2710 *(uint64_t*)(src+y*stride) = *(uint64_t*)src;
2712 static void pred8x8l_down_left_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2714 PREDICT_8x8_LOAD_TOP;
2715 PREDICT_8x8_LOAD_TOPRIGHT;
2716 SRC(0,0)= (t0 + 2*t1 + t2 + 2) >> 2;
2717 SRC(0,1)=SRC(1,0)= (t1 + 2*t2 + t3 + 2) >> 2;
2718 SRC(0,2)=SRC(1,1)=SRC(2,0)= (t2 + 2*t3 + t4 + 2) >> 2;
2719 SRC(0,3)=SRC(1,2)=SRC(2,1)=SRC(3,0)= (t3 + 2*t4 + t5 + 2) >> 2;
2720 SRC(0,4)=SRC(1,3)=SRC(2,2)=SRC(3,1)=SRC(4,0)= (t4 + 2*t5 + t6 + 2) >> 2;
2721 SRC(0,5)=SRC(1,4)=SRC(2,3)=SRC(3,2)=SRC(4,1)=SRC(5,0)= (t5 + 2*t6 + t7 + 2) >> 2;
2722 SRC(0,6)=SRC(1,5)=SRC(2,4)=SRC(3,3)=SRC(4,2)=SRC(5,1)=SRC(6,0)= (t6 + 2*t7 + t8 + 2) >> 2;
2723 SRC(0,7)=SRC(1,6)=SRC(2,5)=SRC(3,4)=SRC(4,3)=SRC(5,2)=SRC(6,1)=SRC(7,0)= (t7 + 2*t8 + t9 + 2) >> 2;
2724 SRC(1,7)=SRC(2,6)=SRC(3,5)=SRC(4,4)=SRC(5,3)=SRC(6,2)=SRC(7,1)= (t8 + 2*t9 + t10 + 2) >> 2;
2725 SRC(2,7)=SRC(3,6)=SRC(4,5)=SRC(5,4)=SRC(6,3)=SRC(7,2)= (t9 + 2*t10 + t11 + 2) >> 2;
2726 SRC(3,7)=SRC(4,6)=SRC(5,5)=SRC(6,4)=SRC(7,3)= (t10 + 2*t11 + t12 + 2) >> 2;
2727 SRC(4,7)=SRC(5,6)=SRC(6,5)=SRC(7,4)= (t11 + 2*t12 + t13 + 2) >> 2;
2728 SRC(5,7)=SRC(6,6)=SRC(7,5)= (t12 + 2*t13 + t14 + 2) >> 2;
2729 SRC(6,7)=SRC(7,6)= (t13 + 2*t14 + t15 + 2) >> 2;
2730 SRC(7,7)= (t14 + 3*t15 + 2) >> 2;
2732 static void pred8x8l_down_right_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2734 PREDICT_8x8_LOAD_TOP;
2735 PREDICT_8x8_LOAD_LEFT;
2736 PREDICT_8x8_LOAD_TOPLEFT;
2737 SRC(0,7)= (l7 + 2*l6 + l5 + 2) >> 2;
2738 SRC(0,6)=SRC(1,7)= (l6 + 2*l5 + l4 + 2) >> 2;
2739 SRC(0,5)=SRC(1,6)=SRC(2,7)= (l5 + 2*l4 + l3 + 2) >> 2;
2740 SRC(0,4)=SRC(1,5)=SRC(2,6)=SRC(3,7)= (l4 + 2*l3 + l2 + 2) >> 2;
2741 SRC(0,3)=SRC(1,4)=SRC(2,5)=SRC(3,6)=SRC(4,7)= (l3 + 2*l2 + l1 + 2) >> 2;
2742 SRC(0,2)=SRC(1,3)=SRC(2,4)=SRC(3,5)=SRC(4,6)=SRC(5,7)= (l2 + 2*l1 + l0 + 2) >> 2;
2743 SRC(0,1)=SRC(1,2)=SRC(2,3)=SRC(3,4)=SRC(4,5)=SRC(5,6)=SRC(6,7)= (l1 + 2*l0 + lt + 2) >> 2;
2744 SRC(0,0)=SRC(1,1)=SRC(2,2)=SRC(3,3)=SRC(4,4)=SRC(5,5)=SRC(6,6)=SRC(7,7)= (l0 + 2*lt + t0 + 2) >> 2;
2745 SRC(1,0)=SRC(2,1)=SRC(3,2)=SRC(4,3)=SRC(5,4)=SRC(6,5)=SRC(7,6)= (lt + 2*t0 + t1 + 2) >> 2;
2746 SRC(2,0)=SRC(3,1)=SRC(4,2)=SRC(5,3)=SRC(6,4)=SRC(7,5)= (t0 + 2*t1 + t2 + 2) >> 2;
2747 SRC(3,0)=SRC(4,1)=SRC(5,2)=SRC(6,3)=SRC(7,4)= (t1 + 2*t2 + t3 + 2) >> 2;
2748 SRC(4,0)=SRC(5,1)=SRC(6,2)=SRC(7,3)= (t2 + 2*t3 + t4 + 2) >> 2;
2749 SRC(5,0)=SRC(6,1)=SRC(7,2)= (t3 + 2*t4 + t5 + 2) >> 2;
2750 SRC(6,0)=SRC(7,1)= (t4 + 2*t5 + t6 + 2) >> 2;
2751 SRC(7,0)= (t5 + 2*t6 + t7 + 2) >> 2;
2754 static void pred8x8l_vertical_right_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2756 PREDICT_8x8_LOAD_TOP;
2757 PREDICT_8x8_LOAD_LEFT;
2758 PREDICT_8x8_LOAD_TOPLEFT;
2759 SRC(0,6)= (l5 + 2*l4 + l3 + 2) >> 2;
2760 SRC(0,7)= (l6 + 2*l5 + l4 + 2) >> 2;
2761 SRC(0,4)=SRC(1,6)= (l3 + 2*l2 + l1 + 2) >> 2;
2762 SRC(0,5)=SRC(1,7)= (l4 + 2*l3 + l2 + 2) >> 2;
2763 SRC(0,2)=SRC(1,4)=SRC(2,6)= (l1 + 2*l0 + lt + 2) >> 2;
2764 SRC(0,3)=SRC(1,5)=SRC(2,7)= (l2 + 2*l1 + l0 + 2) >> 2;
2765 SRC(0,1)=SRC(1,3)=SRC(2,5)=SRC(3,7)= (l0 + 2*lt + t0 + 2) >> 2;
2766 SRC(0,0)=SRC(1,2)=SRC(2,4)=SRC(3,6)= (lt + t0 + 1) >> 1;
2767 SRC(1,1)=SRC(2,3)=SRC(3,5)=SRC(4,7)= (lt + 2*t0 + t1 + 2) >> 2;
2768 SRC(1,0)=SRC(2,2)=SRC(3,4)=SRC(4,6)= (t0 + t1 + 1) >> 1;
2769 SRC(2,1)=SRC(3,3)=SRC(4,5)=SRC(5,7)= (t0 + 2*t1 + t2 + 2) >> 2;
2770 SRC(2,0)=SRC(3,2)=SRC(4,4)=SRC(5,6)= (t1 + t2 + 1) >> 1;
2771 SRC(3,1)=SRC(4,3)=SRC(5,5)=SRC(6,7)= (t1 + 2*t2 + t3 + 2) >> 2;
2772 SRC(3,0)=SRC(4,2)=SRC(5,4)=SRC(6,6)= (t2 + t3 + 1) >> 1;
2773 SRC(4,1)=SRC(5,3)=SRC(6,5)=SRC(7,7)= (t2 + 2*t3 + t4 + 2) >> 2;
2774 SRC(4,0)=SRC(5,2)=SRC(6,4)=SRC(7,6)= (t3 + t4 + 1) >> 1;
2775 SRC(5,1)=SRC(6,3)=SRC(7,5)= (t3 + 2*t4 + t5 + 2) >> 2;
2776 SRC(5,0)=SRC(6,2)=SRC(7,4)= (t4 + t5 + 1) >> 1;
2777 SRC(6,1)=SRC(7,3)= (t4 + 2*t5 + t6 + 2) >> 2;
2778 SRC(6,0)=SRC(7,2)= (t5 + t6 + 1) >> 1;
2779 SRC(7,1)= (t5 + 2*t6 + t7 + 2) >> 2;
2780 SRC(7,0)= (t6 + t7 + 1) >> 1;
2782 static void pred8x8l_horizontal_down_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2784 PREDICT_8x8_LOAD_TOP;
2785 PREDICT_8x8_LOAD_LEFT;
2786 PREDICT_8x8_LOAD_TOPLEFT;
2787 SRC(0,7)= (l6 + l7 + 1) >> 1;
2788 SRC(1,7)= (l5 + 2*l6 + l7 + 2) >> 2;
2789 SRC(0,6)=SRC(2,7)= (l5 + l6 + 1) >> 1;
2790 SRC(1,6)=SRC(3,7)= (l4 + 2*l5 + l6 + 2) >> 2;
2791 SRC(0,5)=SRC(2,6)=SRC(4,7)= (l4 + l5 + 1) >> 1;
2792 SRC(1,5)=SRC(3,6)=SRC(5,7)= (l3 + 2*l4 + l5 + 2) >> 2;
2793 SRC(0,4)=SRC(2,5)=SRC(4,6)=SRC(6,7)= (l3 + l4 + 1) >> 1;
2794 SRC(1,4)=SRC(3,5)=SRC(5,6)=SRC(7,7)= (l2 + 2*l3 + l4 + 2) >> 2;
2795 SRC(0,3)=SRC(2,4)=SRC(4,5)=SRC(6,6)= (l2 + l3 + 1) >> 1;
2796 SRC(1,3)=SRC(3,4)=SRC(5,5)=SRC(7,6)= (l1 + 2*l2 + l3 + 2) >> 2;
2797 SRC(0,2)=SRC(2,3)=SRC(4,4)=SRC(6,5)= (l1 + l2 + 1) >> 1;
2798 SRC(1,2)=SRC(3,3)=SRC(5,4)=SRC(7,5)= (l0 + 2*l1 + l2 + 2) >> 2;
2799 SRC(0,1)=SRC(2,2)=SRC(4,3)=SRC(6,4)= (l0 + l1 + 1) >> 1;
2800 SRC(1,1)=SRC(3,2)=SRC(5,3)=SRC(7,4)= (lt + 2*l0 + l1 + 2) >> 2;
2801 SRC(0,0)=SRC(2,1)=SRC(4,2)=SRC(6,3)= (lt + l0 + 1) >> 1;
2802 SRC(1,0)=SRC(3,1)=SRC(5,2)=SRC(7,3)= (l0 + 2*lt + t0 + 2) >> 2;
2803 SRC(2,0)=SRC(4,1)=SRC(6,2)= (t1 + 2*t0 + lt + 2) >> 2;
2804 SRC(3,0)=SRC(5,1)=SRC(7,2)= (t2 + 2*t1 + t0 + 2) >> 2;
2805 SRC(4,0)=SRC(6,1)= (t3 + 2*t2 + t1 + 2) >> 2;
2806 SRC(5,0)=SRC(7,1)= (t4 + 2*t3 + t2 + 2) >> 2;
2807 SRC(6,0)= (t5 + 2*t4 + t3 + 2) >> 2;
2808 SRC(7,0)= (t6 + 2*t5 + t4 + 2) >> 2;
2810 static void pred8x8l_vertical_left_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2812 PREDICT_8x8_LOAD_TOP;
2813 PREDICT_8x8_LOAD_TOPRIGHT;
2814 SRC(0,0)= (t0 + t1 + 1) >> 1;
2815 SRC(0,1)= (t0 + 2*t1 + t2 + 2) >> 2;
2816 SRC(0,2)=SRC(1,0)= (t1 + t2 + 1) >> 1;
2817 SRC(0,3)=SRC(1,1)= (t1 + 2*t2 + t3 + 2) >> 2;
2818 SRC(0,4)=SRC(1,2)=SRC(2,0)= (t2 + t3 + 1) >> 1;
2819 SRC(0,5)=SRC(1,3)=SRC(2,1)= (t2 + 2*t3 + t4 + 2) >> 2;
2820 SRC(0,6)=SRC(1,4)=SRC(2,2)=SRC(3,0)= (t3 + t4 + 1) >> 1;
2821 SRC(0,7)=SRC(1,5)=SRC(2,3)=SRC(3,1)= (t3 + 2*t4 + t5 + 2) >> 2;
2822 SRC(1,6)=SRC(2,4)=SRC(3,2)=SRC(4,0)= (t4 + t5 + 1) >> 1;
2823 SRC(1,7)=SRC(2,5)=SRC(3,3)=SRC(4,1)= (t4 + 2*t5 + t6 + 2) >> 2;
2824 SRC(2,6)=SRC(3,4)=SRC(4,2)=SRC(5,0)= (t5 + t6 + 1) >> 1;
2825 SRC(2,7)=SRC(3,5)=SRC(4,3)=SRC(5,1)= (t5 + 2*t6 + t7 + 2) >> 2;
2826 SRC(3,6)=SRC(4,4)=SRC(5,2)=SRC(6,0)= (t6 + t7 + 1) >> 1;
2827 SRC(3,7)=SRC(4,5)=SRC(5,3)=SRC(6,1)= (t6 + 2*t7 + t8 + 2) >> 2;
2828 SRC(4,6)=SRC(5,4)=SRC(6,2)=SRC(7,0)= (t7 + t8 + 1) >> 1;
2829 SRC(4,7)=SRC(5,5)=SRC(6,3)=SRC(7,1)= (t7 + 2*t8 + t9 + 2) >> 2;
2830 SRC(5,6)=SRC(6,4)=SRC(7,2)= (t8 + t9 + 1) >> 1;
2831 SRC(5,7)=SRC(6,5)=SRC(7,3)= (t8 + 2*t9 + t10 + 2) >> 2;
2832 SRC(6,6)=SRC(7,4)= (t9 + t10 + 1) >> 1;
2833 SRC(6,7)=SRC(7,5)= (t9 + 2*t10 + t11 + 2) >> 2;
2834 SRC(7,6)= (t10 + t11 + 1) >> 1;
2835 SRC(7,7)= (t10 + 2*t11 + t12 + 2) >> 2;
2837 static void pred8x8l_horizontal_up_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2839 PREDICT_8x8_LOAD_LEFT;
2840 SRC(0,0)= (l0 + l1 + 1) >> 1;
2841 SRC(1,0)= (l0 + 2*l1 + l2 + 2) >> 2;
2842 SRC(0,1)=SRC(2,0)= (l1 + l2 + 1) >> 1;
2843 SRC(1,1)=SRC(3,0)= (l1 + 2*l2 + l3 + 2) >> 2;
2844 SRC(0,2)=SRC(2,1)=SRC(4,0)= (l2 + l3 + 1) >> 1;
2845 SRC(1,2)=SRC(3,1)=SRC(5,0)= (l2 + 2*l3 + l4 + 2) >> 2;
2846 SRC(0,3)=SRC(2,2)=SRC(4,1)=SRC(6,0)= (l3 + l4 + 1) >> 1;
2847 SRC(1,3)=SRC(3,2)=SRC(5,1)=SRC(7,0)= (l3 + 2*l4 + l5 + 2) >> 2;
2848 SRC(0,4)=SRC(2,3)=SRC(4,2)=SRC(6,1)= (l4 + l5 + 1) >> 1;
2849 SRC(1,4)=SRC(3,3)=SRC(5,2)=SRC(7,1)= (l4 + 2*l5 + l6 + 2) >> 2;
2850 SRC(0,5)=SRC(2,4)=SRC(4,3)=SRC(6,2)= (l5 + l6 + 1) >> 1;
2851 SRC(1,5)=SRC(3,4)=SRC(5,3)=SRC(7,2)= (l5 + 2*l6 + l7 + 2) >> 2;
2852 SRC(0,6)=SRC(2,5)=SRC(4,4)=SRC(6,3)= (l6 + l7 + 1) >> 1;
2853 SRC(1,6)=SRC(3,5)=SRC(5,4)=SRC(7,3)= (l6 + 3*l7 + 2) >> 2;
2854 SRC(0,7)=SRC(1,7)=SRC(2,6)=SRC(2,7)=SRC(3,6)=
2855 SRC(3,7)=SRC(4,5)=SRC(4,6)=SRC(4,7)=SRC(5,5)=
2856 SRC(5,6)=SRC(5,7)=SRC(6,4)=SRC(6,5)=SRC(6,6)=
2857 SRC(6,7)=SRC(7,4)=SRC(7,5)=SRC(7,6)=SRC(7,7)= l7;
2859 #undef PREDICT_8x8_LOAD_LEFT
2860 #undef PREDICT_8x8_LOAD_TOP
2861 #undef PREDICT_8x8_LOAD_TOPLEFT
2862 #undef PREDICT_8x8_LOAD_TOPRIGHT
2863 #undef PREDICT_8x8_DC
2869 static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
2870 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2871 int src_x_offset, int src_y_offset,
2872 qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
2873 MpegEncContext * const s = &h->s;
2874 const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
2875 int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
2876 const int luma_xy= (mx&3) + ((my&3)<<2);
2877 uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->mb_linesize;
2878 uint8_t * src_cb, * src_cr;
2879 int extra_width= h->emu_edge_width;
2880 int extra_height= h->emu_edge_height;
2882 const int full_mx= mx>>2;
2883 const int full_my= my>>2;
2884 const int pic_width = 16*s->mb_width;
2885 const int pic_height = 16*s->mb_height >> MB_MBAFF;
2890 if(mx&7) extra_width -= 3;
2891 if(my&7) extra_height -= 3;
2893 if( full_mx < 0-extra_width
2894 || full_my < 0-extra_height
2895 || full_mx + 16/*FIXME*/ > pic_width + extra_width
2896 || full_my + 16/*FIXME*/ > pic_height + extra_height){
2897 ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->mb_linesize, h->mb_linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
2898 src_y= s->edge_emu_buffer + 2 + 2*h->mb_linesize;
2902 qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps?
2904 qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize);
2907 if(s->flags&CODEC_FLAG_GRAY) return;
2910 // chroma offset when predicting from a field of opposite parity
2911 my += 2 * ((s->mb_y & 1) - (h->ref_cache[list][scan8[n]] & 1));
2912 emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1);
2914 src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
2915 src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
2918 ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
2919 src_cb= s->edge_emu_buffer;
2921 chroma_op(dest_cb, src_cb, h->mb_uvlinesize, chroma_height, mx&7, my&7);
2924 ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
2925 src_cr= s->edge_emu_buffer;
2927 chroma_op(dest_cr, src_cr, h->mb_uvlinesize, chroma_height, mx&7, my&7);
2930 static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
2931 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2932 int x_offset, int y_offset,
2933 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
2934 qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
2935 int list0, int list1){
2936 MpegEncContext * const s = &h->s;
2937 qpel_mc_func *qpix_op= qpix_put;
2938 h264_chroma_mc_func chroma_op= chroma_put;
2940 dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
2941 dest_cb += x_offset + y_offset*h->mb_uvlinesize;
2942 dest_cr += x_offset + y_offset*h->mb_uvlinesize;
2943 x_offset += 8*s->mb_x;
2944 y_offset += 8*(s->mb_y >> MB_MBAFF);
2947 Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
2948 mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
2949 dest_y, dest_cb, dest_cr, x_offset, y_offset,
2950 qpix_op, chroma_op);
2953 chroma_op= chroma_avg;
2957 Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
2958 mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
2959 dest_y, dest_cb, dest_cr, x_offset, y_offset,
2960 qpix_op, chroma_op);
2964 static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
2965 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2966 int x_offset, int y_offset,
2967 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
2968 h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
2969 h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
2970 int list0, int list1){
2971 MpegEncContext * const s = &h->s;
2973 dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
2974 dest_cb += x_offset + y_offset*h->mb_uvlinesize;
2975 dest_cr += x_offset + y_offset*h->mb_uvlinesize;
2976 x_offset += 8*s->mb_x;
2977 y_offset += 8*(s->mb_y >> MB_MBAFF);
2980 /* don't optimize for luma-only case, since B-frames usually
2981 * use implicit weights => chroma too. */
2982 uint8_t *tmp_cb = s->obmc_scratchpad;
2983 uint8_t *tmp_cr = s->obmc_scratchpad + 8;
2984 uint8_t *tmp_y = s->obmc_scratchpad + 8*h->mb_uvlinesize;
2985 int refn0 = h->ref_cache[0][ scan8[n] ];
2986 int refn1 = h->ref_cache[1][ scan8[n] ];
2988 mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
2989 dest_y, dest_cb, dest_cr,
2990 x_offset, y_offset, qpix_put, chroma_put);
2991 mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
2992 tmp_y, tmp_cb, tmp_cr,
2993 x_offset, y_offset, qpix_put, chroma_put);
2995 if(h->use_weight == 2){
2996 int weight0 = h->implicit_weight[refn0][refn1];
2997 int weight1 = 64 - weight0;
2998 luma_weight_avg( dest_y, tmp_y, h-> mb_linesize, 5, weight0, weight1, 0);
2999 chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, 5, weight0, weight1, 0);
3000 chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, 5, weight0, weight1, 0);
3002 luma_weight_avg(dest_y, tmp_y, h->mb_linesize, h->luma_log2_weight_denom,
3003 h->luma_weight[0][refn0], h->luma_weight[1][refn1],
3004 h->luma_offset[0][refn0] + h->luma_offset[1][refn1]);
3005 chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
3006 h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0],
3007 h->chroma_offset[0][refn0][0] + h->chroma_offset[1][refn1][0]);
3008 chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
3009 h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1],
3010 h->chroma_offset[0][refn0][1] + h->chroma_offset[1][refn1][1]);
3013 int list = list1 ? 1 : 0;
3014 int refn = h->ref_cache[list][ scan8[n] ];
3015 Picture *ref= &h->ref_list[list][refn];
3016 mc_dir_part(h, ref, n, square, chroma_height, delta, list,
3017 dest_y, dest_cb, dest_cr, x_offset, y_offset,
3018 qpix_put, chroma_put);
3020 luma_weight_op(dest_y, h->mb_linesize, h->luma_log2_weight_denom,
3021 h->luma_weight[list][refn], h->luma_offset[list][refn]);
3022 if(h->use_weight_chroma){
3023 chroma_weight_op(dest_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
3024 h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]);
3025 chroma_weight_op(dest_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
3026 h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]);
3031 static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
3032 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
3033 int x_offset, int y_offset,
3034 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
3035 qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
3036 h264_weight_func *weight_op, h264_biweight_func *weight_avg,
3037 int list0, int list1){
3038 if((h->use_weight==2 && list0 && list1
3039 && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32))
3040 || h->use_weight==1)
3041 mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
3042 x_offset, y_offset, qpix_put, chroma_put,
3043 weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
3045 mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
3046 x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
3049 static inline void prefetch_motion(H264Context *h, int list){
3050 /* fetch pixels for estimated mv 4 macroblocks ahead
3051 * optimized for 64byte cache lines */
3052 MpegEncContext * const s = &h->s;
3053 const int refn = h->ref_cache[list][scan8[0]];
3055 const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8;
3056 const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y;
3057 uint8_t **src= h->ref_list[list][refn].data;
3058 int off= mx + (my + (s->mb_x&3)*4)*h->mb_linesize + 64;
3059 s->dsp.prefetch(src[0]+off, s->linesize, 4);
3060 off= (mx>>1) + ((my>>1) + (s->mb_x&7))*s->uvlinesize + 64;
3061 s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
3065 static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
3066 qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
3067 qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
3068 h264_weight_func *weight_op, h264_biweight_func *weight_avg){
3069 MpegEncContext * const s = &h->s;
3070 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
3071 const int mb_type= s->current_picture.mb_type[mb_xy];
3073 assert(IS_INTER(mb_type));
3075 prefetch_motion(h, 0);
3077 if(IS_16X16(mb_type)){
3078 mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
3079 qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
3080 &weight_op[0], &weight_avg[0],
3081 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
3082 }else if(IS_16X8(mb_type)){
3083 mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
3084 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
3085 &weight_op[1], &weight_avg[1],
3086 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
3087 mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
3088 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
3089 &weight_op[1], &weight_avg[1],
3090 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
3091 }else if(IS_8X16(mb_type)){
3092 mc_part(h, 0, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0,
3093 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
3094 &weight_op[2], &weight_avg[2],
3095 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
3096 mc_part(h, 4, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0,
3097 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
3098 &weight_op[2], &weight_avg[2],
3099 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
3103 assert(IS_8X8(mb_type));
3106 const int sub_mb_type= h->sub_mb_type[i];
3108 int x_offset= (i&1)<<2;
3109 int y_offset= (i&2)<<1;
3111 if(IS_SUB_8X8(sub_mb_type)){
3112 mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
3113 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
3114 &weight_op[3], &weight_avg[3],
3115 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
3116 }else if(IS_SUB_8X4(sub_mb_type)){
3117 mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
3118 qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
3119 &weight_op[4], &weight_avg[4],
3120 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
3121 mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
3122 qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
3123 &weight_op[4], &weight_avg[4],
3124 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
3125 }else if(IS_SUB_4X8(sub_mb_type)){
3126 mc_part(h, n , 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
3127 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
3128 &weight_op[5], &weight_avg[5],
3129 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
3130 mc_part(h, n+1, 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
3131 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
3132 &weight_op[5], &weight_avg[5],
3133 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
3136 assert(IS_SUB_4X4(sub_mb_type));
3138 int sub_x_offset= x_offset + 2*(j&1);
3139 int sub_y_offset= y_offset + (j&2);
3140 mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
3141 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
3142 &weight_op[6], &weight_avg[6],
3143 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
3149 prefetch_motion(h, 1);
3152 static void decode_init_vlc(H264Context *h){
3153 static int done = 0;
3159 init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
3160 &chroma_dc_coeff_token_len [0], 1, 1,
3161 &chroma_dc_coeff_token_bits[0], 1, 1, 1);
3164 init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
3165 &coeff_token_len [i][0], 1, 1,
3166 &coeff_token_bits[i][0], 1, 1, 1);
3170 init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
3171 &chroma_dc_total_zeros_len [i][0], 1, 1,
3172 &chroma_dc_total_zeros_bits[i][0], 1, 1, 1);
3174 for(i=0; i<15; i++){
3175 init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16,
3176 &total_zeros_len [i][0], 1, 1,
3177 &total_zeros_bits[i][0], 1, 1, 1);
3181 init_vlc(&run_vlc[i], RUN_VLC_BITS, 7,
3182 &run_len [i][0], 1, 1,
3183 &run_bits[i][0], 1, 1, 1);
3185 init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
3186 &run_len [6][0], 1, 1,
3187 &run_bits[6][0], 1, 1, 1);
3192 * Sets the intra prediction function pointers.
3194 static void init_pred_ptrs(H264Context *h){
3195 // MpegEncContext * const s = &h->s;
3197 h->pred4x4[VERT_PRED ]= pred4x4_vertical_c;
3198 h->pred4x4[HOR_PRED ]= pred4x4_horizontal_c;
3199 h->pred4x4[DC_PRED ]= pred4x4_dc_c;
3200 h->pred4x4[DIAG_DOWN_LEFT_PRED ]= pred4x4_down_left_c;
3201 h->pred4x4[DIAG_DOWN_RIGHT_PRED]= pred4x4_down_right_c;
3202 h->pred4x4[VERT_RIGHT_PRED ]= pred4x4_vertical_right_c;
3203 h->pred4x4[HOR_DOWN_PRED ]= pred4x4_horizontal_down_c;
3204 h->pred4x4[VERT_LEFT_PRED ]= pred4x4_vertical_left_c;
3205 h->pred4x4[HOR_UP_PRED ]= pred4x4_horizontal_up_c;
3206 h->pred4x4[LEFT_DC_PRED ]= pred4x4_left_dc_c;
3207 h->pred4x4[TOP_DC_PRED ]= pred4x4_top_dc_c;
3208 h->pred4x4[DC_128_PRED ]= pred4x4_128_dc_c;
3210 h->pred8x8l[VERT_PRED ]= pred8x8l_vertical_c;
3211 h->pred8x8l[HOR_PRED ]= pred8x8l_horizontal_c;
3212 h->pred8x8l[DC_PRED ]= pred8x8l_dc_c;
3213 h->pred8x8l[DIAG_DOWN_LEFT_PRED ]= pred8x8l_down_left_c;
3214 h->pred8x8l[DIAG_DOWN_RIGHT_PRED]= pred8x8l_down_right_c;
3215 h->pred8x8l[VERT_RIGHT_PRED ]= pred8x8l_vertical_right_c;
3216 h->pred8x8l[HOR_DOWN_PRED ]= pred8x8l_horizontal_down_c;
3217 h->pred8x8l[VERT_LEFT_PRED ]= pred8x8l_vertical_left_c;
3218 h->pred8x8l[HOR_UP_PRED ]= pred8x8l_horizontal_up_c;
3219 h->pred8x8l[LEFT_DC_PRED ]= pred8x8l_left_dc_c;
3220 h->pred8x8l[TOP_DC_PRED ]= pred8x8l_top_dc_c;
3221 h->pred8x8l[DC_128_PRED ]= pred8x8l_128_dc_c;
3223 h->pred8x8[DC_PRED8x8 ]= pred8x8_dc_c;
3224 h->pred8x8[VERT_PRED8x8 ]= pred8x8_vertical_c;
3225 h->pred8x8[HOR_PRED8x8 ]= pred8x8_horizontal_c;
3226 h->pred8x8[PLANE_PRED8x8 ]= pred8x8_plane_c;
3227 h->pred8x8[LEFT_DC_PRED8x8]= pred8x8_left_dc_c;
3228 h->pred8x8[TOP_DC_PRED8x8 ]= pred8x8_top_dc_c;
3229 h->pred8x8[DC_128_PRED8x8 ]= pred8x8_128_dc_c;
3231 h->pred16x16[DC_PRED8x8 ]= pred16x16_dc_c;
3232 h->pred16x16[VERT_PRED8x8 ]= pred16x16_vertical_c;
3233 h->pred16x16[HOR_PRED8x8 ]= pred16x16_horizontal_c;
3234 h->pred16x16[PLANE_PRED8x8 ]= pred16x16_plane_c;
3235 h->pred16x16[LEFT_DC_PRED8x8]= pred16x16_left_dc_c;
3236 h->pred16x16[TOP_DC_PRED8x8 ]= pred16x16_top_dc_c;
3237 h->pred16x16[DC_128_PRED8x8 ]= pred16x16_128_dc_c;
3240 static void free_tables(H264Context *h){
3241 av_freep(&h->intra4x4_pred_mode);
3242 av_freep(&h->chroma_pred_mode_table);
3243 av_freep(&h->cbp_table);
3244 av_freep(&h->mvd_table[0]);
3245 av_freep(&h->mvd_table[1]);
3246 av_freep(&h->direct_table);
3247 av_freep(&h->non_zero_count);
3248 av_freep(&h->slice_table_base);
3249 av_freep(&h->top_borders[1]);
3250 av_freep(&h->top_borders[0]);
3251 h->slice_table= NULL;
3253 av_freep(&h->mb2b_xy);
3254 av_freep(&h->mb2b8_xy);
3256 av_freep(&h->s.obmc_scratchpad);
3259 static void init_dequant8_coeff_table(H264Context *h){
3261 const int transpose = (h->s.dsp.h264_idct8_add != ff_h264_idct8_add_c); //FIXME ugly
3262 h->dequant8_coeff[0] = h->dequant8_buffer[0];
3263 h->dequant8_coeff[1] = h->dequant8_buffer[1];
3265 for(i=0; i<2; i++ ){
3266 if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){
3267 h->dequant8_coeff[1] = h->dequant8_buffer[0];
3271 for(q=0; q<52; q++){
3272 int shift = div6[q];
3275 h->dequant8_coeff[i][q][transpose ? (x>>3)|((x&7)<<3) : x] =
3276 ((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] *
3277 h->pps.scaling_matrix8[i][x]) << shift;
3282 static void init_dequant4_coeff_table(H264Context *h){
3284 const int transpose = (h->s.dsp.h264_idct_add != ff_h264_idct_add_c); //FIXME ugly
3285 for(i=0; i<6; i++ ){
3286 h->dequant4_coeff[i] = h->dequant4_buffer[i];
3288 if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
3289 h->dequant4_coeff[i] = h->dequant4_buffer[j];
3296 for(q=0; q<52; q++){
3297 int shift = div6[q] + 2;
3300 h->dequant4_coeff[i][q][transpose ? (x>>2)|((x<<2)&0xF) : x] =
3301 ((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
3302 h->pps.scaling_matrix4[i][x]) << shift;
3307 static void init_dequant_tables(H264Context *h){
3309 init_dequant4_coeff_table(h);
3310 if(h->pps.transform_8x8_mode)
3311 init_dequant8_coeff_table(h);
3312 if(h->sps.transform_bypass){
3315 h->dequant4_coeff[i][0][x] = 1<<6;
3316 if(h->pps.transform_8x8_mode)
3319 h->dequant8_coeff[i][0][x] = 1<<6;
3326 * needs width/height
3328 static int alloc_tables(H264Context *h){
3329 MpegEncContext * const s = &h->s;
3330 const int big_mb_num= s->mb_stride * (s->mb_height+1);
3333 CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t))
3335 CHECKED_ALLOCZ(h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t))
3336 CHECKED_ALLOCZ(h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(uint8_t))
3337 CHECKED_ALLOCZ(h->top_borders[0] , s->mb_width * (16+8+8) * sizeof(uint8_t))
3338 CHECKED_ALLOCZ(h->top_borders[1] , s->mb_width * (16+8+8) * sizeof(uint8_t))
3339 CHECKED_ALLOCZ(h->cbp_table, big_mb_num * sizeof(uint16_t))
3341 if( h->pps.cabac ) {
3342 CHECKED_ALLOCZ(h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t))
3343 CHECKED_ALLOCZ(h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t));
3344 CHECKED_ALLOCZ(h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t));
3345 CHECKED_ALLOCZ(h->direct_table, 32*big_mb_num * sizeof(uint8_t));
3348 memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(uint8_t));
3349 h->slice_table= h->slice_table_base + s->mb_stride*2 + 1;
3351 CHECKED_ALLOCZ(h->mb2b_xy , big_mb_num * sizeof(uint32_t));
3352 CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint32_t));
3353 for(y=0; y<s->mb_height; y++){
3354 for(x=0; x<s->mb_width; x++){
3355 const int mb_xy= x + y*s->mb_stride;
3356 const int b_xy = 4*x + 4*y*h->b_stride;
3357 const int b8_xy= 2*x + 2*y*h->b8_stride;
3359 h->mb2b_xy [mb_xy]= b_xy;
3360 h->mb2b8_xy[mb_xy]= b8_xy;
3364 s->obmc_scratchpad = NULL;
3366 if(!h->dequant4_coeff[0])
3367 init_dequant_tables(h);
3375 static void common_init(H264Context *h){
3376 MpegEncContext * const s = &h->s;
3378 s->width = s->avctx->width;
3379 s->height = s->avctx->height;
3380 s->codec_id= s->avctx->codec->id;
3384 h->dequant_coeff_pps= -1;
3385 s->unrestricted_mv=1;
3386 s->decode=1; //FIXME
3388 memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
3389 memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
3392 static int decode_init(AVCodecContext *avctx){
3393 H264Context *h= avctx->priv_data;
3394 MpegEncContext * const s = &h->s;
3396 MPV_decode_defaults(s);
3401 s->out_format = FMT_H264;
3402 s->workaround_bugs= avctx->workaround_bugs;
3405 // s->decode_mb= ff_h263_decode_mb;
3407 avctx->pix_fmt= PIX_FMT_YUV420P;
3411 if(avctx->extradata_size > 0 && avctx->extradata &&
3412 *(char *)avctx->extradata == 1){
3422 static int frame_start(H264Context *h){
3423 MpegEncContext * const s = &h->s;
3426 if(MPV_frame_start(s, s->avctx) < 0)
3428 ff_er_frame_start(s);
3430 assert(s->linesize && s->uvlinesize);
3432 for(i=0; i<16; i++){
3433 h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
3434 h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
3437 h->block_offset[16+i]=
3438 h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
3439 h->block_offset[24+16+i]=
3440 h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
3443 /* can't be in alloc_tables because linesize isn't known there.
3444 * FIXME: redo bipred weight to not require extra buffer? */
3445 if(!s->obmc_scratchpad)
3446 s->obmc_scratchpad = av_malloc(16*2*s->linesize + 8*2*s->uvlinesize);
3448 /* some macroblocks will be accessed before they're available */
3450 memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(uint8_t));
3452 // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
3456 static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
3457 MpegEncContext * const s = &h->s;
3461 src_cb -= uvlinesize;
3462 src_cr -= uvlinesize;
3464 // There are two lines saved, the line above the the top macroblock of a pair,
3465 // and the line above the bottom macroblock
3466 h->left_border[0]= h->top_borders[0][s->mb_x][15];
3467 for(i=1; i<17; i++){
3468 h->left_border[i]= src_y[15+i* linesize];
3471 *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 16*linesize);
3472 *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
3474 if(!(s->flags&CODEC_FLAG_GRAY)){
3475 h->left_border[17 ]= h->top_borders[0][s->mb_x][16+7];
3476 h->left_border[17+9]= h->top_borders[0][s->mb_x][24+7];
3478 h->left_border[i+17 ]= src_cb[7+i*uvlinesize];
3479 h->left_border[i+17+9]= src_cr[7+i*uvlinesize];
3481 *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
3482 *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
3486 static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
3487 MpegEncContext * const s = &h->s;
3490 int deblock_left = (s->mb_x > 0);
3491 int deblock_top = (s->mb_y > 0);
3493 src_y -= linesize + 1;
3494 src_cb -= uvlinesize + 1;
3495 src_cr -= uvlinesize + 1;
3497 #define XCHG(a,b,t,xchg)\
3504 for(i = !deblock_top; i<17; i++){
3505 XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
3510 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
3511 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
3512 if(s->mb_x+1 < s->mb_width){
3513 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
3517 if(!(s->flags&CODEC_FLAG_GRAY)){
3519 for(i = !deblock_top; i<9; i++){
3520 XCHG(h->left_border[i+17 ], src_cb[i*uvlinesize], temp8, xchg);
3521 XCHG(h->left_border[i+17+9], src_cr[i*uvlinesize], temp8, xchg);
3525 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
3526 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
3531 static inline void backup_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
3532 MpegEncContext * const s = &h->s;
3535 src_y -= 2 * linesize;
3536 src_cb -= 2 * uvlinesize;
3537 src_cr -= 2 * uvlinesize;
3539 // There are two lines saved, the line above the the top macroblock of a pair,
3540 // and the line above the bottom macroblock
3541 h->left_border[0]= h->top_borders[0][s->mb_x][15];
3542 h->left_border[1]= h->top_borders[1][s->mb_x][15];
3543 for(i=2; i<34; i++){
3544 h->left_border[i]= src_y[15+i* linesize];
3547 *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 32*linesize);
3548 *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+32*linesize);
3549 *(uint64_t*)(h->top_borders[1][s->mb_x]+0)= *(uint64_t*)(src_y + 33*linesize);
3550 *(uint64_t*)(h->top_borders[1][s->mb_x]+8)= *(uint64_t*)(src_y +8+33*linesize);
3552 if(!(s->flags&CODEC_FLAG_GRAY)){
3553 h->left_border[34 ]= h->top_borders[0][s->mb_x][16+7];
3554 h->left_border[34+ 1]= h->top_borders[1][s->mb_x][16+7];
3555 h->left_border[34+18 ]= h->top_borders[0][s->mb_x][24+7];
3556 h->left_border[34+18+1]= h->top_borders[1][s->mb_x][24+7];
3557 for(i=2; i<18; i++){
3558 h->left_border[i+34 ]= src_cb[7+i*uvlinesize];
3559 h->left_border[i+34+18]= src_cr[7+i*uvlinesize];
3561 *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+16*uvlinesize);
3562 *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+16*uvlinesize);
3563 *(uint64_t*)(h->top_borders[1][s->mb_x]+16)= *(uint64_t*)(src_cb+17*uvlinesize);
3564 *(uint64_t*)(h->top_borders[1][s->mb_x]+24)= *(uint64_t*)(src_cr+17*uvlinesize);
3568 static inline void xchg_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
3569 MpegEncContext * const s = &h->s;
3572 int deblock_left = (s->mb_x > 0);
3573 int deblock_top = (s->mb_y > 1);
3575 tprintf("xchg_pair_border: src_y:%p src_cb:%p src_cr:%p ls:%d uvls:%d\n", src_y, src_cb, src_cr, linesize, uvlinesize);
3577 src_y -= 2 * linesize + 1;
3578 src_cb -= 2 * uvlinesize + 1;
3579 src_cr -= 2 * uvlinesize + 1;
3581 #define XCHG(a,b,t,xchg)\