2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 * H.264 / AVC / MPEG4 part10 codec.
24 * @author Michael Niedermayer <michaelni@gmx.at>
30 #include "mpegvideo.h"
39 #define interlaced_dct interlaced_dct_is_a_bad_name
40 #define mb_intra mb_intra_isnt_initalized_see_mb_type
42 #define LUMA_DC_BLOCK_INDEX 25
43 #define CHROMA_DC_BLOCK_INDEX 26
45 #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
46 #define COEFF_TOKEN_VLC_BITS 8
47 #define TOTAL_ZEROS_VLC_BITS 9
48 #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
49 #define RUN_VLC_BITS 3
50 #define RUN7_VLC_BITS 6
52 #define MAX_SPS_COUNT 32
53 #define MAX_PPS_COUNT 256
55 #define MAX_MMCO_COUNT 66
58 * Sequence parameter set
64 int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
65 int poc_type; ///< pic_order_cnt_type
66 int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
67 int delta_pic_order_always_zero_flag;
68 int offset_for_non_ref_pic;
69 int offset_for_top_to_bottom_field;
70 int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
71 int ref_frame_count; ///< num_ref_frames
72 int gaps_in_frame_num_allowed_flag;
73 int mb_width; ///< frame_width_in_mbs_minus1 + 1
74 int mb_height; ///< frame_height_in_mbs_minus1 + 1
75 int frame_mbs_only_flag;
76 int mb_aff; ///<mb_adaptive_frame_field_flag
77 int direct_8x8_inference_flag;
78 int crop; ///< frame_cropping_flag
79 int crop_left; ///< frame_cropping_rect_left_offset
80 int crop_right; ///< frame_cropping_rect_right_offset
81 int crop_top; ///< frame_cropping_rect_top_offset
82 int crop_bottom; ///< frame_cropping_rect_bottom_offset
83 int vui_parameters_present_flag;
85 int timing_info_present_flag;
86 uint32_t num_units_in_tick;
88 int fixed_frame_rate_flag;
89 short offset_for_ref_frame[256]; //FIXME dyn aloc?
90 int bitstream_restriction_flag;
91 int num_reorder_frames;
95 * Picture parameter set
99 int cabac; ///< entropy_coding_mode_flag
100 int pic_order_present; ///< pic_order_present_flag
101 int slice_group_count; ///< num_slice_groups_minus1 + 1
102 int mb_slice_group_map_type;
103 int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
104 int weighted_pred; ///< weighted_pred_flag
105 int weighted_bipred_idc;
106 int init_qp; ///< pic_init_qp_minus26 + 26
107 int init_qs; ///< pic_init_qs_minus26 + 26
108 int chroma_qp_index_offset;
109 int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
110 int constrained_intra_pred; ///< constrained_intra_pred_flag
111 int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
115 * Memory management control operation opcode.
117 typedef enum MMCOOpcode{
128 * Memory management control operation.
139 typedef struct H264Context{
147 #define NAL_IDR_SLICE 5
151 #define NAL_PICTURE_DELIMITER 9
152 #define NAL_FILTER_DATA 10
153 uint8_t *rbsp_buffer;
154 int rbsp_buffer_size;
157 * Used to parse AVC variant of h264
159 int is_avc; ///< this flag is != 0 if codec is avc1
160 int got_avcC; ///< flag used to parse avcC data only once
161 int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
165 int prev_mb_skiped; //FIXME remove (IMHO not used)
168 int chroma_pred_mode;
169 int intra16x16_pred_mode;
174 int8_t intra4x4_pred_mode_cache[5*8];
175 int8_t (*intra4x4_pred_mode)[8];
176 void (*pred4x4 [9+3])(uint8_t *src, uint8_t *topright, int stride);//FIXME move to dsp?
177 void (*pred8x8 [4+3])(uint8_t *src, int stride);
178 void (*pred16x16[4+3])(uint8_t *src, int stride);
179 unsigned int topleft_samples_available;
180 unsigned int top_samples_available;
181 unsigned int topright_samples_available;
182 unsigned int left_samples_available;
183 uint8_t (*top_borders[2])[16+2*8];
184 uint8_t left_border[2*(17+2*9)];
187 * non zero coeff count cache.
188 * is 64 if not available.
190 uint8_t non_zero_count_cache[6*8] __align8;
191 uint8_t (*non_zero_count)[16];
194 * Motion vector cache.
196 int16_t mv_cache[2][5*8][2] __align8;
197 int8_t ref_cache[2][5*8] __align8;
198 #define LIST_NOT_USED -1 //FIXME rename?
199 #define PART_NOT_AVAILABLE -2
202 * is 1 if the specific list MV&references are set to 0,0,-2.
204 int mv_cache_clean[2];
207 * block_offset[ 0..23] for frame macroblocks
208 * block_offset[24..47] for field macroblocks
210 int block_offset[2*(16+8)];
212 uint16_t *mb2b_xy; //FIXME are these 4 a good idea?
214 int b_stride; //FIXME use s->b4_stride
220 int unknown_svq3_flag;
221 int next_slice_index;
223 SPS sps_buffer[MAX_SPS_COUNT];
224 SPS sps; ///< current sps
226 PPS pps_buffer[MAX_PPS_COUNT];
230 PPS pps; //FIXME move tp Picture perhaps? (->no) do we need that?
233 uint8_t *slice_table_base;
234 uint8_t *slice_table; ///< slice_table_base + mb_stride + 1
236 int slice_type_fixed;
238 //interlacing specific flags
240 int mb_field_decoding_flag;
247 int delta_poc_bottom;
250 int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
251 int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
252 int frame_num_offset; ///< for POC type 2
253 int prev_frame_num_offset; ///< for POC type 2
254 int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
257 * frame_num for frames or 2*frame_num for field pics.
262 * max_frame_num or 2*max_frame_num for field pics.
266 //Weighted pred stuff
268 int use_weight_chroma;
269 int luma_log2_weight_denom;
270 int chroma_log2_weight_denom;
271 int luma_weight[2][16];
272 int luma_offset[2][16];
273 int chroma_weight[2][16][2];
274 int chroma_offset[2][16][2];
275 int implicit_weight[16][16];
278 int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0
279 int slice_alpha_c0_offset;
280 int slice_beta_offset;
282 int redundant_pic_count;
284 int direct_spatial_mv_pred;
285 int dist_scale_factor[16];
286 int map_col_to_list0[2][16];
289 * num_ref_idx_l0/1_active_minus1 + 1
291 int ref_count[2];// FIXME split for AFF
292 Picture *short_ref[32];
293 Picture *long_ref[32];
294 Picture default_ref_list[2][32];
295 Picture ref_list[2][32]; //FIXME size?
296 Picture field_ref_list[2][32]; //FIXME size?
297 Picture *delayed_pic[16]; //FIXME size?
298 Picture *delayed_output_pic;
301 * memory management control operations buffer.
303 MMCO mmco[MAX_MMCO_COUNT];
306 int long_ref_count; ///< number of actual long term references
307 int short_ref_count; ///< number of actual short term references
310 GetBitContext intra_gb;
311 GetBitContext inter_gb;
312 GetBitContext *intra_gb_ptr;
313 GetBitContext *inter_gb_ptr;
315 DCTELEM mb[16*24] __align8;
321 uint8_t cabac_state[399];
324 /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
328 /* chroma_pred_mode for i4x4 or i16x16, else 0 */
329 uint8_t *chroma_pred_mode_table;
330 int last_qscale_diff;
331 int16_t (*mvd_table[2])[2];
332 int16_t mvd_cache[2][5*8][2] __align8;
333 uint8_t *direct_table;
334 uint8_t direct_cache[5*8];
338 static VLC coeff_token_vlc[4];
339 static VLC chroma_dc_coeff_token_vlc;
341 static VLC total_zeros_vlc[15];
342 static VLC chroma_dc_total_zeros_vlc[3];
344 static VLC run_vlc[6];
347 static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
348 static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
349 static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
351 static inline uint32_t pack16to32(int a, int b){
352 #ifdef WORDS_BIGENDIAN
353 return (b&0xFFFF) + (a<<16);
355 return (a&0xFFFF) + (b<<16);
361 * @param h height of the rectangle, should be a constant
362 * @param w width of the rectangle, should be a constant
363 * @param size the size of val (1 or 4), should be a constant
365 static inline void fill_rectangle(void *vp, int w, int h, int stride, uint32_t val, int size){ //FIXME ensure this IS inlined
366 uint8_t *p= (uint8_t*)vp;
367 assert(size==1 || size==4);
372 assert((((int)vp)&(FFMIN(w, STRIDE_ALIGN)-1)) == 0);
373 //FIXME check what gcc generates for 64 bit on x86 and possible write a 32 bit ver of it
376 *(uint16_t*)(p + stride)= size==4 ? val : val*0x0101;
377 }else if(w==2 && h==4){
378 *(uint16_t*)(p + 0*stride)=
379 *(uint16_t*)(p + 1*stride)=
380 *(uint16_t*)(p + 2*stride)=
381 *(uint16_t*)(p + 3*stride)= size==4 ? val : val*0x0101;
382 }else if(w==4 && h==1){
383 *(uint32_t*)(p + 0*stride)= size==4 ? val : val*0x01010101;
384 }else if(w==4 && h==2){
385 *(uint32_t*)(p + 0*stride)=
386 *(uint32_t*)(p + 1*stride)= size==4 ? val : val*0x01010101;
387 }else if(w==4 && h==4){
388 *(uint32_t*)(p + 0*stride)=
389 *(uint32_t*)(p + 1*stride)=
390 *(uint32_t*)(p + 2*stride)=
391 *(uint32_t*)(p + 3*stride)= size==4 ? val : val*0x01010101;
392 }else if(w==8 && h==1){
394 *(uint32_t*)(p + 4)= size==4 ? val : val*0x01010101;
395 }else if(w==8 && h==2){
396 *(uint32_t*)(p + 0 + 0*stride)=
397 *(uint32_t*)(p + 4 + 0*stride)=
398 *(uint32_t*)(p + 0 + 1*stride)=
399 *(uint32_t*)(p + 4 + 1*stride)= size==4 ? val : val*0x01010101;
400 }else if(w==8 && h==4){
401 *(uint64_t*)(p + 0*stride)=
402 *(uint64_t*)(p + 1*stride)=
403 *(uint64_t*)(p + 2*stride)=
404 *(uint64_t*)(p + 3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
405 }else if(w==16 && h==2){
406 *(uint64_t*)(p + 0+0*stride)=
407 *(uint64_t*)(p + 8+0*stride)=
408 *(uint64_t*)(p + 0+1*stride)=
409 *(uint64_t*)(p + 8+1*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
410 }else if(w==16 && h==4){
411 *(uint64_t*)(p + 0+0*stride)=
412 *(uint64_t*)(p + 8+0*stride)=
413 *(uint64_t*)(p + 0+1*stride)=
414 *(uint64_t*)(p + 8+1*stride)=
415 *(uint64_t*)(p + 0+2*stride)=
416 *(uint64_t*)(p + 8+2*stride)=
417 *(uint64_t*)(p + 0+3*stride)=
418 *(uint64_t*)(p + 8+3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
423 static inline void fill_caches(H264Context *h, int mb_type, int for_deblock){
424 MpegEncContext * const s = &h->s;
425 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
426 int topleft_xy, top_xy, topright_xy, left_xy[2];
427 int topleft_type, top_type, topright_type, left_type[2];
431 //wow what a mess, why didnt they simplify the interlacing&intra stuff, i cant imagine that these complex rules are worth it
433 top_xy = mb_xy - s->mb_stride;
434 topleft_xy = top_xy - 1;
435 topright_xy= top_xy + 1;
436 left_xy[1] = left_xy[0] = mb_xy-1;
446 const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
447 const int top_pair_xy = pair_xy - s->mb_stride;
448 const int topleft_pair_xy = top_pair_xy - 1;
449 const int topright_pair_xy = top_pair_xy + 1;
450 const int topleft_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
451 const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
452 const int topright_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
453 const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
454 const int curr_mb_frame_flag = !IS_INTERLACED(mb_type);
455 const int bottom = (s->mb_y & 1);
456 tprintf("fill_caches: curr_mb_frame_flag:%d, left_mb_frame_flag:%d, topleft_mb_frame_flag:%d, top_mb_frame_flag:%d, topright_mb_frame_flag:%d\n", curr_mb_frame_flag, left_mb_frame_flag, topleft_mb_frame_flag, top_mb_frame_flag, topright_mb_frame_flag);
458 ? !curr_mb_frame_flag // bottom macroblock
459 : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
461 top_xy -= s->mb_stride;
464 ? !curr_mb_frame_flag // bottom macroblock
465 : (!curr_mb_frame_flag && !topleft_mb_frame_flag) // top macroblock
467 topleft_xy -= s->mb_stride;
470 ? !curr_mb_frame_flag // bottom macroblock
471 : (!curr_mb_frame_flag && !topright_mb_frame_flag) // top macroblock
473 topright_xy -= s->mb_stride;
475 if (left_mb_frame_flag != curr_mb_frame_flag) {
476 left_xy[1] = left_xy[0] = pair_xy - 1;
477 if (curr_mb_frame_flag) {
498 left_xy[1] += s->mb_stride;
511 h->top_mb_xy = top_xy;
512 h->left_mb_xy[0] = left_xy[0];
513 h->left_mb_xy[1] = left_xy[1];
515 topleft_type = h->slice_table[topleft_xy ] < 255 ? s->current_picture.mb_type[topleft_xy] : 0;
516 top_type = h->slice_table[top_xy ] < 255 ? s->current_picture.mb_type[top_xy] : 0;
517 topright_type= h->slice_table[topright_xy] < 255 ? s->current_picture.mb_type[topright_xy]: 0;
518 left_type[0] = h->slice_table[left_xy[0] ] < 255 ? s->current_picture.mb_type[left_xy[0]] : 0;
519 left_type[1] = h->slice_table[left_xy[1] ] < 255 ? s->current_picture.mb_type[left_xy[1]] : 0;
521 topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
522 top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
523 topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
524 left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
525 left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
528 if(IS_INTRA(mb_type)){
529 h->topleft_samples_available=
530 h->top_samples_available=
531 h->left_samples_available= 0xFFFF;
532 h->topright_samples_available= 0xEEEA;
534 if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
535 h->topleft_samples_available= 0xB3FF;
536 h->top_samples_available= 0x33FF;
537 h->topright_samples_available= 0x26EA;
540 if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
541 h->topleft_samples_available&= 0xDF5F;
542 h->left_samples_available&= 0x5F5F;
546 if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
547 h->topleft_samples_available&= 0x7FFF;
549 if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
550 h->topright_samples_available&= 0xFBFF;
552 if(IS_INTRA4x4(mb_type)){
553 if(IS_INTRA4x4(top_type)){
554 h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
555 h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
556 h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
557 h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
560 if(!top_type || (IS_INTER(top_type) && h->pps.constrained_intra_pred))
565 h->intra4x4_pred_mode_cache[4+8*0]=
566 h->intra4x4_pred_mode_cache[5+8*0]=
567 h->intra4x4_pred_mode_cache[6+8*0]=
568 h->intra4x4_pred_mode_cache[7+8*0]= pred;
571 if(IS_INTRA4x4(left_type[i])){
572 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
573 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
576 if(!left_type[i] || (IS_INTER(left_type[i]) && h->pps.constrained_intra_pred))
581 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
582 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
597 //FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
599 h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4];
600 h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5];
601 h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6];
602 h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
604 h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9];
605 h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
607 h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12];
608 h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
611 h->non_zero_count_cache[4+8*0]=
612 h->non_zero_count_cache[5+8*0]=
613 h->non_zero_count_cache[6+8*0]=
614 h->non_zero_count_cache[7+8*0]=
616 h->non_zero_count_cache[1+8*0]=
617 h->non_zero_count_cache[2+8*0]=
619 h->non_zero_count_cache[1+8*3]=
620 h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
624 for (i=0; i<2; i++) {
626 h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]];
627 h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]];
628 h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]];
629 h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]];
631 h->non_zero_count_cache[3+8*1 + 2*8*i]=
632 h->non_zero_count_cache[3+8*2 + 2*8*i]=
633 h->non_zero_count_cache[0+8*1 + 8*i]=
634 h->non_zero_count_cache[0+8*4 + 8*i]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
641 h->top_cbp = h->cbp_table[top_xy];
642 } else if(IS_INTRA(mb_type)) {
649 h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
650 } else if(IS_INTRA(mb_type)) {
656 h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
659 h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
664 //FIXME direct mb can skip much of this
665 if(IS_INTER(mb_type) || (IS_DIRECT(mb_type) && h->direct_spatial_mv_pred)){
667 for(list=0; list<2; list++){
668 if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !for_deblock){
669 /*if(!h->mv_cache_clean[list]){
670 memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
671 memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
672 h->mv_cache_clean[list]= 1;
676 h->mv_cache_clean[list]= 0;
678 if(IS_INTER(topleft_type)){
679 const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
680 const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + h->b8_stride;
681 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
682 h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
684 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
685 h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
688 if(IS_INTER(top_type)){
689 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
690 const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
691 *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
692 *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
693 *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
694 *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
695 h->ref_cache[list][scan8[0] + 0 - 1*8]=
696 h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
697 h->ref_cache[list][scan8[0] + 2 - 1*8]=
698 h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
700 *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
701 *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
702 *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
703 *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
704 *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
707 if(IS_INTER(topright_type)){
708 const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
709 const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
710 *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
711 h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
713 *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
714 h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
717 //FIXME unify cleanup or sth
718 if(IS_INTER(left_type[0])){
719 const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
720 const int b8_xy= h->mb2b8_xy[left_xy[0]] + 1;
721 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]];
722 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1]];
723 h->ref_cache[list][scan8[0] - 1 + 0*8]=
724 h->ref_cache[list][scan8[0] - 1 + 1*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0]>>1)];
726 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 0*8]=
727 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 1*8]= 0;
728 h->ref_cache[list][scan8[0] - 1 + 0*8]=
729 h->ref_cache[list][scan8[0] - 1 + 1*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
732 if(IS_INTER(left_type[1])){
733 const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
734 const int b8_xy= h->mb2b8_xy[left_xy[1]] + 1;
735 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[2]];
736 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[3]];
737 h->ref_cache[list][scan8[0] - 1 + 2*8]=
738 h->ref_cache[list][scan8[0] - 1 + 3*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[2]>>1)];
740 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 2*8]=
741 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 3*8]= 0;
742 h->ref_cache[list][scan8[0] - 1 + 2*8]=
743 h->ref_cache[list][scan8[0] - 1 + 3*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
749 h->ref_cache[list][scan8[5 ]+1] =
750 h->ref_cache[list][scan8[7 ]+1] =
751 h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewher else)
752 h->ref_cache[list][scan8[4 ]] =
753 h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
754 *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
755 *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
756 *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewher else)
757 *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
758 *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
761 /* XXX beurk, Load mvd */
762 if(IS_INTER(topleft_type)){
763 const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
764 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy];
766 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 - 1*8]= 0;
769 if(IS_INTER(top_type)){
770 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
771 *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
772 *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
773 *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
774 *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
776 *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
777 *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
778 *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
779 *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
781 if(IS_INTER(left_type[0])){
782 const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
783 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
784 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
786 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
787 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
789 if(IS_INTER(left_type[1])){
790 const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
791 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
792 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
794 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
795 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
797 *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
798 *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
799 *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewher else)
800 *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
801 *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
803 if(h->slice_type == B_TYPE){
804 fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
806 if(IS_DIRECT(top_type)){
807 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
808 }else if(IS_8X8(top_type)){
809 int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
810 h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
811 h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
813 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
817 if(IS_DIRECT(left_type[0])){
818 h->direct_cache[scan8[0] - 1 + 0*8]=
819 h->direct_cache[scan8[0] - 1 + 2*8]= 1;
820 }else if(IS_8X8(left_type[0])){
821 int b8_xy = h->mb2b8_xy[left_xy[0]] + 1;
822 h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[b8_xy];
823 h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[b8_xy + h->b8_stride];
825 h->direct_cache[scan8[0] - 1 + 0*8]=
826 h->direct_cache[scan8[0] - 1 + 2*8]= 0;
835 static inline void write_back_intra_pred_mode(H264Context *h){
836 MpegEncContext * const s = &h->s;
837 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
839 h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
840 h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
841 h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
842 h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
843 h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
844 h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
845 h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
849 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
851 static inline int check_intra4x4_pred_mode(H264Context *h){
852 MpegEncContext * const s = &h->s;
853 static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
854 static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
857 if(!(h->top_samples_available&0x8000)){
859 int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
861 av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
864 h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
869 if(!(h->left_samples_available&0x8000)){
871 int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
873 av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
876 h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
882 } //FIXME cleanup like next
885 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
887 static inline int check_intra_pred_mode(H264Context *h, int mode){
888 MpegEncContext * const s = &h->s;
889 static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
890 static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
892 if(mode < 0 || mode > 6) {
893 av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
897 if(!(h->top_samples_available&0x8000)){
900 av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
905 if(!(h->left_samples_available&0x8000)){
908 av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
917 * gets the predicted intra4x4 prediction mode.
919 static inline int pred_intra_mode(H264Context *h, int n){
920 const int index8= scan8[n];
921 const int left= h->intra4x4_pred_mode_cache[index8 - 1];
922 const int top = h->intra4x4_pred_mode_cache[index8 - 8];
923 const int min= FFMIN(left, top);
925 tprintf("mode:%d %d min:%d\n", left ,top, min);
927 if(min<0) return DC_PRED;
931 static inline void write_back_non_zero_count(H264Context *h){
932 MpegEncContext * const s = &h->s;
933 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
935 h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[7+8*1];
936 h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[7+8*2];
937 h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[7+8*3];
938 h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
939 h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[4+8*4];
940 h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[5+8*4];
941 h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[6+8*4];
943 h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[1+8*2];
944 h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
945 h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[2+8*1];
947 h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5];
948 h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
949 h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4];
953 * gets the predicted number of non zero coefficients.
954 * @param n block index
956 static inline int pred_non_zero_count(H264Context *h, int n){
957 const int index8= scan8[n];
958 const int left= h->non_zero_count_cache[index8 - 1];
959 const int top = h->non_zero_count_cache[index8 - 8];
962 if(i<64) i= (i+1)>>1;
964 tprintf("pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
969 static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
970 const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
972 if(topright_ref != PART_NOT_AVAILABLE){
973 *C= h->mv_cache[list][ i - 8 + part_width ];
976 tprintf("topright MV not available\n");
978 *C= h->mv_cache[list][ i - 8 - 1 ];
979 return h->ref_cache[list][ i - 8 - 1 ];
984 * gets the predicted MV.
985 * @param n the block index
986 * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
987 * @param mx the x component of the predicted motion vector
988 * @param my the y component of the predicted motion vector
990 static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
991 const int index8= scan8[n];
992 const int top_ref= h->ref_cache[list][ index8 - 8 ];
993 const int left_ref= h->ref_cache[list][ index8 - 1 ];
994 const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
995 const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
997 int diagonal_ref, match_count;
999 assert(part_width==1 || part_width==2 || part_width==4);
1009 diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
1010 match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
1011 tprintf("pred_motion match_count=%d\n", match_count);
1012 if(match_count > 1){ //most common
1013 *mx= mid_pred(A[0], B[0], C[0]);
1014 *my= mid_pred(A[1], B[1], C[1]);
1015 }else if(match_count==1){
1019 }else if(top_ref==ref){
1027 if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
1031 *mx= mid_pred(A[0], B[0], C[0]);
1032 *my= mid_pred(A[1], B[1], C[1]);
1036 tprintf("pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
1040 * gets the directionally predicted 16x8 MV.
1041 * @param n the block index
1042 * @param mx the x component of the predicted motion vector
1043 * @param my the y component of the predicted motion vector
1045 static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
1047 const int top_ref= h->ref_cache[list][ scan8[0] - 8 ];
1048 const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
1050 tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
1058 const int left_ref= h->ref_cache[list][ scan8[8] - 1 ];
1059 const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
1061 tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
1063 if(left_ref == ref){
1071 pred_motion(h, n, 4, list, ref, mx, my);
1075 * gets the directionally predicted 8x16 MV.
1076 * @param n the block index
1077 * @param mx the x component of the predicted motion vector
1078 * @param my the y component of the predicted motion vector
1080 static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
1082 const int left_ref= h->ref_cache[list][ scan8[0] - 1 ];
1083 const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
1085 tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
1087 if(left_ref == ref){
1096 diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
1098 tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
1100 if(diagonal_ref == ref){
1108 pred_motion(h, n, 2, list, ref, mx, my);
1111 static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
1112 const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
1113 const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
1115 tprintf("pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
1117 if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
1118 || (top_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
1119 || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
1125 pred_motion(h, 0, 4, 0, 0, mx, my);
1130 static inline void direct_dist_scale_factor(H264Context * const h){
1131 const int poc = h->s.current_picture_ptr->poc;
1132 const int poc1 = h->ref_list[1][0].poc;
1134 for(i=0; i<h->ref_count[0]; i++){
1135 int poc0 = h->ref_list[0][i].poc;
1136 int td = clip(poc1 - poc0, -128, 127);
1137 if(td == 0 /* FIXME || pic0 is a long-term ref */){
1138 h->dist_scale_factor[i] = 256;
1140 int tb = clip(poc - poc0, -128, 127);
1141 int tx = (16384 + (ABS(td) >> 1)) / td;
1142 h->dist_scale_factor[i] = clip((tb*tx + 32) >> 6, -1024, 1023);
1146 static inline void direct_ref_list_init(H264Context * const h){
1147 MpegEncContext * const s = &h->s;
1148 Picture * const ref1 = &h->ref_list[1][0];
1149 Picture * const cur = s->current_picture_ptr;
1151 if(cur->pict_type == I_TYPE)
1152 cur->ref_count[0] = 0;
1153 if(cur->pict_type != B_TYPE)
1154 cur->ref_count[1] = 0;
1155 for(list=0; list<2; list++){
1156 cur->ref_count[list] = h->ref_count[list];
1157 for(j=0; j<h->ref_count[list]; j++)
1158 cur->ref_poc[list][j] = h->ref_list[list][j].poc;
1160 if(cur->pict_type != B_TYPE || h->direct_spatial_mv_pred)
1162 for(list=0; list<2; list++){
1163 for(i=0; i<ref1->ref_count[list]; i++){
1164 const int poc = ref1->ref_poc[list][i];
1165 h->map_col_to_list0[list][i] = PART_NOT_AVAILABLE;
1166 for(j=0; j<h->ref_count[list]; j++)
1167 if(h->ref_list[list][j].poc == poc){
1168 h->map_col_to_list0[list][i] = j;
1175 static inline void pred_direct_motion(H264Context * const h, int *mb_type){
1176 MpegEncContext * const s = &h->s;
1177 const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
1178 const int b8_xy = 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1179 const int b4_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1180 const int mb_type_col = h->ref_list[1][0].mb_type[mb_xy];
1181 const int16_t (*l1mv0)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[0][b4_xy];
1182 const int8_t *l1ref0 = &h->ref_list[1][0].ref_index[0][b8_xy];
1183 const int8_t *l1ref1 = &h->ref_list[1][0].ref_index[1][b8_xy];
1184 const int is_b8x8 = IS_8X8(*mb_type);
1188 if(IS_8X8(mb_type_col) && !h->sps.direct_8x8_inference_flag){
1189 /* FIXME save sub mb types from previous frames (or derive from MVs)
1190 * so we know exactly what block size to use */
1191 sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
1192 *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
1193 }else if(!is_b8x8 && (IS_16X16(mb_type_col) || IS_INTRA(mb_type_col))){
1194 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1195 *mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
1197 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1198 *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
1201 *mb_type |= MB_TYPE_DIRECT2;
1203 tprintf("mb_type = %08x, sub_mb_type = %08x, is_b8x8 = %d, mb_type_col = %08x\n", *mb_type, sub_mb_type, is_b8x8, mb_type_col);
1205 if(h->direct_spatial_mv_pred){
1210 /* ref = min(neighbors) */
1211 for(list=0; list<2; list++){
1212 int refa = h->ref_cache[list][scan8[0] - 1];
1213 int refb = h->ref_cache[list][scan8[0] - 8];
1214 int refc = h->ref_cache[list][scan8[0] - 8 + 4];
1216 refc = h->ref_cache[list][scan8[0] - 8 - 1];
1218 if(ref[list] < 0 || (refb < ref[list] && refb >= 0))
1220 if(ref[list] < 0 || (refc < ref[list] && refc >= 0))
1226 if(ref[0] < 0 && ref[1] < 0){
1227 ref[0] = ref[1] = 0;
1228 mv[0][0] = mv[0][1] =
1229 mv[1][0] = mv[1][1] = 0;
1231 for(list=0; list<2; list++){
1233 pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]);
1235 mv[list][0] = mv[list][1] = 0;
1240 *mb_type &= ~MB_TYPE_P0L1;
1241 sub_mb_type &= ~MB_TYPE_P0L1;
1242 }else if(ref[0] < 0){
1243 *mb_type &= ~MB_TYPE_P0L0;
1244 sub_mb_type &= ~MB_TYPE_P0L0;
1247 if(IS_16X16(*mb_type)){
1248 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref[0], 1);
1249 fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, ref[1], 1);
1250 if(!IS_INTRA(mb_type_col) && l1ref0[0] == 0 &&
1251 ABS(l1mv0[0][0]) <= 1 && ABS(l1mv0[0][1]) <= 1){
1253 fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1255 fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
1257 fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1259 fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, 0, 4);
1261 fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1262 fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1265 for(i8=0; i8<4; i8++){
1266 const int x8 = i8&1;
1267 const int y8 = i8>>1;
1269 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1271 h->sub_mb_type[i8] = sub_mb_type;
1273 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1274 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1275 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref[0], 1);
1276 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, ref[1], 1);
1279 if(!IS_INTRA(mb_type_col) && l1ref0[x8 + y8*h->b8_stride] == 0){
1280 for(i4=0; i4<4; i4++){
1281 const int16_t *mv_col = l1mv0[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
1282 if(ABS(mv_col[0]) <= 1 && ABS(mv_col[1]) <= 1){
1284 *(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0;
1286 *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0;
1292 }else{ /* direct temporal mv pred */
1293 if(IS_16X16(*mb_type)){
1294 fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
1295 if(IS_INTRA(mb_type_col)){
1296 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
1297 fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
1298 fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, 0, 4);
1300 const int ref0 = l1ref0[0] >= 0 ? h->map_col_to_list0[0][l1ref0[0]]
1301 : h->map_col_to_list0[1][l1ref1[0]];
1302 const int dist_scale_factor = h->dist_scale_factor[ref0];
1303 const int16_t *mv_col = l1mv0[0];
1305 mv_l0[0] = (dist_scale_factor * mv_col[0] + 128) >> 8;
1306 mv_l0[1] = (dist_scale_factor * mv_col[1] + 128) >> 8;
1307 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref0, 1);
1308 fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv_l0[0],mv_l0[1]), 4);
1309 fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]), 4);
1312 for(i8=0; i8<4; i8++){
1313 const int x8 = i8&1;
1314 const int y8 = i8>>1;
1315 int ref0, dist_scale_factor;
1317 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1319 h->sub_mb_type[i8] = sub_mb_type;
1320 if(IS_INTRA(mb_type_col)){
1321 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
1322 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1323 fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1324 fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1328 ref0 = l1ref0[x8 + y8*h->b8_stride];
1330 ref0 = h->map_col_to_list0[0][ref0];
1332 ref0 = h->map_col_to_list0[1][l1ref1[x8 + y8*h->b8_stride]];
1333 dist_scale_factor = h->dist_scale_factor[ref0];
1335 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
1336 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1337 for(i4=0; i4<4; i4++){
1338 const int16_t *mv_col = l1mv0[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
1339 int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
1340 mv_l0[0] = (dist_scale_factor * mv_col[0] + 128) >> 8;
1341 mv_l0[1] = (dist_scale_factor * mv_col[1] + 128) >> 8;
1342 *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] =
1343 pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
1350 static inline void write_back_motion(H264Context *h, int mb_type){
1351 MpegEncContext * const s = &h->s;
1352 const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1353 const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1356 for(list=0; list<2; list++){
1358 if(!USES_LIST(mb_type, list)){
1359 if(1){ //FIXME skip or never read if mb_type doesnt use it
1361 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]=
1362 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= 0;
1364 if( h->pps.cabac ) {
1365 /* FIXME needed ? */
1367 *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]=
1368 *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= 0;
1372 *(uint16_t*)&s->current_picture.ref_index[list][b8_xy + y*h->b8_stride]= (LIST_NOT_USED&0xFF)*0x0101;
1379 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
1380 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
1382 if( h->pps.cabac ) {
1384 *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
1385 *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
1389 s->current_picture.ref_index[list][b8_xy + 0 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+0 + 16*y];
1390 s->current_picture.ref_index[list][b8_xy + 1 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+2 + 16*y];
1394 if(h->slice_type == B_TYPE && h->pps.cabac){
1395 if(IS_8X8(mb_type)){
1396 h->direct_table[b8_xy+1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
1397 h->direct_table[b8_xy+0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
1398 h->direct_table[b8_xy+1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
1404 * Decodes a network abstraction layer unit.
1405 * @param consumed is the number of bytes used as input
1406 * @param length is the length of the array
1407 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp ttailing?
1408 * @returns decoded bytes, might be src+1 if no escapes
1410 static uint8_t *decode_nal(H264Context *h, uint8_t *src, int *dst_length, int *consumed, int length){
1414 // src[0]&0x80; //forbidden bit
1415 h->nal_ref_idc= src[0]>>5;
1416 h->nal_unit_type= src[0]&0x1F;
1420 for(i=0; i<length; i++)
1421 printf("%2X ", src[i]);
1423 for(i=0; i+1<length; i+=2){
1424 if(src[i]) continue;
1425 if(i>0 && src[i-1]==0) i--;
1426 if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1428 /* startcode, so we must be past the end */
1435 if(i>=length-1){ //no escaped 0
1436 *dst_length= length;
1437 *consumed= length+1; //+1 for the header
1441 h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length);
1442 dst= h->rbsp_buffer;
1444 //printf("deoding esc\n");
1447 //remove escapes (very rare 1:2^22)
1448 if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
1449 if(src[si+2]==3){ //escape
1454 }else //next start code
1458 dst[di++]= src[si++];
1462 *consumed= si + 1;//+1 for the header
1463 //FIXME store exact number of bits in the getbitcontext (its needed for decoding)
1469 * @param src the data which should be escaped
1470 * @param dst the target buffer, dst+1 == src is allowed as a special case
1471 * @param length the length of the src data
1472 * @param dst_length the length of the dst array
1473 * @returns length of escaped data in bytes or -1 if an error occured
1475 static int encode_nal(H264Context *h, uint8_t *dst, uint8_t *src, int length, int dst_length){
1476 int i, escape_count, si, di;
1480 assert(dst_length>0);
1482 dst[0]= (h->nal_ref_idc<<5) + h->nal_unit_type;
1484 if(length==0) return 1;
1487 for(i=0; i<length; i+=2){
1488 if(src[i]) continue;
1489 if(i>0 && src[i-1]==0)
1491 if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1497 if(escape_count==0){
1499 memcpy(dst+1, src, length);
1503 if(length + escape_count + 1> dst_length)
1506 //this should be damn rare (hopefully)
1508 h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length + escape_count);
1509 temp= h->rbsp_buffer;
1510 //printf("encoding esc\n");
1515 if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
1516 temp[di++]= 0; si++;
1517 temp[di++]= 0; si++;
1519 temp[di++]= src[si++];
1522 temp[di++]= src[si++];
1524 memcpy(dst+1, temp, length+escape_count);
1526 assert(di == length+escape_count);
1532 * write 1,10,100,1000,... for alignment, yes its exactly inverse to mpeg4
1534 static void encode_rbsp_trailing(PutBitContext *pb){
1537 length= (-put_bits_count(pb))&7;
1538 if(length) put_bits(pb, length, 0);
1543 * identifies the exact end of the bitstream
1544 * @return the length of the trailing, or 0 if damaged
1546 static int decode_rbsp_trailing(uint8_t *src){
1550 tprintf("rbsp trailing %X\n", v);
1560 * idct tranforms the 16 dc values and dequantize them.
1561 * @param qp quantization parameter
1563 static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp){
1564 const int qmul= dequant_coeff[qp][0];
1567 int temp[16]; //FIXME check if this is a good idea
1568 static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
1569 static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1571 //memset(block, 64, 2*256);
1574 const int offset= y_offset[i];
1575 const int z0= block[offset+stride*0] + block[offset+stride*4];
1576 const int z1= block[offset+stride*0] - block[offset+stride*4];
1577 const int z2= block[offset+stride*1] - block[offset+stride*5];
1578 const int z3= block[offset+stride*1] + block[offset+stride*5];
1587 const int offset= x_offset[i];
1588 const int z0= temp[4*0+i] + temp[4*2+i];
1589 const int z1= temp[4*0+i] - temp[4*2+i];
1590 const int z2= temp[4*1+i] - temp[4*3+i];
1591 const int z3= temp[4*1+i] + temp[4*3+i];
1593 block[stride*0 +offset]= ((z0 + z3)*qmul + 2)>>2; //FIXME think about merging this into decode_resdual
1594 block[stride*2 +offset]= ((z1 + z2)*qmul + 2)>>2;
1595 block[stride*8 +offset]= ((z1 - z2)*qmul + 2)>>2;
1596 block[stride*10+offset]= ((z0 - z3)*qmul + 2)>>2;
1602 * dct tranforms the 16 dc values.
1603 * @param qp quantization parameter ??? FIXME
1605 static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
1606 // const int qmul= dequant_coeff[qp][0];
1608 int temp[16]; //FIXME check if this is a good idea
1609 static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
1610 static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1613 const int offset= y_offset[i];
1614 const int z0= block[offset+stride*0] + block[offset+stride*4];
1615 const int z1= block[offset+stride*0] - block[offset+stride*4];
1616 const int z2= block[offset+stride*1] - block[offset+stride*5];
1617 const int z3= block[offset+stride*1] + block[offset+stride*5];
1626 const int offset= x_offset[i];
1627 const int z0= temp[4*0+i] + temp[4*2+i];
1628 const int z1= temp[4*0+i] - temp[4*2+i];
1629 const int z2= temp[4*1+i] - temp[4*3+i];
1630 const int z3= temp[4*1+i] + temp[4*3+i];
1632 block[stride*0 +offset]= (z0 + z3)>>1;
1633 block[stride*2 +offset]= (z1 + z2)>>1;
1634 block[stride*8 +offset]= (z1 - z2)>>1;
1635 block[stride*10+offset]= (z0 - z3)>>1;
1643 static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp){
1644 const int qmul= dequant_coeff[qp][0];
1645 const int stride= 16*2;
1646 const int xStride= 16;
1649 a= block[stride*0 + xStride*0];
1650 b= block[stride*0 + xStride*1];
1651 c= block[stride*1 + xStride*0];
1652 d= block[stride*1 + xStride*1];
1659 block[stride*0 + xStride*0]= ((a+c)*qmul + 0)>>1;
1660 block[stride*0 + xStride*1]= ((e+b)*qmul + 0)>>1;
1661 block[stride*1 + xStride*0]= ((a-c)*qmul + 0)>>1;
1662 block[stride*1 + xStride*1]= ((e-b)*qmul + 0)>>1;
1666 static void chroma_dc_dct_c(DCTELEM *block){
1667 const int stride= 16*2;
1668 const int xStride= 16;
1671 a= block[stride*0 + xStride*0];
1672 b= block[stride*0 + xStride*1];
1673 c= block[stride*1 + xStride*0];
1674 d= block[stride*1 + xStride*1];
1681 block[stride*0 + xStride*0]= (a+c);
1682 block[stride*0 + xStride*1]= (e+b);
1683 block[stride*1 + xStride*0]= (a-c);
1684 block[stride*1 + xStride*1]= (e-b);
1689 * gets the chroma qp.
1691 static inline int get_chroma_qp(int chroma_qp_index_offset, int qscale){
1693 return chroma_qp[clip(qscale + chroma_qp_index_offset, 0, 51)];
1698 static void h264_diff_dct_c(DCTELEM *block, uint8_t *src1, uint8_t *src2, int stride){
1700 //FIXME try int temp instead of block
1703 const int d0= src1[0 + i*stride] - src2[0 + i*stride];
1704 const int d1= src1[1 + i*stride] - src2[1 + i*stride];
1705 const int d2= src1[2 + i*stride] - src2[2 + i*stride];
1706 const int d3= src1[3 + i*stride] - src2[3 + i*stride];
1707 const int z0= d0 + d3;
1708 const int z3= d0 - d3;
1709 const int z1= d1 + d2;
1710 const int z2= d1 - d2;
1712 block[0 + 4*i]= z0 + z1;
1713 block[1 + 4*i]= 2*z3 + z2;
1714 block[2 + 4*i]= z0 - z1;
1715 block[3 + 4*i]= z3 - 2*z2;
1719 const int z0= block[0*4 + i] + block[3*4 + i];
1720 const int z3= block[0*4 + i] - block[3*4 + i];
1721 const int z1= block[1*4 + i] + block[2*4 + i];
1722 const int z2= block[1*4 + i] - block[2*4 + i];
1724 block[0*4 + i]= z0 + z1;
1725 block[1*4 + i]= 2*z3 + z2;
1726 block[2*4 + i]= z0 - z1;
1727 block[3*4 + i]= z3 - 2*z2;
1732 //FIXME need to check that this doesnt overflow signed 32 bit for low qp, iam not sure, its very close
1733 //FIXME check that gcc inlines this (and optimizes intra & seperate_dc stuff away)
1734 static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int seperate_dc){
1736 const int * const quant_table= quant_coeff[qscale];
1737 const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
1738 const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
1739 const unsigned int threshold2= (threshold1<<1);
1745 const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
1746 const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
1747 const unsigned int dc_threshold2= (dc_threshold1<<1);
1749 int level= block[0]*quant_coeff[qscale+18][0];
1750 if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1752 level= (dc_bias + level)>>(QUANT_SHIFT-2);
1755 level= (dc_bias - level)>>(QUANT_SHIFT-2);
1758 // last_non_zero = i;
1763 const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
1764 const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
1765 const unsigned int dc_threshold2= (dc_threshold1<<1);
1767 int level= block[0]*quant_table[0];
1768 if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1770 level= (dc_bias + level)>>(QUANT_SHIFT+1);
1773 level= (dc_bias - level)>>(QUANT_SHIFT+1);
1776 // last_non_zero = i;
1789 const int j= scantable[i];
1790 int level= block[j]*quant_table[j];
1792 // if( bias+level >= (1<<(QMAT_SHIFT - 3))
1793 // || bias-level >= (1<<(QMAT_SHIFT - 3))){
1794 if(((unsigned)(level+threshold1))>threshold2){
1796 level= (bias + level)>>QUANT_SHIFT;
1799 level= (bias - level)>>QUANT_SHIFT;
1808 return last_non_zero;
1811 static void pred4x4_vertical_c(uint8_t *src, uint8_t *topright, int stride){
1812 const uint32_t a= ((uint32_t*)(src-stride))[0];
1813 ((uint32_t*)(src+0*stride))[0]= a;
1814 ((uint32_t*)(src+1*stride))[0]= a;
1815 ((uint32_t*)(src+2*stride))[0]= a;
1816 ((uint32_t*)(src+3*stride))[0]= a;
1819 static void pred4x4_horizontal_c(uint8_t *src, uint8_t *topright, int stride){
1820 ((uint32_t*)(src+0*stride))[0]= src[-1+0*stride]*0x01010101;
1821 ((uint32_t*)(src+1*stride))[0]= src[-1+1*stride]*0x01010101;
1822 ((uint32_t*)(src+2*stride))[0]= src[-1+2*stride]*0x01010101;
1823 ((uint32_t*)(src+3*stride))[0]= src[-1+3*stride]*0x01010101;
1826 static void pred4x4_dc_c(uint8_t *src, uint8_t *topright, int stride){
1827 const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride]
1828 + src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 4) >>3;
1830 ((uint32_t*)(src+0*stride))[0]=
1831 ((uint32_t*)(src+1*stride))[0]=
1832 ((uint32_t*)(src+2*stride))[0]=
1833 ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
1836 static void pred4x4_left_dc_c(uint8_t *src, uint8_t *topright, int stride){
1837 const int dc= ( src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 2) >>2;
1839 ((uint32_t*)(src+0*stride))[0]=
1840 ((uint32_t*)(src+1*stride))[0]=
1841 ((uint32_t*)(src+2*stride))[0]=
1842 ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
1845 static void pred4x4_top_dc_c(uint8_t *src, uint8_t *topright, int stride){
1846 const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride] + 2) >>2;
1848 ((uint32_t*)(src+0*stride))[0]=
1849 ((uint32_t*)(src+1*stride))[0]=
1850 ((uint32_t*)(src+2*stride))[0]=
1851 ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
1854 static void pred4x4_128_dc_c(uint8_t *src, uint8_t *topright, int stride){
1855 ((uint32_t*)(src+0*stride))[0]=
1856 ((uint32_t*)(src+1*stride))[0]=
1857 ((uint32_t*)(src+2*stride))[0]=
1858 ((uint32_t*)(src+3*stride))[0]= 128U*0x01010101U;
1862 #define LOAD_TOP_RIGHT_EDGE\
1863 const int t4= topright[0];\
1864 const int t5= topright[1];\
1865 const int t6= topright[2];\
1866 const int t7= topright[3];\
1868 #define LOAD_LEFT_EDGE\
1869 const int l0= src[-1+0*stride];\
1870 const int l1= src[-1+1*stride];\
1871 const int l2= src[-1+2*stride];\
1872 const int l3= src[-1+3*stride];\
1874 #define LOAD_TOP_EDGE\
1875 const int t0= src[ 0-1*stride];\
1876 const int t1= src[ 1-1*stride];\
1877 const int t2= src[ 2-1*stride];\
1878 const int t3= src[ 3-1*stride];\
1880 static void pred4x4_down_right_c(uint8_t *src, uint8_t *topright, int stride){
1881 const int lt= src[-1-1*stride];
1885 src[0+3*stride]=(l3 + 2*l2 + l1 + 2)>>2;
1887 src[1+3*stride]=(l2 + 2*l1 + l0 + 2)>>2;
1890 src[2+3*stride]=(l1 + 2*l0 + lt + 2)>>2;
1894 src[3+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
1897 src[3+2*stride]=(lt + 2*t0 + t1 + 2)>>2;
1899 src[3+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1900 src[3+0*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1903 static void pred4x4_down_left_c(uint8_t *src, uint8_t *topright, int stride){
1908 src[0+0*stride]=(t0 + t2 + 2*t1 + 2)>>2;
1910 src[0+1*stride]=(t1 + t3 + 2*t2 + 2)>>2;
1913 src[0+2*stride]=(t2 + t4 + 2*t3 + 2)>>2;
1917 src[0+3*stride]=(t3 + t5 + 2*t4 + 2)>>2;
1920 src[1+3*stride]=(t4 + t6 + 2*t5 + 2)>>2;
1922 src[2+3*stride]=(t5 + t7 + 2*t6 + 2)>>2;
1923 src[3+3*stride]=(t6 + 3*t7 + 2)>>2;
1926 static void pred4x4_vertical_right_c(uint8_t *src, uint8_t *topright, int stride){
1927 const int lt= src[-1-1*stride];
1930 const __attribute__((unused)) int unu= l3;
1933 src[1+2*stride]=(lt + t0 + 1)>>1;
1935 src[2+2*stride]=(t0 + t1 + 1)>>1;
1937 src[3+2*stride]=(t1 + t2 + 1)>>1;
1938 src[3+0*stride]=(t2 + t3 + 1)>>1;
1940 src[1+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
1942 src[2+3*stride]=(lt + 2*t0 + t1 + 2)>>2;
1944 src[3+3*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1945 src[3+1*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1946 src[0+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
1947 src[0+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
1950 static void pred4x4_vertical_left_c(uint8_t *src, uint8_t *topright, int stride){
1953 const __attribute__((unused)) int unu= t7;
1955 src[0+0*stride]=(t0 + t1 + 1)>>1;
1957 src[0+2*stride]=(t1 + t2 + 1)>>1;
1959 src[1+2*stride]=(t2 + t3 + 1)>>1;
1961 src[2+2*stride]=(t3 + t4+ 1)>>1;
1962 src[3+2*stride]=(t4 + t5+ 1)>>1;
1963 src[0+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1965 src[0+3*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1967 src[1+3*stride]=(t2 + 2*t3 + t4 + 2)>>2;
1969 src[2+3*stride]=(t3 + 2*t4 + t5 + 2)>>2;
1970 src[3+3*stride]=(t4 + 2*t5 + t6 + 2)>>2;
1973 static void pred4x4_horizontal_up_c(uint8_t *src, uint8_t *topright, int stride){
1976 src[0+0*stride]=(l0 + l1 + 1)>>1;
1977 src[1+0*stride]=(l0 + 2*l1 + l2 + 2)>>2;
1979 src[0+1*stride]=(l1 + l2 + 1)>>1;
1981 src[1+1*stride]=(l1 + 2*l2 + l3 + 2)>>2;
1983 src[0+2*stride]=(l2 + l3 + 1)>>1;
1985 src[1+2*stride]=(l2 + 2*l3 + l3 + 2)>>2;
1994 static void pred4x4_horizontal_down_c(uint8_t *src, uint8_t *topright, int stride){
1995 const int lt= src[-1-1*stride];
1998 const __attribute__((unused)) int unu= t3;
2001 src[2+1*stride]=(lt + l0 + 1)>>1;
2003 src[3+1*stride]=(l0 + 2*lt + t0 + 2)>>2;
2004 src[2+0*stride]=(lt + 2*t0 + t1 + 2)>>2;
2005 src[3+0*stride]=(t0 + 2*t1 + t2 + 2)>>2;
2007 src[2+2*stride]=(l0 + l1 + 1)>>1;
2009 src[3+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
2011 src[2+3*stride]=(l1 + l2+ 1)>>1;
2013 src[3+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
2014 src[0+3*stride]=(l2 + l3 + 1)>>1;
2015 src[1+3*stride]=(l1 + 2*l2 + l3 + 2)>>2;
2018 static void pred16x16_vertical_c(uint8_t *src, int stride){
2020 const uint32_t a= ((uint32_t*)(src-stride))[0];
2021 const uint32_t b= ((uint32_t*)(src-stride))[1];
2022 const uint32_t c= ((uint32_t*)(src-stride))[2];
2023 const uint32_t d= ((uint32_t*)(src-stride))[3];
2025 for(i=0; i<16; i++){
2026 ((uint32_t*)(src+i*stride))[0]= a;
2027 ((uint32_t*)(src+i*stride))[1]= b;
2028 ((uint32_t*)(src+i*stride))[2]= c;
2029 ((uint32_t*)(src+i*stride))[3]= d;
2033 static void pred16x16_horizontal_c(uint8_t *src, int stride){
2036 for(i=0; i<16; i++){
2037 ((uint32_t*)(src+i*stride))[0]=
2038 ((uint32_t*)(src+i*stride))[1]=
2039 ((uint32_t*)(src+i*stride))[2]=
2040 ((uint32_t*)(src+i*stride))[3]= src[-1+i*stride]*0x01010101;
2044 static void pred16x16_dc_c(uint8_t *src, int stride){
2048 dc+= src[-1+i*stride];
2055 dc= 0x01010101*((dc + 16)>>5);
2057 for(i=0; i<16; i++){
2058 ((uint32_t*)(src+i*stride))[0]=
2059 ((uint32_t*)(src+i*stride))[1]=
2060 ((uint32_t*)(src+i*stride))[2]=
2061 ((uint32_t*)(src+i*stride))[3]= dc;
2065 static void pred16x16_left_dc_c(uint8_t *src, int stride){
2069 dc+= src[-1+i*stride];
2072 dc= 0x01010101*((dc + 8)>>4);
2074 for(i=0; i<16; i++){
2075 ((uint32_t*)(src+i*stride))[0]=
2076 ((uint32_t*)(src+i*stride))[1]=
2077 ((uint32_t*)(src+i*stride))[2]=
2078 ((uint32_t*)(src+i*stride))[3]= dc;
2082 static void pred16x16_top_dc_c(uint8_t *src, int stride){
2088 dc= 0x01010101*((dc + 8)>>4);
2090 for(i=0; i<16; i++){
2091 ((uint32_t*)(src+i*stride))[0]=
2092 ((uint32_t*)(src+i*stride))[1]=
2093 ((uint32_t*)(src+i*stride))[2]=
2094 ((uint32_t*)(src+i*stride))[3]= dc;
2098 static void pred16x16_128_dc_c(uint8_t *src, int stride){
2101 for(i=0; i<16; i++){
2102 ((uint32_t*)(src+i*stride))[0]=
2103 ((uint32_t*)(src+i*stride))[1]=
2104 ((uint32_t*)(src+i*stride))[2]=
2105 ((uint32_t*)(src+i*stride))[3]= 0x01010101U*128U;
2109 static inline void pred16x16_plane_compat_c(uint8_t *src, int stride, const int svq3){
2112 uint8_t *cm = cropTbl + MAX_NEG_CROP;
2113 const uint8_t * const src0 = src+7-stride;
2114 const uint8_t *src1 = src+8*stride-1;
2115 const uint8_t *src2 = src1-2*stride; // == src+6*stride-1;
2116 int H = src0[1] - src0[-1];
2117 int V = src1[0] - src2[ 0];
2118 for(k=2; k<=8; ++k) {
2119 src1 += stride; src2 -= stride;
2120 H += k*(src0[k] - src0[-k]);
2121 V += k*(src1[0] - src2[ 0]);
2124 H = ( 5*(H/4) ) / 16;
2125 V = ( 5*(V/4) ) / 16;
2127 /* required for 100% accuracy */
2128 i = H; H = V; V = i;
2130 H = ( 5*H+32 ) >> 6;
2131 V = ( 5*V+32 ) >> 6;
2134 a = 16*(src1[0] + src2[16] + 1) - 7*(V+H);
2135 for(j=16; j>0; --j) {
2138 for(i=-16; i<0; i+=4) {
2139 src[16+i] = cm[ (b ) >> 5 ];
2140 src[17+i] = cm[ (b+ H) >> 5 ];
2141 src[18+i] = cm[ (b+2*H) >> 5 ];
2142 src[19+i] = cm[ (b+3*H) >> 5 ];
2149 static void pred16x16_plane_c(uint8_t *src, int stride){
2150 pred16x16_plane_compat_c(src, stride, 0);
2153 static void pred8x8_vertical_c(uint8_t *src, int stride){
2155 const uint32_t a= ((uint32_t*)(src-stride))[0];
2156 const uint32_t b= ((uint32_t*)(src-stride))[1];
2159 ((uint32_t*)(src+i*stride))[0]= a;
2160 ((uint32_t*)(src+i*stride))[1]= b;
2164 static void pred8x8_horizontal_c(uint8_t *src, int stride){
2168 ((uint32_t*)(src+i*stride))[0]=
2169 ((uint32_t*)(src+i*stride))[1]= src[-1+i*stride]*0x01010101;
2173 static void pred8x8_128_dc_c(uint8_t *src, int stride){
2177 ((uint32_t*)(src+i*stride))[0]=
2178 ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
2181 ((uint32_t*)(src+i*stride))[0]=
2182 ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
2186 static void pred8x8_left_dc_c(uint8_t *src, int stride){
2192 dc0+= src[-1+i*stride];
2193 dc2+= src[-1+(i+4)*stride];
2195 dc0= 0x01010101*((dc0 + 2)>>2);
2196 dc2= 0x01010101*((dc2 + 2)>>2);
2199 ((uint32_t*)(src+i*stride))[0]=
2200 ((uint32_t*)(src+i*stride))[1]= dc0;
2203 ((uint32_t*)(src+i*stride))[0]=
2204 ((uint32_t*)(src+i*stride))[1]= dc2;
2208 static void pred8x8_top_dc_c(uint8_t *src, int stride){
2214 dc0+= src[i-stride];
2215 dc1+= src[4+i-stride];
2217 dc0= 0x01010101*((dc0 + 2)>>2);
2218 dc1= 0x01010101*((dc1 + 2)>>2);
2221 ((uint32_t*)(src+i*stride))[0]= dc0;
2222 ((uint32_t*)(src+i*stride))[1]= dc1;
2225 ((uint32_t*)(src+i*stride))[0]= dc0;
2226 ((uint32_t*)(src+i*stride))[1]= dc1;
2231 static void pred8x8_dc_c(uint8_t *src, int stride){
2233 int dc0, dc1, dc2, dc3;
2237 dc0+= src[-1+i*stride] + src[i-stride];
2238 dc1+= src[4+i-stride];
2239 dc2+= src[-1+(i+4)*stride];
2241 dc3= 0x01010101*((dc1 + dc2 + 4)>>3);
2242 dc0= 0x01010101*((dc0 + 4)>>3);
2243 dc1= 0x01010101*((dc1 + 2)>>2);
2244 dc2= 0x01010101*((dc2 + 2)>>2);
2247 ((uint32_t*)(src+i*stride))[0]= dc0;
2248 ((uint32_t*)(src+i*stride))[1]= dc1;
2251 ((uint32_t*)(src+i*stride))[0]= dc2;
2252 ((uint32_t*)(src+i*stride))[1]= dc3;
2256 static void pred8x8_plane_c(uint8_t *src, int stride){
2259 uint8_t *cm = cropTbl + MAX_NEG_CROP;
2260 const uint8_t * const src0 = src+3-stride;
2261 const uint8_t *src1 = src+4*stride-1;
2262 const uint8_t *src2 = src1-2*stride; // == src+2*stride-1;
2263 int H = src0[1] - src0[-1];
2264 int V = src1[0] - src2[ 0];
2265 for(k=2; k<=4; ++k) {
2266 src1 += stride; src2 -= stride;
2267 H += k*(src0[k] - src0[-k]);
2268 V += k*(src1[0] - src2[ 0]);
2270 H = ( 17*H+16 ) >> 5;
2271 V = ( 17*V+16 ) >> 5;
2273 a = 16*(src1[0] + src2[8]+1) - 3*(V+H);
2274 for(j=8; j>0; --j) {
2277 src[0] = cm[ (b ) >> 5 ];
2278 src[1] = cm[ (b+ H) >> 5 ];
2279 src[2] = cm[ (b+2*H) >> 5 ];
2280 src[3] = cm[ (b+3*H) >> 5 ];
2281 src[4] = cm[ (b+4*H) >> 5 ];
2282 src[5] = cm[ (b+5*H) >> 5 ];
2283 src[6] = cm[ (b+6*H) >> 5 ];
2284 src[7] = cm[ (b+7*H) >> 5 ];
2289 static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
2290 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2291 int src_x_offset, int src_y_offset,
2292 qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
2293 MpegEncContext * const s = &h->s;
2294 const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
2295 const int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
2296 const int luma_xy= (mx&3) + ((my&3)<<2);
2297 uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*s->linesize;
2298 uint8_t * src_cb= pic->data[1] + (mx>>3) + (my>>3)*s->uvlinesize;
2299 uint8_t * src_cr= pic->data[2] + (mx>>3) + (my>>3)*s->uvlinesize;
2300 int extra_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16; //FIXME increase edge?, IMHO not worth it
2301 int extra_height= extra_width;
2303 const int full_mx= mx>>2;
2304 const int full_my= my>>2;
2306 assert(pic->data[0]);
2308 if(mx&7) extra_width -= 3;
2309 if(my&7) extra_height -= 3;
2311 if( full_mx < 0-extra_width
2312 || full_my < 0-extra_height
2313 || full_mx + 16/*FIXME*/ > s->width + extra_width
2314 || full_my + 16/*FIXME*/ > s->height + extra_height){
2315 ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*s->linesize, s->linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, s->width, s->height);
2316 src_y= s->edge_emu_buffer + 2 + 2*s->linesize;
2320 qpix_op[luma_xy](dest_y, src_y, s->linesize); //FIXME try variable height perhaps?
2322 qpix_op[luma_xy](dest_y + delta, src_y + delta, s->linesize);
2325 if(s->flags&CODEC_FLAG_GRAY) return;
2328 ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), s->width>>1, s->height>>1);
2329 src_cb= s->edge_emu_buffer;
2331 chroma_op(dest_cb, src_cb, s->uvlinesize, chroma_height, mx&7, my&7);
2334 ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), s->width>>1, s->height>>1);
2335 src_cr= s->edge_emu_buffer;
2337 chroma_op(dest_cr, src_cr, s->uvlinesize, chroma_height, mx&7, my&7);
2340 static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
2341 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2342 int x_offset, int y_offset,
2343 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
2344 qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
2345 int list0, int list1){
2346 MpegEncContext * const s = &h->s;
2347 qpel_mc_func *qpix_op= qpix_put;
2348 h264_chroma_mc_func chroma_op= chroma_put;
2350 dest_y += 2*x_offset + 2*y_offset*s-> linesize;
2351 dest_cb += x_offset + y_offset*s->uvlinesize;
2352 dest_cr += x_offset + y_offset*s->uvlinesize;
2353 x_offset += 8*s->mb_x;
2354 y_offset += 8*s->mb_y;
2357 Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
2358 mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
2359 dest_y, dest_cb, dest_cr, x_offset, y_offset,
2360 qpix_op, chroma_op);
2363 chroma_op= chroma_avg;
2367 Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
2368 mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
2369 dest_y, dest_cb, dest_cr, x_offset, y_offset,
2370 qpix_op, chroma_op);
2374 static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
2375 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2376 int x_offset, int y_offset,
2377 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
2378 h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
2379 h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
2380 int list0, int list1){
2381 MpegEncContext * const s = &h->s;
2383 dest_y += 2*x_offset + 2*y_offset*s-> linesize;
2384 dest_cb += x_offset + y_offset*s->uvlinesize;
2385 dest_cr += x_offset + y_offset*s->uvlinesize;
2386 x_offset += 8*s->mb_x;
2387 y_offset += 8*s->mb_y;
2390 /* don't optimize for luma-only case, since B-frames usually
2391 * use implicit weights => chroma too. */
2392 uint8_t *tmp_cb = s->obmc_scratchpad;
2393 uint8_t *tmp_cr = tmp_cb + 8*s->uvlinesize;
2394 uint8_t *tmp_y = tmp_cr + 8*s->uvlinesize;
2395 int refn0 = h->ref_cache[0][ scan8[n] ];
2396 int refn1 = h->ref_cache[1][ scan8[n] ];
2398 mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
2399 dest_y, dest_cb, dest_cr,
2400 x_offset, y_offset, qpix_put, chroma_put);
2401 mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
2402 tmp_y, tmp_cb, tmp_cr,
2403 x_offset, y_offset, qpix_put, chroma_put);
2405 if(h->use_weight == 2){
2406 int weight0 = h->implicit_weight[refn0][refn1];
2407 int weight1 = 64 - weight0;
2408 luma_weight_avg( dest_y, tmp_y, s-> linesize, 5, weight0, weight1, 0, 0);
2409 chroma_weight_avg(dest_cb, tmp_cb, s->uvlinesize, 5, weight0, weight1, 0, 0);
2410 chroma_weight_avg(dest_cr, tmp_cr, s->uvlinesize, 5, weight0, weight1, 0, 0);
2412 luma_weight_avg(dest_y, tmp_y, s->linesize, h->luma_log2_weight_denom,
2413 h->luma_weight[0][refn0], h->luma_weight[1][refn1],
2414 h->luma_offset[0][refn0], h->luma_offset[1][refn1]);
2415 chroma_weight_avg(dest_cb, tmp_cb, s->uvlinesize, h->chroma_log2_weight_denom,
2416 h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0],
2417 h->chroma_offset[0][refn0][0], h->chroma_offset[1][refn1][0]);
2418 chroma_weight_avg(dest_cr, tmp_cr, s->uvlinesize, h->chroma_log2_weight_denom,
2419 h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1],
2420 h->chroma_offset[0][refn0][1], h->chroma_offset[1][refn1][1]);
2423 int list = list1 ? 1 : 0;
2424 int refn = h->ref_cache[list][ scan8[n] ];
2425 Picture *ref= &h->ref_list[list][refn];
2426 mc_dir_part(h, ref, n, square, chroma_height, delta, list,
2427 dest_y, dest_cb, dest_cr, x_offset, y_offset,
2428 qpix_put, chroma_put);
2430 luma_weight_op(dest_y, s->linesize, h->luma_log2_weight_denom,
2431 h->luma_weight[list][refn], h->luma_offset[list][refn]);
2432 if(h->use_weight_chroma){
2433 chroma_weight_op(dest_cb, s->uvlinesize, h->chroma_log2_weight_denom,
2434 h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]);
2435 chroma_weight_op(dest_cr, s->uvlinesize, h->chroma_log2_weight_denom,
2436 h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]);
2441 static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
2442 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2443 int x_offset, int y_offset,
2444 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
2445 qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
2446 h264_weight_func *weight_op, h264_biweight_func *weight_avg,
2447 int list0, int list1){
2448 if((h->use_weight==2 && list0 && list1
2449 && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32))
2450 || h->use_weight==1)
2451 mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
2452 x_offset, y_offset, qpix_put, chroma_put,
2453 weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
2455 mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
2456 x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
2459 static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2460 qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
2461 qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
2462 h264_weight_func *weight_op, h264_biweight_func *weight_avg){
2463 MpegEncContext * const s = &h->s;
2464 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
2465 const int mb_type= s->current_picture.mb_type[mb_xy];
2467 assert(IS_INTER(mb_type));
2469 if(IS_16X16(mb_type)){
2470 mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
2471 qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
2472 &weight_op[0], &weight_avg[0],
2473 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
2474 }else if(IS_16X8(mb_type)){
2475 mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
2476 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
2477 &weight_op[1], &weight_avg[1],
2478 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
2479 mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
2480 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
2481 &weight_op[1], &weight_avg[1],
2482 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
2483 }else if(IS_8X16(mb_type)){
2484 mc_part(h, 0, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 0, 0,
2485 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
2486 &weight_op[2], &weight_avg[2],
2487 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
2488 mc_part(h, 4, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 4, 0,
2489 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
2490 &weight_op[2], &weight_avg[2],
2491 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
2495 assert(IS_8X8(mb_type));
2498 const int sub_mb_type= h->sub_mb_type[i];
2500 int x_offset= (i&1)<<2;
2501 int y_offset= (i&2)<<1;
2503 if(IS_SUB_8X8(sub_mb_type)){
2504 mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
2505 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
2506 &weight_op[3], &weight_avg[3],
2507 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2508 }else if(IS_SUB_8X4(sub_mb_type)){
2509 mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
2510 qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
2511 &weight_op[4], &weight_avg[4],
2512 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2513 mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
2514 qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
2515 &weight_op[4], &weight_avg[4],
2516 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2517 }else if(IS_SUB_4X8(sub_mb_type)){
2518 mc_part(h, n , 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
2519 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2520 &weight_op[5], &weight_avg[5],
2521 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2522 mc_part(h, n+1, 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
2523 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2524 &weight_op[5], &weight_avg[5],
2525 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2528 assert(IS_SUB_4X4(sub_mb_type));
2530 int sub_x_offset= x_offset + 2*(j&1);
2531 int sub_y_offset= y_offset + (j&2);
2532 mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
2533 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2534 &weight_op[6], &weight_avg[6],
2535 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2542 static void decode_init_vlc(H264Context *h){
2543 static int done = 0;
2549 init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
2550 &chroma_dc_coeff_token_len [0], 1, 1,
2551 &chroma_dc_coeff_token_bits[0], 1, 1, 1);
2554 init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
2555 &coeff_token_len [i][0], 1, 1,
2556 &coeff_token_bits[i][0], 1, 1, 1);
2560 init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
2561 &chroma_dc_total_zeros_len [i][0], 1, 1,
2562 &chroma_dc_total_zeros_bits[i][0], 1, 1, 1);
2564 for(i=0; i<15; i++){
2565 init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16,
2566 &total_zeros_len [i][0], 1, 1,
2567 &total_zeros_bits[i][0], 1, 1, 1);
2571 init_vlc(&run_vlc[i], RUN_VLC_BITS, 7,
2572 &run_len [i][0], 1, 1,
2573 &run_bits[i][0], 1, 1, 1);
2575 init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
2576 &run_len [6][0], 1, 1,
2577 &run_bits[6][0], 1, 1, 1);
2582 * Sets the intra prediction function pointers.
2584 static void init_pred_ptrs(H264Context *h){
2585 // MpegEncContext * const s = &h->s;
2587 h->pred4x4[VERT_PRED ]= pred4x4_vertical_c;
2588 h->pred4x4[HOR_PRED ]= pred4x4_horizontal_c;
2589 h->pred4x4[DC_PRED ]= pred4x4_dc_c;
2590 h->pred4x4[DIAG_DOWN_LEFT_PRED ]= pred4x4_down_left_c;
2591 h->pred4x4[DIAG_DOWN_RIGHT_PRED]= pred4x4_down_right_c;
2592 h->pred4x4[VERT_RIGHT_PRED ]= pred4x4_vertical_right_c;
2593 h->pred4x4[HOR_DOWN_PRED ]= pred4x4_horizontal_down_c;
2594 h->pred4x4[VERT_LEFT_PRED ]= pred4x4_vertical_left_c;
2595 h->pred4x4[HOR_UP_PRED ]= pred4x4_horizontal_up_c;
2596 h->pred4x4[LEFT_DC_PRED ]= pred4x4_left_dc_c;
2597 h->pred4x4[TOP_DC_PRED ]= pred4x4_top_dc_c;
2598 h->pred4x4[DC_128_PRED ]= pred4x4_128_dc_c;
2600 h->pred8x8[DC_PRED8x8 ]= pred8x8_dc_c;
2601 h->pred8x8[VERT_PRED8x8 ]= pred8x8_vertical_c;
2602 h->pred8x8[HOR_PRED8x8 ]= pred8x8_horizontal_c;
2603 h->pred8x8[PLANE_PRED8x8 ]= pred8x8_plane_c;
2604 h->pred8x8[LEFT_DC_PRED8x8]= pred8x8_left_dc_c;
2605 h->pred8x8[TOP_DC_PRED8x8 ]= pred8x8_top_dc_c;
2606 h->pred8x8[DC_128_PRED8x8 ]= pred8x8_128_dc_c;
2608 h->pred16x16[DC_PRED8x8 ]= pred16x16_dc_c;
2609 h->pred16x16[VERT_PRED8x8 ]= pred16x16_vertical_c;
2610 h->pred16x16[HOR_PRED8x8 ]= pred16x16_horizontal_c;
2611 h->pred16x16[PLANE_PRED8x8 ]= pred16x16_plane_c;
2612 h->pred16x16[LEFT_DC_PRED8x8]= pred16x16_left_dc_c;
2613 h->pred16x16[TOP_DC_PRED8x8 ]= pred16x16_top_dc_c;
2614 h->pred16x16[DC_128_PRED8x8 ]= pred16x16_128_dc_c;
2617 static void free_tables(H264Context *h){
2618 av_freep(&h->intra4x4_pred_mode);
2619 av_freep(&h->chroma_pred_mode_table);
2620 av_freep(&h->cbp_table);
2621 av_freep(&h->mvd_table[0]);
2622 av_freep(&h->mvd_table[1]);
2623 av_freep(&h->direct_table);
2624 av_freep(&h->non_zero_count);
2625 av_freep(&h->slice_table_base);
2626 av_freep(&h->top_borders[1]);
2627 av_freep(&h->top_borders[0]);
2628 h->slice_table= NULL;
2630 av_freep(&h->mb2b_xy);
2631 av_freep(&h->mb2b8_xy);
2633 av_freep(&h->s.obmc_scratchpad);
2638 * needs widzh/height
2640 static int alloc_tables(H264Context *h){
2641 MpegEncContext * const s = &h->s;
2642 const int big_mb_num= s->mb_stride * (s->mb_height+1);
2645 CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t))
2647 CHECKED_ALLOCZ(h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t))
2648 CHECKED_ALLOCZ(h->slice_table_base , big_mb_num * sizeof(uint8_t))
2649 CHECKED_ALLOCZ(h->top_borders[0] , s->mb_width * (16+8+8) * sizeof(uint8_t))
2650 CHECKED_ALLOCZ(h->top_borders[1] , s->mb_width * (16+8+8) * sizeof(uint8_t))
2651 CHECKED_ALLOCZ(h->cbp_table, big_mb_num * sizeof(uint16_t))
2653 if( h->pps.cabac ) {
2654 CHECKED_ALLOCZ(h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t))
2655 CHECKED_ALLOCZ(h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t));
2656 CHECKED_ALLOCZ(h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t));
2657 CHECKED_ALLOCZ(h->direct_table, 32*big_mb_num * sizeof(uint8_t));
2660 memset(h->slice_table_base, -1, big_mb_num * sizeof(uint8_t));
2661 h->slice_table= h->slice_table_base + s->mb_stride + 1;
2663 CHECKED_ALLOCZ(h->mb2b_xy , big_mb_num * sizeof(uint16_t));
2664 CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint16_t));
2665 for(y=0; y<s->mb_height; y++){
2666 for(x=0; x<s->mb_width; x++){
2667 const int mb_xy= x + y*s->mb_stride;
2668 const int b_xy = 4*x + 4*y*h->b_stride;
2669 const int b8_xy= 2*x + 2*y*h->b8_stride;
2671 h->mb2b_xy [mb_xy]= b_xy;
2672 h->mb2b8_xy[mb_xy]= b8_xy;
2676 s->obmc_scratchpad = NULL;
2684 static void common_init(H264Context *h){
2685 MpegEncContext * const s = &h->s;
2687 s->width = s->avctx->width;
2688 s->height = s->avctx->height;
2689 s->codec_id= s->avctx->codec->id;
2693 s->unrestricted_mv=1;
2694 s->decode=1; //FIXME
2697 static int decode_init(AVCodecContext *avctx){
2698 H264Context *h= avctx->priv_data;
2699 MpegEncContext * const s = &h->s;
2701 MPV_decode_defaults(s);
2706 s->out_format = FMT_H264;
2707 s->workaround_bugs= avctx->workaround_bugs;
2710 // s->decode_mb= ff_h263_decode_mb;
2712 avctx->pix_fmt= PIX_FMT_YUV420P;
2716 if(avctx->extradata_size > 0 && avctx->extradata &&
2717 *(char *)avctx->extradata == 1){
2727 static void frame_start(H264Context *h){
2728 MpegEncContext * const s = &h->s;
2731 MPV_frame_start(s, s->avctx);
2732 ff_er_frame_start(s);
2734 assert(s->linesize && s->uvlinesize);
2736 for(i=0; i<16; i++){
2737 h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
2738 h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
2741 h->block_offset[16+i]=
2742 h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2743 h->block_offset[24+16+i]=
2744 h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2747 /* can't be in alloc_tables because linesize isn't known there.
2748 * FIXME: redo bipred weight to not require extra buffer? */
2749 if(!s->obmc_scratchpad)
2750 s->obmc_scratchpad = av_malloc(16*s->linesize + 2*8*s->uvlinesize);
2752 // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
2755 static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
2756 MpegEncContext * const s = &h->s;
2760 src_cb -= uvlinesize;
2761 src_cr -= uvlinesize;
2763 // There is two lines saved, the line above the the top macroblock of a pair,
2764 // and the line above the bottom macroblock
2765 h->left_border[0]= h->top_borders[0][s->mb_x][15];
2766 for(i=1; i<17; i++){
2767 h->left_border[i]= src_y[15+i* linesize];
2770 *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 16*linesize);
2771 *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
2773 if(!(s->flags&CODEC_FLAG_GRAY)){
2774 h->left_border[17 ]= h->top_borders[0][s->mb_x][16+7];
2775 h->left_border[17+9]= h->top_borders[0][s->mb_x][24+7];
2777 h->left_border[i+17 ]= src_cb[7+i*uvlinesize];
2778 h->left_border[i+17+9]= src_cr[7+i*uvlinesize];
2780 *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
2781 *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
2785 static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
2786 MpegEncContext * const s = &h->s;
2789 int deblock_left = (s->mb_x > 0);
2790 int deblock_top = (s->mb_y > 0);
2792 src_y -= linesize + 1;
2793 src_cb -= uvlinesize + 1;
2794 src_cr -= uvlinesize + 1;
2796 #define XCHG(a,b,t,xchg)\
2803 for(i = !deblock_top; i<17; i++){
2804 XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
2809 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
2810 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
2813 if(!(s->flags&CODEC_FLAG_GRAY)){
2815 for(i = !deblock_top; i<9; i++){
2816 XCHG(h->left_border[i+17 ], src_cb[i*uvlinesize], temp8, xchg);
2817 XCHG(h->left_border[i+17+9], src_cr[i*uvlinesize], temp8, xchg);
2821 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
2822 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
2827 static inline void backup_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
2828 MpegEncContext * const s = &h->s;
2831 src_y -= 2 * linesize;
2832 src_cb -= 2 * uvlinesize;
2833 src_cr -= 2 * uvlinesize;
2835 // There is two lines saved, the line above the the top macroblock of a pair,
2836 // and the line above the bottom macroblock
2837 h->left_border[0]= h->top_borders[0][s->mb_x][15];
2838 h->left_border[1]= h->top_borders[1][s->mb_x][15];
2839 for(i=2; i<34; i++){
2840 h->left_border[i]= src_y[15+i* linesize];
2843 *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 32*linesize);
2844 *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+32*linesize);
2845 *(uint64_t*)(h->top_borders[1][s->mb_x]+0)= *(uint64_t*)(src_y + 33*linesize);
2846 *(uint64_t*)(h->top_borders[1][s->mb_x]+8)= *(uint64_t*)(src_y +8+33*linesize);
2848 if(!(s->flags&CODEC_FLAG_GRAY)){
2849 h->left_border[34 ]= h->top_borders[0][s->mb_x][16+7];
2850 h->left_border[34+ 1]= h->top_borders[1][s->mb_x][16+7];
2851 h->left_border[34+18 ]= h->top_borders[0][s->mb_x][24+7];
2852 h->left_border[34+18+1]= h->top_borders[1][s->mb_x][24+7];
2853 for(i=2; i<18; i++){
2854 h->left_border[i+34 ]= src_cb[7+i*uvlinesize];
2855 h->left_border[i+34+18]= src_cr[7+i*uvlinesize];
2857 *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+16*uvlinesize);
2858 *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+16*uvlinesize);
2859 *(uint64_t*)(h->top_borders[1][s->mb_x]+16)= *(uint64_t*)(src_cb+17*uvlinesize);
2860 *(uint64_t*)(h->top_borders[1][s->mb_x]+24)= *(uint64_t*)(src_cr+17*uvlinesize);
2864 static inline void xchg_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
2865 MpegEncContext * const s = &h->s;
2868 int deblock_left = (s->mb_x > 0);
2869 int deblock_top = (s->mb_y > 0);
2871 tprintf("xchg_pair_border: src_y:%p src_cb:%p src_cr:%p ls:%d uvls:%d\n", src_y, src_cb, src_cr, linesize, uvlinesize);
2873 src_y -= 2 * linesize + 1;
2874 src_cb -= 2 * uvlinesize + 1;
2875 src_cr -= 2 * uvlinesize + 1;
2877 #define XCHG(a,b,t,xchg)\
2884 for(i = (!deblock_top)<<1; i<34; i++){
2885 XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
2890 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
2891 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
2892 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+0), *(uint64_t*)(src_y +1 +linesize), temp64, xchg);
2893 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+8), *(uint64_t*)(src_y +9 +linesize), temp64, 1);
2896 if(!(s->flags&CODEC_FLAG_GRAY)){
2898 for(i = (!deblock_top) << 1; i<18; i++){
2899 XCHG(h->left_border[i+34 ], src_cb[i*uvlinesize], temp8, xchg);
2900 XCHG(h->left_border[i+34+18], src_cr[i*uvlinesize], temp8, xchg);
2904 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
2905 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
2906 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+16), *(uint64_t*)(src_cb+1 +uvlinesize), temp64, 1);
2907 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+24), *(uint64_t*)(src_cr+1 +uvlinesize), temp64, 1);
2912 static void hl_decode_mb(H264Context *h){
2913 MpegEncContext * const s = &h->s;
2914 const int mb_x= s->mb_x;
2915 const int mb_y= s->mb_y;
2916 const int mb_xy= mb_x + mb_y*s->mb_stride;
2917 const int mb_type= s->current_picture.mb_type[mb_xy];
2918 uint8_t *dest_y, *dest_cb, *dest_cr;
2919 int linesize, uvlinesize /*dct_offset*/;
2921 int *block_offset = &h->block_offset[0];
2922 const unsigned int bottom = mb_y & 1;
2927 dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
2928 dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2929 dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2931 if (h->mb_field_decoding_flag) {
2932 linesize = s->linesize * 2;
2933 uvlinesize = s->uvlinesize * 2;
2934 block_offset = &h->block_offset[24];
2935 if(mb_y&1){ //FIXME move out of this func?
2936 dest_y -= s->linesize*15;
2937 dest_cb-= s->uvlinesize*7;
2938 dest_cr-= s->uvlinesize*7;
2941 linesize = s->linesize;
2942 uvlinesize = s->uvlinesize;
2943 // dct_offset = s->linesize * 16;
2946 if (IS_INTRA_PCM(mb_type)) {
2949 // The pixels are stored in h->mb array in the same order as levels,
2950 // copy them in output in the correct order.
2951 for(i=0; i<16; i++) {
2952 for (y=0; y<4; y++) {
2953 for (x=0; x<4; x++) {
2954 *(dest_y + block_offset[i] + y*linesize + x) = h->mb[i*16+y*4+x];
2958 for(i=16; i<16+4; i++) {
2959 for (y=0; y<4; y++) {
2960 for (x=0; x<4; x++) {
2961 *(dest_cb + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
2965 for(i=20; i<20+4; i++) {
2966 for (y=0; y<4; y++) {
2967 for (x=0; x<4; x++) {
2968 *(dest_cr + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
2973 if(IS_INTRA(mb_type)){
2974 if(h->deblocking_filter) {
2975 if (h->mb_aff_frame) {
2977 xchg_pair_border(h, dest_y, dest_cb, dest_cr, s->linesize, s->uvlinesize, 1);
2979 xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1);
2983 if(!(s->flags&CODEC_FLAG_GRAY)){
2984 h->pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
2985 h->pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
2988 if(IS_INTRA4x4(mb_type)){
2990 for(i=0; i<16; i++){
2991 uint8_t * const ptr= dest_y + block_offset[i];
2993 const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
2996 if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
2997 const int topright_avail= (h->topright_samples_available<<i)&0x8000;
2998 assert(mb_y || linesize <= block_offset[i]);
2999 if(!topright_avail){
3000 tr= ptr[3 - linesize]*0x01010101;
3001 topright= (uint8_t*) &tr;
3002 }else if(i==5 && h->deblocking_filter){
3003 tr= *(uint32_t*)h->top_borders[h->mb_aff_frame ? IS_INTERLACED(mb_type) ? bottom : 1 : 0][mb_x+1];
3004 topright= (uint8_t*) &tr;
3006 topright= ptr + 4 - linesize;
3010 h->pred4x4[ dir ](ptr, topright, linesize);
3011 if(h->non_zero_count_cache[ scan8[i] ]){
3012 if(s->codec_id == CODEC_ID_H264)
3013 s->dsp.h264_idct_add(ptr, h->mb + i*16, linesize);
3015 svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
3020 h->pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
3021 if(s->codec_id == CODEC_ID_H264)
3022 h264_luma_dc_dequant_idct_c(h->mb, s->qscale);
3024 svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
3026 if(h->deblocking_filter) {
3027 if (h->mb_aff_frame) {
3029 uint8_t *pair_dest_y = s->current_picture.data[0] + ((mb_y-1) * 16* s->linesize ) + mb_x * 16;
3030 uint8_t *pair_dest_cb = s->current_picture.data[1] + ((mb_y-1) * 8 * s->uvlinesize) + mb_x * 8;
3031 uint8_t *pair_dest_cr = s->current_picture.data[2] + ((mb_y-1) * 8 * s->uvlinesize) + mb_x * 8;
3033 xchg_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize, 0);
3037 xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0);
3040 }else if(s->codec_id == CODEC_ID_H264){
3041 hl_motion(h, dest_y, dest_cb, dest_cr,
3042 s->dsp.put_h264_qpel_pixels_tab, s->dsp.put_h264_chroma_pixels_tab,
3043 s->dsp.avg_h264_qpel_pixels_tab, s->dsp.avg_h264_chroma_pixels_tab,
3044 s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab);
3048 if(!IS_INTRA4x4(mb_type)){
3049 if(s->codec_id == CODEC_ID_H264){
3050 for(i=0; i<16; i++){
3051 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
3052 uint8_t * const ptr= dest_y + block_offset[i];
3053 s->dsp.h264_idct_add(ptr, h->mb + i*16, linesize);
3057 for(i=0; i<16; i++){
3058 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
3059 uint8_t * const ptr= dest_y + block_offset[i];
3060 svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
3066 if(!(s->flags&CODEC_FLAG_GRAY)){
3067 chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp);
3068 chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp);
3069 if(s->codec_id == CODEC_ID_H264){
3070 for(i=16; i<16+4; i++){
3071 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
3072 uint8_t * const ptr= dest_cb + block_offset[i];
3073 s->dsp.h264_idct_add(ptr, h->mb + i*16, uvlinesize);
3076 for(i=20; i<20+4; i++){
3077 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
3078 uint8_t * const ptr= dest_cr + block_offset[i];
3079 s->dsp.h264_idct_add(ptr, h->mb + i*16, uvlinesize);
3083 for(i=16; i<16+4; i++){
3084 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
3085 uint8_t * const ptr= dest_cb + block_offset[i];
3086 svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
3089 for(i=20; i<20+4; i++){
3090 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
3091 uint8_t * const ptr= dest_cr + block_offset[i];
3092 svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
3098 if(h->deblocking_filter) {
3099 if (h->mb_aff_frame) {
3100 const int mb_y = s->mb_y - 1;
3101 uint8_t *pair_dest_y, *pair_dest_cb, *pair_dest_cr;
3102 const int mb_xy= mb_x + mb_y*s->mb_stride;
3103 const int mb_type_top = s->current_picture.mb_type[mb_xy];
3104 const int mb_type_bottom= s->current_picture.mb_type[mb_xy+s->mb_stride];
3105 uint8_t tmp = s->current_picture.data[1][384];
3106 if (!bottom) return;
3107 pair_dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
3108 pair_dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
3109 pair_dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
3111 backup_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize);
3112 // TODO deblock a pair
3115 tprintf("call mbaff filter_mb mb_x:%d mb_y:%d pair_dest_y = %p, dest_y = %p\n", mb_x, mb_y, pair_dest_y, dest_y);
3116 fill_caches(h, mb_type_top, 1); //FIXME dont fill stuff which isnt used by filter_mb
3117 filter_mb(h, mb_x, mb_y, pair_dest_y, pair_dest_cb, pair_dest_cr, linesize, uvlinesize);
3118 if (tmp != s->current_picture.data[1][384]) {
3119 tprintf("modified pixel 8,1 (1)\n");
3123 tprintf("call mbaff filter_mb\n");
3124 fill_caches(h, mb_type_bottom, 1); //FIXME dont fill stuff which isnt used by filter_mb
3125 filter_mb(h, mb_x, mb_y+1, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
3126 if (tmp != s->current_picture.data[1][384]) {
3127 tprintf("modified pixel 8,1 (2)\n");
3130 tprintf("call filter_mb\n");
3131 backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
3132 fill_caches(h, mb_type, 1); //FIXME dont fill stuff which isnt used by filter_mb
3133 filter_mb(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
3139 * fills the default_ref_list.
3141 static int fill_default_ref_list(H264Context *h){
3142 MpegEncContext * const s = &h->s;
3144 int smallest_poc_greater_than_current = -1;
3145 Picture sorted_short_ref[32];
3147 if(h->slice_type==B_TYPE){
3151 /* sort frame according to poc in B slice */
3152 for(out_i=0; out_i<h->short_ref_count; out_i++){
3154 int best_poc=INT_MAX;
3156 for(i=0; i<h->short_ref_count; i++){
3157 const int poc= h->short_ref[i]->poc;
3158 if(poc > limit && poc < best_poc){
3164 assert(best_i != -1);
3167 sorted_short_ref[out_i]= *h->short_ref[best_i];
3168 tprintf("sorted poc: %d->%d poc:%d fn:%d\n", best_i, out_i, sorted_short_ref[out_i].poc, sorted_short_ref[out_i].frame_num);
3169 if (-1 == smallest_poc_greater_than_current) {
3170 if (h->short_ref[best_i]->poc >= s->current_picture_ptr->poc) {
3171 smallest_poc_greater_than_current = out_i;
3177 if(s->picture_structure == PICT_FRAME){
3178 if(h->slice_type==B_TYPE){
3180 tprintf("current poc: %d, smallest_poc_greater_than_current: %d\n", s->current_picture_ptr->poc, smallest_poc_greater_than_current);
3182 // find the largest poc
3183 for(list=0; list<2; list++){
3186 int step= list ? -1 : 1;
3188 for(i=0; i<h->short_ref_count && index < h->ref_count[list]; i++, j+=step) {
3189 while(j<0 || j>= h->short_ref_count){
3191 j= smallest_poc_greater_than_current + (step>>1);
3193 if(sorted_short_ref[j].reference != 3) continue;
3194 h->default_ref_list[list][index ]= sorted_short_ref[j];
3195 h->default_ref_list[list][index++].pic_id= sorted_short_ref[j].frame_num;
3198 for(i = 0; i < 16 && index < h->ref_count[ list ]; i++){
3199 if(h->long_ref[i] == NULL) continue;
3200 if(h->long_ref[i]->reference != 3) continue;
3202 h->default_ref_list[ list ][index ]= *h->long_ref[i];
3203 h->default_ref_list[ list ][index++].pic_id= i;;
3206 if(list && (smallest_poc_greater_than_current<=0 || smallest_poc_greater_than_current>=h->short_ref_count) && (1 < index)){
3207 // swap the two first elements of L1 when
3208 // L0 and L1 are identical
3209 Picture temp= h->default_ref_list[1][0];
3210 h->default_ref_list[1][0] = h->default_ref_list[1][1];
3211 h->default_ref_list[1][0] = temp;
3214 if(index < h->ref_count[ list ])
3215 memset(&h->default_ref_list[list][index], 0, sizeof(Picture)*(h->ref_count[ list ] - index));
3219 for(i=0; i<h->short_ref_count; i++){
3220 if(h->short_ref[i]->reference != 3) continue; //FIXME refernce field shit
3221 h->default_ref_list[0][index ]= *h->short_ref[i];
3222 h->default_ref_list[0][index++].pic_id= h->short_ref[i]->frame_num;
3224 for(i = 0; i < 16; i++){
3225 if(h->long_ref[i] == NULL) continue;
3226 if(h->long_ref[i]->reference != 3) continue;
3227 h->default_ref_list[0][index ]= *h->long_ref[i];
3228 h->default_ref_list[0][index++].pic_id= i;;
3230 if(index < h->ref_count[0])
3231 memset(&h->default_ref_list[0][index], 0, sizeof(Picture)*(h->ref_count[0] - index));
3234 if(h->slice_type==B_TYPE){
3236 //FIXME second field balh
3240 for (i=0; i<h->ref_count[0]; i++) {
3241 tprintf("List0: %s fn:%d 0x%p\n", (h->default_ref_list[0][i].long_ref ? "LT" : "ST"), h->default_ref_list[0][i].pic_id, h->default_ref_list[0][i].data[0]);
3243 if(h->slice_type==B_TYPE){
3244 for (i=0; i<h->ref_count[1]; i++) {
3245 tprintf("List1: %s fn:%d 0x%p\n", (h->default_ref_list[1][i].long_ref ? "LT" : "ST"), h->default_ref_list[1][i].pic_id, h->default_ref_list[0][i].data[0]);
3252 static void print_short_term(H264Context *h);
3253 static void print_long_term(H264Context *h);
3255 static int decode_ref_pic_list_reordering(H264Context *h){
3256 MpegEncContext * const s = &h->s;
3259 print_short_term(h);
3261 if(h->slice_type==I_TYPE || h->slice_type==SI_TYPE) return 0; //FIXME move beofre func
3263 for(list=0; list<2; list++){
3264 memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
3266 if(get_bits1(&s->gb)){
3267 int pred= h->curr_pic_num;
3270 for(index=0; ; index++){
3271 int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb);
3274 Picture *ref = NULL;
3276 if(reordering_of_pic_nums_idc==3)
3279 if(index >= h->ref_count[list]){
3280 av_log(h->s.avctx, AV_LOG_ERROR, "reference count overflow\n");
3284 if(reordering_of_pic_nums_idc<3){
3285 if(reordering_of_pic_nums_idc<2){
3286 const int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1;
3288 if(abs_diff_pic_num >= h->max_pic_num){
3289 av_log(h->s.avctx, AV_LOG_ERROR, "abs_diff_pic_num overflow\n");
3293 if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num;
3294 else pred+= abs_diff_pic_num;
3295 pred &= h->max_pic_num - 1;
3297 for(i= h->short_ref_count-1; i>=0; i--){
3298 ref = h->short_ref[i];
3299 if(ref->data[0] != NULL && ref->frame_num == pred && ref->long_ref == 0) // ignore non existing pictures by testing data[0] pointer
3303 pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx
3304 ref = h->long_ref[pic_id];
3308 av_log(h->s.avctx, AV_LOG_ERROR, "reference picture missing during reorder\n");
3309 memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME
3311 h->ref_list[list][index]= *ref;
3314 av_log(h->s.avctx, AV_LOG_ERROR, "illegal reordering_of_pic_nums_idc\n");
3320 if(h->slice_type!=B_TYPE) break;
3323 if(h->slice_type==B_TYPE && !h->direct_spatial_mv_pred)
3324 direct_dist_scale_factor(h);
3325 direct_ref_list_init(h);
3329 static int pred_weight_table(H264Context *h){
3330 MpegEncContext * const s = &h->s;
3332 int luma_def, chroma_def;
3335 h->use_weight_chroma= 0;
3336 h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
3337 h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
3338 luma_def = 1<<h->luma_log2_weight_denom;
3339 chroma_def = 1<<h->chroma_log2_weight_denom;
3341 for(list=0; list<2; list++){
3342 for(i=0; i<h->ref_count[list]; i++){
3343 int luma_weight_flag, chroma_weight_flag;
3345 luma_weight_flag= get_bits1(&s->gb);
3346 if(luma_weight_flag){
3347 h->luma_weight[list][i]= get_se_golomb(&s->gb);
3348 h->luma_offset[list][i]= get_se_golomb(&s->gb);
3349 if( h->luma_weight[list][i] != luma_def
3350 || h->luma_offset[list][i] != 0)
3353 h->luma_weight[list][i]= luma_def;
3354 h->luma_offset[list][i]= 0;
3357 chroma_weight_flag= get_bits1(&s->gb);
3358 if(chroma_weight_flag){
3361 h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
3362 h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
3363 if( h->chroma_weight[list][i][j] != chroma_def
3364 || h->chroma_offset[list][i][j] != 0)
3365 h->use_weight_chroma= 1;
3370 h->chroma_weight[list][i][j]= chroma_def;
3371 h->chroma_offset[list][i][j]= 0;
3375 if(h->slice_type != B_TYPE) break;
3377 h->use_weight= h->use_weight || h->use_weight_chroma;
3381 static void implicit_weight_table(H264Context *h){
3382 MpegEncContext * const s = &h->s;
3384 int cur_poc = s->current_picture_ptr->poc;
3386 if( h->ref_count[0] == 1 && h->ref_count[1] == 1
3387 && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
3389 h->use_weight_chroma= 0;
3394 h->use_weight_chroma= 2;
3395 h->luma_log2_weight_denom= 5;
3396 h->chroma_log2_weight_denom= 5;
3399 for(ref0=0; ref0 < h->ref_count[0]; ref0++){
3400 int poc0 = h->ref_list[0][ref0].poc;
3401 for(ref1=0; ref1 < h->ref_count[1]; ref1++){
3402 int poc1 = h->ref_list[1][ref1].poc;
3403 int td = clip(poc1 - poc0, -128, 127);
3405 int tb = clip(cur_poc - poc0, -128, 127);
3406 int tx = (16384 + (ABS(td) >> 1)) / td;
3407 int dist_scale_factor = clip((tb*tx + 32) >> 6, -1024, 1023) >> 2;
3408 if(dist_scale_factor < -64 || dist_scale_factor > 128)
3409 h->implicit_weight[ref0][ref1] = 32;
3411 h->implicit_weight[ref0][ref1] = 64 - dist_scale_factor;
3413 h->implicit_weight[ref0][ref1] = 32;
3418 static inline void unreference_pic(H264Context *h, Picture *pic){
3421 if(pic == h->delayed_output_pic)
3424 for(i = 0; h->delayed_pic[i]; i++)
3425 if(pic == h->delayed_pic[i]){
3433 * instantaneous decoder refresh.
3435 static void idr(H264Context *h){
3438 for(i=0; i<16; i++){
3439 if (h->long_ref[i] != NULL) {
3440 unreference_pic(h, h->long_ref[i]);
3441 h->long_ref[i]= NULL;
3444 h->long_ref_count=0;
3446 for(i=0; i<h->short_ref_count; i++){
3447 unreference_pic(h, h->short_ref[i]);
3448 h->short_ref[i]= NULL;
3450 h->short_ref_count=0;
3455 * @return the removed picture or NULL if an error occures
3457 static Picture * remove_short(H264Context *h, int frame_num){
3458 MpegEncContext * const s = &h->s;
3461 if(s->avctx->debug&FF_DEBUG_MMCO)
3462 av_log(h->s.avctx, AV_LOG_DEBUG, "remove short %d count %d\n", frame_num, h->short_ref_count);
3464 for(i=0; i<h->short_ref_count; i++){
3465 Picture *pic= h->short_ref[i];
3466 if(s->avctx->debug&FF_DEBUG_MMCO)
3467 av_log(h->s.avctx, AV_LOG_DEBUG, "%d %d %p\n", i, pic->frame_num, pic);
3468 if(pic->frame_num == frame_num){
3469 h->short_ref[i]= NULL;
3470 memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i - 1)*sizeof(Picture*));
3471 h->short_ref_count--;
3480 * @return the removed picture or NULL if an error occures
3482 static Picture * remove_long(H264Context *h, int i){
3485 pic= h->long_ref[i];
3486 h->long_ref[i]= NULL;
3487 if(pic) h->long_ref_count--;
3493 * print short term list
3495 static void print_short_term(H264Context *h) {
3497 if(h->s.avctx->debug&FF_DEBUG_MMCO) {
3498 av_log(h->s.avctx, AV_LOG_DEBUG, "short term list:\n");
3499 for(i=0; i<h->short_ref_count; i++){
3500 Picture *pic= h->short_ref[i];
3501 av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
3507 * print long term list
3509 static void print_long_term(H264Context *h) {
3511 if(h->s.avctx->debug&FF_DEBUG_MMCO) {
3512 av_log(h->s.avctx, AV_LOG_DEBUG, "long term list:\n");
3513 for(i = 0; i < 16; i++){
3514 Picture *pic= h->long_ref[i];
3516 av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
3523 * Executes the reference picture marking (memory management control operations).
3525 static int execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count){
3526 MpegEncContext * const s = &h->s;
3528 int current_is_long=0;
3531 if((s->avctx->debug&FF_DEBUG_MMCO) && mmco_count==0)
3532 av_log(h->s.avctx, AV_LOG_DEBUG, "no mmco here\n");
3534 for(i=0; i<mmco_count; i++){
3535 if(s->avctx->debug&FF_DEBUG_MMCO)
3536 av_log(h->s.avctx, AV_LOG_DEBUG, "mmco:%d %d %d\n", h->mmco[i].opcode, h->mmco[i].short_frame_num, h->mmco[i].long_index);
3538 switch(mmco[i].opcode){
3539 case MMCO_SHORT2UNUSED:
3540 pic= remove_short(h, mmco[i].short_frame_num);
3541 if(pic==NULL) return -1;
3542 unreference_pic(h, pic);
3544 case MMCO_SHORT2LONG:
3545 pic= remove_long(h, mmco[i].long_index);
3546 if(pic) unreference_pic(h, pic);
3548 h->long_ref[ mmco[i].long_index ]= remove_short(h, mmco[i].short_frame_num);
3549 h->long_ref[ mmco[i].long_index ]->long_ref=1;
3550 h->long_ref_count++;
3552 case MMCO_LONG2UNUSED:
3553 pic= remove_long(h, mmco[i].long_index);
3554 if(pic==NULL) return -1;
3555 unreference_pic(h, pic);
3558 pic= remove_long(h, mmco[i].long_index);
3559 if(pic) unreference_pic(h, pic);
3561 h->long_ref[ mmco[i].long_index ]= s->current_picture_ptr;
3562 h->long_ref[ mmco[i].long_index ]->long_ref=1;
3563 h->long_ref_count++;
3567 case MMCO_SET_MAX_LONG:
3568 assert(mmco[i].long_index <= 16);
3569 // just remove the long term which index is greater than new max
3570 for(j = mmco[i].long_index; j<16; j++){
3571 pic = remove_long(h, j);
3572 if (pic) unreference_pic(h, pic);
3576 while(h->short_ref_count){
3577 pic= remove_short(h, h->short_ref[0]->frame_num);
3578 unreference_pic(h, pic);
3580 for(j = 0; j < 16; j++) {
3581 pic= remove_long(h, j);
3582 if(pic) unreference_pic(h, pic);
3589 if(!current_is_long){
3590 pic= remove_short(h, s->current_picture_ptr->frame_num);
3592 unreference_pic(h, pic);
3593 av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term buffer state detected\n");
3596 if(h->short_ref_count)
3597 memmove(&h->short_ref[1], &h->short_ref[0], h->short_ref_count*sizeof(Picture*));
3599 h->short_ref[0]= s->current_picture_ptr;
3600 h->short_ref[0]->long_ref=0;
3601 h->short_ref_count++;
3604 print_short_term(h);
3609 static int decode_ref_pic_marking(H264Context *h){
3610 MpegEncContext * const s = &h->s;
3613 if(h->nal_unit_type == NAL_IDR_SLICE){ //FIXME fields
3614 s->broken_link= get_bits1(&s->gb) -1;
3615 h->mmco[0].long_index= get_bits1(&s->gb) - 1; // current_long_term_idx
3616 if(h->mmco[0].long_index == -1)
3619 h->mmco[0].opcode= MMCO_LONG;
3623 if(get_bits1(&s->gb)){ // adaptive_ref_pic_marking_mode_flag
3624 for(i= 0; i<MAX_MMCO_COUNT; i++) {
3625 MMCOOpcode opcode= get_ue_golomb(&s->gb);;
3627 h->mmco[i].opcode= opcode;
3628 if(opcode==MMCO_SHORT2UNUSED || opcode==MMCO_SHORT2LONG){
3629 h->mmco[i].short_frame_num= (h->frame_num - get_ue_golomb(&s->gb) - 1) & ((1<<h->sps.log2_max_frame_num)-1); //FIXME fields
3630 /* if(h->mmco[i].short_frame_num >= h->short_ref_count || h->short_ref[ h->mmco[i].short_frame_num ] == NULL){
3631 fprintf(stderr, "illegal short ref in memory management control operation %d\n", mmco);
3635 if(opcode==MMCO_SHORT2LONG || opcode==MMCO_LONG2UNUSED || opcode==MMCO_LONG || opcode==MMCO_SET_MAX_LONG){
3636 h->mmco[i].long_index= get_ue_golomb(&s->gb);
3637 if(/*h->mmco[i].long_index >= h->long_ref_count || h->long_ref[ h->mmco[i].long_index ] == NULL*/ h->mmco[i].long_index >= 16){
3638 av_log(h->s.avctx, AV_LOG_ERROR, "illegal long ref in memory management control operation %d\n", opcode);
3643 if(opcode > MMCO_LONG){
3644 av_log(h->s.avctx, AV_LOG_ERROR, "illegal memory management control operation %d\n", opcode);
3647 if(opcode == MMCO_END)
3652 assert(h->long_ref_count + h->short_ref_count <= h->sps.ref_frame_count);
3654 if(h->long_ref_count + h->short_ref_count == h->sps.ref_frame_count){ //FIXME fields
3655 h->mmco[0].opcode= MMCO_SHORT2UNUSED;
3656 h->mmco[0].short_frame_num= h->short_ref[ h->short_ref_count - 1 ]->frame_num;
3666 static int init_poc(H264Context *h){
3667 MpegEncContext * const s = &h->s;
3668 const int max_frame_num= 1<<h->sps.log2_max_frame_num;
3671 if(h->nal_unit_type == NAL_IDR_SLICE){
3672 h->frame_num_offset= 0;
3674 if(h->frame_num < h->prev_frame_num)
3675 h->frame_num_offset= h->prev_frame_num_offset + max_frame_num;
3677 h->frame_num_offset= h->prev_frame_num_offset;
3680 if(h->sps.poc_type==0){
3681 const int max_poc_lsb= 1<<h->sps.log2_max_poc_lsb;
3683 if (h->poc_lsb < h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb >= max_poc_lsb/2)
3684 h->poc_msb = h->prev_poc_msb + max_poc_lsb;
3685 else if(h->poc_lsb > h->prev_poc_lsb && h->prev_poc_lsb - h->poc_lsb < -max_poc_lsb/2)
3686 h->poc_msb = h->prev_poc_msb - max_poc_lsb;
3688 h->poc_msb = h->prev_poc_msb;
3689 //printf("poc: %d %d\n", h->poc_msb, h->poc_lsb);
3691 field_poc[1] = h->poc_msb + h->poc_lsb;
3692 if(s->picture_structure == PICT_FRAME)
3693 field_poc[1] += h->delta_poc_bottom;
3694 }else if(h->sps.poc_type==1){
3695 int abs_frame_num, expected_delta_per_poc_cycle, expectedpoc;
3698 if(h->sps.poc_cycle_length != 0)
3699 abs_frame_num = h->frame_num_offset + h->frame_num;
3703 if(h->nal_ref_idc==0 && abs_frame_num > 0)
3706 expected_delta_per_poc_cycle = 0;
3707 for(i=0; i < h->sps.poc_cycle_length; i++)
3708 expected_delta_per_poc_cycle += h->sps.offset_for_ref_frame[ i ]; //FIXME integrate during sps parse
3710 if(abs_frame_num > 0){
3711 int poc_cycle_cnt = (abs_frame_num - 1) / h->sps.poc_cycle_length;
3712 int frame_num_in_poc_cycle = (abs_frame_num - 1) % h->sps.poc_cycle_length;
3714 expectedpoc = poc_cycle_cnt * expected_delta_per_poc_cycle;
3715 for(i = 0; i <= frame_num_in_poc_cycle; i++)
3716 expectedpoc = expectedpoc + h->sps.offset_for_ref_frame[ i ];
3720 if(h->nal_ref_idc == 0)
3721 expectedpoc = expectedpoc + h->sps.offset_for_non_ref_pic;
3723 field_poc[0] = expectedpoc + h->delta_poc[0];
3724 field_poc[1] = field_poc[0] + h->sps.offset_for_top_to_bottom_field;
3726 if(s->picture_structure == PICT_FRAME)
3727 field_poc[1] += h->delta_poc[1];
3730 if(h->nal_unit_type == NAL_IDR_SLICE){
3733 if(h->nal_ref_idc) poc= 2*(h->frame_num_offset + h->frame_num);
3734 else poc= 2*(h->frame_num_offset + h->frame_num) - 1;
3740 if(s->picture_structure != PICT_BOTTOM_FIELD)
3741 s->current_picture_ptr->field_poc[0]= field_poc[0];
3742 if(s->picture_structure != PICT_TOP_FIELD)
3743 s->current_picture_ptr->field_poc[1]= field_poc[1];
3744 if(s->picture_structure == PICT_FRAME) // FIXME field pix?
3745 s->current_picture_ptr->poc= FFMIN(field_poc[0], field_poc[1]);
3751 * decodes a slice header.
3752 * this will allso call MPV_common_init() and frame_start() as needed
3754 static int decode_slice_header(H264Context *h){
3755 MpegEncContext * const s = &h->s;
3756 int first_mb_in_slice, pps_id;
3757 int num_ref_idx_active_override_flag;
3758 static const uint8_t slice_type_map[5]= {P_TYPE, B_TYPE, I_TYPE, SP_TYPE, SI_TYPE};
3760 int default_ref_list_done = 0;
3762 s->current_picture.reference= h->nal_ref_idc != 0;
3763 s->dropable= h->nal_ref_idc == 0;
3765 first_mb_in_slice= get_ue_golomb(&s->gb);
3767 slice_type= get_ue_golomb(&s->gb);
3769 av_log(h->s.avctx, AV_LOG_ERROR, "slice type too large (%d) at %d %d\n", h->slice_type, s->mb_x, s->mb_y);
3774 h->slice_type_fixed=1;
3776 h->slice_type_fixed=0;
3778 slice_type= slice_type_map[ slice_type ];
3779 if (slice_type == I_TYPE
3780 || (h->slice_num != 0 && slice_type == h->slice_type) ) {
3781 default_ref_list_done = 1;
3783 h->slice_type= slice_type;
3785 s->pict_type= h->slice_type; // to make a few old func happy, its wrong though
3787 pps_id= get_ue_golomb(&s->gb);
3789 av_log(h->s.avctx, AV_LOG_ERROR, "pps_id out of range\n");
3792 h->pps= h->pps_buffer[pps_id];
3793 if(h->pps.slice_group_count == 0){
3794 av_log(h->s.avctx, AV_LOG_ERROR, "non existing PPS referenced\n");
3798 h->sps= h->sps_buffer[ h->pps.sps_id ];
3799 if(h->sps.log2_max_frame_num == 0){
3800 av_log(h->s.avctx, AV_LOG_ERROR, "non existing SPS referenced\n");
3804 s->mb_width= h->sps.mb_width;
3805 s->mb_height= h->sps.mb_height * (2 - h->sps.frame_mbs_only_flag);
3807 h->b_stride= s->mb_width*4 + 1;
3808 h->b8_stride= s->mb_width*2 + 1;
3810 s->width = 16*s->mb_width - 2*(h->sps.crop_left + h->sps.crop_right );
3811 if(h->sps.frame_mbs_only_flag)
3812 s->height= 16*s->mb_height - 2*(h->sps.crop_top + h->sps.crop_bottom);
3814 s->height= 16*s->mb_height - 4*(h->sps.crop_top + h->sps.crop_bottom); //FIXME recheck
3816 if (s->context_initialized
3817 && ( s->width != s->avctx->width || s->height != s->avctx->height)) {
3821 if (!s->context_initialized) {
3822 if (MPV_common_init(s) < 0)
3827 s->avctx->width = s->width;
3828 s->avctx->height = s->height;
3829 s->avctx->sample_aspect_ratio= h->sps.sar;
3830 if(!s->avctx->sample_aspect_ratio.den)
3831 s->avctx->sample_aspect_ratio.den = 1;
3833 if(h->sps.timing_info_present_flag && h->sps.fixed_frame_rate_flag){
3834 s->avctx->frame_rate = h->sps.time_scale;
3835 s->avctx->frame_rate_base = h->sps.num_units_in_tick;
3839 if(h->slice_num == 0){
3843 s->current_picture_ptr->frame_num= //FIXME frame_num cleanup
3844 h->frame_num= get_bits(&s->gb, h->sps.log2_max_frame_num);
3846 h->mb_aff_frame = 0;
3847 if(h->sps.frame_mbs_only_flag){
3848 s->picture_structure= PICT_FRAME;
3850 if(get_bits1(&s->gb)) { //field_pic_flag
3851 s->picture_structure= PICT_TOP_FIELD + get_bits1(&s->gb); //bottom_field_flag
3853 s->picture_structure= PICT_FRAME;
3854 first_mb_in_slice <<= 1;
3855 h->mb_aff_frame = h->sps.mb_aff;
3859 s->resync_mb_x = s->mb_x = first_mb_in_slice % s->mb_width;
3860 s->resync_mb_y = s->mb_y = first_mb_in_slice / s->mb_width;
3862 if(s->picture_structure==PICT_FRAME){
3863 h->curr_pic_num= h->frame_num;
3864 h->max_pic_num= 1<< h->sps.log2_max_frame_num;
3866 h->curr_pic_num= 2*h->frame_num;
3867 h->max_pic_num= 1<<(h->sps.log2_max_frame_num + 1);
3870 if(h->nal_unit_type == NAL_IDR_SLICE){
3871 get_ue_golomb(&s->gb); /* idr_pic_id */
3874 if(h->sps.poc_type==0){
3875 h->poc_lsb= get_bits(&s->gb, h->sps.log2_max_poc_lsb);
3877 if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME){
3878 h->delta_poc_bottom= get_se_golomb(&s->gb);
3882 if(h->sps.poc_type==1 && !h->sps.delta_pic_order_always_zero_flag){
3883 h->delta_poc[0]= get_se_golomb(&s->gb);
3885 if(h->pps.pic_order_present==1 && s->picture_structure==PICT_FRAME)
3886 h->delta_poc[1]= get_se_golomb(&s->gb);
3891 if(h->pps.redundant_pic_cnt_present){
3892 h->redundant_pic_count= get_ue_golomb(&s->gb);
3895 //set defaults, might be overriden a few line later
3896 h->ref_count[0]= h->pps.ref_count[0];
3897 h->ref_count[1]= h->pps.ref_count[1];
3899 if(h->slice_type == P_TYPE || h->slice_type == SP_TYPE || h->slice_type == B_TYPE){
3900 if(h->slice_type == B_TYPE){
3901 h->direct_spatial_mv_pred= get_bits1(&s->gb);
3903 num_ref_idx_active_override_flag= get_bits1(&s->gb);
3905 if(num_ref_idx_active_override_flag){
3906 h->ref_count[0]= get_ue_golomb(&s->gb) + 1;
3907 if(h->slice_type==B_TYPE)
3908 h->ref_count[1]= get_ue_golomb(&s->gb) + 1;
3910 if(h->ref_count[0] > 32 || h->ref_count[1] > 32){
3911 av_log(h->s.avctx, AV_LOG_ERROR, "reference overflow\n");
3917 if(!default_ref_list_done){
3918 fill_default_ref_list(h);
3921 decode_ref_pic_list_reordering(h);
3923 if( (h->pps.weighted_pred && (h->slice_type == P_TYPE || h->slice_type == SP_TYPE ))
3924 || (h->pps.weighted_bipred_idc==1 && h->slice_type==B_TYPE ) )
3925 pred_weight_table(h);
3926 else if(h->pps.weighted_bipred_idc==2 && h->slice_type==B_TYPE)
3927 implicit_weight_table(h);
3931 if(s->current_picture.reference)
3932 decode_ref_pic_marking(h);
3934 if( h->slice_type != I_TYPE && h->slice_type != SI_TYPE && h->pps.cabac )
3935 h->cabac_init_idc = get_ue_golomb(&s->gb);
3937 h->last_qscale_diff = 0;
3938 s->qscale = h->pps.init_qp + get_se_golomb(&s->gb);
3939 if(s->qscale<0 || s->qscale>51){
3940 av_log(s->avctx, AV_LOG_ERROR, "QP %d out of range\n", s->qscale);
3943 h->chroma_qp = get_chroma_qp(h->pps.chroma_qp_index_offset, s->qscale);
3944 //FIXME qscale / qp ... stuff
3945 if(h->slice_type == SP_TYPE){
3946 get_bits1(&s->gb); /* sp_for_switch_flag */
3948 if(h->slice_type==SP_TYPE || h->slice_type == SI_TYPE){
3949 get_se_golomb(&s->gb); /* slice_qs_delta */
3952 h->deblocking_filter = 1;
3953 h->slice_alpha_c0_offset = 0;
3954 h->slice_beta_offset = 0;
3955 if( h->pps.deblocking_filter_parameters_present ) {
3956 h->deblocking_filter= get_ue_golomb(&s->gb);
3957 if(h->deblocking_filter < 2)
3958 h->deblocking_filter^= 1; // 1<->0
3960 if( h->deblocking_filter ) {
3961 h->slice_alpha_c0_offset = get_se_golomb(&s->gb) << 1;
3962 h->slice_beta_offset = get_se_golomb(&s->gb) << 1;
3967 if( h->pps.num_slice_groups > 1 && h->pps.mb_slice_group_map_type >= 3 && h->pps.mb_slice_group_map_type <= 5)
3968 slice_group_change_cycle= get_bits(&s->gb, ?);
3973 if(s->avctx->debug&FF_DEBUG_PICT_INFO){
3974 av_log(h->s.avctx, AV_LOG_DEBUG, "slice:%d %s mb:%d %c pps:%d frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s\n",
3976 (s->picture_structure==PICT_FRAME ? "F" : s->picture_structure==PICT_TOP_FIELD ? "T" : "B"),
3978 av_get_pict_type_char(h->slice_type),
3979 pps_id, h->frame_num,
3980 s->current_picture_ptr->field_poc[0], s->current_picture_ptr->field_poc[1],
3981 h->ref_count[0], h->ref_count[1],
3983 h->deblocking_filter, h->slice_alpha_c0_offset/2, h->slice_beta_offset/2,
3985 h->use_weight==1 && h->use_weight_chroma ? "c" : ""
3995 static inline int get_level_prefix(GetBitContext *gb){
3999 OPEN_READER(re, gb);
4000 UPDATE_CACHE(re, gb);
4001 buf=GET_CACHE(re, gb);
4003 log= 32 - av_log2(buf);
4005 print_bin(buf>>(32-log), log);
4006 av_log(NULL, AV_LOG_DEBUG, "%5d %2d %3d lpr @%5d in %s get_level_prefix\n", buf>>(32-log), log, log-1, get_bits_count(gb), __FILE__);
4009 LAST_SKIP_BITS(re, gb, log);
4010 CLOSE_READER(re, gb);
4016 * decodes a residual block.
4017 * @param n block index
4018 * @param scantable scantable
4019 * @param max_coeff number of coefficients in the block
4020 * @return <0 if an error occured
4022 static int decode_residual(H264Context *h, GetBitContext *gb, DCTELEM *block, int n, const uint8_t *scantable, int qp, int max_coeff){
4023 MpegEncContext * const s = &h->s;
4024 const uint16_t *qmul= dequant_coeff[qp];
4025 static const int coeff_token_table_index[17]= {0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3};
4026 int level[16], run[16];
4027 int suffix_length, zeros_left, coeff_num, coeff_token, total_coeff, i, trailing_ones;
4029 //FIXME put trailing_onex into the context
4031 if(n == CHROMA_DC_BLOCK_INDEX){
4032 coeff_token= get_vlc2(gb, chroma_dc_coeff_token_vlc.table, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 1);
4033 total_coeff= coeff_token>>2;
4035 if(n == LUMA_DC_BLOCK_INDEX){
4036 total_coeff= pred_non_zero_count(h, 0);
4037 coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
4038 total_coeff= coeff_token>>2;
4040 total_coeff= pred_non_zero_count(h, n);
4041 coeff_token= get_vlc2(gb, coeff_token_vlc[ coeff_token_table_index[total_coeff] ].table, COEFF_TOKEN_VLC_BITS, 2);
4042 total_coeff= coeff_token>>2;
4043 h->non_zero_count_cache[ scan8[n] ]= total_coeff;
4047 //FIXME set last_non_zero?
4052 trailing_ones= coeff_token&3;
4053 tprintf("trailing:%d, total:%d\n", trailing_ones, total_coeff);
4054 assert(total_coeff<=16);
4056 for(i=0; i<trailing_ones; i++){
4057 level[i]= 1 - 2*get_bits1(gb);
4060 suffix_length= total_coeff > 10 && trailing_ones < 3;
4062 for(; i<total_coeff; i++){
4063 const int prefix= get_level_prefix(gb);
4064 int level_code, mask;
4066 if(prefix<14){ //FIXME try to build a large unified VLC table for all this
4068 level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
4070 level_code= (prefix<<suffix_length); //part
4071 }else if(prefix==14){
4073 level_code= (prefix<<suffix_length) + get_bits(gb, suffix_length); //part
4075 level_code= prefix + get_bits(gb, 4); //part
4076 }else if(prefix==15){
4077 level_code= (prefix<<suffix_length) + get_bits(gb, 12); //part
4078 if(suffix_length==0) level_code+=15; //FIXME doesnt make (much)sense
4080 av_log(h->s.avctx, AV_LOG_ERROR, "prefix too large at %d %d\n", s->mb_x, s->mb_y);
4084 if(i==trailing_ones && i<3) level_code+= 2; //FIXME split first iteration
4086 mask= -(level_code&1);
4087 level[i]= (((2+level_code)>>1) ^ mask) - mask;
4089 if(suffix_length==0) suffix_length=1; //FIXME split first iteration
4092 if(ABS(level[i]) > (3<<(suffix_length-1)) && suffix_length<6) suffix_length++;
4094 if((2+level_code)>>1) > (3<<(suffix_length-1)) && suffix_length<6) suffix_length++;
4095 /* ? == prefix > 2 or sth */
4097 tprintf("level: %d suffix_length:%d\n", level[i], suffix_length);
4100 if(total_coeff == max_coeff)
4103 if(n == CHROMA_DC_BLOCK_INDEX)
4104 zeros_left= get_vlc2(gb, chroma_dc_total_zeros_vlc[ total_coeff-1 ].table, CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 1);
4106 zeros_left= get_vlc2(gb, total_zeros_vlc[ total_coeff-1 ].table, TOTAL_ZEROS_VLC_BITS, 1);
4109 for(i=0; i<total_coeff-1; i++){
4112 else if(zeros_left < 7){
4113 run[i]= get_vlc2(gb, run_vlc[zeros_left-1].table, RUN_VLC_BITS, 1);
4115 run[i]= get_vlc2(gb, run7_vlc.table, RUN7_VLC_BITS, 2);
4117 zeros_left -= run[i];
4121 av_log(h->s.avctx, AV_LOG_ERROR, "negative number of zero coeffs at %d %d\n", s->mb_x, s->mb_y);
4125 for(; i<total_coeff-1; i++){
4133 for(i=total_coeff-1; i>=0; i--){ //FIXME merge into rundecode?
4136 coeff_num += run[i] + 1; //FIXME add 1 earlier ?
4137 j= scantable[ coeff_num ];
4142 for(i=total_coeff-1; i>=0; i--){ //FIXME merge into rundecode?
4145 coeff_num += run[i] + 1; //FIXME add 1 earlier ?
4146 j= scantable[ coeff_num ];
4148 block[j]= level[i] * qmul[j];
4149 // printf("%d %d ", block[j], qmul[j]);
4156 * decodes a P_SKIP or B_SKIP macroblock
4158 static void decode_mb_skip(H264Context *h){
4159 MpegEncContext * const s = &h->s;
4160 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
4163 memset(h->non_zero_count[mb_xy], 0, 16);
4164 memset(h->non_zero_count_cache + 8, 0, 8*5); //FIXME ugly, remove pfui
4166 if(h->mb_aff_frame && s->mb_skip_run==0 && (s->mb_y&1)==0){
4167 h->mb_field_decoding_flag= get_bits1(&s->gb);
4169 if(h->mb_field_decoding_flag)
4170 mb_type|= MB_TYPE_INTERLACED;
4172 if( h->slice_type == B_TYPE )
4174 // just for fill_caches. pred_direct_motion will set the real mb_type
4175 mb_type= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_SKIP;
4177 fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
4178 pred_direct_motion(h, &mb_type);
4180 fill_rectangle(h->mvd_cache[0][scan8[0]], 4, 4, 8, 0, 4);
4181 fill_rectangle(h->mvd_cache[1][scan8[0]], 4, 4, 8, 0, 4);
4187 mb_type= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P1L0|MB_TYPE_SKIP;
4189 fill_caches(h, mb_type, 0); //FIXME check what is needed and what not ...
4190 pred_pskip_motion(h, &mx, &my);
4191 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
4192 fill_rectangle( h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mx,my), 4);
4194 fill_rectangle(h->mvd_cache[0][scan8[0]], 4, 4, 8, 0, 4);
4197 write_back_motion(h, mb_type);
4198 s->current_picture.mb_type[mb_xy]= mb_type|MB_TYPE_SKIP;
4199 s->current_picture.qscale_table[mb_xy]= s->qscale;
4200 h->slice_table[ mb_xy ]= h->slice_num;
4201 h->prev_mb_skiped= 1;
4205 * decodes a macroblock
4206 * @returns 0 if ok, AC_ERROR / DC_ERROR / MV_ERROR if an error is noticed
4208 static int decode_mb_cavlc(H264Context *h){
4209 MpegEncContext * const s = &h->s;
4210 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
4211 int mb_type, partition_count, cbp;
4213 s->dsp.clear_blocks(h->mb); //FIXME avoid if allready clear (move after skip handlong?
4215 tprintf("pic:%d mb:%d/%d\n", h->frame_num, s->mb_x, s->mb_y);