2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 * H.264 / AVC / MPEG4 part10 codec.
25 * @author Michael Niedermayer <michaelni@gmx.at>
30 #include "mpegvideo.h"
33 #include "h264_parser.h"
35 #include "rectangle.h"
43 * Value of Picture.reference when Picture is not a reference picture, but
44 * is held for delayed output.
46 #define DELAYED_PIC_REF 4
48 static VLC coeff_token_vlc[4];
49 static VLC chroma_dc_coeff_token_vlc;
51 static VLC total_zeros_vlc[15];
52 static VLC chroma_dc_total_zeros_vlc[3];
54 static VLC run_vlc[6];
57 static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
58 static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
59 static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
60 static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
62 static av_always_inline uint32_t pack16to32(int a, int b){
63 #ifdef WORDS_BIGENDIAN
64 return (b&0xFFFF) + (a<<16);
66 return (a&0xFFFF) + (b<<16);
70 const uint8_t ff_rem6[52]={
71 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
74 const uint8_t ff_div6[52]={
75 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,
79 static void fill_caches(H264Context *h, int mb_type, int for_deblock){
80 MpegEncContext * const s = &h->s;
81 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
82 int topleft_xy, top_xy, topright_xy, left_xy[2];
83 int topleft_type, top_type, topright_type, left_type[2];
85 int topleft_partition= -1;
88 top_xy = mb_xy - (s->mb_stride << FIELD_PICTURE);
90 //FIXME deblocking could skip the intra and nnz parts.
91 if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[top_xy]) && !FRAME_MBAFF)
94 //wow what a mess, why didn't they simplify the interlacing&intra stuff, i can't imagine that these complex rules are worth it
96 topleft_xy = top_xy - 1;
97 topright_xy= top_xy + 1;
98 left_xy[1] = left_xy[0] = mb_xy-1;
108 const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
109 const int top_pair_xy = pair_xy - s->mb_stride;
110 const int topleft_pair_xy = top_pair_xy - 1;
111 const int topright_pair_xy = top_pair_xy + 1;
112 const int topleft_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
113 const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
114 const int topright_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
115 const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
116 const int curr_mb_frame_flag = !IS_INTERLACED(mb_type);
117 const int bottom = (s->mb_y & 1);
118 tprintf(s->avctx, "fill_caches: curr_mb_frame_flag:%d, left_mb_frame_flag:%d, topleft_mb_frame_flag:%d, top_mb_frame_flag:%d, topright_mb_frame_flag:%d\n", curr_mb_frame_flag, left_mb_frame_flag, topleft_mb_frame_flag, top_mb_frame_flag, topright_mb_frame_flag);
120 ? !curr_mb_frame_flag // bottom macroblock
121 : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
123 top_xy -= s->mb_stride;
126 ? !curr_mb_frame_flag // bottom macroblock
127 : (!curr_mb_frame_flag && !topleft_mb_frame_flag) // top macroblock
129 topleft_xy -= s->mb_stride;
130 } else if(bottom && curr_mb_frame_flag && !left_mb_frame_flag) {
131 topleft_xy += s->mb_stride;
132 // take topleft mv from the middle of the mb, as opposed to all other modes which use the bottom-right partition
133 topleft_partition = 0;
136 ? !curr_mb_frame_flag // bottom macroblock
137 : (!curr_mb_frame_flag && !topright_mb_frame_flag) // top macroblock
139 topright_xy -= s->mb_stride;
141 if (left_mb_frame_flag != curr_mb_frame_flag) {
142 left_xy[1] = left_xy[0] = pair_xy - 1;
143 if (curr_mb_frame_flag) {
164 left_xy[1] += s->mb_stride;
177 h->top_mb_xy = top_xy;
178 h->left_mb_xy[0] = left_xy[0];
179 h->left_mb_xy[1] = left_xy[1];
183 top_type = h->slice_table[top_xy ] < 255 ? s->current_picture.mb_type[top_xy] : 0;
184 left_type[0] = h->slice_table[left_xy[0] ] < 255 ? s->current_picture.mb_type[left_xy[0]] : 0;
185 left_type[1] = h->slice_table[left_xy[1] ] < 255 ? s->current_picture.mb_type[left_xy[1]] : 0;
187 if(FRAME_MBAFF && !IS_INTRA(mb_type)){
189 int v = *(uint16_t*)&h->non_zero_count[mb_xy][14];
191 h->non_zero_count_cache[scan8[i]] = (v>>i)&1;
192 for(list=0; list<h->list_count; list++){
193 if(USES_LIST(mb_type,list)){
194 uint32_t *src = (uint32_t*)s->current_picture.motion_val[list][h->mb2b_xy[mb_xy]];
195 uint32_t *dst = (uint32_t*)h->mv_cache[list][scan8[0]];
196 int8_t *ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
197 for(i=0; i<4; i++, dst+=8, src+=h->b_stride){
203 *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
204 *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = pack16to32(ref[0],ref[1])*0x0101;
206 *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
207 *(uint32_t*)&h->ref_cache[list][scan8[10]] = pack16to32(ref[0],ref[1])*0x0101;
209 fill_rectangle(&h-> mv_cache[list][scan8[ 0]], 4, 4, 8, 0, 4);
210 fill_rectangle(&h->ref_cache[list][scan8[ 0]], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1);
215 topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
216 top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
217 topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
218 left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
219 left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
222 if(IS_INTRA(mb_type)){
223 h->topleft_samples_available=
224 h->top_samples_available=
225 h->left_samples_available= 0xFFFF;
226 h->topright_samples_available= 0xEEEA;
228 if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
229 h->topleft_samples_available= 0xB3FF;
230 h->top_samples_available= 0x33FF;
231 h->topright_samples_available= 0x26EA;
234 if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
235 h->topleft_samples_available&= 0xDF5F;
236 h->left_samples_available&= 0x5F5F;
240 if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
241 h->topleft_samples_available&= 0x7FFF;
243 if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
244 h->topright_samples_available&= 0xFBFF;
246 if(IS_INTRA4x4(mb_type)){
247 if(IS_INTRA4x4(top_type)){
248 h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
249 h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
250 h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
251 h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
254 if(!top_type || (IS_INTER(top_type) && h->pps.constrained_intra_pred))
259 h->intra4x4_pred_mode_cache[4+8*0]=
260 h->intra4x4_pred_mode_cache[5+8*0]=
261 h->intra4x4_pred_mode_cache[6+8*0]=
262 h->intra4x4_pred_mode_cache[7+8*0]= pred;
265 if(IS_INTRA4x4(left_type[i])){
266 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
267 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
270 if(!left_type[i] || (IS_INTER(left_type[i]) && h->pps.constrained_intra_pred))
275 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
276 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
291 //FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
293 h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4];
294 h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5];
295 h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6];
296 h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
298 h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9];
299 h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
301 h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12];
302 h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
305 h->non_zero_count_cache[4+8*0]=
306 h->non_zero_count_cache[5+8*0]=
307 h->non_zero_count_cache[6+8*0]=
308 h->non_zero_count_cache[7+8*0]=
310 h->non_zero_count_cache[1+8*0]=
311 h->non_zero_count_cache[2+8*0]=
313 h->non_zero_count_cache[1+8*3]=
314 h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
318 for (i=0; i<2; i++) {
320 h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]];
321 h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]];
322 h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]];
323 h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]];
325 h->non_zero_count_cache[3+8*1 + 2*8*i]=
326 h->non_zero_count_cache[3+8*2 + 2*8*i]=
327 h->non_zero_count_cache[0+8*1 + 8*i]=
328 h->non_zero_count_cache[0+8*4 + 8*i]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
335 h->top_cbp = h->cbp_table[top_xy];
336 } else if(IS_INTRA(mb_type)) {
343 h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
344 } else if(IS_INTRA(mb_type)) {
350 h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
353 h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
358 if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
360 for(list=0; list<h->list_count; list++){
361 if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
362 /*if(!h->mv_cache_clean[list]){
363 memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
364 memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
365 h->mv_cache_clean[list]= 1;
369 h->mv_cache_clean[list]= 0;
371 if(USES_LIST(top_type, list)){
372 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
373 const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
374 *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
375 *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
376 *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
377 *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
378 h->ref_cache[list][scan8[0] + 0 - 1*8]=
379 h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
380 h->ref_cache[list][scan8[0] + 2 - 1*8]=
381 h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
383 *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
384 *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
385 *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
386 *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
387 *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
391 int cache_idx = scan8[0] - 1 + i*2*8;
392 if(USES_LIST(left_type[i], list)){
393 const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
394 const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
395 *(uint32_t*)h->mv_cache[list][cache_idx ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
396 *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
397 h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
398 h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
400 *(uint32_t*)h->mv_cache [list][cache_idx ]=
401 *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
402 h->ref_cache[list][cache_idx ]=
403 h->ref_cache[list][cache_idx+8]= left_type[i] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
407 if((for_deblock || (IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred)) && !FRAME_MBAFF)
410 if(USES_LIST(topleft_type, list)){
411 const int b_xy = h->mb2b_xy[topleft_xy] + 3 + h->b_stride + (topleft_partition & 2*h->b_stride);
412 const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (topleft_partition & h->b8_stride);
413 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
414 h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
416 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
417 h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
420 if(USES_LIST(topright_type, list)){
421 const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
422 const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
423 *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
424 h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
426 *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
427 h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
430 if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
433 h->ref_cache[list][scan8[5 ]+1] =
434 h->ref_cache[list][scan8[7 ]+1] =
435 h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
436 h->ref_cache[list][scan8[4 ]] =
437 h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
438 *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
439 *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
440 *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
441 *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
442 *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
445 /* XXX beurk, Load mvd */
446 if(USES_LIST(top_type, list)){
447 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
448 *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
449 *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
450 *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
451 *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
453 *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
454 *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
455 *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
456 *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
458 if(USES_LIST(left_type[0], list)){
459 const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
460 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
461 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
463 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
464 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
466 if(USES_LIST(left_type[1], list)){
467 const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
468 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
469 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
471 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
472 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
474 *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
475 *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
476 *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
477 *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
478 *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
480 if(h->slice_type == FF_B_TYPE){
481 fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
483 if(IS_DIRECT(top_type)){
484 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
485 }else if(IS_8X8(top_type)){
486 int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
487 h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
488 h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
490 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
493 if(IS_DIRECT(left_type[0]))
494 h->direct_cache[scan8[0] - 1 + 0*8]= 1;
495 else if(IS_8X8(left_type[0]))
496 h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
498 h->direct_cache[scan8[0] - 1 + 0*8]= 0;
500 if(IS_DIRECT(left_type[1]))
501 h->direct_cache[scan8[0] - 1 + 2*8]= 1;
502 else if(IS_8X8(left_type[1]))
503 h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
505 h->direct_cache[scan8[0] - 1 + 2*8]= 0;
511 MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
512 MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
513 MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
514 MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
515 MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
516 MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
517 MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
518 MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
519 MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
520 MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
522 #define MAP_F2F(idx, mb_type)\
523 if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
524 h->ref_cache[list][idx] <<= 1;\
525 h->mv_cache[list][idx][1] /= 2;\
526 h->mvd_cache[list][idx][1] /= 2;\
531 #define MAP_F2F(idx, mb_type)\
532 if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
533 h->ref_cache[list][idx] >>= 1;\
534 h->mv_cache[list][idx][1] <<= 1;\
535 h->mvd_cache[list][idx][1] <<= 1;\
545 h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
548 static inline void write_back_intra_pred_mode(H264Context *h){
549 MpegEncContext * const s = &h->s;
550 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
552 h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
553 h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
554 h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
555 h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
556 h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
557 h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
558 h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
562 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
564 static inline int check_intra4x4_pred_mode(H264Context *h){
565 MpegEncContext * const s = &h->s;
566 static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
567 static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
570 if(!(h->top_samples_available&0x8000)){
572 int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
574 av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
577 h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
582 if(!(h->left_samples_available&0x8000)){
584 int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
586 av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
589 h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
595 } //FIXME cleanup like next
598 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
600 static inline int check_intra_pred_mode(H264Context *h, int mode){
601 MpegEncContext * const s = &h->s;
602 static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
603 static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
606 av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
610 if(!(h->top_samples_available&0x8000)){
613 av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
618 if(!(h->left_samples_available&0x8000)){
621 av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
630 * gets the predicted intra4x4 prediction mode.
632 static inline int pred_intra_mode(H264Context *h, int n){
633 const int index8= scan8[n];
634 const int left= h->intra4x4_pred_mode_cache[index8 - 1];
635 const int top = h->intra4x4_pred_mode_cache[index8 - 8];
636 const int min= FFMIN(left, top);
638 tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
640 if(min<0) return DC_PRED;
644 static inline void write_back_non_zero_count(H264Context *h){
645 MpegEncContext * const s = &h->s;
646 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
648 h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[7+8*1];
649 h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[7+8*2];
650 h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[7+8*3];
651 h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
652 h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[4+8*4];
653 h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[5+8*4];
654 h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[6+8*4];
656 h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[1+8*2];
657 h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
658 h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[2+8*1];
660 h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5];
661 h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
662 h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4];
665 // store all luma nnzs, for deblocking
668 v += (!!h->non_zero_count_cache[scan8[i]]) << i;
669 *(uint16_t*)&h->non_zero_count[mb_xy][14] = v;
674 * gets the predicted number of non zero coefficients.
675 * @param n block index
677 static inline int pred_non_zero_count(H264Context *h, int n){
678 const int index8= scan8[n];
679 const int left= h->non_zero_count_cache[index8 - 1];
680 const int top = h->non_zero_count_cache[index8 - 8];
683 if(i<64) i= (i+1)>>1;
685 tprintf(h->s.avctx, "pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
690 static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
691 const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
692 MpegEncContext *s = &h->s;
694 /* there is no consistent mapping of mvs to neighboring locations that will
695 * make mbaff happy, so we can't move all this logic to fill_caches */
697 const uint32_t *mb_types = s->current_picture_ptr->mb_type;
699 *(uint32_t*)h->mv_cache[list][scan8[0]-2] = 0;
700 *C = h->mv_cache[list][scan8[0]-2];
703 && (s->mb_y&1) && i < scan8[0]+8 && topright_ref != PART_NOT_AVAILABLE){
704 int topright_xy = s->mb_x + (s->mb_y-1)*s->mb_stride + (i == scan8[0]+3);
705 if(IS_INTERLACED(mb_types[topright_xy])){
706 #define SET_DIAG_MV(MV_OP, REF_OP, X4, Y4)\
707 const int x4 = X4, y4 = Y4;\
708 const int mb_type = mb_types[(x4>>2)+(y4>>2)*s->mb_stride];\
709 if(!USES_LIST(mb_type,list))\
710 return LIST_NOT_USED;\
711 mv = s->current_picture_ptr->motion_val[list][x4 + y4*h->b_stride];\
712 h->mv_cache[list][scan8[0]-2][0] = mv[0];\
713 h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\
714 return s->current_picture_ptr->ref_index[list][(x4>>1) + (y4>>1)*h->b8_stride] REF_OP;
716 SET_DIAG_MV(*2, >>1, s->mb_x*4+(i&7)-4+part_width, s->mb_y*4-1);
719 if(topright_ref == PART_NOT_AVAILABLE
720 && ((s->mb_y&1) || i >= scan8[0]+8) && (i&7)==4
721 && h->ref_cache[list][scan8[0]-1] != PART_NOT_AVAILABLE){
723 && IS_INTERLACED(mb_types[h->left_mb_xy[0]])){
724 SET_DIAG_MV(*2, >>1, s->mb_x*4-1, (s->mb_y|1)*4+(s->mb_y&1)*2+(i>>4)-1);
727 && !IS_INTERLACED(mb_types[h->left_mb_xy[0]])
729 // leftshift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's ok.
730 SET_DIAG_MV(/2, <<1, s->mb_x*4-1, (s->mb_y&~1)*4 - 1 + ((i-scan8[0])>>3)*2);
736 if(topright_ref != PART_NOT_AVAILABLE){
737 *C= h->mv_cache[list][ i - 8 + part_width ];
740 tprintf(s->avctx, "topright MV not available\n");
742 *C= h->mv_cache[list][ i - 8 - 1 ];
743 return h->ref_cache[list][ i - 8 - 1 ];
748 * gets the predicted MV.
749 * @param n the block index
750 * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
751 * @param mx the x component of the predicted motion vector
752 * @param my the y component of the predicted motion vector
754 static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
755 const int index8= scan8[n];
756 const int top_ref= h->ref_cache[list][ index8 - 8 ];
757 const int left_ref= h->ref_cache[list][ index8 - 1 ];
758 const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
759 const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
761 int diagonal_ref, match_count;
763 assert(part_width==1 || part_width==2 || part_width==4);
773 diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
774 match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
775 tprintf(h->s.avctx, "pred_motion match_count=%d\n", match_count);
776 if(match_count > 1){ //most common
777 *mx= mid_pred(A[0], B[0], C[0]);
778 *my= mid_pred(A[1], B[1], C[1]);
779 }else if(match_count==1){
783 }else if(top_ref==ref){
791 if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
795 *mx= mid_pred(A[0], B[0], C[0]);
796 *my= mid_pred(A[1], B[1], C[1]);
800 tprintf(h->s.avctx, "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
804 * gets the directionally predicted 16x8 MV.
805 * @param n the block index
806 * @param mx the x component of the predicted motion vector
807 * @param my the y component of the predicted motion vector
809 static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
811 const int top_ref= h->ref_cache[list][ scan8[0] - 8 ];
812 const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
814 tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
822 const int left_ref= h->ref_cache[list][ scan8[8] - 1 ];
823 const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
825 tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
835 pred_motion(h, n, 4, list, ref, mx, my);
839 * gets the directionally predicted 8x16 MV.
840 * @param n the block index
841 * @param mx the x component of the predicted motion vector
842 * @param my the y component of the predicted motion vector
844 static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
846 const int left_ref= h->ref_cache[list][ scan8[0] - 1 ];
847 const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
849 tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
860 diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
862 tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
864 if(diagonal_ref == ref){
872 pred_motion(h, n, 2, list, ref, mx, my);
875 static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
876 const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
877 const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
879 tprintf(h->s.avctx, "pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
881 if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
882 || (top_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
883 || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
889 pred_motion(h, 0, 4, 0, 0, mx, my);
894 static inline void direct_dist_scale_factor(H264Context * const h){
895 const int poc = h->s.current_picture_ptr->poc;
896 const int poc1 = h->ref_list[1][0].poc;
898 for(i=0; i<h->ref_count[0]; i++){
899 int poc0 = h->ref_list[0][i].poc;
900 int td = av_clip(poc1 - poc0, -128, 127);
901 if(td == 0 /* FIXME || pic0 is a long-term ref */){
902 h->dist_scale_factor[i] = 256;
904 int tb = av_clip(poc - poc0, -128, 127);
905 int tx = (16384 + (FFABS(td) >> 1)) / td;
906 h->dist_scale_factor[i] = av_clip((tb*tx + 32) >> 6, -1024, 1023);
910 for(i=0; i<h->ref_count[0]; i++){
911 h->dist_scale_factor_field[2*i] =
912 h->dist_scale_factor_field[2*i+1] = h->dist_scale_factor[i];
916 static inline void direct_ref_list_init(H264Context * const h){
917 MpegEncContext * const s = &h->s;
918 Picture * const ref1 = &h->ref_list[1][0];
919 Picture * const cur = s->current_picture_ptr;
921 if(cur->pict_type == FF_I_TYPE)
922 cur->ref_count[0] = 0;
923 if(cur->pict_type != FF_B_TYPE)
924 cur->ref_count[1] = 0;
925 for(list=0; list<2; list++){
926 cur->ref_count[list] = h->ref_count[list];
927 for(j=0; j<h->ref_count[list]; j++)
928 cur->ref_poc[list][j] = h->ref_list[list][j].poc;
930 if(cur->pict_type != FF_B_TYPE || h->direct_spatial_mv_pred)
932 for(list=0; list<2; list++){
933 for(i=0; i<ref1->ref_count[list]; i++){
934 const int poc = ref1->ref_poc[list][i];
935 h->map_col_to_list0[list][i] = 0; /* bogus; fills in for missing frames */
936 for(j=0; j<h->ref_count[list]; j++)
937 if(h->ref_list[list][j].poc == poc){
938 h->map_col_to_list0[list][i] = j;
944 for(list=0; list<2; list++){
945 for(i=0; i<ref1->ref_count[list]; i++){
946 j = h->map_col_to_list0[list][i];
947 h->map_col_to_list0_field[list][2*i] = 2*j;
948 h->map_col_to_list0_field[list][2*i+1] = 2*j+1;
954 static inline void pred_direct_motion(H264Context * const h, int *mb_type){
955 MpegEncContext * const s = &h->s;
956 const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
957 const int b8_xy = 2*s->mb_x + 2*s->mb_y*h->b8_stride;
958 const int b4_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
959 const int mb_type_col = h->ref_list[1][0].mb_type[mb_xy];
960 const int16_t (*l1mv0)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[0][b4_xy];
961 const int16_t (*l1mv1)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[1][b4_xy];
962 const int8_t *l1ref0 = &h->ref_list[1][0].ref_index[0][b8_xy];
963 const int8_t *l1ref1 = &h->ref_list[1][0].ref_index[1][b8_xy];
964 const int is_b8x8 = IS_8X8(*mb_type);
965 unsigned int sub_mb_type;
968 #define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16|MB_TYPE_INTRA4x4|MB_TYPE_INTRA16x16|MB_TYPE_INTRA_PCM)
969 if(IS_8X8(mb_type_col) && !h->sps.direct_8x8_inference_flag){
970 /* FIXME save sub mb types from previous frames (or derive from MVs)
971 * so we know exactly what block size to use */
972 sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
973 *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
974 }else if(!is_b8x8 && (mb_type_col & MB_TYPE_16x16_OR_INTRA)){
975 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
976 *mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
978 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
979 *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
982 *mb_type |= MB_TYPE_DIRECT2;
984 *mb_type |= MB_TYPE_INTERLACED;
986 tprintf(s->avctx, "mb_type = %08x, sub_mb_type = %08x, is_b8x8 = %d, mb_type_col = %08x\n", *mb_type, sub_mb_type, is_b8x8, mb_type_col);
988 if(h->direct_spatial_mv_pred){
993 /* FIXME interlacing + spatial direct uses wrong colocated block positions */
995 /* ref = min(neighbors) */
996 for(list=0; list<2; list++){
997 int refa = h->ref_cache[list][scan8[0] - 1];
998 int refb = h->ref_cache[list][scan8[0] - 8];
999 int refc = h->ref_cache[list][scan8[0] - 8 + 4];
1001 refc = h->ref_cache[list][scan8[0] - 8 - 1];
1003 if(ref[list] < 0 || (refb < ref[list] && refb >= 0))
1005 if(ref[list] < 0 || (refc < ref[list] && refc >= 0))
1011 if(ref[0] < 0 && ref[1] < 0){
1012 ref[0] = ref[1] = 0;
1013 mv[0][0] = mv[0][1] =
1014 mv[1][0] = mv[1][1] = 0;
1016 for(list=0; list<2; list++){
1018 pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]);
1020 mv[list][0] = mv[list][1] = 0;
1026 *mb_type &= ~MB_TYPE_L1;
1027 sub_mb_type &= ~MB_TYPE_L1;
1028 }else if(ref[0] < 0){
1030 *mb_type &= ~MB_TYPE_L0;
1031 sub_mb_type &= ~MB_TYPE_L0;
1034 if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col)){
1035 int pair_xy = s->mb_x + (s->mb_y&~1)*s->mb_stride;
1036 int mb_types_col[2];
1037 int b8_stride = h->b8_stride;
1038 int b4_stride = h->b_stride;
1040 *mb_type = (*mb_type & ~MB_TYPE_16x16) | MB_TYPE_8x8;
1042 if(IS_INTERLACED(*mb_type)){
1043 mb_types_col[0] = h->ref_list[1][0].mb_type[pair_xy];
1044 mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
1046 l1ref0 -= 2*b8_stride;
1047 l1ref1 -= 2*b8_stride;
1048 l1mv0 -= 4*b4_stride;
1049 l1mv1 -= 4*b4_stride;
1054 int cur_poc = s->current_picture_ptr->poc;
1055 int *col_poc = h->ref_list[1]->field_poc;
1056 int col_parity = FFABS(col_poc[0] - cur_poc) >= FFABS(col_poc[1] - cur_poc);
1057 int dy = 2*col_parity - (s->mb_y&1);
1059 mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy + col_parity*s->mb_stride];
1060 l1ref0 += dy*b8_stride;
1061 l1ref1 += dy*b8_stride;
1062 l1mv0 += 2*dy*b4_stride;
1063 l1mv1 += 2*dy*b4_stride;
1067 for(i8=0; i8<4; i8++){
1070 int xy8 = x8+y8*b8_stride;
1071 int xy4 = 3*x8+y8*b4_stride;
1074 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1076 h->sub_mb_type[i8] = sub_mb_type;
1078 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
1079 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
1080 if(!IS_INTRA(mb_types_col[y8])
1081 && ( (l1ref0[xy8] == 0 && FFABS(l1mv0[xy4][0]) <= 1 && FFABS(l1mv0[xy4][1]) <= 1)
1082 || (l1ref0[xy8] < 0 && l1ref1[xy8] == 0 && FFABS(l1mv1[xy4][0]) <= 1 && FFABS(l1mv1[xy4][1]) <= 1))){
1084 a= pack16to32(mv[0][0],mv[0][1]);
1086 b= pack16to32(mv[1][0],mv[1][1]);
1088 a= pack16to32(mv[0][0],mv[0][1]);
1089 b= pack16to32(mv[1][0],mv[1][1]);
1091 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, a, 4);
1092 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, b, 4);
1094 }else if(IS_16X16(*mb_type)){
1097 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
1098 fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
1099 if(!IS_INTRA(mb_type_col)
1100 && ( (l1ref0[0] == 0 && FFABS(l1mv0[0][0]) <= 1 && FFABS(l1mv0[0][1]) <= 1)
1101 || (l1ref0[0] < 0 && l1ref1[0] == 0 && FFABS(l1mv1[0][0]) <= 1 && FFABS(l1mv1[0][1]) <= 1
1102 && (h->x264_build>33 || !h->x264_build)))){
1104 a= pack16to32(mv[0][0],mv[0][1]);
1106 b= pack16to32(mv[1][0],mv[1][1]);
1108 a= pack16to32(mv[0][0],mv[0][1]);
1109 b= pack16to32(mv[1][0],mv[1][1]);
1111 fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, a, 4);
1112 fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, b, 4);
1114 for(i8=0; i8<4; i8++){
1115 const int x8 = i8&1;
1116 const int y8 = i8>>1;
1118 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1120 h->sub_mb_type[i8] = sub_mb_type;
1122 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1123 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1124 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
1125 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
1128 if(!IS_INTRA(mb_type_col) && ( l1ref0[x8 + y8*h->b8_stride] == 0
1129 || (l1ref0[x8 + y8*h->b8_stride] < 0 && l1ref1[x8 + y8*h->b8_stride] == 0
1130 && (h->x264_build>33 || !h->x264_build)))){
1131 const int16_t (*l1mv)[2]= l1ref0[x8 + y8*h->b8_stride] == 0 ? l1mv0 : l1mv1;
1132 if(IS_SUB_8X8(sub_mb_type)){
1133 const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
1134 if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
1136 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1138 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1141 for(i4=0; i4<4; i4++){
1142 const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
1143 if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
1145 *(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0;
1147 *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0;
1153 }else{ /* direct temporal mv pred */
1154 const int *map_col_to_list0[2] = {h->map_col_to_list0[0], h->map_col_to_list0[1]};
1155 const int *dist_scale_factor = h->dist_scale_factor;
1158 if(IS_INTERLACED(*mb_type)){
1159 map_col_to_list0[0] = h->map_col_to_list0_field[0];
1160 map_col_to_list0[1] = h->map_col_to_list0_field[1];
1161 dist_scale_factor = h->dist_scale_factor_field;
1163 if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col)){
1164 /* FIXME assumes direct_8x8_inference == 1 */
1165 const int pair_xy = s->mb_x + (s->mb_y&~1)*s->mb_stride;
1166 int mb_types_col[2];
1169 *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1
1170 | (is_b8x8 ? 0 : MB_TYPE_DIRECT2)
1171 | (*mb_type & MB_TYPE_INTERLACED);
1172 sub_mb_type = MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2|MB_TYPE_16x16;
1174 if(IS_INTERLACED(*mb_type)){
1175 /* frame to field scaling */
1176 mb_types_col[0] = h->ref_list[1][0].mb_type[pair_xy];
1177 mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
1179 l1ref0 -= 2*h->b8_stride;
1180 l1ref1 -= 2*h->b8_stride;
1181 l1mv0 -= 4*h->b_stride;
1182 l1mv1 -= 4*h->b_stride;
1186 if( (mb_types_col[0] & MB_TYPE_16x16_OR_INTRA)
1187 && (mb_types_col[1] & MB_TYPE_16x16_OR_INTRA)
1189 *mb_type |= MB_TYPE_16x8;
1191 *mb_type |= MB_TYPE_8x8;
1193 /* field to frame scaling */
1194 /* col_mb_y = (mb_y&~1) + (topAbsDiffPOC < bottomAbsDiffPOC ? 0 : 1)
1195 * but in MBAFF, top and bottom POC are equal */
1196 int dy = (s->mb_y&1) ? 1 : 2;
1198 mb_types_col[1] = h->ref_list[1][0].mb_type[pair_xy+s->mb_stride];
1199 l1ref0 += dy*h->b8_stride;
1200 l1ref1 += dy*h->b8_stride;
1201 l1mv0 += 2*dy*h->b_stride;
1202 l1mv1 += 2*dy*h->b_stride;
1205 if((mb_types_col[0] & (MB_TYPE_16x16_OR_INTRA|MB_TYPE_16x8))
1207 *mb_type |= MB_TYPE_16x16;
1209 *mb_type |= MB_TYPE_8x8;
1212 for(i8=0; i8<4; i8++){
1213 const int x8 = i8&1;
1214 const int y8 = i8>>1;
1216 const int16_t (*l1mv)[2]= l1mv0;
1218 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1220 h->sub_mb_type[i8] = sub_mb_type;
1222 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1223 if(IS_INTRA(mb_types_col[y8])){
1224 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
1225 fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1226 fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1230 ref0 = l1ref0[x8 + (y8*2>>y_shift)*h->b8_stride];
1232 ref0 = map_col_to_list0[0][ref0*2>>y_shift];
1234 ref0 = map_col_to_list0[1][l1ref1[x8 + (y8*2>>y_shift)*h->b8_stride]*2>>y_shift];
1237 scale = dist_scale_factor[ref0];
1238 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
1241 const int16_t *mv_col = l1mv[x8*3 + (y8*6>>y_shift)*h->b_stride];
1242 int my_col = (mv_col[1]<<y_shift)/2;
1243 int mx = (scale * mv_col[0] + 128) >> 8;
1244 int my = (scale * my_col + 128) >> 8;
1245 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
1246 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-my_col), 4);
1253 /* one-to-one mv scaling */
1255 if(IS_16X16(*mb_type)){
1258 fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
1259 if(IS_INTRA(mb_type_col)){
1262 const int ref0 = l1ref0[0] >= 0 ? map_col_to_list0[0][l1ref0[0]]
1263 : map_col_to_list0[1][l1ref1[0]];
1264 const int scale = dist_scale_factor[ref0];
1265 const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0];
1267 mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
1268 mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
1270 mv0= pack16to32(mv_l0[0],mv_l0[1]);
1271 mv1= pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
1273 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1);
1274 fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, mv0, 4);
1275 fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, mv1, 4);
1277 for(i8=0; i8<4; i8++){
1278 const int x8 = i8&1;
1279 const int y8 = i8>>1;
1281 const int16_t (*l1mv)[2]= l1mv0;
1283 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1285 h->sub_mb_type[i8] = sub_mb_type;
1286 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1287 if(IS_INTRA(mb_type_col)){
1288 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
1289 fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1290 fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1294 ref0 = l1ref0[x8 + y8*h->b8_stride];
1296 ref0 = map_col_to_list0[0][ref0];
1298 ref0 = map_col_to_list0[1][l1ref1[x8 + y8*h->b8_stride]];
1301 scale = dist_scale_factor[ref0];
1303 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
1304 if(IS_SUB_8X8(sub_mb_type)){
1305 const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
1306 int mx = (scale * mv_col[0] + 128) >> 8;
1307 int my = (scale * mv_col[1] + 128) >> 8;
1308 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
1309 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-mv_col[1]), 4);
1311 for(i4=0; i4<4; i4++){
1312 const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
1313 int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
1314 mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
1315 mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
1316 *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] =
1317 pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
1324 static inline void write_back_motion(H264Context *h, int mb_type){
1325 MpegEncContext * const s = &h->s;
1326 const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1327 const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1330 if(!USES_LIST(mb_type, 0))
1331 fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
1333 for(list=0; list<h->list_count; list++){
1335 if(!USES_LIST(mb_type, list))
1339 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
1340 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
1342 if( h->pps.cabac ) {
1343 if(IS_SKIP(mb_type))
1344 fill_rectangle(h->mvd_table[list][b_xy], 4, 4, h->b_stride, 0, 4);
1347 *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
1348 *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
1353 int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
1354 ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
1355 ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
1356 ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
1357 ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
1361 if(h->slice_type == FF_B_TYPE && h->pps.cabac){
1362 if(IS_8X8(mb_type)){
1363 uint8_t *direct_table = &h->direct_table[b8_xy];
1364 direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
1365 direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
1366 direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
1372 * Decodes a network abstraction layer unit.
1373 * @param consumed is the number of bytes used as input
1374 * @param length is the length of the array
1375 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
1376 * @returns decoded bytes, might be src+1 if no escapes
1378 static const uint8_t *decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length){
1383 // src[0]&0x80; //forbidden bit
1384 h->nal_ref_idc= src[0]>>5;
1385 h->nal_unit_type= src[0]&0x1F;
1389 for(i=0; i<length; i++)
1390 printf("%2X ", src[i]);
1392 for(i=0; i+1<length; i+=2){
1393 if(src[i]) continue;
1394 if(i>0 && src[i-1]==0) i--;
1395 if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1397 /* startcode, so we must be past the end */
1404 if(i>=length-1){ //no escaped 0
1405 *dst_length= length;
1406 *consumed= length+1; //+1 for the header
1410 bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; // use second escape buffer for inter data
1411 h->rbsp_buffer[bufidx]= av_fast_realloc(h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length);
1412 dst= h->rbsp_buffer[bufidx];
1418 //printf("decoding esc\n");
1421 //remove escapes (very rare 1:2^22)
1422 if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
1423 if(src[si+2]==3){ //escape
1428 }else //next start code
1432 dst[di++]= src[si++];
1436 *consumed= si + 1;//+1 for the header
1437 //FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
1442 * identifies the exact end of the bitstream
1443 * @return the length of the trailing, or 0 if damaged
1445 static int decode_rbsp_trailing(H264Context *h, const uint8_t *src){
1449 tprintf(h->s.avctx, "rbsp trailing %X\n", v);
1459 * idct tranforms the 16 dc values and dequantize them.
1460 * @param qp quantization parameter
1462 static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
1465 int temp[16]; //FIXME check if this is a good idea
1466 static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
1467 static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1469 //memset(block, 64, 2*256);
1472 const int offset= y_offset[i];
1473 const int z0= block[offset+stride*0] + block[offset+stride*4];
1474 const int z1= block[offset+stride*0] - block[offset+stride*4];
1475 const int z2= block[offset+stride*1] - block[offset+stride*5];
1476 const int z3= block[offset+stride*1] + block[offset+stride*5];
1485 const int offset= x_offset[i];
1486 const int z0= temp[4*0+i] + temp[4*2+i];
1487 const int z1= temp[4*0+i] - temp[4*2+i];
1488 const int z2= temp[4*1+i] - temp[4*3+i];
1489 const int z3= temp[4*1+i] + temp[4*3+i];
1491 block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_resdual
1492 block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8));
1493 block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8));
1494 block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8));
1500 * dct tranforms the 16 dc values.
1501 * @param qp quantization parameter ??? FIXME
1503 static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
1504 // const int qmul= dequant_coeff[qp][0];
1506 int temp[16]; //FIXME check if this is a good idea
1507 static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
1508 static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1511 const int offset= y_offset[i];
1512 const int z0= block[offset+stride*0] + block[offset+stride*4];
1513 const int z1= block[offset+stride*0] - block[offset+stride*4];
1514 const int z2= block[offset+stride*1] - block[offset+stride*5];
1515 const int z3= block[offset+stride*1] + block[offset+stride*5];
1524 const int offset= x_offset[i];
1525 const int z0= temp[4*0+i] + temp[4*2+i];
1526 const int z1= temp[4*0+i] - temp[4*2+i];
1527 const int z2= temp[4*1+i] - temp[4*3+i];
1528 const int z3= temp[4*1+i] + temp[4*3+i];
1530 block[stride*0 +offset]= (z0 + z3)>>1;
1531 block[stride*2 +offset]= (z1 + z2)>>1;
1532 block[stride*8 +offset]= (z1 - z2)>>1;
1533 block[stride*10+offset]= (z0 - z3)>>1;
1541 static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
1542 const int stride= 16*2;
1543 const int xStride= 16;
1546 a= block[stride*0 + xStride*0];
1547 b= block[stride*0 + xStride*1];
1548 c= block[stride*1 + xStride*0];
1549 d= block[stride*1 + xStride*1];
1556 block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7;
1557 block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7;
1558 block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7;
1559 block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7;
1563 static void chroma_dc_dct_c(DCTELEM *block){
1564 const int stride= 16*2;
1565 const int xStride= 16;
1568 a= block[stride*0 + xStride*0];
1569 b= block[stride*0 + xStride*1];
1570 c= block[stride*1 + xStride*0];
1571 d= block[stride*1 + xStride*1];
1578 block[stride*0 + xStride*0]= (a+c);
1579 block[stride*0 + xStride*1]= (e+b);
1580 block[stride*1 + xStride*0]= (a-c);
1581 block[stride*1 + xStride*1]= (e-b);
1586 * gets the chroma qp.
1588 static inline int get_chroma_qp(H264Context *h, int t, int qscale){
1589 return h->pps.chroma_qp_table[t][qscale & 0xff];
1592 //FIXME need to check that this does not overflow signed 32 bit for low qp, i am not sure, it's very close
1593 //FIXME check that gcc inlines this (and optimizes intra & separate_dc stuff away)
1594 static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int separate_dc){
1596 const int * const quant_table= quant_coeff[qscale];
1597 const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
1598 const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
1599 const unsigned int threshold2= (threshold1<<1);
1605 const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
1606 const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
1607 const unsigned int dc_threshold2= (dc_threshold1<<1);
1609 int level= block[0]*quant_coeff[qscale+18][0];
1610 if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1612 level= (dc_bias + level)>>(QUANT_SHIFT-2);
1615 level= (dc_bias - level)>>(QUANT_SHIFT-2);
1618 // last_non_zero = i;
1623 const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
1624 const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
1625 const unsigned int dc_threshold2= (dc_threshold1<<1);
1627 int level= block[0]*quant_table[0];
1628 if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1630 level= (dc_bias + level)>>(QUANT_SHIFT+1);
1633 level= (dc_bias - level)>>(QUANT_SHIFT+1);
1636 // last_non_zero = i;
1649 const int j= scantable[i];
1650 int level= block[j]*quant_table[j];
1652 // if( bias+level >= (1<<(QMAT_SHIFT - 3))
1653 // || bias-level >= (1<<(QMAT_SHIFT - 3))){
1654 if(((unsigned)(level+threshold1))>threshold2){
1656 level= (bias + level)>>QUANT_SHIFT;
1659 level= (bias - level)>>QUANT_SHIFT;
1668 return last_non_zero;
1671 static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
1672 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1673 int src_x_offset, int src_y_offset,
1674 qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
1675 MpegEncContext * const s = &h->s;
1676 const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
1677 int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
1678 const int luma_xy= (mx&3) + ((my&3)<<2);
1679 uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->mb_linesize;
1680 uint8_t * src_cb, * src_cr;
1681 int extra_width= h->emu_edge_width;
1682 int extra_height= h->emu_edge_height;
1684 const int full_mx= mx>>2;
1685 const int full_my= my>>2;
1686 const int pic_width = 16*s->mb_width;
1687 const int pic_height = 16*s->mb_height >> MB_FIELD;
1689 if(!pic->data[0]) //FIXME this is unacceptable, some senseable error concealment must be done for missing reference frames
1692 if(mx&7) extra_width -= 3;
1693 if(my&7) extra_height -= 3;
1695 if( full_mx < 0-extra_width
1696 || full_my < 0-extra_height
1697 || full_mx + 16/*FIXME*/ > pic_width + extra_width
1698 || full_my + 16/*FIXME*/ > pic_height + extra_height){
1699 ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->mb_linesize, h->mb_linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
1700 src_y= s->edge_emu_buffer + 2 + 2*h->mb_linesize;
1704 qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps?
1706 qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize);
1709 if(ENABLE_GRAY && s->flags&CODEC_FLAG_GRAY) return;
1712 // chroma offset when predicting from a field of opposite parity
1713 my += 2 * ((s->mb_y & 1) - (pic->reference - 1));
1714 emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1);
1716 src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
1717 src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
1720 ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
1721 src_cb= s->edge_emu_buffer;
1723 chroma_op(dest_cb, src_cb, h->mb_uvlinesize, chroma_height, mx&7, my&7);
1726 ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
1727 src_cr= s->edge_emu_buffer;
1729 chroma_op(dest_cr, src_cr, h->mb_uvlinesize, chroma_height, mx&7, my&7);
1732 static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
1733 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1734 int x_offset, int y_offset,
1735 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
1736 qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
1737 int list0, int list1){
1738 MpegEncContext * const s = &h->s;
1739 qpel_mc_func *qpix_op= qpix_put;
1740 h264_chroma_mc_func chroma_op= chroma_put;
1742 dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
1743 dest_cb += x_offset + y_offset*h->mb_uvlinesize;
1744 dest_cr += x_offset + y_offset*h->mb_uvlinesize;
1745 x_offset += 8*s->mb_x;
1746 y_offset += 8*(s->mb_y >> MB_FIELD);
1749 Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
1750 mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
1751 dest_y, dest_cb, dest_cr, x_offset, y_offset,
1752 qpix_op, chroma_op);
1755 chroma_op= chroma_avg;
1759 Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
1760 mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
1761 dest_y, dest_cb, dest_cr, x_offset, y_offset,
1762 qpix_op, chroma_op);
1766 static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
1767 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1768 int x_offset, int y_offset,
1769 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
1770 h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
1771 h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
1772 int list0, int list1){
1773 MpegEncContext * const s = &h->s;
1775 dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
1776 dest_cb += x_offset + y_offset*h->mb_uvlinesize;
1777 dest_cr += x_offset + y_offset*h->mb_uvlinesize;
1778 x_offset += 8*s->mb_x;
1779 y_offset += 8*(s->mb_y >> MB_FIELD);
1782 /* don't optimize for luma-only case, since B-frames usually
1783 * use implicit weights => chroma too. */
1784 uint8_t *tmp_cb = s->obmc_scratchpad;
1785 uint8_t *tmp_cr = s->obmc_scratchpad + 8;
1786 uint8_t *tmp_y = s->obmc_scratchpad + 8*h->mb_uvlinesize;
1787 int refn0 = h->ref_cache[0][ scan8[n] ];
1788 int refn1 = h->ref_cache[1][ scan8[n] ];
1790 mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
1791 dest_y, dest_cb, dest_cr,
1792 x_offset, y_offset, qpix_put, chroma_put);
1793 mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
1794 tmp_y, tmp_cb, tmp_cr,
1795 x_offset, y_offset, qpix_put, chroma_put);
1797 if(h->use_weight == 2){
1798 int weight0 = h->implicit_weight[refn0][refn1];
1799 int weight1 = 64 - weight0;
1800 luma_weight_avg( dest_y, tmp_y, h-> mb_linesize, 5, weight0, weight1, 0);
1801 chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, 5, weight0, weight1, 0);
1802 chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, 5, weight0, weight1, 0);
1804 luma_weight_avg(dest_y, tmp_y, h->mb_linesize, h->luma_log2_weight_denom,
1805 h->luma_weight[0][refn0], h->luma_weight[1][refn1],
1806 h->luma_offset[0][refn0] + h->luma_offset[1][refn1]);
1807 chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
1808 h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0],
1809 h->chroma_offset[0][refn0][0] + h->chroma_offset[1][refn1][0]);
1810 chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
1811 h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1],
1812 h->chroma_offset[0][refn0][1] + h->chroma_offset[1][refn1][1]);
1815 int list = list1 ? 1 : 0;
1816 int refn = h->ref_cache[list][ scan8[n] ];
1817 Picture *ref= &h->ref_list[list][refn];
1818 mc_dir_part(h, ref, n, square, chroma_height, delta, list,
1819 dest_y, dest_cb, dest_cr, x_offset, y_offset,
1820 qpix_put, chroma_put);
1822 luma_weight_op(dest_y, h->mb_linesize, h->luma_log2_weight_denom,
1823 h->luma_weight[list][refn], h->luma_offset[list][refn]);
1824 if(h->use_weight_chroma){
1825 chroma_weight_op(dest_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
1826 h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]);
1827 chroma_weight_op(dest_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
1828 h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]);
1833 static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
1834 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1835 int x_offset, int y_offset,
1836 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
1837 qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
1838 h264_weight_func *weight_op, h264_biweight_func *weight_avg,
1839 int list0, int list1){
1840 if((h->use_weight==2 && list0 && list1
1841 && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32))
1842 || h->use_weight==1)
1843 mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
1844 x_offset, y_offset, qpix_put, chroma_put,
1845 weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
1847 mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
1848 x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
1851 static inline void prefetch_motion(H264Context *h, int list){
1852 /* fetch pixels for estimated mv 4 macroblocks ahead
1853 * optimized for 64byte cache lines */
1854 MpegEncContext * const s = &h->s;
1855 const int refn = h->ref_cache[list][scan8[0]];
1857 const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8;
1858 const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y;
1859 uint8_t **src= h->ref_list[list][refn].data;
1860 int off= mx + (my + (s->mb_x&3)*4)*h->mb_linesize + 64;
1861 s->dsp.prefetch(src[0]+off, s->linesize, 4);
1862 off= (mx>>1) + ((my>>1) + (s->mb_x&7))*s->uvlinesize + 64;
1863 s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
1867 static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1868 qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
1869 qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
1870 h264_weight_func *weight_op, h264_biweight_func *weight_avg){
1871 MpegEncContext * const s = &h->s;
1872 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
1873 const int mb_type= s->current_picture.mb_type[mb_xy];
1875 assert(IS_INTER(mb_type));
1877 prefetch_motion(h, 0);
1879 if(IS_16X16(mb_type)){
1880 mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
1881 qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
1882 &weight_op[0], &weight_avg[0],
1883 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1884 }else if(IS_16X8(mb_type)){
1885 mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
1886 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
1887 &weight_op[1], &weight_avg[1],
1888 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1889 mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
1890 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
1891 &weight_op[1], &weight_avg[1],
1892 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
1893 }else if(IS_8X16(mb_type)){
1894 mc_part(h, 0, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0,
1895 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1896 &weight_op[2], &weight_avg[2],
1897 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1898 mc_part(h, 4, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0,
1899 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1900 &weight_op[2], &weight_avg[2],
1901 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
1905 assert(IS_8X8(mb_type));
1908 const int sub_mb_type= h->sub_mb_type[i];
1910 int x_offset= (i&1)<<2;
1911 int y_offset= (i&2)<<1;
1913 if(IS_SUB_8X8(sub_mb_type)){
1914 mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
1915 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1916 &weight_op[3], &weight_avg[3],
1917 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1918 }else if(IS_SUB_8X4(sub_mb_type)){
1919 mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
1920 qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
1921 &weight_op[4], &weight_avg[4],
1922 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1923 mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
1924 qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
1925 &weight_op[4], &weight_avg[4],
1926 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1927 }else if(IS_SUB_4X8(sub_mb_type)){
1928 mc_part(h, n , 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
1929 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
1930 &weight_op[5], &weight_avg[5],
1931 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1932 mc_part(h, n+1, 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
1933 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
1934 &weight_op[5], &weight_avg[5],
1935 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1938 assert(IS_SUB_4X4(sub_mb_type));
1940 int sub_x_offset= x_offset + 2*(j&1);
1941 int sub_y_offset= y_offset + (j&2);
1942 mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
1943 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
1944 &weight_op[6], &weight_avg[6],
1945 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1951 prefetch_motion(h, 1);
1954 static void decode_init_vlc(void){
1955 static int done = 0;
1961 init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
1962 &chroma_dc_coeff_token_len [0], 1, 1,
1963 &chroma_dc_coeff_token_bits[0], 1, 1, 1);
1966 init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
1967 &coeff_token_len [i][0], 1, 1,
1968 &coeff_token_bits[i][0], 1, 1, 1);
1972 init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
1973 &chroma_dc_total_zeros_len [i][0], 1, 1,
1974 &chroma_dc_total_zeros_bits[i][0], 1, 1, 1);
1976 for(i=0; i<15; i++){
1977 init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16,
1978 &total_zeros_len [i][0], 1, 1,
1979 &total_zeros_bits[i][0], 1, 1, 1);
1983 init_vlc(&run_vlc[i], RUN_VLC_BITS, 7,
1984 &run_len [i][0], 1, 1,
1985 &run_bits[i][0], 1, 1, 1);
1987 init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
1988 &run_len [6][0], 1, 1,
1989 &run_bits[6][0], 1, 1, 1);
1993 static void free_tables(H264Context *h){
1996 av_freep(&h->intra4x4_pred_mode);
1997 av_freep(&h->chroma_pred_mode_table);
1998 av_freep(&h->cbp_table);
1999 av_freep(&h->mvd_table[0]);
2000 av_freep(&h->mvd_table[1]);
2001 av_freep(&h->direct_table);
2002 av_freep(&h->non_zero_count);
2003 av_freep(&h->slice_table_base);
2004 h->slice_table= NULL;
2006 av_freep(&h->mb2b_xy);
2007 av_freep(&h->mb2b8_xy);
2009 for(i = 0; i < MAX_SPS_COUNT; i++)
2010 av_freep(h->sps_buffers + i);
2012 for(i = 0; i < MAX_PPS_COUNT; i++)
2013 av_freep(h->pps_buffers + i);
2015 for(i = 0; i < h->s.avctx->thread_count; i++) {
2016 hx = h->thread_context[i];
2018 av_freep(&hx->top_borders[1]);
2019 av_freep(&hx->top_borders[0]);
2020 av_freep(&hx->s.obmc_scratchpad);
2024 static void init_dequant8_coeff_table(H264Context *h){
2026 const int transpose = (h->s.dsp.h264_idct8_add != ff_h264_idct8_add_c); //FIXME ugly
2027 h->dequant8_coeff[0] = h->dequant8_buffer[0];
2028 h->dequant8_coeff[1] = h->dequant8_buffer[1];
2030 for(i=0; i<2; i++ ){
2031 if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){
2032 h->dequant8_coeff[1] = h->dequant8_buffer[0];
2036 for(q=0; q<52; q++){
2037 int shift = ff_div6[q];
2038 int idx = ff_rem6[q];
2040 h->dequant8_coeff[i][q][transpose ? (x>>3)|((x&7)<<3) : x] =
2041 ((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] *
2042 h->pps.scaling_matrix8[i][x]) << shift;
2047 static void init_dequant4_coeff_table(H264Context *h){
2049 const int transpose = (h->s.dsp.h264_idct_add != ff_h264_idct_add_c); //FIXME ugly
2050 for(i=0; i<6; i++ ){
2051 h->dequant4_coeff[i] = h->dequant4_buffer[i];
2053 if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
2054 h->dequant4_coeff[i] = h->dequant4_buffer[j];
2061 for(q=0; q<52; q++){
2062 int shift = ff_div6[q] + 2;
2063 int idx = ff_rem6[q];
2065 h->dequant4_coeff[i][q][transpose ? (x>>2)|((x<<2)&0xF) : x] =
2066 ((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
2067 h->pps.scaling_matrix4[i][x]) << shift;
2072 static void init_dequant_tables(H264Context *h){
2074 init_dequant4_coeff_table(h);
2075 if(h->pps.transform_8x8_mode)
2076 init_dequant8_coeff_table(h);
2077 if(h->sps.transform_bypass){
2080 h->dequant4_coeff[i][0][x] = 1<<6;
2081 if(h->pps.transform_8x8_mode)
2084 h->dequant8_coeff[i][0][x] = 1<<6;
2091 * needs width/height
2093 static int alloc_tables(H264Context *h){
2094 MpegEncContext * const s = &h->s;
2095 const int big_mb_num= s->mb_stride * (s->mb_height+1);
2098 CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t))
2100 CHECKED_ALLOCZ(h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t))
2101 CHECKED_ALLOCZ(h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(uint8_t))
2102 CHECKED_ALLOCZ(h->cbp_table, big_mb_num * sizeof(uint16_t))
2104 CHECKED_ALLOCZ(h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t))
2105 CHECKED_ALLOCZ(h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t));
2106 CHECKED_ALLOCZ(h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t));
2107 CHECKED_ALLOCZ(h->direct_table, 32*big_mb_num * sizeof(uint8_t));
2109 memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(uint8_t));
2110 h->slice_table= h->slice_table_base + s->mb_stride*2 + 1;
2112 CHECKED_ALLOCZ(h->mb2b_xy , big_mb_num * sizeof(uint32_t));
2113 CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint32_t));
2114 for(y=0; y<s->mb_height; y++){
2115 for(x=0; x<s->mb_width; x++){
2116 const int mb_xy= x + y*s->mb_stride;
2117 const int b_xy = 4*x + 4*y*h->b_stride;
2118 const int b8_xy= 2*x + 2*y*h->b8_stride;
2120 h->mb2b_xy [mb_xy]= b_xy;
2121 h->mb2b8_xy[mb_xy]= b8_xy;
2125 s->obmc_scratchpad = NULL;
2127 if(!h->dequant4_coeff[0])
2128 init_dequant_tables(h);
2137 * Mimic alloc_tables(), but for every context thread.
2139 static void clone_tables(H264Context *dst, H264Context *src){
2140 dst->intra4x4_pred_mode = src->intra4x4_pred_mode;
2141 dst->non_zero_count = src->non_zero_count;
2142 dst->slice_table = src->slice_table;
2143 dst->cbp_table = src->cbp_table;
2144 dst->mb2b_xy = src->mb2b_xy;
2145 dst->mb2b8_xy = src->mb2b8_xy;
2146 dst->chroma_pred_mode_table = src->chroma_pred_mode_table;
2147 dst->mvd_table[0] = src->mvd_table[0];
2148 dst->mvd_table[1] = src->mvd_table[1];
2149 dst->direct_table = src->direct_table;
2151 dst->s.obmc_scratchpad = NULL;
2152 ff_h264_pred_init(&dst->hpc, src->s.codec_id);
2157 * Allocate buffers which are not shared amongst multiple threads.
2159 static int context_init(H264Context *h){
2160 CHECKED_ALLOCZ(h->top_borders[0], h->s.mb_width * (16+8+8) * sizeof(uint8_t))
2161 CHECKED_ALLOCZ(h->top_borders[1], h->s.mb_width * (16+8+8) * sizeof(uint8_t))
2165 return -1; // free_tables will clean up for us
2168 static void common_init(H264Context *h){
2169 MpegEncContext * const s = &h->s;
2171 s->width = s->avctx->width;
2172 s->height = s->avctx->height;
2173 s->codec_id= s->avctx->codec->id;
2175 ff_h264_pred_init(&h->hpc, s->codec_id);
2177 h->dequant_coeff_pps= -1;
2178 s->unrestricted_mv=1;
2179 s->decode=1; //FIXME
2181 memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
2182 memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
2185 static int decode_init(AVCodecContext *avctx){
2186 H264Context *h= avctx->priv_data;
2187 MpegEncContext * const s = &h->s;
2189 MPV_decode_defaults(s);
2194 s->out_format = FMT_H264;
2195 s->workaround_bugs= avctx->workaround_bugs;
2198 // s->decode_mb= ff_h263_decode_mb;
2199 s->quarter_sample = 1;
2201 avctx->pix_fmt= PIX_FMT_YUV420P;
2205 if(avctx->extradata_size > 0 && avctx->extradata &&
2206 *(char *)avctx->extradata == 1){
2213 h->thread_context[0] = h;
2217 static int frame_start(H264Context *h){
2218 MpegEncContext * const s = &h->s;
2221 if(MPV_frame_start(s, s->avctx) < 0)
2223 ff_er_frame_start(s);
2225 * MPV_frame_start uses pict_type to derive key_frame.
2226 * This is incorrect for H.264; IDR markings must be used.
2227 * Zero here; IDR markings per slice in frame or fields are OR'd in later.
2228 * See decode_nal_units().
2230 s->current_picture_ptr->key_frame= 0;
2232 assert(s->linesize && s->uvlinesize);
2234 for(i=0; i<16; i++){
2235 h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
2236 h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
2239 h->block_offset[16+i]=
2240 h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2241 h->block_offset[24+16+i]=
2242 h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2245 /* can't be in alloc_tables because linesize isn't known there.
2246 * FIXME: redo bipred weight to not require extra buffer? */
2247 for(i = 0; i < s->avctx->thread_count; i++)
2248 if(!h->thread_context[i]->s.obmc_scratchpad)
2249 h->thread_context[i]->s.obmc_scratchpad = av_malloc(16*2*s->linesize + 8*2*s->uvlinesize);
2251 /* some macroblocks will be accessed before they're available */
2252 if(FRAME_MBAFF || s->avctx->thread_count > 1)
2253 memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(uint8_t));
2255 // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
2259 static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple){
2260 MpegEncContext * const s = &h->s;
2264 src_cb -= uvlinesize;
2265 src_cr -= uvlinesize;
2267 // There are two lines saved, the line above the the top macroblock of a pair,
2268 // and the line above the bottom macroblock
2269 h->left_border[0]= h->top_borders[0][s->mb_x][15];
2270 for(i=1; i<17; i++){
2271 h->left_border[i]= src_y[15+i* linesize];
2274 *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 16*linesize);
2275 *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
2277 if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2278 h->left_border[17 ]= h->top_borders[0][s->mb_x][16+7];
2279 h->left_border[17+9]= h->top_borders[0][s->mb_x][24+7];
2281 h->left_border[i+17 ]= src_cb[7+i*uvlinesize];
2282 h->left_border[i+17+9]= src_cr[7+i*uvlinesize];
2284 *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
2285 *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
2289 static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg, int simple){
2290 MpegEncContext * const s = &h->s;
2297 if(h->deblocking_filter == 2) {
2298 mb_xy = s->mb_x + s->mb_y*s->mb_stride;
2299 deblock_left = h->slice_table[mb_xy] == h->slice_table[mb_xy - 1];
2300 deblock_top = h->slice_table[mb_xy] == h->slice_table[h->top_mb_xy];
2302 deblock_left = (s->mb_x > 0);
2303 deblock_top = (s->mb_y > 0);
2306 src_y -= linesize + 1;
2307 src_cb -= uvlinesize + 1;
2308 src_cr -= uvlinesize + 1;
2310 #define XCHG(a,b,t,xchg)\
2317 for(i = !deblock_top; i<17; i++){
2318 XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
2323 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
2324 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
2325 if(s->mb_x+1 < s->mb_width){
2326 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
2330 if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2332 for(i = !deblock_top; i<9; i++){
2333 XCHG(h->left_border[i+17 ], src_cb[i*uvlinesize], temp8, xchg);
2334 XCHG(h->left_border[i+17+9], src_cr[i*uvlinesize], temp8, xchg);
2338 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
2339 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
2344 static inline void backup_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
2345 MpegEncContext * const s = &h->s;
2348 src_y -= 2 * linesize;
2349 src_cb -= 2 * uvlinesize;
2350 src_cr -= 2 * uvlinesize;
2352 // There are two lines saved, the line above the the top macroblock of a pair,
2353 // and the line above the bottom macroblock
2354 h->left_border[0]= h->top_borders[0][s->mb_x][15];
2355 h->left_border[1]= h->top_borders[1][s->mb_x][15];
2356 for(i=2; i<34; i++){
2357 h->left_border[i]= src_y[15+i* linesize];
2360 *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 32*linesize);
2361 *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+32*linesize);
2362 *(uint64_t*)(h->top_borders[1][s->mb_x]+0)= *(uint64_t*)(src_y + 33*linesize);
2363 *(uint64_t*)(h->top_borders[1][s->mb_x]+8)= *(uint64_t*)(src_y +8+33*linesize);
2365 if(!ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2366 h->left_border[34 ]= h->top_borders[0][s->mb_x][16+7];
2367 h->left_border[34+ 1]= h->top_borders[1][s->mb_x][16+7];
2368 h->left_border[34+18 ]= h->top_borders[0][s->mb_x][24+7];
2369 h->left_border[34+18+1]= h->top_borders[1][s->mb_x][24+7];
2370 for(i=2; i<18; i++){
2371 h->left_border[i+34 ]= src_cb[7+i*uvlinesize];
2372 h->left_border[i+34+18]= src_cr[7+i*uvlinesize];
2374 *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+16*uvlinesize);
2375 *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+16*uvlinesize);
2376 *(uint64_t*)(h->top_borders[1][s->mb_x]+16)= *(uint64_t*)(src_cb+17*uvlinesize);
2377 *(uint64_t*)(h->top_borders[1][s->mb_x]+24)= *(uint64_t*)(src_cr+17*uvlinesize);
2381 static inline void xchg_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
2382 MpegEncContext * const s = &h->s;
2385 int deblock_left = (s->mb_x > 0);
2386 int deblock_top = (s->mb_y > 1);
2388 tprintf(s->avctx, "xchg_pair_border: src_y:%p src_cb:%p src_cr:%p ls:%d uvls:%d\n", src_y, src_cb, src_cr, linesize, uvlinesize);
2390 src_y -= 2 * linesize + 1;
2391 src_cb -= 2 * uvlinesize + 1;
2392 src_cr -= 2 * uvlinesize + 1;
2394 #define XCHG(a,b,t,xchg)\
2401 for(i = (!deblock_top)<<1; i<34; i++){
2402 XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
2407 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
2408 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
2409 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+0), *(uint64_t*)(src_y +1 +linesize), temp64, xchg);
2410 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+8), *(uint64_t*)(src_y +9 +linesize), temp64, 1);
2411 if(s->mb_x+1 < s->mb_width){
2412 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
2413 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x+1]), *(uint64_t*)(src_y +17 +linesize), temp64, 1);
2417 if(!ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2419 for(i = (!deblock_top) << 1; i<18; i++){
2420 XCHG(h->left_border[i+34 ], src_cb[i*uvlinesize], temp8, xchg);
2421 XCHG(h->left_border[i+34+18], src_cr[i*uvlinesize], temp8, xchg);
2425 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
2426 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
2427 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+16), *(uint64_t*)(src_cb+1 +uvlinesize), temp64, 1);
2428 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+24), *(uint64_t*)(src_cr+1 +uvlinesize), temp64, 1);
2433 static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple){
2434 MpegEncContext * const s = &h->s;
2435 const int mb_x= s->mb_x;
2436 const int mb_y= s->mb_y;
2437 const int mb_xy= mb_x + mb_y*s->mb_stride;
2438 const int mb_type= s->current_picture.mb_type[mb_xy];
2439 uint8_t *dest_y, *dest_cb, *dest_cr;
2440 int linesize, uvlinesize /*dct_offset*/;
2442 int *block_offset = &h->block_offset[0];
2443 const unsigned int bottom = mb_y & 1;
2444 const int transform_bypass = (s->qscale == 0 && h->sps.transform_bypass), is_h264 = (simple || s->codec_id == CODEC_ID_H264);
2445 void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
2446 void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
2448 dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
2449 dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2450 dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2452 s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + 64, s->linesize, 4);
2453 s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + 64, dest_cr - dest_cb, 2);
2455 if (!simple && MB_FIELD) {
2456 linesize = h->mb_linesize = s->linesize * 2;
2457 uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
2458 block_offset = &h->block_offset[24];
2459 if(mb_y&1){ //FIXME move out of this func?
2460 dest_y -= s->linesize*15;
2461 dest_cb-= s->uvlinesize*7;
2462 dest_cr-= s->uvlinesize*7;
2466 for(list=0; list<h->list_count; list++){
2467 if(!USES_LIST(mb_type, list))
2469 if(IS_16X16(mb_type)){
2470 int8_t *ref = &h->ref_cache[list][scan8[0]];
2471 fill_rectangle(ref, 4, 4, 8, (16+*ref)^(s->mb_y&1), 1);
2473 for(i=0; i<16; i+=4){
2474 //FIXME can refs be smaller than 8x8 when !direct_8x8_inference ?
2475 int ref = h->ref_cache[list][scan8[i]];
2477 fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, (16+ref)^(s->mb_y&1), 1);
2483 linesize = h->mb_linesize = s->linesize;
2484 uvlinesize = h->mb_uvlinesize = s->uvlinesize;
2485 // dct_offset = s->linesize * 16;
2488 if(transform_bypass){
2490 idct_add = IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4;
2491 }else if(IS_8x8DCT(mb_type)){
2492 idct_dc_add = s->dsp.h264_idct8_dc_add;
2493 idct_add = s->dsp.h264_idct8_add;
2495 idct_dc_add = s->dsp.h264_idct_dc_add;
2496 idct_add = s->dsp.h264_idct_add;
2499 if(!simple && FRAME_MBAFF && h->deblocking_filter && IS_INTRA(mb_type)
2500 && (!bottom || !IS_INTRA(s->current_picture.mb_type[mb_xy-s->mb_stride]))){
2501 int mbt_y = mb_y&~1;
2502 uint8_t *top_y = s->current_picture.data[0] + (mbt_y * 16* s->linesize ) + mb_x * 16;
2503 uint8_t *top_cb = s->current_picture.data[1] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8;
2504 uint8_t *top_cr = s->current_picture.data[2] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8;
2505 xchg_pair_border(h, top_y, top_cb, top_cr, s->linesize, s->uvlinesize, 1);
2508 if (!simple && IS_INTRA_PCM(mb_type)) {
2511 // The pixels are stored in h->mb array in the same order as levels,
2512 // copy them in output in the correct order.
2513 for(i=0; i<16; i++) {
2514 for (y=0; y<4; y++) {
2515 for (x=0; x<4; x++) {
2516 *(dest_y + block_offset[i] + y*linesize + x) = h->mb[i*16+y*4+x];
2520 for(i=16; i<16+4; i++) {
2521 for (y=0; y<4; y++) {
2522 for (x=0; x<4; x++) {
2523 *(dest_cb + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
2527 for(i=20; i<20+4; i++) {
2528 for (y=0; y<4; y++) {
2529 for (x=0; x<4; x++) {
2530 *(dest_cr + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
2535 if(IS_INTRA(mb_type)){
2536 if(h->deblocking_filter && (simple || !FRAME_MBAFF))
2537 xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1, simple);
2539 if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2540 h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
2541 h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
2544 if(IS_INTRA4x4(mb_type)){
2545 if(simple || !s->encoding){
2546 if(IS_8x8DCT(mb_type)){
2547 for(i=0; i<16; i+=4){
2548 uint8_t * const ptr= dest_y + block_offset[i];
2549 const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
2550 const int nnz = h->non_zero_count_cache[ scan8[i] ];
2551 h->hpc.pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
2552 (h->topright_samples_available<<i)&0x4000, linesize);
2554 if(nnz == 1 && h->mb[i*16])
2555 idct_dc_add(ptr, h->mb + i*16, linesize);
2557 idct_add(ptr, h->mb + i*16, linesize);
2561 for(i=0; i<16; i++){
2562 uint8_t * const ptr= dest_y + block_offset[i];
2564 const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
2567 if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
2568 const int topright_avail= (h->topright_samples_available<<i)&0x8000;
2569 assert(mb_y || linesize <= block_offset[i]);
2570 if(!topright_avail){
2571 tr= ptr[3 - linesize]*0x01010101;
2572 topright= (uint8_t*) &tr;
2574 topright= ptr + 4 - linesize;
2578 h->hpc.pred4x4[ dir ](ptr, topright, linesize);
2579 nnz = h->non_zero_count_cache[ scan8[i] ];
2582 if(nnz == 1 && h->mb[i*16])
2583 idct_dc_add(ptr, h->mb + i*16, linesize);
2585 idct_add(ptr, h->mb + i*16, linesize);
2587 svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
2592 h->hpc.pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
2594 if(!transform_bypass)
2595 h264_luma_dc_dequant_idct_c(h->mb, s->qscale, h->dequant4_coeff[0][s->qscale][0]);
2597 svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
2599 if(h->deblocking_filter && (simple || !FRAME_MBAFF))
2600 xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0, simple);
2602 hl_motion(h, dest_y, dest_cb, dest_cr,
2603 s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
2604 s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
2605 s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab);
2609 if(!IS_INTRA4x4(mb_type)){
2611 if(IS_INTRA16x16(mb_type)){
2612 for(i=0; i<16; i++){
2613 if(h->non_zero_count_cache[ scan8[i] ])
2614 idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
2615 else if(h->mb[i*16])
2616 idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
2619 const int di = IS_8x8DCT(mb_type) ? 4 : 1;
2620 for(i=0; i<16; i+=di){
2621 int nnz = h->non_zero_count_cache[ scan8[i] ];
2623 if(nnz==1 && h->mb[i*16])
2624 idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
2626 idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
2631 for(i=0; i<16; i++){
2632 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
2633 uint8_t * const ptr= dest_y + block_offset[i];
2634 svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
2640 if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2641 uint8_t *dest[2] = {dest_cb, dest_cr};
2642 if(transform_bypass){
2643 idct_add = idct_dc_add = s->dsp.add_pixels4;
2645 idct_add = s->dsp.h264_idct_add;
2646 idct_dc_add = s->dsp.h264_idct_dc_add;
2647 chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp[0], h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp[0]][0]);
2648 chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp[1], h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp[1]][0]);
2651 for(i=16; i<16+8; i++){
2652 if(h->non_zero_count_cache[ scan8[i] ])
2653 idct_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
2654 else if(h->mb[i*16])
2655 idct_dc_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
2658 for(i=16; i<16+8; i++){
2659 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2660 uint8_t * const ptr= dest[(i&4)>>2] + block_offset[i];
2661 svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
2667 if(h->deblocking_filter) {
2668 if (!simple && FRAME_MBAFF) {
2669 //FIXME try deblocking one mb at a time?
2670 // the reduction in load/storing mvs and such might outweigh the extra backup/xchg_border
2671 const int mb_y = s->mb_y - 1;
2672 uint8_t *pair_dest_y, *pair_dest_cb, *pair_dest_cr;
2673 const int mb_xy= mb_x + mb_y*s->mb_stride;
2674 const int mb_type_top = s->current_picture.mb_type[mb_xy];
2675 const int mb_type_bottom= s->current_picture.mb_type[mb_xy+s->mb_stride];
2676 if (!bottom) return;
2677 pair_dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
2678 pair_dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2679 pair_dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2681 if(IS_INTRA(mb_type_top | mb_type_bottom))
2682 xchg_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize, 0);
2684 backup_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize);
2688 tprintf(h->s.avctx, "call mbaff filter_mb mb_x:%d mb_y:%d pair_dest_y = %p, dest_y = %p\n", mb_x, mb_y, pair_dest_y, dest_y);
2689 fill_caches(h, mb_type_top, 1); //FIXME don't fill stuff which isn't used by filter_mb
2690 h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy]);
2691 h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy]);
2692 filter_mb(h, mb_x, mb_y, pair_dest_y, pair_dest_cb, pair_dest_cr, linesize, uvlinesize);
2695 tprintf(h->s.avctx, "call mbaff filter_mb\n");
2696 fill_caches(h, mb_type_bottom, 1); //FIXME don't fill stuff which isn't used by filter_mb
2697 h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy+s->mb_stride]);
2698 h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy+s->mb_stride]);
2699 filter_mb(h, mb_x, mb_y+1, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
2701 tprintf(h->s.avctx, "call filter_mb\n");
2702 backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, simple);
2703 fill_caches(h, mb_type, 1); //FIXME don't fill stuff which isn't used by filter_mb
2704 filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
2710 * Process a macroblock; this case avoids checks for expensive uncommon cases.
2712 static void hl_decode_mb_simple(H264Context *h){
2713 hl_decode_mb_internal(h, 1);
2717 * Process a macroblock; this handles edge cases, such as interlacing.
2719 static void av_noinline hl_decode_mb_complex(H264Context *h){
2720 hl_decode_mb_internal(h, 0);
2723 static void hl_decode_mb(H264Context *h){
2724 MpegEncContext * const s = &h->s;
2725 const int mb_x= s->mb_x;
2726 const int mb_y= s->mb_y;
2727 const int mb_xy= mb_x + mb_y*s->mb_stride;
2728 const int mb_type= s->current_picture.mb_type[mb_xy];
2729 int is_complex = FRAME_MBAFF || MB_FIELD || IS_INTRA_PCM(mb_type) || s->codec_id != CODEC_ID_H264 || (ENABLE_GRAY && (s->flags&CODEC_FLAG_GRAY)) || s->encoding;
2735 hl_decode_mb_complex(h);
2736 else hl_decode_mb_simple(h);
2739 static void pic_as_field(Picture *pic, const int parity){
2741 for (i = 0; i < 4; ++i) {
2742 if (parity == PICT_BOTTOM_FIELD)
2743 pic->data[i] += pic->linesize[i];
2744 pic->reference = parity;
2745 pic->linesize[i] *= 2;
2749 static int split_field_copy(Picture *dest, Picture *src,
2750 int parity, int id_add){
2751 int match = !!(src->reference & parity);
2755 pic_as_field(dest, parity);
2757 dest->pic_id += id_add;
2764 * Split one reference list into field parts, interleaving by parity
2765 * as per H.264 spec section 8.2.4.2.5. Output fields have their data pointers
2766 * set to look at the actual start of data for that field.
2768 * @param dest output list
2769 * @param dest_len maximum number of fields to put in dest
2770 * @param src the source reference list containing fields and/or field pairs
2771 * (aka short_ref/long_ref, or
2772 * refFrameListXShortTerm/refFrameListLongTerm in spec-speak)
2773 * @param src_len number of Picture's in source (pairs and unmatched fields)
2774 * @param parity the parity of the picture being decoded/needing
2775 * these ref pics (PICT_{TOP,BOTTOM}_FIELD)
2776 * @return number of fields placed in dest
2778 static int split_field_half_ref_list(Picture *dest, int dest_len,
2779 Picture *src, int src_len, int parity){
2780 int same_parity = 1;
2786 for (out_i = 0; out_i < dest_len; out_i += field_output) {
2787 if (same_parity && same_i < src_len) {
2788 field_output = split_field_copy(dest + out_i, src + same_i,
2790 same_parity = !field_output;
2793 } else if (opp_i < src_len) {
2794 field_output = split_field_copy(dest + out_i, src + opp_i,
2795 PICT_FRAME - parity, 0);
2796 same_parity = field_output;
2808 * Split the reference frame list into a reference field list.
2809 * This implements H.264 spec 8.2.4.2.5 for a combined input list.
2810 * The input list contains both reference field pairs and
2811 * unmatched reference fields; it is ordered as spec describes
2812 * RefPicListX for frames in 8.2.4.2.1 and 8.2.4.2.3, except that
2813 * unmatched field pairs are also present. Conceptually this is equivalent
2814 * to concatenation of refFrameListXShortTerm with refFrameListLongTerm.
2816 * @param dest output reference list where ordered fields are to be placed
2817 * @param dest_len max number of fields to place at dest
2818 * @param src source reference list, as described above
2819 * @param src_len number of pictures (pairs and unmatched fields) in src
2820 * @param parity parity of field being currently decoded
2821 * (one of PICT_{TOP,BOTTOM}_FIELD)
2822 * @param long_i index into src array that holds first long reference picture,
2823 * or src_len if no long refs present.
2825 static int split_field_ref_list(Picture *dest, int dest_len,
2826 Picture *src, int src_len,
2827 int parity, int long_i){
2829 int i = split_field_half_ref_list(dest, dest_len, src, long_i, parity);
2833 i += split_field_half_ref_list(dest, dest_len, src + long_i,
2834 src_len - long_i, parity);
2839 * fills the default_ref_list.
2841 static int fill_default_ref_list(H264Context *h){
2842 MpegEncContext * const s = &h->s;
2844 int smallest_poc_greater_than_current = -1;
2846 Picture sorted_short_ref[32];
2847 Picture field_entry_list[2][32];
2848 Picture *frame_list[2];
2850 if (FIELD_PICTURE) {
2851 structure_sel = PICT_FRAME;
2852 frame_list[0] = field_entry_list[0];
2853 frame_list[1] = field_entry_list[1];
2856 frame_list[0] = h->default_ref_list[0];
2857 frame_list[1] = h->default_ref_list[1];
2860 if(h->slice_type==FF_B_TYPE){
2867 /* sort frame according to poc in B slice */
2868 for(out_i=0; out_i<h->short_ref_count; out_i++){
2870 int best_poc=INT_MAX;
2872 for(i=0; i<h->short_ref_count; i++){
2873 const int poc= h->short_ref[i]->poc;
2874 if(poc > limit && poc < best_poc){
2880 assert(best_i != INT_MIN);
2883 sorted_short_ref[out_i]= *h->short_ref[best_i];
2884 tprintf(h->s.avctx, "sorted poc: %d->%d poc:%d fn:%d\n", best_i, out_i, sorted_short_ref[out_i].poc, sorted_short_ref[out_i].frame_num);
2885 if (-1 == smallest_poc_greater_than_current) {
2886 if (h->short_ref[best_i]->poc >= s->current_picture_ptr->poc) {
2887 smallest_poc_greater_than_current = out_i;
2892 tprintf(h->s.avctx, "current poc: %d, smallest_poc_greater_than_current: %d\n", s->current_picture_ptr->poc, smallest_poc_greater_than_current);
2894 // find the largest poc
2895 for(list=0; list<2; list++){
2898 int step= list ? -1 : 1;
2900 for(i=0; i<h->short_ref_count && index < h->ref_count[list]; i++, j+=step) {
2902 while(j<0 || j>= h->short_ref_count){
2903 if(j != -99 && step == (list ? -1 : 1))
2906 j= smallest_poc_greater_than_current + (step>>1);
2908 sel = sorted_short_ref[j].reference | structure_sel;
2909 if(sel != PICT_FRAME) continue;
2910 frame_list[list][index ]= sorted_short_ref[j];
2911 frame_list[list][index++].pic_id= sorted_short_ref[j].frame_num;
2913 short_len[list] = index;
2915 for(i = 0; i < 16 && index < h->ref_count[ list ]; i++){
2917 if(h->long_ref[i] == NULL) continue;
2918 sel = h->long_ref[i]->reference | structure_sel;
2919 if(sel != PICT_FRAME) continue;
2921 frame_list[ list ][index ]= *h->long_ref[i];
2922 frame_list[ list ][index++].pic_id= i;
2927 for(list=0; list<2; list++){
2929 len[list] = split_field_ref_list(h->default_ref_list[list],
2933 s->picture_structure,
2936 // swap the two first elements of L1 when L0 and L1 are identical
2937 if(list && len[0] > 1 && len[0] == len[1])
2938 for(i=0; h->default_ref_list[0][i].data[0] == h->default_ref_list[1][i].data[0]; i++)
2940 FFSWAP(Picture, h->default_ref_list[1][0], h->default_ref_list[1][1]);
2944 if(len[list] < h->ref_count[ list ])
2945 memset(&h->default_ref_list[list][len[list]], 0, sizeof(Picture)*(h->ref_count[ list ] - len[list]));
2952 for(i=0; i<h->short_ref_count; i++){
2954 sel = h->short_ref[i]->reference | structure_sel;
2955 if(sel != PICT_FRAME) continue;
2956 frame_list[0][index ]= *h->short_ref[i];
2957 frame_list[0][index++].pic_id= h->short_ref[i]->frame_num;
2960 for(i = 0; i < 16; i++){
2962 if(h->long_ref[i] == NULL) continue;
2963 sel = h->long_ref[i]->reference | structure_sel;
2964 if(sel != PICT_FRAME) continue;
2965 frame_list[0][index ]= *h->long_ref[i];
2966 frame_list[0][index++].pic_id= i;
2970 index = split_field_ref_list(h->default_ref_list[0],
2971 h->ref_count[0], frame_list[0],
2972 index, s->picture_structure,
2975 if(index < h->ref_count[0])
2976 memset(&h->default_ref_list[0][index], 0, sizeof(Picture)*(h->ref_count[0] - index));
2979 for (i=0; i<h->ref_count[0]; i++) {
2980 tprintf(h->s.avctx, "List0: %s fn:%d 0x%p\n", (h->default_ref_list[0][i].long_ref ? "LT" : "ST"), h->default_ref_list[0][i].pic_id, h->default_ref_list[0][i].data[0]);
2982 if(h->slice_type==FF_B_TYPE){
2983 for (i=0; i<h->ref_count[1]; i++) {
2984 tprintf(h->s.avctx, "List1: %s fn:%d 0x%p\n", (h->default_ref_list[1][i].long_ref ? "LT" : "ST"), h->default_ref_list[1][i].pic_id, h->default_ref_list[1][i].data[0]);
2991 static void print_short_term(H264Context *h);
2992 static void print_long_term(H264Context *h);
2995 * Extract structure information about the picture described by pic_num in
2996 * the current decoding context (frame or field). Note that pic_num is
2997 * picture number without wrapping (so, 0<=pic_num<max_pic_num).
2998 * @param pic_num picture number for which to extract structure information
2999 * @param structure one of PICT_XXX describing structure of picture
3001 * @return frame number (short term) or long term index of picture
3002 * described by pic_num
3004 static int pic_num_extract(H264Context *h, int pic_num, int *structure){
3005 MpegEncContext * const s = &h->s;
3007 *structure = s->picture_structure;
3010 /* opposite field */
3011 *structure ^= PICT_FRAME;
3018 static int decode_ref_pic_list_reordering(H264Context *h){
3019 MpegEncContext * const s = &h->s;
3020 int list, index, pic_structure;
3022 print_short_term(h);
3024 if(h->slice_type==FF_I_TYPE || h->slice_type==FF_SI_TYPE) return 0; //FIXME move before func
3026 for(list=0; list<h->list_count; list++){
3027 memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
3029 if(get_bits1(&s->gb)){
3030 int pred= h->curr_pic_num;
3032 for(index=0; ; index++){
3033 unsigned int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb);
3034 unsigned int pic_id;
3036 Picture *ref = NULL;
3038 if(reordering_of_pic_nums_idc==3)
3041 if(index >= h->ref_count[list]){
3042 av_log(h->s.avctx, AV_LOG_ERROR, "reference count overflow\n");
3046 if(reordering_of_pic_nums_idc<3){
3047 if(reordering_of_pic_nums_idc<2){
3048 const unsigned int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1;
3051 if(abs_diff_pic_num > h->max_pic_num){
3052 av_log(h->s.avctx, AV_LOG_ERROR, "abs_diff_pic_num overflow\n");
3056 if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num;
3057 else pred+= abs_diff_pic_num;
3058 pred &= h->max_pic_num - 1;
3060 frame_num = pic_num_extract(h, pred, &pic_structure);
3062 for(i= h->short_ref_count-1; i>=0; i--){
3063 ref = h->short_ref[i];
3064 assert(ref->reference);
3065 assert(!ref->long_ref);
3066 if(ref->data[0] != NULL &&
3067 ref->frame_num == frame_num &&
3068 (ref->reference & pic_structure) &&
3069 ref->long_ref == 0) // ignore non existing pictures by testing data[0] pointer
3076 pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx
3078 long_idx= pic_num_extract(h, pic_id, &pic_structure);
3081 av_log(h->s.avctx, AV_LOG_ERROR, "long_term_pic_idx overflow\n");
3084 ref = h->long_ref[long_idx];
3085 assert(!(ref && !ref->reference));
3086 if(ref && (ref->reference & pic_structure)){
3087 ref->pic_id= pic_id;
3088 assert(ref->long_ref);
3096 av_log(h->s.avctx, AV_LOG_ERROR, "reference picture missing during reorder\n");
3097 memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME
3099 for(i=index; i+1<h->ref_count[list]; i++){
3100 if(ref->long_ref == h->ref_list[list][i].long_ref && ref->pic_id == h->ref_list[list][i].pic_id)
3103 for(; i > index; i--){
3104 h->ref_list[list][i]= h->ref_list[list][i-1];
3106 h->ref_list[list][index]= *ref;
3108 pic_as_field(&h->ref_list[list][index], pic_structure);
3112 av_log(h->s.avctx, AV_LOG_ERROR, "illegal reordering_of_pic_nums_idc\n");
3118 for(list=0; list<h->list_count; list++){
3119 for(index= 0; index < h->ref_count[list]; index++){
3120 if(!h->ref_list[list][index].data[0])
3121 h->ref_list[list][index]= s->current_picture;
3125 if(h->slice_type==FF_B_TYPE && !h->direct_spatial_mv_pred)
3126 direct_dist_scale_factor(h);
3127 direct_ref_list_init(h);
3131 static void fill_mbaff_ref_list(H264Context *h){
3133 for(list=0; list<2; list++){ //FIXME try list_count
3134 for(i=0; i<h->ref_count[list]; i++){
3135 Picture *frame = &h->ref_list[list][i];
3136 Picture *field = &h->ref_list[list][16+2*i];
3139 field[0].linesize[j] <<= 1;
3140 field[0].reference = PICT_TOP_FIELD;
3141 field[1] = field[0];
3143 field[1].data[j] += frame->linesize[j];
3144 field[1].reference = PICT_BOTTOM_FIELD;
3146 h->luma_weight[list][16+2*i] = h->luma_weight[list][16+2*i+1] = h->luma_weight[list][i];
3147 h->luma_offset[list][16+2*i] = h->luma_offset[list][16+2*i+1] = h->luma_offset[list][i];
3149 h->chroma_weight[list][16+2*i][j] = h->chroma_weight[list][16+2*i+1][j] = h->chroma_weight[list][i][j];
3150 h->chroma_offset[list][16+2*i][j] = h->chroma_offset[list][16+2*i+1][j] = h->chroma_offset[list][i][j];
3154 for(j=0; j<h->ref_count[1]; j++){
3155 for(i=0; i<h->ref_count[0]; i++)
3156 h->implicit_weight[j][16+2*i] = h->implicit_weight[j][16+2*i+1] = h->implicit_weight[j][i];
3157 memcpy(h->implicit_weight[16+2*j], h->implicit_weight[j], sizeof(*h->implicit_weight));
3158 memcpy(h->implicit_weight[16+2*j+1], h->implicit_weight[j], sizeof(*h->implicit_weight));
3162 static int pred_weight_table(H264Context *h){
3163 MpegEncContext * const s = &h->s;
3165 int luma_def, chroma_def;
3168 h->use_weight_chroma= 0;
3169 h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
3170 h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
3171 luma_def = 1<<h->luma_log2_weight_denom;
3172 chroma_def = 1<<h->chroma_log2_weight_denom;
3174 for(list=0; list<2; list++){
3175 for(i=0; i<h->ref_count[list]; i++){
3176 int luma_weight_flag, chroma_weight_flag;
3178 luma_weight_flag= get_bits1(&s->gb);
3179 if(luma_weight_flag){
3180 h->luma_weight[list][i]= get_se_golomb(&s->gb);
3181 h->luma_offset[list][i]= get_se_golomb(&s->gb);
3182 if( h->luma_weight[list][i] != luma_def
3183 || h->luma_offset[list][i] != 0)
3186 h->luma_weight[list][i]= luma_def;
3187 h->luma_offset[list][i]= 0;
3190 chroma_weight_flag= get_bits1(&s->gb);
3191 if(chroma_weight_flag){
3194 h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
3195 h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
3196 if( h->chroma_weight[list][i][j] != chroma_def
3197 || h->chroma_offset[list][i][j] != 0)
3198 h->use_weight_chroma= 1;
3203 h->chroma_weight[list][i][j]= chroma_def;
3204 h->chroma_offset[list][i][j]= 0;
3208 if(h->slice_type != FF_B_TYPE) break;
3210 h->use_weight= h->use_weight || h->use_weight_chroma;
3214 static void implicit_weight_table(H264Context *h){
3215 MpegEncContext * const s = &h->s;
3217 int cur_poc = s->current_picture_ptr->poc;
3219 if( h->ref_count[0] == 1 && h->ref_count[1] == 1
3220 && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
3222 h->use_weight_chroma= 0;
3227 h->use_weight_chroma= 2;
3228 h->luma_log2_weight_denom= 5;
3229 h->chroma_log2_weight_denom= 5;
3231 for(ref0=0; ref0 < h->ref_count[0]; ref0++){
3232 int poc0 = h->ref_list[0][ref0].poc;
3233 for(ref1=0; ref1 < h->ref_count[1]; ref1++){
3234 int poc1 = h->ref_list[1][ref1].poc;
3235 int td = av_clip(poc1 - poc0, -128, 127);
3237 int tb = av_clip(cur_poc - poc0, -128, 127);
3238 int tx = (16384 + (FFABS(td) >> 1)) / td;
3239 int dist_scale_factor = av_clip((tb*tx + 32) >> 6, -1024, 1023) >> 2;
3240 if(dist_scale_factor < -64 || dist_scale_factor > 128)
3241 h->implicit_weight[ref0][ref1] = 32;
3243 h->implicit_weight[ref0][ref1] = 64 - dist_scale_factor;
3245 h->implicit_weight[ref0][ref1] = 32;
3251 * Mark a picture as no longer needed for reference. The refmask
3252 * argument allows unreferencing of individual fields or the whole frame.
3253 * If the picture becomes entirely unreferenced, but is being held for
3254 * display purposes, it is marked as such.
3255 * @param refmask mask of fields to unreference; the mask is bitwise
3256 * anded with the reference marking of pic
3257 * @return non-zero if pic becomes entirely unreferenced (except possibly
3258 * for display purposes) zero if one of the fields remains in
3261 static inline int unreference_pic(H264Context *h, Picture *pic, int refmask){
3263 if (pic->reference &= refmask) {
3266 if(pic == h->delayed_output_pic)
3267 pic->reference=DELAYED_PIC_REF;
3269 for(i = 0; h->delayed_pic[i]; i++)
3270 if(pic == h->delayed_pic[i]){
3271 pic->reference=DELAYED_PIC_REF;
3280 * instantaneous decoder refresh.
3282 static void idr(H264Context *h){
3285 for(i=0; i<16; i++){
3286 if (h->long_ref[i] != NULL) {
3287 unreference_pic(h, h->long_ref[i], 0);
3288 h->long_ref[i]= NULL;
3291 h->long_ref_count=0;
3293 for(i=0; i<h->short_ref_count; i++){
3294 unreference_pic(h, h->short_ref[i], 0);
3295 h->short_ref[i]= NULL;
3297 h->short_ref_count=0;
3300 /* forget old pics after a seek */
3301 static void flush_dpb(AVCodecContext *avctx){
3302 H264Context *h= avctx->priv_data;
3304 for(i=0; i<16; i++) {
3305 if(h->delayed_pic[i])
3306 h->delayed_pic[i]->reference= 0;
3307 h->delayed_pic[i]= NULL;
3309 if(h->delayed_output_pic)
3310 h->delayed_output_pic->reference= 0;
3311 h->delayed_output_pic= NULL;
3313 if(h->s.current_picture_ptr)
3314 h->s.current_picture_ptr->reference= 0;
3315 h->s.first_field= 0;
3316 ff_mpeg_flush(avctx);
3320 * Find a Picture in the short term reference list by frame number.
3321 * @param frame_num frame number to search for
3322 * @param idx the index into h->short_ref where returned picture is found
3323 * undefined if no picture found.
3324 * @return pointer to the found picture, or NULL if no pic with the provided
3325 * frame number is found
3327 static Picture * find_short(H264Context *h, int frame_num, int *idx){
3328 MpegEncContext * const s = &h->s;
3331 for(i=0; i<h->short_ref_count; i++){
3332 Picture *pic= h->short_ref[i];
3333 if(s->avctx->debug&FF_DEBUG_MMCO)
3334 av_log(h->s.avctx, AV_LOG_DEBUG, "%d %d %p\n", i, pic->frame_num, pic);
3335 if(pic->frame_num == frame_num) {
3344 * Remove a picture from the short term reference list by its index in
3345 * that list. This does no checking on the provided index; it is assumed
3346 * to be valid. Other list entries are shifted down.
3347 * @param i index into h->short_ref of picture to remove.
3349 static void remove_short_at_index(H264Context *h, int i){
3350 assert(i > 0 && i < h->short_ref_count);
3351 h->short_ref[i]= NULL;
3352 if (--h->short_ref_count)
3353 memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i)*sizeof(Picture*));
3358 * @return the removed picture or NULL if an error occurs
3360 static Picture * remove_short(H264Context *h, int frame_num){
3361 MpegEncContext * const s = &h->s;
3365 if(s->avctx->debug&FF_DEBUG_MMCO)
3366 av_log(h->s.avctx, AV_LOG_DEBUG, "remove short %d count %d\n", frame_num, h->short_ref_count);
3368 pic = find_short(h, frame_num, &i);
3370 remove_short_at_index(h, i);
3376 * Remove a picture from the long term reference list by its index in
3377 * that list. This does no checking on the provided index; it is assumed
3378 * to be valid. The removed entry is set to NULL. Other entries are unaffected.
3379 * @param i index into h->long_ref of picture to remove.
3381 static void remove_long_at_index(H264Context *h, int i){
3382 h->long_ref[i]= NULL;
3383 h->long_ref_count--;
3388 * @return the removed picture or NULL if an error occurs
3390 static Picture * remove_long(H264Context *h, int i){
3393 pic= h->long_ref[i];
3395 remove_long_at_index(h, i);
3401 * print short term list
3403 static void print_short_term(H264Context *h) {
3405 if(h->s.avctx->debug&FF_DEBUG_MMCO) {
3406 av_log(h->s.avctx, AV_LOG_DEBUG, "short term list:\n");
3407 for(i=0; i<h->short_ref_count; i++){
3408 Picture *pic= h->short_ref[i];
3409 av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
3415 * print long term list
3417 static void print_long_term(H264Context *h) {
3419 if(h->s.avctx->debug&FF_DEBUG_MMCO) {
3420 av_log(h->s.avctx, AV_LOG_DEBUG, "long term list:\n");
3421 for(i = 0; i < 16; i++){
3422 Picture *pic= h->long_ref[i];