e1e33564bc7dc8a0c501fd99b4e64dbdbcb207dc
[ffmpeg.git] / libavcodec / cook.c
1 /*
2  * COOK compatible decoder
3  * Copyright (c) 2003 Sascha Sommer
4  * Copyright (c) 2005 Benjamin Larsson
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19  *
20  */
21
22 /**
23  * @file cook.c
24  * Cook compatible decoder.
25  * This decoder handles RealNetworks, RealAudio G2 data.
26  * Cook is identified by the codec name cook in RM files.
27  *
28  * To use this decoder, a calling application must supply the extradata
29  * bytes provided from the RM container; 8+ bytes for mono streams and
30  * 16+ for stereo streams (maybe more).
31  *
32  * Codec technicalities (all this assume a buffer length of 1024):
33  * Cook works with several different techniques to achieve its compression.
34  * In the timedomain the buffer is divided into 8 pieces and quantized. If
35  * two neighboring pieces have different quantization index a smooth
36  * quantization curve is used to get a smooth overlap between the different
37  * pieces.
38  * To get to the transformdomain Cook uses a modulated lapped transform.
39  * The transform domain has 50 subbands with 20 elements each. This
40  * means only a maximum of 50*20=1000 coefficients are used out of the 1024
41  * available.
42  */
43
44 #include <math.h>
45 #include <stddef.h>
46 #include <stdio.h>
47
48 #define ALT_BITSTREAM_READER
49 #include "avcodec.h"
50 #include "bitstream.h"
51 #include "dsputil.h"
52
53 #include "cookdata.h"
54
55 /* the different Cook versions */
56 #define MONO_COOK1      0x1000001
57 #define MONO_COOK2      0x1000002
58 #define JOINT_STEREO    0x1000003
59 #define MC_COOK         0x2000000   //multichannel Cook, not supported
60
61 #define SUBBAND_SIZE    20
62 //#define COOKDEBUG
63
64 typedef struct {
65     int     size;
66     int     qidx_table1[8];
67     int     qidx_table2[8];
68 } COOKgain;
69
70 typedef struct __attribute__((__packed__)){
71     /* codec data start */
72     uint32_t cookversion;               //in network order, bigendian
73     uint16_t samples_per_frame;         //amount of samples per frame per channel, bigendian
74     uint16_t subbands;                  //amount of bands used in the frequency domain, bigendian
75     /* Mono extradata ends here. */
76     uint32_t unused;
77     uint16_t js_subband_start;          //bigendian
78     uint16_t js_vlc_bits;               //bigendian
79     /* Stereo extradata ends here. */
80 } COOKextradata;
81
82
83 typedef struct {
84     GetBitContext       gb;
85     /* stream data */
86     int                 nb_channels;
87     int                 joint_stereo;
88     int                 bit_rate;
89     int                 sample_rate;
90     int                 samples_per_channel;
91     int                 samples_per_frame;
92     int                 subbands;
93     int                 numvector_bits;
94     int                 numvector_size;                //1 << numvector_bits;
95     int                 js_subband_start;
96     int                 total_subbands;
97     int                 num_vectors;
98     int                 bits_per_subpacket;
99     /* states */
100     int                 random_state;
101
102     /* transform data */
103     FFTContext          fft_ctx;
104     FFTSample           mlt_tmp[1024] __attribute__((aligned(16))); /* temporary storage for imlt */
105     float*              mlt_window;
106     float*              mlt_precos;
107     float*              mlt_presin;
108     float*              mlt_postcos;
109     int                 fft_size;
110     int                 fft_order;
111     int                 mlt_size;       //modulated lapped transform size
112
113     /* gain buffers */
114     COOKgain*           gain_now_ptr;
115     COOKgain*           gain_previous_ptr;
116     COOKgain            gain_copy;
117     COOKgain            gain_current;
118     COOKgain            gain_now;
119     COOKgain            gain_previous;
120
121     /* VLC data */
122     int                 js_vlc_bits;
123     VLC                 envelope_quant_index[13];
124     VLC                 sqvh[7];          //scalar quantization
125     VLC                 ccpl;             //channel coupling
126
127     /* generatable tables and related variables */
128     int                 gain_size_factor;
129     float               gain_table[23];
130     float               pow2tab[127];
131     float               rootpow2tab[127];
132
133     /* data buffers */
134
135     uint8_t*            decoded_bytes_buffer;
136     float               mono_mdct_output[2048] __attribute__((aligned(16)));
137     float*              previous_buffer_ptr[2];
138     float               mono_previous_buffer1[1024];
139     float               mono_previous_buffer2[1024];
140     float*              decode_buf_ptr[4];
141     float               decode_buffer_1[1024];
142     float               decode_buffer_2[1024];
143     float               decode_buffer_3[1024];
144     float               decode_buffer_4[1024];
145 } COOKContext;
146
147 /* debug functions */
148
149 #ifdef COOKDEBUG
150 static void dump_float_table(float* table, int size, int delimiter) {
151     int i=0;
152     av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
153     for (i=0 ; i<size ; i++) {
154         av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
155         if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
156     }
157 }
158
159 static void dump_int_table(int* table, int size, int delimiter) {
160     int i=0;
161     av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
162     for (i=0 ; i<size ; i++) {
163         av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
164         if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
165     }
166 }
167
168 static void dump_short_table(short* table, int size, int delimiter) {
169     int i=0;
170     av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
171     for (i=0 ; i<size ; i++) {
172         av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
173         if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
174     }
175 }
176
177 #endif
178
179 /*************** init functions ***************/
180
181 /* table generator */
182 static void init_pow2table(COOKContext *q){
183     int i;
184     q->pow2tab[63] = 1.0;
185     for (i=1 ; i<64 ; i++){
186         q->pow2tab[63+i]=(float)pow(2.0,(double)i);
187         q->pow2tab[63-i]=1.0/(float)pow(2.0,(double)i);
188     }
189 }
190
191 /* table generator */
192 static void init_rootpow2table(COOKContext *q){
193     int i;
194     q->rootpow2tab[63] = 1.0;
195     for (i=1 ; i<64 ; i++){
196         q->rootpow2tab[63+i]=sqrt((float)powf(2.0,(float)i));
197         q->rootpow2tab[63-i]=sqrt(1.0/(float)powf(2.0,(float)i));
198     }
199 }
200
201 /* table generator */
202 static void init_gain_table(COOKContext *q) {
203     int i;
204     q->gain_size_factor = q->samples_per_channel/8;
205     for (i=0 ; i<23 ; i++) {
206         q->gain_table[i] = pow((double)q->pow2tab[i+52] ,
207                                (1.0/(double)q->gain_size_factor));
208     }
209     memset(&q->gain_copy, 0, sizeof(COOKgain));
210     memset(&q->gain_current, 0, sizeof(COOKgain));
211     memset(&q->gain_now, 0, sizeof(COOKgain));
212     memset(&q->gain_previous, 0, sizeof(COOKgain));
213 }
214
215
216 static int init_cook_vlc_tables(COOKContext *q) {
217     int i, result;
218
219     result = 0;
220     for (i=0 ; i<13 ; i++) {
221         result &= init_vlc (&q->envelope_quant_index[i], 9, 24,
222             envelope_quant_index_huffbits[i], 1, 1,
223             envelope_quant_index_huffcodes[i], 2, 2, 0);
224     }
225     av_log(NULL,AV_LOG_DEBUG,"sqvh VLC init\n");
226     for (i=0 ; i<7 ; i++) {
227         result &= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
228             cvh_huffbits[i], 1, 1,
229             cvh_huffcodes[i], 2, 2, 0);
230     }
231
232     if (q->nb_channels==2 && q->joint_stereo==1){
233         result &= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1,
234             ccpl_huffbits[q->js_vlc_bits-2], 1, 1,
235             ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0);
236         av_log(NULL,AV_LOG_DEBUG,"Joint-stereo VLC used.\n");
237     }
238
239     av_log(NULL,AV_LOG_DEBUG,"VLC tables initialized.\n");
240     return result;
241 }
242
243 static int init_cook_mlt(COOKContext *q) {
244     int j;
245     float alpha;
246
247     /* Allocate the buffers, could be replaced with a static [512]
248        array if needed. */
249     q->mlt_size = q->samples_per_channel;
250     q->mlt_window = av_malloc(sizeof(float)*q->mlt_size);
251     q->mlt_precos = av_malloc(sizeof(float)*q->mlt_size/2);
252     q->mlt_presin = av_malloc(sizeof(float)*q->mlt_size/2);
253     q->mlt_postcos = av_malloc(sizeof(float)*q->mlt_size/2);
254
255     /* Initialize the MLT window: simple sine window. */
256     alpha = M_PI / (2.0 * (float)q->mlt_size);
257     for(j=0 ; j<q->mlt_size ; j++) {
258         q->mlt_window[j] = sin((j + 512.0/(float)q->mlt_size) * alpha);
259     }
260
261     /* pre/post twiddle factors */
262     for (j=0 ; j<q->mlt_size/2 ; j++){
263         q->mlt_precos[j] = cos( ((j+0.25)*M_PI)/q->mlt_size);
264         q->mlt_presin[j] = sin( ((j+0.25)*M_PI)/q->mlt_size);
265         q->mlt_postcos[j] = (float)sqrt(2.0/(float)q->mlt_size)*cos( ((float)j*M_PI) /q->mlt_size); //sqrt(2/MLT_size) = scalefactor
266     }
267
268     /* Initialize the FFT. */
269     ff_fft_init(&q->fft_ctx, av_log2(q->mlt_size)-1, 0);
270     av_log(NULL,AV_LOG_DEBUG,"FFT initialized, order = %d.\n",
271            av_log2(q->samples_per_channel)-1);
272
273     return (int)(q->mlt_window && q->mlt_precos && q->mlt_presin && q->mlt_postcos);
274 }
275
276 /*************** init functions end ***********/
277
278 /**
279  * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
280  * Why? No idea, some checksum/error detection method maybe.
281  * Nice way to waste CPU cycles.
282  *
283  * @param in        pointer to 32bit array of indata
284  * @param bits      amount of bits
285  * @param out       pointer to 32bit array of outdata
286  */
287
288 static inline void decode_bytes(uint8_t* inbuffer, uint8_t* out, int bytes){
289     int i;
290     uint32_t* buf = (uint32_t*) inbuffer;
291     uint32_t* obuf = (uint32_t*) out;
292     /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
293      * I'm too lazy though, should be something like
294      * for(i=0 ; i<bitamount/64 ; i++)
295      *     (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
296      * Buffer alignment needs to be checked. */
297
298
299     for(i=0 ; i<bytes/4 ; i++){
300 #ifdef WORDS_BIGENDIAN
301         obuf[i] = 0x37c511f2^buf[i];
302 #else
303         obuf[i] = 0xf211c537^buf[i];
304 #endif
305     }
306 }
307
308 /**
309  * Cook uninit
310  */
311
312 static int cook_decode_close(AVCodecContext *avctx)
313 {
314     int i;
315     COOKContext *q = avctx->priv_data;
316     av_log(NULL,AV_LOG_DEBUG, "Deallocating memory.\n");
317
318     /* Free allocated memory buffers. */
319     av_free(q->mlt_window);
320     av_free(q->mlt_precos);
321     av_free(q->mlt_presin);
322     av_free(q->mlt_postcos);
323     av_free(q->decoded_bytes_buffer);
324
325     /* Free the transform. */
326     ff_fft_end(&q->fft_ctx);
327
328     /* Free the VLC tables. */
329     for (i=0 ; i<13 ; i++) {
330         free_vlc(&q->envelope_quant_index[i]);
331     }
332     for (i=0 ; i<7 ; i++) {
333         free_vlc(&q->sqvh[i]);
334     }
335     if(q->nb_channels==2 && q->joint_stereo==1 ){
336         free_vlc(&q->ccpl);
337     }
338
339     av_log(NULL,AV_LOG_DEBUG,"Memory deallocated.\n");
340
341     return 0;
342 }
343
344 /**
345  * Fill the COOKgain structure for the timedomain quantization.
346  *
347  * @param q                 pointer to the COOKContext
348  * @param gaininfo          pointer to the COOKgain
349  */
350
351 static void decode_gain_info(GetBitContext *gb, COOKgain* gaininfo) {
352     int i;
353
354     while (get_bits1(gb)) {}
355
356     gaininfo->size = get_bits_count(gb) - 1;     //amount of elements*2 to update
357
358     if (get_bits_count(gb) - 1 <= 0) return;
359
360     for (i=0 ; i<gaininfo->size ; i++){
361         gaininfo->qidx_table1[i] = get_bits(gb,3);
362         if (get_bits1(gb)) {
363             gaininfo->qidx_table2[i] = get_bits(gb,4) - 7;  //convert to signed
364         } else {
365             gaininfo->qidx_table2[i] = -1;
366         }
367     }
368 }
369
370 /**
371  * Create the quant index table needed for the envelope.
372  *
373  * @param q                 pointer to the COOKContext
374  * @param quant_index_table pointer to the array
375  */
376
377 static void decode_envelope(COOKContext *q, int* quant_index_table) {
378     int i,j, vlc_index;
379     int bitbias;
380
381     bitbias = get_bits_count(&q->gb);
382     quant_index_table[0]= get_bits(&q->gb,6) - 6;       //This is used later in categorize
383
384     for (i=1 ; i < q->total_subbands ; i++){
385         vlc_index=i;
386         if (i >= q->js_subband_start * 2) {
387             vlc_index-=q->js_subband_start;
388         } else {
389             vlc_index/=2;
390             if(vlc_index < 1) vlc_index = 1;
391         }
392         if (vlc_index>13) vlc_index = 13;           //the VLC tables >13 are identical to No. 13
393
394         j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
395                      q->envelope_quant_index[vlc_index-1].bits,2);
396         quant_index_table[i] = quant_index_table[i-1] + j - 12;    //differential encoding
397     }
398 }
399
400 /**
401  * Create the quant value table.
402  *
403  * @param q                 pointer to the COOKContext
404  * @param quant_value_table pointer to the array
405  */
406
407 static void inline dequant_envelope(COOKContext *q, int* quant_index_table,
408                                     float* quant_value_table){
409
410     int i;
411     for(i=0 ; i < q->total_subbands ; i++){
412         quant_value_table[i] = q->rootpow2tab[quant_index_table[i]+63];
413     }
414 }
415
416 /**
417  * Calculate the category and category_index vector.
418  *
419  * @param q                     pointer to the COOKContext
420  * @param quant_index_table     pointer to the array
421  * @param category              pointer to the category array
422  * @param category_index        pointer to the category_index array
423  */
424
425 static void categorize(COOKContext *q, int* quant_index_table,
426                        int* category, int* category_index){
427     int exp_idx, bias, tmpbias, bits_left, num_bits, index, v, i, j;
428     int exp_index2[102];
429     int exp_index1[102];
430
431     int tmp_categorize_array1[128];
432     int tmp_categorize_array1_idx=0;
433     int tmp_categorize_array2[128];
434     int tmp_categorize_array2_idx=0;
435     int category_index_size=0;
436
437     bits_left =  q->bits_per_subpacket - get_bits_count(&q->gb);
438
439     if(bits_left > q->samples_per_channel) {
440         bits_left = q->samples_per_channel +
441                     ((bits_left - q->samples_per_channel)*5)/8;
442         //av_log(NULL, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
443     }
444
445     memset(&exp_index1,0,102*sizeof(int));
446     memset(&exp_index2,0,102*sizeof(int));
447     memset(&tmp_categorize_array1,0,128*sizeof(int));
448     memset(&tmp_categorize_array2,0,128*sizeof(int));
449
450     bias=-32;
451
452     /* Estimate bias. */
453     for (i=32 ; i>0 ; i=i/2){
454         num_bits = 0;
455         index = 0;
456         for (j=q->total_subbands ; j>0 ; j--){
457             exp_idx = (i - quant_index_table[index] + bias) / 2;
458             if (exp_idx<0){
459                 exp_idx=0;
460             } else if(exp_idx >7) {
461                 exp_idx=7;
462             }
463             index++;
464             num_bits+=expbits_tab[exp_idx];
465         }
466         if(num_bits >= bits_left - 32){
467             bias+=i;
468         }
469     }
470
471     /* Calculate total number of bits. */
472     num_bits=0;
473     for (i=0 ; i<q->total_subbands ; i++) {
474         exp_idx = (bias - quant_index_table[i]) / 2;
475         if (exp_idx<0) {
476             exp_idx=0;
477         } else if(exp_idx >7) {
478             exp_idx=7;
479         }
480         num_bits += expbits_tab[exp_idx];
481         exp_index1[i] = exp_idx;
482         exp_index2[i] = exp_idx;
483     }
484     tmpbias = bias = num_bits;
485
486     for (j = 1 ; j < q->numvector_size ; j++) {
487         if (tmpbias + bias > 2*bits_left) {  /* ---> */
488             int max = -999999;
489             index=-1;
490             for (i=0 ; i<q->total_subbands ; i++){
491                 if (exp_index1[i] < 7) {
492                     v = (-2*exp_index1[i]) - quant_index_table[i] - 32;
493                     if ( v >= max) {
494                         max = v;
495                         index = i;
496                     }
497                 }
498             }
499             if(index==-1)break;
500             tmp_categorize_array1[tmp_categorize_array1_idx++] = index;
501             tmpbias -= expbits_tab[exp_index1[index]] -
502                        expbits_tab[exp_index1[index]+1];
503             ++exp_index1[index];
504         } else {  /* <--- */
505             int min = 999999;
506             index=-1;
507             for (i=0 ; i<q->total_subbands ; i++){
508                 if(exp_index2[i] > 0){
509                     v = (-2*exp_index2[i])-quant_index_table[i];
510                     if ( v < min) {
511                         min = v;
512                         index = i;
513                     }
514                 }
515             }
516             if(index == -1)break;
517             tmp_categorize_array2[tmp_categorize_array2_idx++] = index;
518             tmpbias -= expbits_tab[exp_index2[index]] -
519                        expbits_tab[exp_index2[index]-1];
520             --exp_index2[index];
521         }
522     }
523
524     for(i=0 ; i<q->total_subbands ; i++)
525         category[i] = exp_index2[i];
526
527     /* Concatenate the two arrays. */
528     for(i=tmp_categorize_array2_idx-1 ; i >= 0; i--)
529         category_index[category_index_size++] =  tmp_categorize_array2[i];
530
531     for(i=0;i<tmp_categorize_array1_idx;i++)
532         category_index[category_index_size++ ] =  tmp_categorize_array1[i];
533
534     /* FIXME: mc_sich_ra8_20.rm triggers this, not sure with what we
535        should fill the remaining bytes. */
536     for(i=category_index_size;i<q->numvector_size;i++)
537         category_index[i]=0;
538
539 }
540
541
542 /**
543  * Expand the category vector.
544  *
545  * @param q                     pointer to the COOKContext
546  * @param category              pointer to the category array
547  * @param category_index        pointer to the category_index array
548  */
549
550 static void inline expand_category(COOKContext *q, int* category,
551                                    int* category_index){
552     int i;
553     for(i=0 ; i<q->num_vectors ; i++){
554         ++category[category_index[i]];
555     }
556 }
557
558 /**
559  * The real requantization of the mltcoefs
560  *
561  * @param q                     pointer to the COOKContext
562  * @param index                 index
563  * @param band                  current subband
564  * @param quant_value_table     pointer to the array
565  * @param subband_coef_index    array of indexes to quant_centroid_tab
566  * @param subband_coef_noise    use random noise instead of predetermined value
567  * @param mlt_buffer            pointer to the mlt buffer
568  */
569
570
571 static void scalar_dequant(COOKContext *q, int index, int band,
572                            float* quant_value_table, int* subband_coef_index,
573                            int* subband_coef_noise, float* mlt_buffer){
574     int i;
575     float f1;
576
577     for(i=0 ; i<SUBBAND_SIZE ; i++) {
578         if (subband_coef_index[i]) {
579             if (subband_coef_noise[i]) {
580                 f1 = -quant_centroid_tab[index][subband_coef_index[i]];
581             } else {
582                 f1 = quant_centroid_tab[index][subband_coef_index[i]];
583             }
584         } else {
585             /* noise coding if subband_coef_noise[i] == 0 */
586             q->random_state = q->random_state * 214013 + 2531011;    //typical RNG numbers
587             f1 = randsign[(q->random_state/0x1000000)&1] * dither_tab[index]; //>>31
588         }
589         mlt_buffer[band*20+ i] = f1 * quant_value_table[band];
590     }
591 }
592 /**
593  * Unpack the subband_coef_index and subband_coef_noise vectors.
594  *
595  * @param q                     pointer to the COOKContext
596  * @param category              pointer to the category array
597  * @param subband_coef_index    array of indexes to quant_centroid_tab
598  * @param subband_coef_noise    use random noise instead of predetermined value
599  */
600
601 static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
602                        int* subband_coef_noise) {
603     int i,j;
604     int vlc, vd ,tmp, result;
605     int ub;
606     int cb;
607
608     vd = vd_tab[category];
609     result = 0;
610     for(i=0 ; i<vpr_tab[category] ; i++){
611         ub = get_bits_count(&q->gb);
612         vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
613         cb = get_bits_count(&q->gb);
614         if (q->bits_per_subpacket < get_bits_count(&q->gb)){
615             vlc = 0;
616             result = 1;
617         }
618         for(j=vd-1 ; j>=0 ; j--){
619             tmp = (vlc * invradix_tab[category])/0x100000;
620             subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
621             vlc = tmp;
622         }
623         for(j=0 ; j<vd ; j++){
624             if (subband_coef_index[i*vd + j]) {
625                 if(get_bits_count(&q->gb) < q->bits_per_subpacket){
626                     subband_coef_noise[i*vd+j] = get_bits1(&q->gb);
627                 } else {
628                     result=1;
629                     subband_coef_noise[i*vd+j]=0;
630                 }
631             } else {
632                 subband_coef_noise[i*vd+j]=0;
633             }
634         }
635     }
636     return result;
637 }
638
639
640 /**
641  * Fill the mlt_buffer with mlt coefficients.
642  *
643  * @param q                 pointer to the COOKContext
644  * @param category          pointer to the category array
645  * @param quant_value_table pointer to the array
646  * @param mlt_buffer        pointer to mlt coefficients
647  */
648
649
650 static void decode_vectors(COOKContext* q, int* category,
651                            float* quant_value_table, float* mlt_buffer){
652     /* A zero in this table means that the subband coefficient is
653        random noise coded. */
654     int subband_coef_noise[SUBBAND_SIZE];
655     /* A zero in this table means that the subband coefficient is a
656        positive multiplicator. */
657     int subband_coef_index[SUBBAND_SIZE];
658     int band, j;
659     int index=0;
660
661     for(band=0 ; band<q->total_subbands ; band++){
662         index = category[band];
663         if(category[band] < 7){
664             if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_noise)){
665                 index=7;
666                 for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7;
667             }
668         }
669         if(index==7) {
670             memset(subband_coef_index, 0, sizeof(subband_coef_index));
671             memset(subband_coef_noise, 0, sizeof(subband_coef_noise));
672         }
673         scalar_dequant(q, index, band, quant_value_table, subband_coef_index,
674                        subband_coef_noise, mlt_buffer);
675     }
676
677     if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
678         return;
679     }
680 }
681
682
683 /**
684  * function for decoding mono data
685  *
686  * @param q                 pointer to the COOKContext
687  * @param mlt_buffer1       pointer to left channel mlt coefficients
688  * @param mlt_buffer2       pointer to right channel mlt coefficients
689  */
690
691 static void mono_decode(COOKContext *q, float* mlt_buffer) {
692
693     int category_index[128];
694     float quant_value_table[102];
695     int quant_index_table[102];
696     int category[128];
697
698     memset(&category, 0, 128*sizeof(int));
699     memset(&quant_value_table, 0, 102*sizeof(int));
700     memset(&category_index, 0, 128*sizeof(int));
701
702     decode_envelope(q, quant_index_table);
703     q->num_vectors = get_bits(&q->gb,q->numvector_bits);
704     dequant_envelope(q, quant_index_table, quant_value_table);
705     categorize(q, quant_index_table, category, category_index);
706     expand_category(q, category, category_index);
707     decode_vectors(q, category, quant_value_table, mlt_buffer);
708 }
709
710
711 /**
712  * The modulated lapped transform, this takes transform coefficients
713  * and transforms them into timedomain samples. This is done through
714  * an FFT-based algorithm with pre- and postrotation steps.
715  * A window and reorder step is also included.
716  *
717  * @param q                 pointer to the COOKContext
718  * @param inbuffer          pointer to the mltcoefficients
719  * @param outbuffer         pointer to the timedomain buffer
720  * @param mlt_tmp           pointer to temporary storage space
721  */
722
723 static void cook_imlt(COOKContext *q, float* inbuffer, float* outbuffer,
724                       float* mlt_tmp){
725     int i;
726
727     /* prerotation */
728     for(i=0 ; i<q->mlt_size ; i+=2){
729         outbuffer[i] = (q->mlt_presin[i/2] * inbuffer[q->mlt_size-1-i]) +
730                        (q->mlt_precos[i/2] * inbuffer[i]);
731         outbuffer[i+1] = (q->mlt_precos[i/2] * inbuffer[q->mlt_size-1-i]) -
732                          (q->mlt_presin[i/2] * inbuffer[i]);
733     }
734
735     /* FFT */
736     ff_fft_permute(&q->fft_ctx, (FFTComplex *) outbuffer);
737     ff_fft_calc (&q->fft_ctx, (FFTComplex *) outbuffer);
738
739     /* postrotation */
740     for(i=0 ; i<q->mlt_size ; i+=2){
741         mlt_tmp[i] =               (q->mlt_postcos[(q->mlt_size-1-i)/2] * outbuffer[i+1]) +
742                                    (q->mlt_postcos[i/2] * outbuffer[i]);
743         mlt_tmp[q->mlt_size-1-i] = (q->mlt_postcos[(q->mlt_size-1-i)/2] * outbuffer[i]) -
744                                    (q->mlt_postcos[i/2] * outbuffer[i+1]);
745     }
746
747     /* window and reorder */
748     for(i=0 ; i<q->mlt_size/2 ; i++){
749         outbuffer[i] = mlt_tmp[q->mlt_size/2-1-i] * q->mlt_window[i];
750         outbuffer[q->mlt_size-1-i]= mlt_tmp[q->mlt_size/2-1-i] *
751                                     q->mlt_window[q->mlt_size-1-i];
752         outbuffer[q->mlt_size+i]= mlt_tmp[q->mlt_size/2+i] *
753                                   q->mlt_window[q->mlt_size-1-i];
754         outbuffer[2*q->mlt_size-1-i]= -(mlt_tmp[q->mlt_size/2+i] *
755                                       q->mlt_window[i]);
756     }
757 }
758
759
760 /**
761  * the actual requantization of the timedomain samples
762  *
763  * @param q                 pointer to the COOKContext
764  * @param buffer            pointer to the timedomain buffer
765  * @param gain_index        index for the block multiplier
766  * @param gain_index_next   index for the next block multiplier
767  */
768
769 static void interpolate(COOKContext *q, float* buffer,
770                         int gain_index, int gain_index_next){
771     int i;
772     float fc1, fc2;
773     fc1 = q->pow2tab[gain_index+63];
774
775     if(gain_index == gain_index_next){              //static gain
776         for(i=0 ; i<q->gain_size_factor ; i++){
777             buffer[i]*=fc1;
778         }
779         return;
780     } else {                                        //smooth gain
781         fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
782         for(i=0 ; i<q->gain_size_factor ; i++){
783             buffer[i]*=fc1;
784             fc1*=fc2;
785         }
786         return;
787     }
788 }
789
790 /**
791  * timedomain requantization of the timedomain samples
792  *
793  * @param q                 pointer to the COOKContext
794  * @param buffer            pointer to the timedomain buffer
795  * @param gain_now          current gain structure
796  * @param gain_previous     previous gain structure
797  */
798
799 static void gain_window(COOKContext *q, float* buffer, COOKgain* gain_now,
800                         COOKgain* gain_previous){
801     int i, index;
802     int gain_index[9];
803     int tmp_gain_index;
804
805     gain_index[8]=0;
806     index = gain_previous->size;
807     for (i=7 ; i>=0 ; i--) {
808         if(index && gain_previous->qidx_table1[index-1]==i) {
809             gain_index[i] = gain_previous->qidx_table2[index-1];
810             index--;
811         } else {
812             gain_index[i]=gain_index[i+1];
813         }
814     }
815     /* This is applied to the to be previous data buffer. */
816     for(i=0;i<8;i++){
817         interpolate(q, &buffer[q->samples_per_channel+q->gain_size_factor*i],
818                     gain_index[i], gain_index[i+1]);
819     }
820
821     tmp_gain_index = gain_index[0];
822     index = gain_now->size;
823     for (i=7 ; i>=0 ; i--) {
824         if(index && gain_now->qidx_table1[index-1]==i) {
825             gain_index[i]= gain_now->qidx_table2[index-1];
826             index--;
827         } else {
828             gain_index[i]=gain_index[i+1];
829         }
830     }
831
832     /* This is applied to the to be current block. */
833     for(i=0;i<8;i++){
834         interpolate(q, &buffer[i*q->gain_size_factor],
835                     tmp_gain_index+gain_index[i],
836                     tmp_gain_index+gain_index[i+1]);
837     }
838 }
839
840
841 /**
842  * mlt overlapping and buffer management
843  *
844  * @param q                 pointer to the COOKContext
845  * @param buffer            pointer to the timedomain buffer
846  * @param gain_now          current gain structure
847  * @param gain_previous     previous gain structure
848  * @param previous_buffer   pointer to the previous buffer to be used for overlapping
849  *
850  */
851
852 static void gain_compensate(COOKContext *q, float* buffer, COOKgain* gain_now,
853                             COOKgain* gain_previous, float* previous_buffer) {
854     int i;
855     if((gain_now->size  || gain_previous->size)) {
856         gain_window(q, buffer, gain_now, gain_previous);
857     }
858
859     /* Overlap with the previous block. */
860     for(i=0 ; i<q->samples_per_channel ; i++) buffer[i]+=previous_buffer[i];
861
862     /* Save away the current to be previous block. */
863     memcpy(previous_buffer, buffer+q->samples_per_channel,
864            sizeof(float)*q->samples_per_channel);
865 }
866
867
868 /**
869  * function for getting the jointstereo coupling information
870  *
871  * @param q                 pointer to the COOKContext
872  * @param decouple_tab      decoupling array
873  *
874  */
875
876 static void decouple_info(COOKContext *q, int* decouple_tab){
877     int length, i;
878
879     if(get_bits1(&q->gb)) {
880         if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
881
882         length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
883         for (i=0 ; i<length ; i++) {
884             decouple_tab[cplband[q->js_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2);
885         }
886         return;
887     }
888
889     if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
890
891     length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
892     for (i=0 ; i<length ; i++) {
893        decouple_tab[cplband[q->js_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits);
894     }
895     return;
896 }
897
898
899 /**
900  * function for decoding joint stereo data
901  *
902  * @param q                 pointer to the COOKContext
903  * @param mlt_buffer1       pointer to left channel mlt coefficients
904  * @param mlt_buffer2       pointer to right channel mlt coefficients
905  */
906
907 static void joint_decode(COOKContext *q, float* mlt_buffer1,
908                          float* mlt_buffer2) {
909     int i,j;
910     int decouple_tab[SUBBAND_SIZE];
911     float decode_buffer[1060];
912     int idx, cpl_tmp,tmp_idx;
913     float f1,f2;
914     float* cplscale;
915
916     memset(decouple_tab, 0, sizeof(decouple_tab));
917     memset(decode_buffer, 0, sizeof(decode_buffer));
918
919     /* Make sure the buffers are zeroed out. */
920     memset(mlt_buffer1,0, 1024*sizeof(float));
921     memset(mlt_buffer2,0, 1024*sizeof(float));
922     decouple_info(q, decouple_tab);
923     mono_decode(q, decode_buffer);
924
925     /* The two channels are stored interleaved in decode_buffer. */
926     for (i=0 ; i<q->js_subband_start ; i++) {
927         for (j=0 ; j<SUBBAND_SIZE ; j++) {
928             mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
929             mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
930         }
931     }
932
933     /* When we reach js_subband_start (the higher frequencies)
934        the coefficients are stored in a coupling scheme. */
935     idx = (1 << q->js_vlc_bits) - 1;
936     for (i=q->js_subband_start ; i<q->subbands ; i++) {
937         cpl_tmp = cplband[i];
938         idx -=decouple_tab[cpl_tmp];
939         cplscale = (float*)cplscales[q->js_vlc_bits-2];  //choose decoupler table
940         f1 = cplscale[decouple_tab[cpl_tmp]];
941         f2 = cplscale[idx-1];
942         for (j=0 ; j<SUBBAND_SIZE ; j++) {
943             tmp_idx = ((q->js_subband_start + i)*20)+j;
944             mlt_buffer1[20*i + j] = f1 * decode_buffer[tmp_idx];
945             mlt_buffer2[20*i + j] = f2 * decode_buffer[tmp_idx];
946         }
947         idx = (1 << q->js_vlc_bits) - 1;
948     }
949 }
950
951 /**
952  * Cook subpacket decoding. This function returns one decoded subpacket,
953  * usually 1024 samples per channel.
954  *
955  * @param q                 pointer to the COOKContext
956  * @param inbuffer          pointer to the inbuffer
957  * @param sub_packet_size   subpacket size
958  * @param outbuffer         pointer to the outbuffer
959  * @param pos               the subpacket number in the frame
960  */
961
962
963 static int decode_subpacket(COOKContext *q, uint8_t *inbuffer,
964                             int sub_packet_size, int16_t *outbuffer) {
965     int i,j;
966     int value;
967     float* tmp_ptr;
968
969     /* packet dump */
970 //    for (i=0 ; i<sub_packet_size ; i++) {
971 //        av_log(NULL, AV_LOG_ERROR, "%02x", inbuffer[i]);
972 //    }
973 //    av_log(NULL, AV_LOG_ERROR, "\n");
974
975     decode_bytes(inbuffer, q->decoded_bytes_buffer, sub_packet_size);
976     init_get_bits(&q->gb, q->decoded_bytes_buffer, sub_packet_size*8);
977     decode_gain_info(&q->gb, &q->gain_current);
978     memcpy(&q->gain_copy, &q->gain_current ,sizeof(COOKgain));  //This copy does not seem to be used. FIXME
979
980     if(q->nb_channels==2 && q->joint_stereo==1){
981         joint_decode(q, q->decode_buf_ptr[0], q->decode_buf_ptr[2]);
982
983         /* Swap buffer pointers. */
984         tmp_ptr = q->decode_buf_ptr[1];
985         q->decode_buf_ptr[1] = q->decode_buf_ptr[0];
986         q->decode_buf_ptr[0] = tmp_ptr;
987         tmp_ptr = q->decode_buf_ptr[3];
988         q->decode_buf_ptr[3] = q->decode_buf_ptr[2];
989         q->decode_buf_ptr[2] = tmp_ptr;
990
991         /* FIXME: Rethink the gainbuffer handling, maybe a rename?
992            now/previous swap */
993         q->gain_now_ptr = &q->gain_now;
994         q->gain_previous_ptr = &q->gain_previous;
995         for (i=0 ; i<q->nb_channels ; i++){
996
997             cook_imlt(q, q->decode_buf_ptr[i*2], q->mono_mdct_output, q->mlt_tmp);
998             gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
999                             q->gain_previous_ptr, q->previous_buffer_ptr[0]);
1000
1001             /* Swap out the previous buffer. */
1002             tmp_ptr = q->previous_buffer_ptr[0];
1003             q->previous_buffer_ptr[0] = q->previous_buffer_ptr[1];
1004             q->previous_buffer_ptr[1] = tmp_ptr;
1005
1006             /* Clip and convert the floats to 16 bits. */
1007             for (j=0 ; j<q->samples_per_frame ; j++){
1008                 value = lrintf(q->mono_mdct_output[j]);
1009                 if(value < -32768) value = -32768;
1010                 else if(value > 32767) value = 32767;
1011                 outbuffer[2*j+i] = value;
1012             }
1013         }
1014
1015         memcpy(&q->gain_now, &q->gain_previous, sizeof(COOKgain));
1016         memcpy(&q->gain_previous, &q->gain_current, sizeof(COOKgain));
1017
1018     } else if (q->nb_channels==2 && q->joint_stereo==0) {
1019             /* channel 0 */
1020             mono_decode(q, q->decode_buf_ptr[0]);
1021
1022             tmp_ptr = q->decode_buf_ptr[0];
1023             q->decode_buf_ptr[0] = q->decode_buf_ptr[1];
1024             q->decode_buf_ptr[1] = q->decode_buf_ptr[2];
1025             q->decode_buf_ptr[2] = q->decode_buf_ptr[3];
1026             q->decode_buf_ptr[3] = tmp_ptr;
1027
1028             q->gain_now_ptr = &q->gain_now;
1029             q->gain_previous_ptr = &q->gain_previous;
1030
1031             cook_imlt(q, q->decode_buf_ptr[0], q->mono_mdct_output,q->mlt_tmp);
1032             gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
1033                             q->gain_previous_ptr, q->previous_buffer_ptr[0]);
1034             /* Swap out the previous buffer. */
1035             tmp_ptr = q->previous_buffer_ptr[0];
1036             q->previous_buffer_ptr[0] = q->previous_buffer_ptr[1];
1037             q->previous_buffer_ptr[1] = tmp_ptr;
1038
1039             for (j=0 ; j<q->samples_per_frame ; j++){
1040                 value = lrintf(q->mono_mdct_output[j]);
1041                 if(value < -32768) value = -32768;
1042                 else if(value > 32767) value = 32767;
1043                 outbuffer[2*j+1] = value;
1044             }
1045
1046             /* channel 1 */
1047             //av_log(NULL,AV_LOG_ERROR,"bits = %d\n",get_bits_count(&q->gb));
1048             init_get_bits(&q->gb, q->decoded_bytes_buffer, sub_packet_size*8+q->bits_per_subpacket);
1049             decode_gain_info(&q->gb, &q->gain_current);
1050             //memcpy(&q->gain_copy, &q->gain_current ,sizeof(COOKgain));
1051             mono_decode(q, q->decode_buf_ptr[0]);
1052             tmp_ptr = q->decode_buf_ptr[0];
1053             q->decode_buf_ptr[1] = q->decode_buf_ptr[2];
1054             q->decode_buf_ptr[2] = q->decode_buf_ptr[3];
1055             q->decode_buf_ptr[3] = tmp_ptr;
1056
1057             q->gain_now_ptr = &q->gain_now;
1058             q->gain_previous_ptr = &q->gain_previous;
1059
1060             cook_imlt(q, q->decode_buf_ptr[0], q->mono_mdct_output,q->mlt_tmp);
1061             gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr, q->gain_previous_ptr, q->previous_buffer_ptr[0]);
1062
1063             /* Swap out the previous buffer. */
1064             tmp_ptr = q->previous_buffer_ptr[0];
1065             q->previous_buffer_ptr[0] = q->previous_buffer_ptr[1];
1066             q->previous_buffer_ptr[1] = tmp_ptr;
1067
1068             for (j=0 ; j<q->samples_per_frame ; j++){
1069                 value = lrintf(q->mono_mdct_output[j]);
1070                 if(value < -32768) value = -32768;
1071                 else if(value > 32767) value = 32767;
1072                 outbuffer[2*j] = value;
1073             }
1074
1075
1076             /* Swap out the previous buffer. */
1077             memcpy(&q->gain_now, &q->gain_previous, sizeof(COOKgain));
1078             memcpy(&q->gain_previous, &q->gain_current, sizeof(COOKgain));
1079
1080     } else {
1081         mono_decode(q, q->decode_buf_ptr[0]);
1082
1083         /* Swap buffer pointers. */
1084         tmp_ptr = q->decode_buf_ptr[1];
1085         q->decode_buf_ptr[1] = q->decode_buf_ptr[0];
1086         q->decode_buf_ptr[0] = tmp_ptr;
1087
1088         /* FIXME: Rethink the gainbuffer handling, maybe a rename?
1089            now/previous swap */
1090         q->gain_now_ptr = &q->gain_now;
1091         q->gain_previous_ptr = &q->gain_previous;
1092
1093         cook_imlt(q, q->decode_buf_ptr[0], q->mono_mdct_output,q->mlt_tmp);
1094         gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
1095                         q->gain_previous_ptr, q->mono_previous_buffer1);
1096
1097         /* Clip and convert the floats to 16 bits */
1098         for (j=0 ; j<q->samples_per_frame ; j++){
1099             value = lrintf(q->mono_mdct_output[j]);
1100             if(value < -32768) value = -32768;
1101             else if(value > 32767) value = 32767;
1102             outbuffer[j] = value;
1103         }
1104         memcpy(&q->gain_now, &q->gain_previous, sizeof(COOKgain));
1105         memcpy(&q->gain_previous, &q->gain_current, sizeof(COOKgain));
1106     }
1107     return q->samples_per_frame * sizeof(int16_t);
1108 }
1109
1110
1111 /**
1112  * Cook frame decoding
1113  *
1114  * @param avctx     pointer to the AVCodecContext
1115  */
1116
1117 static int cook_decode_frame(AVCodecContext *avctx,
1118             void *data, int *data_size,
1119             uint8_t *buf, int buf_size) {
1120     COOKContext *q = avctx->priv_data;
1121
1122     if (buf_size < avctx->block_align)
1123         return buf_size;
1124
1125     *data_size = decode_subpacket(q, buf, avctx->block_align, data);
1126
1127     return avctx->block_align;
1128 }
1129 #ifdef COOKDEBUG
1130 static void dump_cook_context(COOKContext *q, COOKextradata *e)
1131 {
1132     //int i=0;
1133 #define PRINT(a,b) av_log(NULL,AV_LOG_ERROR," %s = %d\n", a, b);
1134     av_log(NULL,AV_LOG_ERROR,"COOKextradata\n");
1135     av_log(NULL,AV_LOG_ERROR,"cookversion=%x\n",e->cookversion);
1136     if (e->cookversion > MONO_COOK2) {
1137         PRINT("js_subband_start",e->js_subband_start);
1138         PRINT("js_vlc_bits",e->js_vlc_bits);
1139     }
1140     av_log(NULL,AV_LOG_ERROR,"COOKContext\n");
1141     PRINT("nb_channels",q->nb_channels);
1142     PRINT("bit_rate",q->bit_rate);
1143     PRINT("sample_rate",q->sample_rate);
1144     PRINT("samples_per_channel",q->samples_per_channel);
1145     PRINT("samples_per_frame",q->samples_per_frame);
1146     PRINT("subbands",q->subbands);
1147     PRINT("random_state",q->random_state);
1148     PRINT("mlt_size",q->mlt_size);
1149     PRINT("js_subband_start",q->js_subband_start);
1150     PRINT("numvector_bits",q->numvector_bits);
1151     PRINT("numvector_size",q->numvector_size);
1152     PRINT("total_subbands",q->total_subbands);
1153 }
1154 #endif
1155 /**
1156  * Cook initialization
1157  *
1158  * @param avctx     pointer to the AVCodecContext
1159  */
1160
1161 static int cook_decode_init(AVCodecContext *avctx)
1162 {
1163     COOKextradata *e = avctx->extradata;
1164     COOKContext *q = avctx->priv_data;
1165
1166     /* Take care of the codec specific extradata. */
1167     if (avctx->extradata_size <= 0) {
1168         av_log(NULL,AV_LOG_ERROR,"Necessary extradata missing!\n");
1169         return -1;
1170     } else {
1171         /* 8 for mono, 16 for stereo, ? for multichannel
1172            Swap to right endianness so we don't need to care later on. */
1173         av_log(NULL,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
1174         if (avctx->extradata_size >= 8){
1175             e->cookversion = be2me_32(e->cookversion);
1176             e->samples_per_frame = be2me_16(e->samples_per_frame);
1177             e->subbands = be2me_16(e->subbands);
1178         }
1179         if (avctx->extradata_size >= 16){
1180             e->js_subband_start = be2me_16(e->js_subband_start);
1181             e->js_vlc_bits = be2me_16(e->js_vlc_bits);
1182         }
1183     }
1184
1185     /* Take data from the AVCodecContext (RM container). */
1186     q->sample_rate = avctx->sample_rate;
1187     q->nb_channels = avctx->channels;
1188     q->bit_rate = avctx->bit_rate;
1189
1190     /* Initialize state. */
1191     q->random_state = 1;
1192
1193     /* Initialize extradata related variables. */
1194     q->samples_per_channel = e->samples_per_frame / q->nb_channels;
1195     q->samples_per_frame = e->samples_per_frame;
1196     q->subbands = e->subbands;
1197     q->bits_per_subpacket = avctx->block_align * 8;
1198
1199     /* Initialize default data states. */
1200     q->js_subband_start = 0;
1201     q->numvector_bits = 5;
1202     q->total_subbands = q->subbands;
1203
1204     /* Initialize version-dependent variables */
1205     av_log(NULL,AV_LOG_DEBUG,"e->cookversion=%x\n",e->cookversion);
1206     switch (e->cookversion) {
1207         case MONO_COOK1:
1208             if (q->nb_channels != 1) {
1209                 av_log(NULL,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
1210                 return -1;
1211             }
1212             av_log(NULL,AV_LOG_DEBUG,"MONO_COOK1\n");
1213             break;
1214         case MONO_COOK2:
1215             if (q->nb_channels != 1) {
1216                 q->joint_stereo = 0;
1217                 av_log(NULL,AV_LOG_ERROR,"Non-joint-stereo files are decoded with wrong gain at the moment!\n");
1218                 q->bits_per_subpacket = q->bits_per_subpacket/2;
1219
1220             }
1221             av_log(NULL,AV_LOG_DEBUG,"MONO_COOK2\n");
1222             break;
1223         case JOINT_STEREO:
1224             if (q->nb_channels != 2) {
1225                 av_log(NULL,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
1226                 return -1;
1227             }
1228             av_log(NULL,AV_LOG_DEBUG,"JOINT_STEREO\n");
1229             if (avctx->extradata_size >= 16){
1230                 q->total_subbands = q->subbands + e->js_subband_start;
1231                 q->js_subband_start = e->js_subband_start;
1232                 q->joint_stereo = 1;
1233                 q->js_vlc_bits = e->js_vlc_bits;
1234             }
1235             if (q->samples_per_channel > 256) {
1236                 q->numvector_bits++;   // q->numvector_bits  = 6
1237             }
1238             if (q->samples_per_channel > 512) {
1239                 q->numvector_bits++;   // q->numvector_bits  = 7
1240             }
1241             break;
1242         case MC_COOK:
1243             av_log(NULL,AV_LOG_ERROR,"MC_COOK not supported!\n");
1244             return -1;
1245             break;
1246         default:
1247             av_log(NULL,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
1248             return -1;
1249             break;
1250     }
1251
1252     /* Initialize variable relations */
1253     q->mlt_size = q->samples_per_channel;
1254     q->numvector_size = (1 << q->numvector_bits);
1255
1256     /* Generate tables */
1257     init_rootpow2table(q);
1258     init_pow2table(q);
1259     init_gain_table(q);
1260
1261     if (init_cook_vlc_tables(q) != 0)
1262         return -1;
1263
1264     /* Pad the databuffer with FF_INPUT_BUFFER_PADDING_SIZE,
1265        this is for the bitstreamreader. */
1266     if ((q->decoded_bytes_buffer = av_mallocz((avctx->block_align+(4-avctx->block_align%4) + FF_INPUT_BUFFER_PADDING_SIZE)*sizeof(uint8_t)))  == NULL)
1267         return -1;
1268
1269     q->decode_buf_ptr[0] = q->decode_buffer_1;
1270     q->decode_buf_ptr[1] = q->decode_buffer_2;
1271     q->decode_buf_ptr[2] = q->decode_buffer_3;
1272     q->decode_buf_ptr[3] = q->decode_buffer_4;
1273
1274     q->previous_buffer_ptr[0] = q->mono_previous_buffer1;
1275     q->previous_buffer_ptr[1] = q->mono_previous_buffer2;
1276
1277     memset(q->decode_buffer_1,0,1024*sizeof(float));
1278     memset(q->decode_buffer_2,0,1024*sizeof(float));
1279     memset(q->decode_buffer_3,0,1024*sizeof(float));
1280     memset(q->decode_buffer_4,0,1024*sizeof(float));
1281
1282     /* Initialize transform. */
1283     if ( init_cook_mlt(q) == 0 )
1284         return -1;
1285 #ifdef COOKDEBUG
1286     dump_cook_context(q,e);
1287 #endif
1288     return 0;
1289 }
1290
1291
1292 AVCodec cook_decoder =
1293 {
1294     .name = "cook",
1295     .type = CODEC_TYPE_AUDIO,
1296     .id = CODEC_ID_COOK,
1297     .priv_data_size = sizeof(COOKContext),
1298     .init = cook_decode_init,
1299     .close = cook_decode_close,
1300     .decode = cook_decode_frame,
1301 };