3 * Copyright (c) 2001-2003 The ffmpeg Project
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 #include "bytestream.h"
27 * @file libavcodec/adpcm.c
29 * First version by Francois Revol (revol@free.fr)
30 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
31 * by Mike Melanson (melanson@pcisys.net)
32 * CD-ROM XA ADPCM codec by BERO
33 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
34 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
35 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
36 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
37 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
38 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
39 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
41 * Features and limitations:
43 * Reference documents:
44 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html
45 * http://www.geocities.com/SiliconValley/8682/aud3.txt
46 * http://openquicktime.sourceforge.net/plugins.htm
47 * XAnim sources (xa_codec.c) http://www.rasnaimaging.com/people/lapus/download.html
48 * http://www.cs.ucla.edu/~leec/mediabench/applications.html
49 * SoX source code http://home.sprynet.com/~cbagwell/sox.html
52 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html
53 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html
54 * readstr http://www.geocities.co.jp/Playtown/2004/
59 /* step_table[] and index_table[] are from the ADPCM reference source */
60 /* This is the index table: */
61 static const int index_table[16] = {
62 -1, -1, -1, -1, 2, 4, 6, 8,
63 -1, -1, -1, -1, 2, 4, 6, 8,
67 * This is the step table. Note that many programs use slight deviations from
68 * this table, but such deviations are negligible:
70 static const int step_table[89] = {
71 7, 8, 9, 10, 11, 12, 13, 14, 16, 17,
72 19, 21, 23, 25, 28, 31, 34, 37, 41, 45,
73 50, 55, 60, 66, 73, 80, 88, 97, 107, 118,
74 130, 143, 157, 173, 190, 209, 230, 253, 279, 307,
75 337, 371, 408, 449, 494, 544, 598, 658, 724, 796,
76 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066,
77 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358,
78 5894, 6484, 7132, 7845, 8630, 9493, 10442, 11487, 12635, 13899,
79 15289, 16818, 18500, 20350, 22385, 24623, 27086, 29794, 32767
82 /* These are for MS-ADPCM */
83 /* AdaptationTable[], AdaptCoeff1[], and AdaptCoeff2[] are from libsndfile */
84 static const int AdaptationTable[] = {
85 230, 230, 230, 230, 307, 409, 512, 614,
86 768, 614, 512, 409, 307, 230, 230, 230
89 /** Divided by 4 to fit in 8-bit integers */
90 static const uint8_t AdaptCoeff1[] = {
91 64, 128, 0, 48, 60, 115, 98
94 /** Divided by 4 to fit in 8-bit integers */
95 static const int8_t AdaptCoeff2[] = {
96 0, -64, 0, 16, 0, -52, -58
99 /* These are for CD-ROM XA ADPCM */
100 static const int xa_adpcm_table[5][2] = {
108 static const int ea_adpcm_table[] = {
109 0, 240, 460, 392, 0, 0, -208, -220, 0, 1,
110 3, 4, 7, 8, 10, 11, 0, -1, -3, -4
113 // padded to zero where table size is less then 16
114 static const int swf_index_tables[4][16] = {
116 /*3*/ { -1, -1, 2, 4 },
117 /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
118 /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
121 static const int yamaha_indexscale[] = {
122 230, 230, 230, 230, 307, 409, 512, 614,
123 230, 230, 230, 230, 307, 409, 512, 614
126 static const int yamaha_difflookup[] = {
127 1, 3, 5, 7, 9, 11, 13, 15,
128 -1, -3, -5, -7, -9, -11, -13, -15
133 typedef struct ADPCMChannelStatus {
135 short int step_index;
146 } ADPCMChannelStatus;
148 typedef struct ADPCMContext {
149 ADPCMChannelStatus status[6];
152 /* XXX: implement encoding */
155 static av_cold int adpcm_encode_init(AVCodecContext *avctx)
157 if (avctx->channels > 2)
158 return -1; /* only stereo or mono =) */
160 if(avctx->trellis && (unsigned)avctx->trellis > 16U){
161 av_log(avctx, AV_LOG_ERROR, "invalid trellis size\n");
165 switch(avctx->codec->id) {
166 case CODEC_ID_ADPCM_IMA_WAV:
167 avctx->frame_size = (BLKSIZE - 4 * avctx->channels) * 8 / (4 * avctx->channels) + 1; /* each 16 bits sample gives one nibble */
168 /* and we have 4 bytes per channel overhead */
169 avctx->block_align = BLKSIZE;
170 /* seems frame_size isn't taken into account... have to buffer the samples :-( */
172 case CODEC_ID_ADPCM_IMA_QT:
173 avctx->frame_size = 64;
174 avctx->block_align = 34 * avctx->channels;
176 case CODEC_ID_ADPCM_MS:
177 avctx->frame_size = (BLKSIZE - 7 * avctx->channels) * 2 / avctx->channels + 2; /* each 16 bits sample gives one nibble */
178 /* and we have 7 bytes per channel overhead */
179 avctx->block_align = BLKSIZE;
181 case CODEC_ID_ADPCM_YAMAHA:
182 avctx->frame_size = BLKSIZE * avctx->channels;
183 avctx->block_align = BLKSIZE;
185 case CODEC_ID_ADPCM_SWF:
186 if (avctx->sample_rate != 11025 &&
187 avctx->sample_rate != 22050 &&
188 avctx->sample_rate != 44100) {
189 av_log(avctx, AV_LOG_ERROR, "Sample rate must be 11025, 22050 or 44100\n");
192 avctx->frame_size = 512 * (avctx->sample_rate / 11025);
198 avctx->coded_frame= avcodec_alloc_frame();
199 avctx->coded_frame->key_frame= 1;
204 static av_cold int adpcm_encode_close(AVCodecContext *avctx)
206 av_freep(&avctx->coded_frame);
212 static inline unsigned char adpcm_ima_compress_sample(ADPCMChannelStatus *c, short sample)
214 int delta = sample - c->prev_sample;
215 int nibble = FFMIN(7, abs(delta)*4/step_table[c->step_index]) + (delta<0)*8;
216 c->prev_sample += ((step_table[c->step_index] * yamaha_difflookup[nibble]) / 8);
217 c->prev_sample = av_clip_int16(c->prev_sample);
218 c->step_index = av_clip(c->step_index + index_table[nibble], 0, 88);
222 static inline unsigned char adpcm_ms_compress_sample(ADPCMChannelStatus *c, short sample)
224 int predictor, nibble, bias;
226 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
228 nibble= sample - predictor;
229 if(nibble>=0) bias= c->idelta/2;
230 else bias=-c->idelta/2;
232 nibble= (nibble + bias) / c->idelta;
233 nibble= av_clip(nibble, -8, 7)&0x0F;
235 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
237 c->sample2 = c->sample1;
238 c->sample1 = av_clip_int16(predictor);
240 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
241 if (c->idelta < 16) c->idelta = 16;
246 static inline unsigned char adpcm_yamaha_compress_sample(ADPCMChannelStatus *c, short sample)
255 delta = sample - c->predictor;
257 nibble = FFMIN(7, abs(delta)*4/c->step) + (delta<0)*8;
259 c->predictor += ((c->step * yamaha_difflookup[nibble]) / 8);
260 c->predictor = av_clip_int16(c->predictor);
261 c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
262 c->step = av_clip(c->step, 127, 24567);
267 typedef struct TrellisPath {
272 typedef struct TrellisNode {
280 static void adpcm_compress_trellis(AVCodecContext *avctx, const short *samples,
281 uint8_t *dst, ADPCMChannelStatus *c, int n)
283 #define FREEZE_INTERVAL 128
284 //FIXME 6% faster if frontier is a compile-time constant
285 const int frontier = 1 << avctx->trellis;
286 const int stride = avctx->channels;
287 const int version = avctx->codec->id;
288 const int max_paths = frontier*FREEZE_INTERVAL;
289 TrellisPath paths[max_paths], *p;
290 TrellisNode node_buf[2][frontier];
291 TrellisNode *nodep_buf[2][frontier];
292 TrellisNode **nodes = nodep_buf[0]; // nodes[] is always sorted by .ssd
293 TrellisNode **nodes_next = nodep_buf[1];
294 int pathn = 0, froze = -1, i, j, k;
296 assert(!(max_paths&(max_paths-1)));
298 memset(nodep_buf, 0, sizeof(nodep_buf));
299 nodes[0] = &node_buf[1][0];
302 nodes[0]->step = c->step_index;
303 nodes[0]->sample1 = c->sample1;
304 nodes[0]->sample2 = c->sample2;
305 if((version == CODEC_ID_ADPCM_IMA_WAV) || (version == CODEC_ID_ADPCM_IMA_QT) || (version == CODEC_ID_ADPCM_SWF))
306 nodes[0]->sample1 = c->prev_sample;
307 if(version == CODEC_ID_ADPCM_MS)
308 nodes[0]->step = c->idelta;
309 if(version == CODEC_ID_ADPCM_YAMAHA) {
311 nodes[0]->step = 127;
312 nodes[0]->sample1 = 0;
314 nodes[0]->step = c->step;
315 nodes[0]->sample1 = c->predictor;
320 TrellisNode *t = node_buf[i&1];
322 int sample = samples[i*stride];
323 memset(nodes_next, 0, frontier*sizeof(TrellisNode*));
324 for(j=0; j<frontier && nodes[j]; j++) {
325 // higher j have higher ssd already, so they're unlikely to use a suboptimal next sample too
326 const int range = (j < frontier/2) ? 1 : 0;
327 const int step = nodes[j]->step;
329 if(version == CODEC_ID_ADPCM_MS) {
330 const int predictor = ((nodes[j]->sample1 * c->coeff1) + (nodes[j]->sample2 * c->coeff2)) / 64;
331 const int div = (sample - predictor) / step;
332 const int nmin = av_clip(div-range, -8, 6);
333 const int nmax = av_clip(div+range, -7, 7);
334 for(nidx=nmin; nidx<=nmax; nidx++) {
335 const int nibble = nidx & 0xf;
336 int dec_sample = predictor + nidx * step;
337 #define STORE_NODE(NAME, STEP_INDEX)\
340 dec_sample = av_clip_int16(dec_sample);\
341 d = sample - dec_sample;\
342 ssd = nodes[j]->ssd + d*d;\
343 if(nodes_next[frontier-1] && ssd >= nodes_next[frontier-1]->ssd)\
345 /* Collapse any two states with the same previous sample value. \
346 * One could also distinguish states by step and by 2nd to last
347 * sample, but the effects of that are negligible. */\
348 for(k=0; k<frontier && nodes_next[k]; k++) {\
349 if(dec_sample == nodes_next[k]->sample1) {\
350 assert(ssd >= nodes_next[k]->ssd);\
354 for(k=0; k<frontier; k++) {\
355 if(!nodes_next[k] || ssd < nodes_next[k]->ssd) {\
356 TrellisNode *u = nodes_next[frontier-1];\
358 assert(pathn < max_paths);\
363 u->step = STEP_INDEX;\
364 u->sample2 = nodes[j]->sample1;\
365 u->sample1 = dec_sample;\
366 paths[u->path].nibble = nibble;\
367 paths[u->path].prev = nodes[j]->path;\
368 memmove(&nodes_next[k+1], &nodes_next[k], (frontier-k-1)*sizeof(TrellisNode*));\
374 STORE_NODE(ms, FFMAX(16, (AdaptationTable[nibble] * step) >> 8));
376 } else if((version == CODEC_ID_ADPCM_IMA_WAV)|| (version == CODEC_ID_ADPCM_IMA_QT)|| (version == CODEC_ID_ADPCM_SWF)) {
377 #define LOOP_NODES(NAME, STEP_TABLE, STEP_INDEX)\
378 const int predictor = nodes[j]->sample1;\
379 const int div = (sample - predictor) * 4 / STEP_TABLE;\
380 int nmin = av_clip(div-range, -7, 6);\
381 int nmax = av_clip(div+range, -6, 7);\
382 if(nmin<=0) nmin--; /* distinguish -0 from +0 */\
384 for(nidx=nmin; nidx<=nmax; nidx++) {\
385 const int nibble = nidx<0 ? 7-nidx : nidx;\
386 int dec_sample = predictor + (STEP_TABLE * yamaha_difflookup[nibble]) / 8;\
387 STORE_NODE(NAME, STEP_INDEX);\
389 LOOP_NODES(ima, step_table[step], av_clip(step + index_table[nibble], 0, 88));
390 } else { //CODEC_ID_ADPCM_YAMAHA
391 LOOP_NODES(yamaha, step, av_clip((step * yamaha_indexscale[nibble]) >> 8, 127, 24567));
402 if(nodes[0]->ssd > (1<<28)) {
403 for(j=1; j<frontier && nodes[j]; j++)
404 nodes[j]->ssd -= nodes[0]->ssd;
408 // merge old paths to save memory
409 if(i == froze + FREEZE_INTERVAL) {
410 p = &paths[nodes[0]->path];
411 for(k=i; k>froze; k--) {
417 // other nodes might use paths that don't coincide with the frozen one.
418 // checking which nodes do so is too slow, so just kill them all.
419 // this also slightly improves quality, but I don't know why.
420 memset(nodes+1, 0, (frontier-1)*sizeof(TrellisNode*));
424 p = &paths[nodes[0]->path];
425 for(i=n-1; i>froze; i--) {
430 c->predictor = nodes[0]->sample1;
431 c->sample1 = nodes[0]->sample1;
432 c->sample2 = nodes[0]->sample2;
433 c->step_index = nodes[0]->step;
434 c->step = nodes[0]->step;
435 c->idelta = nodes[0]->step;
438 static int adpcm_encode_frame(AVCodecContext *avctx,
439 unsigned char *frame, int buf_size, void *data)
444 ADPCMContext *c = avctx->priv_data;
447 samples = (short *)data;
448 st= avctx->channels == 2;
449 /* n = (BLKSIZE - 4 * avctx->channels) / (2 * 8 * avctx->channels); */
451 switch(avctx->codec->id) {
452 case CODEC_ID_ADPCM_IMA_WAV:
453 n = avctx->frame_size / 8;
454 c->status[0].prev_sample = (signed short)samples[0]; /* XXX */
455 /* c->status[0].step_index = 0; *//* XXX: not sure how to init the state machine */
456 bytestream_put_le16(&dst, c->status[0].prev_sample);
457 *dst++ = (unsigned char)c->status[0].step_index;
458 *dst++ = 0; /* unknown */
460 if (avctx->channels == 2) {
461 c->status[1].prev_sample = (signed short)samples[0];
462 /* c->status[1].step_index = 0; */
463 bytestream_put_le16(&dst, c->status[1].prev_sample);
464 *dst++ = (unsigned char)c->status[1].step_index;
469 /* stereo: 4 bytes (8 samples) for left, 4 bytes for right, 4 bytes left, ... */
470 if(avctx->trellis > 0) {
472 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n*8);
473 if(avctx->channels == 2)
474 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n*8);
476 *dst++ = buf[0][8*i+0] | (buf[0][8*i+1] << 4);
477 *dst++ = buf[0][8*i+2] | (buf[0][8*i+3] << 4);
478 *dst++ = buf[0][8*i+4] | (buf[0][8*i+5] << 4);
479 *dst++ = buf[0][8*i+6] | (buf[0][8*i+7] << 4);
480 if (avctx->channels == 2) {
481 *dst++ = buf[1][8*i+0] | (buf[1][8*i+1] << 4);
482 *dst++ = buf[1][8*i+2] | (buf[1][8*i+3] << 4);
483 *dst++ = buf[1][8*i+4] | (buf[1][8*i+5] << 4);
484 *dst++ = buf[1][8*i+6] | (buf[1][8*i+7] << 4);
489 *dst = adpcm_ima_compress_sample(&c->status[0], samples[0]);
490 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels]) << 4;
492 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 2]);
493 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 3]) << 4;
495 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 4]);
496 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 5]) << 4;
498 *dst = adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 6]);
499 *dst |= adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels * 7]) << 4;
502 if (avctx->channels == 2) {
503 *dst = adpcm_ima_compress_sample(&c->status[1], samples[1]);
504 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[3]) << 4;
506 *dst = adpcm_ima_compress_sample(&c->status[1], samples[5]);
507 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[7]) << 4;
509 *dst = adpcm_ima_compress_sample(&c->status[1], samples[9]);
510 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[11]) << 4;
512 *dst = adpcm_ima_compress_sample(&c->status[1], samples[13]);
513 *dst |= adpcm_ima_compress_sample(&c->status[1], samples[15]) << 4;
516 samples += 8 * avctx->channels;
519 case CODEC_ID_ADPCM_IMA_QT:
523 init_put_bits(&pb, dst, buf_size*8);
525 for(ch=0; ch<avctx->channels; ch++){
526 put_bits(&pb, 9, (c->status[ch].prev_sample + 0x10000) >> 7);
527 put_bits(&pb, 7, c->status[ch].step_index);
528 if(avctx->trellis > 0) {
530 adpcm_compress_trellis(avctx, samples+ch, buf, &c->status[ch], 64);
532 put_bits(&pb, 4, buf[i^1]);
533 c->status[ch].prev_sample = c->status[ch].predictor & ~0x7F;
535 for (i=0; i<64; i+=2){
537 t1 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+0)+ch]);
538 t2 = adpcm_ima_compress_sample(&c->status[ch], samples[avctx->channels*(i+1)+ch]);
539 put_bits(&pb, 4, t2);
540 put_bits(&pb, 4, t1);
542 c->status[ch].prev_sample &= ~0x7F;
546 dst += put_bits_count(&pb)>>3;
549 case CODEC_ID_ADPCM_SWF:
553 init_put_bits(&pb, dst, buf_size*8);
555 n = avctx->frame_size-1;
557 //Store AdpcmCodeSize
558 put_bits(&pb, 2, 2); //Set 4bits flash adpcm format
560 //Init the encoder state
561 for(i=0; i<avctx->channels; i++){
562 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 63); // clip step so it fits 6 bits
563 put_sbits(&pb, 16, samples[i]);
564 put_bits(&pb, 6, c->status[i].step_index);
565 c->status[i].prev_sample = (signed short)samples[i];
568 if(avctx->trellis > 0) {
570 adpcm_compress_trellis(avctx, samples+2, buf[0], &c->status[0], n);
571 if (avctx->channels == 2)
572 adpcm_compress_trellis(avctx, samples+3, buf[1], &c->status[1], n);
574 put_bits(&pb, 4, buf[0][i]);
575 if (avctx->channels == 2)
576 put_bits(&pb, 4, buf[1][i]);
579 for (i=1; i<avctx->frame_size; i++) {
580 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[0], samples[avctx->channels*i]));
581 if (avctx->channels == 2)
582 put_bits(&pb, 4, adpcm_ima_compress_sample(&c->status[1], samples[2*i+1]));
586 dst += put_bits_count(&pb)>>3;
589 case CODEC_ID_ADPCM_MS:
590 for(i=0; i<avctx->channels; i++){
594 c->status[i].coeff1 = AdaptCoeff1[predictor];
595 c->status[i].coeff2 = AdaptCoeff2[predictor];
597 for(i=0; i<avctx->channels; i++){
598 if (c->status[i].idelta < 16)
599 c->status[i].idelta = 16;
601 bytestream_put_le16(&dst, c->status[i].idelta);
603 for(i=0; i<avctx->channels; i++){
604 c->status[i].sample2= *samples++;
606 for(i=0; i<avctx->channels; i++){
607 c->status[i].sample1= *samples++;
609 bytestream_put_le16(&dst, c->status[i].sample1);
611 for(i=0; i<avctx->channels; i++)
612 bytestream_put_le16(&dst, c->status[i].sample2);
614 if(avctx->trellis > 0) {
615 int n = avctx->block_align - 7*avctx->channels;
617 if(avctx->channels == 1) {
619 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
621 *dst++ = (buf[0][i] << 4) | buf[0][i+1];
623 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
624 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
626 *dst++ = (buf[0][i] << 4) | buf[1][i];
629 for(i=7*avctx->channels; i<avctx->block_align; i++) {
631 nibble = adpcm_ms_compress_sample(&c->status[ 0], *samples++)<<4;
632 nibble|= adpcm_ms_compress_sample(&c->status[st], *samples++);
636 case CODEC_ID_ADPCM_YAMAHA:
637 n = avctx->frame_size / 2;
638 if(avctx->trellis > 0) {
641 if(avctx->channels == 1) {
642 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
644 *dst++ = buf[0][i] | (buf[0][i+1] << 4);
646 adpcm_compress_trellis(avctx, samples, buf[0], &c->status[0], n);
647 adpcm_compress_trellis(avctx, samples+1, buf[1], &c->status[1], n);
649 *dst++ = buf[0][i] | (buf[1][i] << 4);
652 for (n *= avctx->channels; n>0; n--) {
654 nibble = adpcm_yamaha_compress_sample(&c->status[ 0], *samples++);
655 nibble |= adpcm_yamaha_compress_sample(&c->status[st], *samples++) << 4;
664 #endif //CONFIG_ENCODERS
666 static av_cold int adpcm_decode_init(AVCodecContext * avctx)
668 ADPCMContext *c = avctx->priv_data;
669 unsigned int max_channels = 2;
671 switch(avctx->codec->id) {
672 case CODEC_ID_ADPCM_EA_R1:
673 case CODEC_ID_ADPCM_EA_R2:
674 case CODEC_ID_ADPCM_EA_R3:
678 if(avctx->channels > max_channels){
682 switch(avctx->codec->id) {
683 case CODEC_ID_ADPCM_CT:
684 c->status[0].step = c->status[1].step = 511;
686 case CODEC_ID_ADPCM_IMA_WS:
687 if (avctx->extradata && avctx->extradata_size == 2 * 4) {
688 c->status[0].predictor = AV_RL32(avctx->extradata);
689 c->status[1].predictor = AV_RL32(avctx->extradata + 4);
695 avctx->sample_fmt = SAMPLE_FMT_S16;
699 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
703 int sign, delta, diff, step;
705 step = step_table[c->step_index];
706 step_index = c->step_index + index_table[(unsigned)nibble];
707 if (step_index < 0) step_index = 0;
708 else if (step_index > 88) step_index = 88;
712 /* perform direct multiplication instead of series of jumps proposed by
713 * the reference ADPCM implementation since modern CPUs can do the mults
715 diff = ((2 * delta + 1) * step) >> shift;
716 predictor = c->predictor;
717 if (sign) predictor -= diff;
718 else predictor += diff;
720 c->predictor = av_clip_int16(predictor);
721 c->step_index = step_index;
723 return (short)c->predictor;
726 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, char nibble)
730 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
731 predictor += (signed)((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
733 c->sample2 = c->sample1;
734 c->sample1 = av_clip_int16(predictor);
735 c->idelta = (AdaptationTable[(int)nibble] * c->idelta) >> 8;
736 if (c->idelta < 16) c->idelta = 16;
741 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
743 int sign, delta, diff;
748 /* perform direct multiplication instead of series of jumps proposed by
749 * the reference ADPCM implementation since modern CPUs can do the mults
751 diff = ((2 * delta + 1) * c->step) >> 3;
752 /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
753 c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
754 c->predictor = av_clip_int16(c->predictor);
755 /* calculate new step and clamp it to range 511..32767 */
756 new_step = (AdaptationTable[nibble & 7] * c->step) >> 8;
757 c->step = av_clip(new_step, 511, 32767);
759 return (short)c->predictor;
762 static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
764 int sign, delta, diff;
766 sign = nibble & (1<<(size-1));
767 delta = nibble & ((1<<(size-1))-1);
768 diff = delta << (7 + c->step + shift);
771 c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
773 /* calculate new step */
774 if (delta >= (2*size - 3) && c->step < 3)
776 else if (delta == 0 && c->step > 0)
779 return (short) c->predictor;
782 static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
789 c->predictor += (c->step * yamaha_difflookup[nibble]) / 8;
790 c->predictor = av_clip_int16(c->predictor);
791 c->step = (c->step * yamaha_indexscale[nibble]) >> 8;
792 c->step = av_clip(c->step, 127, 24567);
796 static void xa_decode(short *out, const unsigned char *in,
797 ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
800 int shift,filter,f0,f1;
806 shift = 12 - (in[4+i*2] & 15);
807 filter = in[4+i*2] >> 4;
808 f0 = xa_adpcm_table[filter][0];
809 f1 = xa_adpcm_table[filter][1];
817 t = (signed char)(d<<4)>>4;
818 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
820 s_1 = av_clip_int16(s);
825 if (inc==2) { /* stereo */
828 s_1 = right->sample1;
829 s_2 = right->sample2;
830 out = out + 1 - 28*2;
833 shift = 12 - (in[5+i*2] & 15);
834 filter = in[5+i*2] >> 4;
836 f0 = xa_adpcm_table[filter][0];
837 f1 = xa_adpcm_table[filter][1];
842 t = (signed char)d >> 4;
843 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
845 s_1 = av_clip_int16(s);
850 if (inc==2) { /* stereo */
851 right->sample1 = s_1;
852 right->sample2 = s_2;
862 /* DK3 ADPCM support macro */
863 #define DK3_GET_NEXT_NIBBLE() \
864 if (decode_top_nibble_next) \
866 nibble = last_byte >> 4; \
867 decode_top_nibble_next = 0; \
871 last_byte = *src++; \
872 if (src >= buf + buf_size) break; \
873 nibble = last_byte & 0x0F; \
874 decode_top_nibble_next = 1; \
877 static int adpcm_decode_frame(AVCodecContext *avctx,
878 void *data, int *data_size,
881 const uint8_t *buf = avpkt->data;
882 int buf_size = avpkt->size;
883 ADPCMContext *c = avctx->priv_data;
884 ADPCMChannelStatus *cs;
885 int n, m, channel, i;
886 int block_predictor[2];
892 /* DK3 ADPCM accounting variables */
893 unsigned char last_byte = 0;
894 unsigned char nibble;
895 int decode_top_nibble_next = 0;
898 /* EA ADPCM state variables */
899 uint32_t samples_in_chunk;
900 int32_t previous_left_sample, previous_right_sample;
901 int32_t current_left_sample, current_right_sample;
902 int32_t next_left_sample, next_right_sample;
903 int32_t coeff1l, coeff2l, coeff1r, coeff2r;
904 uint8_t shift_left, shift_right;
906 int coeff[2][2], shift[2];//used in EA MAXIS ADPCM
911 //should protect all 4bit ADPCM variants
912 //8 is needed for CODEC_ID_ADPCM_IMA_WAV with 2 channels
914 if(*data_size/4 < buf_size + 8)
918 samples_end= samples + *data_size/2;
922 st = avctx->channels == 2 ? 1 : 0;
924 switch(avctx->codec->id) {
925 case CODEC_ID_ADPCM_IMA_QT:
926 n = buf_size - 2*avctx->channels;
927 for (channel = 0; channel < avctx->channels; channel++) {
928 cs = &(c->status[channel]);
929 /* (pppppp) (piiiiiii) */
931 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
932 cs->predictor = (*src++) << 8;
933 cs->predictor |= (*src & 0x80);
934 cs->predictor &= 0xFF80;
937 if(cs->predictor & 0x8000)
938 cs->predictor -= 0x10000;
940 cs->predictor = av_clip_int16(cs->predictor);
942 cs->step_index = (*src++) & 0x7F;
944 if (cs->step_index > 88){
945 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
949 cs->step = step_table[cs->step_index];
951 samples = (short*)data + channel;
953 for(m=32; n>0 && m>0; n--, m--) { /* in QuickTime, IMA is encoded by chuncks of 34 bytes (=64 samples) */
954 *samples = adpcm_ima_expand_nibble(cs, src[0] & 0x0F, 3);
955 samples += avctx->channels;
956 *samples = adpcm_ima_expand_nibble(cs, src[0] >> 4 , 3);
957 samples += avctx->channels;
964 case CODEC_ID_ADPCM_IMA_WAV:
965 if (avctx->block_align != 0 && buf_size > avctx->block_align)
966 buf_size = avctx->block_align;
968 // samples_per_block= (block_align-4*chanels)*8 / (bits_per_sample * chanels) + 1;
970 for(i=0; i<avctx->channels; i++){
971 cs = &(c->status[i]);
972 cs->predictor = *samples++ = (int16_t)bytestream_get_le16(&src);
974 cs->step_index = *src++;
975 if (cs->step_index > 88){
976 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n", cs->step_index);
979 if (*src++) av_log(avctx, AV_LOG_ERROR, "unused byte should be null but is %d!!\n", src[-1]); /* unused */
982 while(src < buf + buf_size){
985 *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] & 0x0F, 3);
987 *samples++ = adpcm_ima_expand_nibble(&c->status[i], src[4*i] >> 4 , 3);
993 case CODEC_ID_ADPCM_4XM:
994 cs = &(c->status[0]);
995 c->status[0].predictor= (int16_t)bytestream_get_le16(&src);
997 c->status[1].predictor= (int16_t)bytestream_get_le16(&src);
999 c->status[0].step_index= (int16_t)bytestream_get_le16(&src);
1001 c->status[1].step_index= (int16_t)bytestream_get_le16(&src);
1003 if (cs->step_index < 0) cs->step_index = 0;
1004 if (cs->step_index > 88) cs->step_index = 88;
1006 m= (buf_size - (src - buf))>>st;
1007 for(i=0; i<m; i++) {
1008 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] & 0x0F, 4);
1010 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] & 0x0F, 4);
1011 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[i] >> 4, 4);
1013 *samples++ = adpcm_ima_expand_nibble(&c->status[1], src[i+m] >> 4, 4);
1019 case CODEC_ID_ADPCM_MS:
1020 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1021 buf_size = avctx->block_align;
1022 n = buf_size - 7 * avctx->channels;
1025 block_predictor[0] = av_clip(*src++, 0, 6);
1026 block_predictor[1] = 0;
1028 block_predictor[1] = av_clip(*src++, 0, 6);
1029 c->status[0].idelta = (int16_t)bytestream_get_le16(&src);
1031 c->status[1].idelta = (int16_t)bytestream_get_le16(&src);
1033 c->status[0].coeff1 = AdaptCoeff1[block_predictor[0]];
1034 c->status[0].coeff2 = AdaptCoeff2[block_predictor[0]];
1035 c->status[1].coeff1 = AdaptCoeff1[block_predictor[1]];
1036 c->status[1].coeff2 = AdaptCoeff2[block_predictor[1]];
1038 c->status[0].sample1 = bytestream_get_le16(&src);
1039 if (st) c->status[1].sample1 = bytestream_get_le16(&src);
1040 c->status[0].sample2 = bytestream_get_le16(&src);
1041 if (st) c->status[1].sample2 = bytestream_get_le16(&src);
1043 *samples++ = c->status[0].sample2;
1044 if (st) *samples++ = c->status[1].sample2;
1045 *samples++ = c->status[0].sample1;
1046 if (st) *samples++ = c->status[1].sample1;
1048 *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], src[0] >> 4 );
1049 *samples++ = adpcm_ms_expand_nibble(&c->status[st], src[0] & 0x0F);
1053 case CODEC_ID_ADPCM_IMA_DK4:
1054 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1055 buf_size = avctx->block_align;
1057 c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1058 c->status[0].step_index = *src++;
1060 *samples++ = c->status[0].predictor;
1062 c->status[1].predictor = (int16_t)bytestream_get_le16(&src);
1063 c->status[1].step_index = *src++;
1065 *samples++ = c->status[1].predictor;
1067 while (src < buf + buf_size) {
1069 /* take care of the top nibble (always left or mono channel) */
1070 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1073 /* take care of the bottom nibble, which is right sample for
1074 * stereo, or another mono sample */
1076 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1079 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1085 case CODEC_ID_ADPCM_IMA_DK3:
1086 if (avctx->block_align != 0 && buf_size > avctx->block_align)
1087 buf_size = avctx->block_align;
1089 if(buf_size + 16 > (samples_end - samples)*3/8)
1092 c->status[0].predictor = (int16_t)AV_RL16(src + 10);
1093 c->status[1].predictor = (int16_t)AV_RL16(src + 12);
1094 c->status[0].step_index = src[14];
1095 c->status[1].step_index = src[15];
1096 /* sign extend the predictors */
1098 diff_channel = c->status[1].predictor;
1100 /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
1101 * the buffer is consumed */
1104 /* for this algorithm, c->status[0] is the sum channel and
1105 * c->status[1] is the diff channel */
1107 /* process the first predictor of the sum channel */
1108 DK3_GET_NEXT_NIBBLE();
1109 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1111 /* process the diff channel predictor */
1112 DK3_GET_NEXT_NIBBLE();
1113 adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1115 /* process the first pair of stereo PCM samples */
1116 diff_channel = (diff_channel + c->status[1].predictor) / 2;
1117 *samples++ = c->status[0].predictor + c->status[1].predictor;
1118 *samples++ = c->status[0].predictor - c->status[1].predictor;
1120 /* process the second predictor of the sum channel */
1121 DK3_GET_NEXT_NIBBLE();
1122 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1124 /* process the second pair of stereo PCM samples */
1125 diff_channel = (diff_channel + c->status[1].predictor) / 2;
1126 *samples++ = c->status[0].predictor + c->status[1].predictor;
1127 *samples++ = c->status[0].predictor - c->status[1].predictor;
1130 case CODEC_ID_ADPCM_IMA_ISS:
1131 c->status[0].predictor = (int16_t)AV_RL16(src + 0);
1132 c->status[0].step_index = src[2];
1135 c->status[1].predictor = (int16_t)AV_RL16(src + 0);
1136 c->status[1].step_index = src[2];
1140 while (src < buf + buf_size) {
1143 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1145 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1148 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1150 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1157 case CODEC_ID_ADPCM_IMA_WS:
1158 /* no per-block initialization; just start decoding the data */
1159 while (src < buf + buf_size) {
1162 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1164 *samples++ = adpcm_ima_expand_nibble(&c->status[1],
1167 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1169 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1176 case CODEC_ID_ADPCM_XA:
1177 while (buf_size >= 128) {
1178 xa_decode(samples, src, &c->status[0], &c->status[1],
1185 case CODEC_ID_ADPCM_IMA_EA_EACS:
1186 samples_in_chunk = bytestream_get_le32(&src) >> (1-st);
1188 if (samples_in_chunk > buf_size-4-(8<<st)) {
1189 src += buf_size - 4;
1193 for (i=0; i<=st; i++)
1194 c->status[i].step_index = bytestream_get_le32(&src);
1195 for (i=0; i<=st; i++)
1196 c->status[i].predictor = bytestream_get_le32(&src);
1198 for (; samples_in_chunk; samples_in_chunk--, src++) {
1199 *samples++ = adpcm_ima_expand_nibble(&c->status[0], *src>>4, 3);
1200 *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
1203 case CODEC_ID_ADPCM_IMA_EA_SEAD:
1204 for (; src < buf+buf_size; src++) {
1205 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
1206 *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
1209 case CODEC_ID_ADPCM_EA:
1210 if (buf_size < 4 || AV_RL32(src) >= ((buf_size - 12) * 2)) {
1214 samples_in_chunk = AV_RL32(src);
1216 current_left_sample = (int16_t)bytestream_get_le16(&src);
1217 previous_left_sample = (int16_t)bytestream_get_le16(&src);
1218 current_right_sample = (int16_t)bytestream_get_le16(&src);
1219 previous_right_sample = (int16_t)bytestream_get_le16(&src);
1221 for (count1 = 0; count1 < samples_in_chunk/28;count1++) {
1222 coeff1l = ea_adpcm_table[ *src >> 4 ];
1223 coeff2l = ea_adpcm_table[(*src >> 4 ) + 4];
1224 coeff1r = ea_adpcm_table[*src & 0x0F];
1225 coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
1228 shift_left = (*src >> 4 ) + 8;
1229 shift_right = (*src & 0x0F) + 8;
1232 for (count2 = 0; count2 < 28; count2++) {
1233 next_left_sample = (int32_t)((*src & 0xF0) << 24) >> shift_left;
1234 next_right_sample = (int32_t)((*src & 0x0F) << 28) >> shift_right;
1237 next_left_sample = (next_left_sample +
1238 (current_left_sample * coeff1l) +
1239 (previous_left_sample * coeff2l) + 0x80) >> 8;
1240 next_right_sample = (next_right_sample +
1241 (current_right_sample * coeff1r) +
1242 (previous_right_sample * coeff2r) + 0x80) >> 8;
1244 previous_left_sample = current_left_sample;
1245 current_left_sample = av_clip_int16(next_left_sample);
1246 previous_right_sample = current_right_sample;
1247 current_right_sample = av_clip_int16(next_right_sample);
1248 *samples++ = (unsigned short)current_left_sample;
1249 *samples++ = (unsigned short)current_right_sample;
1253 if (src - buf == buf_size - 2)
1254 src += 2; // Skip terminating 0x0000
1257 case CODEC_ID_ADPCM_EA_MAXIS_XA:
1258 for(channel = 0; channel < avctx->channels; channel++) {
1260 coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
1261 shift[channel] = (*src & 0x0F) + 8;
1264 for (count1 = 0; count1 < (buf_size - avctx->channels) / avctx->channels; count1++) {
1265 for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1266 for(channel = 0; channel < avctx->channels; channel++) {
1267 int32_t sample = (int32_t)(((*(src+channel) >> i) & 0x0F) << 0x1C) >> shift[channel];
1269 c->status[channel].sample1 * coeff[channel][0] +
1270 c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1271 c->status[channel].sample2 = c->status[channel].sample1;
1272 c->status[channel].sample1 = av_clip_int16(sample);
1273 *samples++ = c->status[channel].sample1;
1276 src+=avctx->channels;
1279 case CODEC_ID_ADPCM_EA_R1:
1280 case CODEC_ID_ADPCM_EA_R2:
1281 case CODEC_ID_ADPCM_EA_R3: {
1282 /* channel numbering
1284 4chan: 0=fl, 1=rl, 2=fr, 3=rr
1285 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
1286 const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
1287 int32_t previous_sample, current_sample, next_sample;
1288 int32_t coeff1, coeff2;
1290 unsigned int channel;
1292 const uint8_t *srcC;
1293 const uint8_t *src_end = buf + buf_size;
1295 samples_in_chunk = (big_endian ? bytestream_get_be32(&src)
1296 : bytestream_get_le32(&src)) / 28;
1297 if (samples_in_chunk > UINT32_MAX/(28*avctx->channels) ||
1298 28*samples_in_chunk*avctx->channels > samples_end-samples) {
1299 src += buf_size - 4;
1303 for (channel=0; channel<avctx->channels; channel++) {
1304 int32_t offset = (big_endian ? bytestream_get_be32(&src)
1305 : bytestream_get_le32(&src))
1306 + (avctx->channels-channel-1) * 4;
1308 if ((offset < 0) || (offset >= src_end - src - 4)) break;
1309 srcC = src + offset;
1310 samplesC = samples + channel;
1312 if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
1313 current_sample = (int16_t)bytestream_get_le16(&srcC);
1314 previous_sample = (int16_t)bytestream_get_le16(&srcC);
1316 current_sample = c->status[channel].predictor;
1317 previous_sample = c->status[channel].prev_sample;
1320 for (count1=0; count1<samples_in_chunk; count1++) {
1321 if (*srcC == 0xEE) { /* only seen in R2 and R3 */
1323 if (srcC > src_end - 30*2) break;
1324 current_sample = (int16_t)bytestream_get_be16(&srcC);
1325 previous_sample = (int16_t)bytestream_get_be16(&srcC);
1327 for (count2=0; count2<28; count2++) {
1328 *samplesC = (int16_t)bytestream_get_be16(&srcC);
1329 samplesC += avctx->channels;
1332 coeff1 = ea_adpcm_table[ *srcC>>4 ];
1333 coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
1334 shift = (*srcC++ & 0x0F) + 8;
1336 if (srcC > src_end - 14) break;
1337 for (count2=0; count2<28; count2++) {
1339 next_sample = (int32_t)((*srcC++ & 0x0F) << 28) >> shift;
1341 next_sample = (int32_t)((*srcC & 0xF0) << 24) >> shift;
1343 next_sample += (current_sample * coeff1) +
1344 (previous_sample * coeff2);
1345 next_sample = av_clip_int16(next_sample >> 8);
1347 previous_sample = current_sample;
1348 current_sample = next_sample;
1349 *samplesC = current_sample;
1350 samplesC += avctx->channels;
1355 if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
1356 c->status[channel].predictor = current_sample;
1357 c->status[channel].prev_sample = previous_sample;
1361 src = src + buf_size - (4 + 4*avctx->channels);
1362 samples += 28 * samples_in_chunk * avctx->channels;
1365 case CODEC_ID_ADPCM_EA_XAS:
1366 if (samples_end-samples < 32*4*avctx->channels
1367 || buf_size < (4+15)*4*avctx->channels) {
1371 for (channel=0; channel<avctx->channels; channel++) {
1372 int coeff[2][4], shift[4];
1373 short *s2, *s = &samples[channel];
1374 for (n=0; n<4; n++, s+=32*avctx->channels) {
1376 coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
1377 shift[n] = (src[2]&0x0F) + 8;
1378 for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
1379 s2[0] = (src[0]&0xF0) + (src[1]<<8);
1382 for (m=2; m<32; m+=2) {
1383 s = &samples[m*avctx->channels + channel];
1384 for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
1385 for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
1386 int level = (int32_t)((*src & (0xF0>>i)) << (24+i)) >> shift[n];
1387 int pred = s2[-1*avctx->channels] * coeff[0][n]
1388 + s2[-2*avctx->channels] * coeff[1][n];
1389 s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
1394 samples += 32*4*avctx->channels;
1396 case CODEC_ID_ADPCM_IMA_AMV:
1397 case CODEC_ID_ADPCM_IMA_SMJPEG:
1398 c->status[0].predictor = (int16_t)bytestream_get_le16(&src);
1399 c->status[0].step_index = bytestream_get_le16(&src);
1401 if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1404 while (src < buf + buf_size) {
1409 if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1410 FFSWAP(char, hi, lo);
1412 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1414 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1419 case CODEC_ID_ADPCM_CT:
1420 while (src < buf + buf_size) {
1422 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1424 *samples++ = adpcm_ct_expand_nibble(&c->status[1],
1427 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1429 *samples++ = adpcm_ct_expand_nibble(&c->status[0],
1435 case CODEC_ID_ADPCM_SBPRO_4:
1436 case CODEC_ID_ADPCM_SBPRO_3:
1437 case CODEC_ID_ADPCM_SBPRO_2:
1438 if (!c->status[0].step_index) {
1439 /* the first byte is a raw sample */
1440 *samples++ = 128 * (*src++ - 0x80);
1442 *samples++ = 128 * (*src++ - 0x80);
1443 c->status[0].step_index = 1;
1445 if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1446 while (src < buf + buf_size) {
1447 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1449 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1450 src[0] & 0x0F, 4, 0);
1453 } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1454 while (src < buf + buf_size && samples + 2 < samples_end) {
1455 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1456 src[0] >> 5 , 3, 0);
1457 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1458 (src[0] >> 2) & 0x07, 3, 0);
1459 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1460 src[0] & 0x03, 2, 0);
1464 while (src < buf + buf_size && samples + 3 < samples_end) {
1465 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1466 src[0] >> 6 , 2, 2);
1467 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1468 (src[0] >> 4) & 0x03, 2, 2);
1469 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1470 (src[0] >> 2) & 0x03, 2, 2);
1471 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1472 src[0] & 0x03, 2, 2);
1477 case CODEC_ID_ADPCM_SWF:
1481 int k0, signmask, nb_bits, count;
1482 int size = buf_size*8;
1484 init_get_bits(&gb, buf, size);
1486 //read bits & initial values
1487 nb_bits = get_bits(&gb, 2)+2;
1488 //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1489 table = swf_index_tables[nb_bits-2];
1490 k0 = 1 << (nb_bits-2);
1491 signmask = 1 << (nb_bits-1);
1493 while (get_bits_count(&gb) <= size - 22*avctx->channels) {
1494 for (i = 0; i < avctx->channels; i++) {
1495 *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1496 c->status[i].step_index = get_bits(&gb, 6);
1499 for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
1502 for (i = 0; i < avctx->channels; i++) {
1503 // similar to IMA adpcm
1504 int delta = get_bits(&gb, nb_bits);
1505 int step = step_table[c->status[i].step_index];
1506 long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1517 if (delta & signmask)
1518 c->status[i].predictor -= vpdiff;
1520 c->status[i].predictor += vpdiff;
1522 c->status[i].step_index += table[delta & (~signmask)];
1524 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
1525 c->status[i].predictor = av_clip_int16(c->status[i].predictor);
1527 *samples++ = c->status[i].predictor;
1528 if (samples >= samples_end) {
1529 av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1538 case CODEC_ID_ADPCM_YAMAHA:
1539 while (src < buf + buf_size) {
1541 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1543 *samples++ = adpcm_yamaha_expand_nibble(&c->status[1],
1546 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1548 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0],
1554 case CODEC_ID_ADPCM_THP:
1557 unsigned int samplecnt;
1561 if (buf_size < 80) {
1562 av_log(avctx, AV_LOG_ERROR, "frame too small\n");
1567 samplecnt = bytestream_get_be32(&src);
1569 for (i = 0; i < 32; i++)
1570 table[0][i] = (int16_t)bytestream_get_be16(&src);
1572 /* Initialize the previous sample. */
1573 for (i = 0; i < 4; i++)
1574 prev[0][i] = (int16_t)bytestream_get_be16(&src);
1576 if (samplecnt >= (samples_end - samples) / (st + 1)) {
1577 av_log(avctx, AV_LOG_ERROR, "allocated output buffer is too small\n");
1581 for (ch = 0; ch <= st; ch++) {
1582 samples = (unsigned short *) data + ch;
1584 /* Read in every sample for this channel. */
1585 for (i = 0; i < samplecnt / 14; i++) {
1586 int index = (*src >> 4) & 7;
1587 unsigned int exp = 28 - (*src++ & 15);
1588 int factor1 = table[ch][index * 2];
1589 int factor2 = table[ch][index * 2 + 1];
1591 /* Decode 14 samples. */
1592 for (n = 0; n < 14; n++) {
1594 if(n&1) sampledat= *src++ <<28;
1595 else sampledat= (*src&0xF0)<<24;
1597 sampledat = ((prev[ch][0]*factor1
1598 + prev[ch][1]*factor2) >> 11) + (sampledat>>exp);
1599 *samples = av_clip_int16(sampledat);
1600 prev[ch][1] = prev[ch][0];
1601 prev[ch][0] = *samples++;
1603 /* In case of stereo, skip one sample, this sample
1604 is for the other channel. */
1610 /* In the previous loop, in case stereo is used, samples is
1611 increased exactly one time too often. */
1619 *data_size = (uint8_t *)samples - (uint8_t *)data;
1626 #define ADPCM_ENCODER(id,name,long_name_) \
1627 AVCodec name ## _encoder = { \
1631 sizeof(ADPCMContext), \
1632 adpcm_encode_init, \
1633 adpcm_encode_frame, \
1634 adpcm_encode_close, \
1636 .sample_fmts = (const enum SampleFormat[]){SAMPLE_FMT_S16,SAMPLE_FMT_NONE}, \
1637 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1640 #define ADPCM_ENCODER(id,name,long_name_)
1644 #define ADPCM_DECODER(id,name,long_name_) \
1645 AVCodec name ## _decoder = { \
1649 sizeof(ADPCMContext), \
1650 adpcm_decode_init, \
1653 adpcm_decode_frame, \
1654 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1657 #define ADPCM_DECODER(id,name,long_name_)
1660 #define ADPCM_CODEC(id,name,long_name_) \
1661 ADPCM_ENCODER(id,name,long_name_) ADPCM_DECODER(id,name,long_name_)
1663 /* Note: Do not forget to add new entries to the Makefile as well. */
1664 ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie");
1665 ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology");
1666 ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts");
1667 ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
1668 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1");
1669 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2");
1670 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3");
1671 ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
1672 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV");
1673 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
1674 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
1675 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
1676 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
1677 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
1678 ADPCM_CODEC (CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
1679 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
1680 ADPCM_CODEC (CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
1681 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood");
1682 ADPCM_CODEC (CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
1683 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
1684 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
1685 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
1686 ADPCM_CODEC (CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
1687 ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP");
1688 ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA");
1689 ADPCM_CODEC (CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");