Use --x11-display whenever calling XOpenDisplay (except Qt4 this far)
[vlc.git] / modules / video_filter / panoramix.c
1 /*****************************************************************************
2  * panoramix.c : Wall panoramic video with edge blending plugin for vlc
3  *****************************************************************************
4  * Copyright (C) 2000, 2001, 2002, 2003 VideoLAN
5  * $Id$
6  *
7  * Authors: Cedric Cocquebert <cedric.cocquebert@supelec.fr>
8  *          based on Samuel Hocevar <sam@zoy.org>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111, USA.
23  *****************************************************************************/
24
25 /*****************************************************************************
26  * Preamble
27  *****************************************************************************/
28
29 #ifdef HAVE_CONFIG_H
30 # include "config.h"
31 #endif
32
33 #include <vlc_common.h>
34 #include <vlc_plugin.h>
35 #include <vlc_vout.h>
36
37 #include "filter_common.h"
38
39 // add by cedric.cocquebert@supelec.fr
40 #define OVERLAP        2350
41 #ifdef OVERLAP
42     #include <math.h>
43     // OS CODE DEPENDENT to get display dimensions
44     #ifdef WIN32
45         #include <windows.h>
46     #else
47         #include <X11/Xlib.h>
48     #endif
49     #define GAMMA        1
50 //  #define PACKED_YUV    1
51     #define F2(a) ((a)*(a))
52     #define F4(a,b,x) ((a)*(F2(x))+((b)*(x)))
53     #define ACCURACY 1000
54     #define RATIO_MAX 2500
55     #define CLIP_01(a) (a < 0.0 ? 0.0 : (a > 1.0 ? 1.0 : a))
56 //    #define CLIP_0A(a) (a < 0.0 ? 0.0 : (a > ACCURACY ? ACCURACY : a))
57 #endif
58
59 /*****************************************************************************
60  * Local prototypes
61  *****************************************************************************/
62 static int  Create    ( vlc_object_t * );
63 static void Destroy   ( vlc_object_t * );
64
65 static int  Init      ( vout_thread_t * );
66 static void End       ( vout_thread_t * );
67 #ifdef PACKED_YUV
68 static void RenderPackedYUV   ( vout_thread_t *, picture_t * );
69 #endif
70 static void RenderPlanarYUV   ( vout_thread_t *, picture_t * );
71 static void RenderPackedRGB   ( vout_thread_t *, picture_t * );
72
73 static void RemoveAllVout  ( vout_thread_t *p_vout );
74
75 static int  SendEvents( vlc_object_t *, char const *,
76                         vlc_value_t, vlc_value_t, void * );
77
78 /*****************************************************************************
79  * Module descriptor
80  *****************************************************************************/
81 #define COLS_TEXT N_("Number of columns")
82 #define COLS_LONGTEXT N_("Select the number of horizontal video windows in " \
83     "which to split the video")
84
85 #define ROWS_TEXT N_("Number of rows")
86 #define ROWS_LONGTEXT N_("Select the number of vertical video windows in " \
87     "which to split the video")
88
89 #define ACTIVE_TEXT N_("Active windows")
90 #define ACTIVE_LONGTEXT N_("Comma separated list of active windows, " \
91     "defaults to all")
92
93 #define CFG_PREFIX "panoramix-"
94
95 vlc_module_begin ()
96     set_description( N_("Panoramix: wall with overlap video filter") )
97     set_shortname( N_("Panoramix" ))
98     set_capability( "video filter", 0 )
99     set_category( CAT_VIDEO )
100     set_subcategory( SUBCAT_VIDEO_VFILTER )
101
102     add_integer( CFG_PREFIX "cols", -1, NULL,
103                  COLS_TEXT, COLS_LONGTEXT, true )
104     add_integer( CFG_PREFIX "rows", -1, NULL,
105                  ROWS_TEXT, ROWS_LONGTEXT, true )
106
107 #ifdef OVERLAP
108 #define OFFSET_X_TEXT N_("Offset X offset (automatic compensation)")
109 #define OFFSET_X_LONGTEXT N_("Select if you want an automatic offset in horizontal (in case of misalignment due to autoratio control)")
110     add_bool( CFG_PREFIX "offset-x", 1, NULL, OFFSET_X_TEXT, OFFSET_X_LONGTEXT, true )
111
112 #define LENGTH_TEXT N_("length of the overlapping area (in %)")
113 #define LENGTH_LONGTEXT N_("Select in percent the length of the blended zone")
114     add_integer_with_range( CFG_PREFIX "bz-length", 100, 0, 100, NULL, LENGTH_TEXT, LENGTH_LONGTEXT, true )
115
116 #define HEIGHT_TEXT N_("height of the overlapping area (in %)")
117 #define HEIGHT_LONGTEXT N_("Select in percent the height of the blended zone (case of 2x2 wall)")
118     add_integer_with_range( CFG_PREFIX "bz-height", 100, 0, 100, NULL, HEIGHT_TEXT, HEIGHT_LONGTEXT, true )
119
120 #define ATTENUATION_TEXT N_("Attenuation")
121 #define ATTENUATION_LONGTEXT N_("Check this option if you want attenuate blended zone by this plug-in (if option is unchecked, attenuate is made by opengl)")
122     add_bool( CFG_PREFIX "attenuate", 1, NULL, ATTENUATION_TEXT, ATTENUATION_LONGTEXT, false )
123
124 #define BEGIN_TEXT N_("Attenuation, begin (in %)")
125 #define BEGIN_LONGTEXT N_("Select in percent the Lagrange coeff of the beginning blended zone")
126     add_integer_with_range( CFG_PREFIX "bz-begin", 0, 0, 100, NULL, BEGIN_TEXT, BEGIN_LONGTEXT, true )
127
128 #define MIDDLE_TEXT N_("Attenuation, middle (in %)")
129 #define MIDDLE_LONGTEXT N_("Select in percent the Lagrange coeff of the middle of blended zone")
130     add_integer_with_range( CFG_PREFIX "bz-middle", 50, 0, 100, NULL, MIDDLE_TEXT, MIDDLE_LONGTEXT, false )
131
132 #define END_TEXT N_("Attenuation, end (in %)")
133 #define END_LONGTEXT N_("Select in percent the Lagrange coeff of the end of blended zone")
134     add_integer_with_range( CFG_PREFIX "bz-end", 100, 0, 100, NULL, END_TEXT, END_LONGTEXT, true )
135
136 #define MIDDLE_POS_TEXT N_("middle position (in %)")
137 #define MIDDLE_POS_LONGTEXT N_("Select in percent (50 is center) the position of the middle point (Lagrange) of blended zone")
138     add_integer_with_range( CFG_PREFIX "bz-middle-pos", 50, 1, 99, NULL, MIDDLE_POS_TEXT, MIDDLE_POS_LONGTEXT, false )
139 #ifdef GAMMA
140 #define RGAMMA_TEXT N_("Gamma (Red) correction")
141 #define RGAMMA_LONGTEXT N_("Select the gamma for the correction of blended zone (Red or Y component)")
142     add_float_with_range( CFG_PREFIX "bz-gamma-red", 1, 0, 5, NULL, RGAMMA_TEXT, RGAMMA_LONGTEXT, true )
143
144 #define GGAMMA_TEXT N_("Gamma (Green) correction")
145 #define GGAMMA_LONGTEXT N_("Select the gamma for the correction of blended zone (Green or U component)")
146     add_float_with_range( CFG_PREFIX "bz-gamma-green", 1, 0, 5, NULL, GGAMMA_TEXT, GGAMMA_LONGTEXT, true )
147
148 #define BGAMMA_TEXT N_("Gamma (Blue) correction")
149 #define BGAMMA_LONGTEXT N_("Select the gamma for the correction of blended zone (Blue or V component)")
150     add_float_with_range( CFG_PREFIX "bz-gamma-blue", 1, 0, 5, NULL, BGAMMA_TEXT, BGAMMA_LONGTEXT, true )
151 #endif
152 #define RGAMMA_BC_TEXT N_("Black Crush for Red")
153 #define RGAMMA_BC_LONGTEXT N_("Select the Black Crush of blended zone (Red or Y component)")
154 #define GGAMMA_BC_TEXT N_("Black Crush for Green")
155 #define GGAMMA_BC_LONGTEXT N_("Select the Black Crush of blended zone (Green or U component)")
156 #define BGAMMA_BC_TEXT N_("Black Crush for Blue")
157 #define BGAMMA_BC_LONGTEXT N_("Select the Black Crush of blended zone (Blue or V component)")
158
159 #define RGAMMA_WC_TEXT N_("White Crush for Red")
160 #define RGAMMA_WC_LONGTEXT N_("Select the White Crush of blended zone (Red or Y component)")
161 #define GGAMMA_WC_TEXT N_("White Crush for Green")
162 #define GGAMMA_WC_LONGTEXT N_("Select the White Crush of blended zone (Green or U component)")
163 #define BGAMMA_WC_TEXT N_("White Crush for Blue")
164 #define BGAMMA_WC_LONGTEXT N_("Select the White Crush of blended zone (Blue or V component)")
165
166 #define RGAMMA_BL_TEXT N_("Black Level for Red")
167 #define RGAMMA_BL_LONGTEXT N_("Select the Black Level of blended zone (Red or Y component)")
168 #define GGAMMA_BL_TEXT N_("Black Level for Green")
169 #define GGAMMA_BL_LONGTEXT N_("Select the Black Level of blended zone (Green or U component)")
170 #define BGAMMA_BL_TEXT N_("Black Level for Blue")
171 #define BGAMMA_BL_LONGTEXT N_("Select the Black Level of blended zone (Blue or V component)")
172
173 #define RGAMMA_WL_TEXT N_("White Level for Red")
174 #define RGAMMA_WL_LONGTEXT N_("Select the White Level of blended zone (Red or Y component)")
175 #define GGAMMA_WL_TEXT N_("White Level for Green")
176 #define GGAMMA_WL_LONGTEXT N_("Select the White Level of blended zone (Green or U component)")
177 #define BGAMMA_WL_TEXT N_("White Level for Blue")
178 #define BGAMMA_WL_LONGTEXT N_("Select the White Level of blended zone (Blue or V component)")
179     add_integer_with_range( CFG_PREFIX "bz-blackcrush-red", 140, 0, 255, NULL, RGAMMA_BC_TEXT, RGAMMA_BC_LONGTEXT, true )
180     add_integer_with_range( CFG_PREFIX "bz-blackcrush-green", 140, 0, 255, NULL, GGAMMA_BC_TEXT, GGAMMA_BC_LONGTEXT, true )
181     add_integer_with_range( CFG_PREFIX "bz-blackcrush-blue", 140, 0, 255, NULL, BGAMMA_BC_TEXT, BGAMMA_BC_LONGTEXT, true )
182     add_integer_with_range( CFG_PREFIX "bz-whitecrush-red", 200, 0, 255, NULL, RGAMMA_WC_TEXT, RGAMMA_WC_LONGTEXT, true )
183     add_integer_with_range( CFG_PREFIX "bz-whitecrush-green", 200, 0, 255, NULL, GGAMMA_WC_TEXT, GGAMMA_WC_LONGTEXT, true )
184     add_integer_with_range( CFG_PREFIX "bz-whitecrush-blue", 200, 0, 255, NULL, BGAMMA_WC_TEXT, BGAMMA_WC_LONGTEXT, true )
185     add_integer_with_range( CFG_PREFIX "bz-blacklevel-red", 150, 0, 255, NULL, RGAMMA_BL_TEXT, RGAMMA_BL_LONGTEXT, true )
186     add_integer_with_range( CFG_PREFIX "bz-blacklevel-green", 150, 0, 255, NULL, GGAMMA_BL_TEXT, GGAMMA_BL_LONGTEXT, true )
187     add_integer_with_range( CFG_PREFIX "bz-blacklevel-blue", 150, 0, 255, NULL, BGAMMA_BL_TEXT, BGAMMA_BL_LONGTEXT, true )
188     add_integer_with_range( CFG_PREFIX "bz-whitelevel-red", 0, 0, 255, NULL, RGAMMA_WL_TEXT, RGAMMA_WL_LONGTEXT, true )
189     add_integer_with_range( CFG_PREFIX "bz-whitelevel-green", 0, 0, 255, NULL, GGAMMA_WL_TEXT, GGAMMA_WL_LONGTEXT, true )
190     add_integer_with_range( CFG_PREFIX "bz-whitelevel-blue", 0, 0, 255, NULL, BGAMMA_WL_TEXT, BGAMMA_WL_LONGTEXT, true )
191 #ifndef WIN32
192 #define XINERAMA_TEXT N_("Xinerama option")
193 #define XINERAMA_LONGTEXT N_("Uncheck if you have not used xinerama")
194     add_bool( CFG_PREFIX "xinerama", 1, NULL, XINERAMA_TEXT, XINERAMA_LONGTEXT, true )
195 #endif
196 #endif
197
198     add_string( CFG_PREFIX "active", NULL, NULL, ACTIVE_TEXT, ACTIVE_LONGTEXT, true )
199
200     add_shortcut( "panoramix" )
201     set_callbacks( Create, Destroy )
202 vlc_module_end ()
203
204 static const char *const ppsz_filter_options[] = {
205     "cols", "rows", "offset-x", "bz-length", "bz-height", "attenuate",
206     "bz-begin", "bz-middle", "bz-end", "bz-middle-pos", "bz-gamma-red",
207     "bz-gamma-green", "bz-gamma-blue", "bz-blackcrush-red",
208     "bz-blackcrush-green", "bz-blackcrush-blue", "bz-whitecrush-red",
209     "bz-whitecrush-green", "bz-whitecrush-blue", "bz-blacklevel-red",
210     "bz-blacklevel-green", "bz-blacklevel-blue", "bz-whitelevel-red",
211     "bz-whitelevel-green", "bz-whitelevel-blue", "xinerama", "active",
212     NULL
213 };
214
215 /*****************************************************************************
216  * vout_sys_t: Wall video output method descriptor
217  *****************************************************************************
218  * This structure is part of the video output thread descriptor.
219  * It describes the Wall specific properties of an output thread.
220  *****************************************************************************/
221 struct vout_sys_t
222 {
223 #ifdef OVERLAP
224     bool   b_autocrop;
225     bool   b_attenuate;
226     unsigned int bz_length, bz_height, bz_begin, bz_middle, bz_end, bz_middle_pos;
227     unsigned int i_ratio_max;
228     unsigned int i_ratio;
229     unsigned int a_0, a_1, a_2;
230     bool     b_has_changed;
231     int lambda[2][VOUT_MAX_PLANES][500];
232     int cstYUV[2][VOUT_MAX_PLANES][500];
233     int lambda2[2][VOUT_MAX_PLANES][500];
234     int cstYUV2[2][VOUT_MAX_PLANES][500];
235     unsigned int i_halfLength;
236     unsigned int i_halfHeight;
237     int i_offset_x;
238     int i_offset_y;
239 #ifdef GAMMA
240     float        f_gamma_red, f_gamma_green, f_gamma_blue;
241     float         f_gamma[VOUT_MAX_PLANES];
242     uint8_t         LUT[VOUT_MAX_PLANES][ACCURACY + 1][256];
243 #ifdef PACKED_YUV
244     uint8_t         LUT2[VOUT_MAX_PLANES][256][500];
245 #endif
246 #endif
247 #ifndef WIN32
248     bool   b_xinerama;
249 #endif
250 #endif
251     int    i_col;
252     int    i_row;
253     int    i_vout;
254     struct vout_list_t
255     {
256         bool b_active;
257         int i_width;
258         int i_height;
259         vout_thread_t *p_vout;
260     } *pp_vout;
261 };
262
263
264
265 /*****************************************************************************
266  * Control: control facility for the vout (forwards to child vout)
267  *****************************************************************************/
268 static int Control( vout_thread_t *p_vout, int i_query, va_list args )
269 {
270     int i_row, i_col, i_vout = 0;
271
272     for( i_row = 0; i_row < p_vout->p_sys->i_row; i_row++ )
273     {
274         for( i_col = 0; i_col < p_vout->p_sys->i_col; i_col++ )
275         {
276             vout_vaControl( p_vout->p_sys->pp_vout[ i_vout ].p_vout,
277                             i_query, args );
278             i_vout++;
279         }
280     }
281     return VLC_SUCCESS;
282 }
283
284 /*****************************************************************************
285  * Create: allocates Wall video thread output method
286  *****************************************************************************
287  * This function allocates and initializes a Wall vout method.
288  *****************************************************************************/
289 static int Create( vlc_object_t *p_this )
290 {
291     vout_thread_t *p_vout = (vout_thread_t *)p_this;
292     char *psz_method, *psz_tmp, *psz_method_tmp;
293     int i_vout;
294
295     /* Allocate structure */
296     p_vout->p_sys = malloc( sizeof( vout_sys_t ) );
297     if( p_vout->p_sys == NULL )
298         return VLC_ENOMEM;
299
300     p_vout->pf_init = Init;
301     p_vout->pf_end = End;
302     p_vout->pf_manage = NULL;
303 /* Color Format not supported
304 // Planar Y, packed UV
305 case VLC_FOURCC('Y','M','G','A'):
306 // Packed YUV 4:2:2, U:Y:V:Y, interlaced
307 case VLC_FOURCC('I','U','Y','V'):    // packed by 2
308 // Packed YUV 2:1:1, Y:U:Y:V
309 case VLC_FOURCC('Y','2','1','1'):     // packed by 4
310 // Packed YUV Reverted
311 case VLC_FOURCC('c','y','u','v'):    // packed by 2
312 */
313     switch (p_vout->render.i_chroma)
314     {
315     // planar YUV
316         case VLC_FOURCC('I','4','4','4'):
317         case VLC_FOURCC('I','4','2','2'):
318         case VLC_FOURCC('I','4','2','0'):
319         case VLC_FOURCC('Y','V','1','2'):
320         case VLC_FOURCC('I','Y','U','V'):
321         case VLC_FOURCC('I','4','1','1'):
322         case VLC_FOURCC('I','4','1','0'):
323         case VLC_FOURCC('Y','V','U','9'):
324         case VLC_FOURCC('Y','U','V','A'):
325             p_vout->pf_render = RenderPlanarYUV;
326             break;
327     // packed RGB
328         case VLC_FOURCC('R','G','B','2'):    // packed by 1
329         case VLC_FOURCC('R','V','1','5'):    // packed by 2
330         case VLC_FOURCC('R','V','1','6'):    // packed by 2
331         case VLC_FOURCC('R','V','2','4'):    // packed by 3
332         case VLC_FOURCC('R','V','3','2'):    // packed by 4
333             p_vout->pf_render = RenderPackedRGB;
334             break;
335 #ifdef PACKED_YUV
336     // packed YUV
337         case VLC_FOURCC('Y','U','Y','2'):    // packed by 2
338         case VLC_FOURCC('Y','U','N','V'):    // packed by 2
339         case VLC_FOURCC('U','Y','V','Y'):    // packed by 2
340         case VLC_FOURCC('U','Y','N','V'):    // packed by 2
341         case VLC_FOURCC('Y','4','2','2'):    // packed by 2
342             p_vout->pf_render = RenderPackedYUV;
343             break;
344 #endif
345         default:
346             msg_Err( p_vout, "colorspace not supported by plug-in !!!");
347             free( p_vout->p_sys );
348             return VLC_ENOMEM;
349     }
350     p_vout->pf_display = NULL;
351     p_vout->pf_control = Control;
352
353     config_ChainParse( p_vout, CFG_PREFIX, ppsz_filter_options,
354                        p_vout->p_cfg );
355
356     /* Look what method was requested */
357     p_vout->p_sys->i_col = var_CreateGetInteger( p_vout, CFG_PREFIX "cols" );
358     p_vout->p_sys->i_row = var_CreateGetInteger( p_vout, CFG_PREFIX "rows" );
359
360 // OS dependent code :  Autodetect number of displays in wall
361 #ifdef WIN32
362     if ((p_vout->p_sys->i_col < 0) || (p_vout->p_sys->i_row < 0) )
363     {
364         int nbMonitors = GetSystemMetrics(SM_CMONITORS);
365         if (nbMonitors == 1)
366         {
367             nbMonitors = 5; // 1 display => 5x1 simulation
368             p_vout->p_sys->i_col = nbMonitors;
369             p_vout->p_sys->i_row = 1;
370         }
371         else
372         {
373             p_vout->p_sys->i_col = GetSystemMetrics( SM_CXVIRTUALSCREEN ) / GetSystemMetrics( SM_CXSCREEN );
374             p_vout->p_sys->i_row = GetSystemMetrics( SM_CYVIRTUALSCREEN ) / GetSystemMetrics( SM_CYSCREEN );
375             if (p_vout->p_sys->i_col * p_vout->p_sys->i_row != nbMonitors)
376             {
377                 p_vout->p_sys->i_col = nbMonitors;
378                 p_vout->p_sys->i_row = 1;
379             }
380         }
381         var_SetInteger( p_vout, CFG_PREFIX "cols", p_vout->p_sys->i_col);
382         var_SetInteger( p_vout, CFG_PREFIX "rows", p_vout->p_sys->i_row);
383     }
384 #endif
385
386 #ifdef OVERLAP
387     p_vout->p_sys->i_offset_x = var_CreateGetBool( p_vout, CFG_PREFIX "offset-x" );
388     if (p_vout->p_sys->i_col > 2) p_vout->p_sys->i_offset_x = 0; // offset-x is used in case of 2x1 wall & autocrop
389     p_vout->p_sys->b_autocrop = !(var_CreateGetInteger( p_vout, "crop-ratio" ) == 0);
390     if (!p_vout->p_sys->b_autocrop) p_vout->p_sys->b_autocrop = var_CreateGetInteger( p_vout, "autocrop" );
391     p_vout->p_sys->b_attenuate = var_CreateGetBool( p_vout, CFG_PREFIX "attenuate");
392     p_vout->p_sys->bz_length = var_CreateGetInteger( p_vout, CFG_PREFIX "bz-length" );
393     if (p_vout->p_sys->i_row > 1)
394         p_vout->p_sys->bz_height = var_CreateGetInteger( p_vout, CFG_PREFIX "bz-height" );
395     else
396         p_vout->p_sys->bz_height = 100;
397     p_vout->p_sys->bz_begin = var_CreateGetInteger( p_vout, CFG_PREFIX "bz-begin" );
398     p_vout->p_sys->bz_middle = var_CreateGetInteger( p_vout, CFG_PREFIX "bz-middle" );
399     p_vout->p_sys->bz_end = var_CreateGetInteger( p_vout, CFG_PREFIX "bz-end" );
400     p_vout->p_sys->bz_middle_pos = var_CreateGetInteger( p_vout, CFG_PREFIX "bz-middle-pos" );
401     double d_p = 100.0 / p_vout->p_sys->bz_middle_pos;
402     p_vout->p_sys->i_ratio_max = var_CreateGetInteger( p_vout, "autocrop-ratio-max" ); // in crop module with autocrop ...
403     p_vout->p_sys->i_ratio = var_CreateGetInteger( p_vout, "crop-ratio" ); // in crop module with manual ratio ...
404
405     p_vout->p_sys->a_2 = d_p * p_vout->p_sys->bz_begin - (double)(d_p * d_p / (d_p - 1)) * p_vout->p_sys->bz_middle + (double)(d_p / (d_p - 1)) * p_vout->p_sys->bz_end;
406     p_vout->p_sys->a_1 = -(d_p + 1) * p_vout->p_sys->bz_begin + (double)(d_p * d_p / (d_p - 1)) * p_vout->p_sys->bz_middle - (double)(1 / (d_p - 1)) * p_vout->p_sys->bz_end;
407     p_vout->p_sys->a_0 =  p_vout->p_sys->bz_begin;
408
409 #ifdef GAMMA
410     p_vout->p_sys->f_gamma_red = var_CreateGetFloat( p_vout, CFG_PREFIX "bz-gamma-red" );
411     p_vout->p_sys->f_gamma_green = var_CreateGetFloat( p_vout, CFG_PREFIX "bz-gamma-green" );
412     p_vout->p_sys->f_gamma_blue = var_CreateGetFloat( p_vout, CFG_PREFIX "bz-gamma-blue" );
413 #endif
414 #ifndef WIN32
415     p_vout->p_sys->b_xinerama = var_CreateGetBool( p_vout, CFG_PREFIX "xinerama" );
416 #endif
417 #else
418     p_vout->p_sys->i_col = __MAX( 1, __MIN( 15, p_vout->p_sys->i_col ) );
419     p_vout->p_sys->i_row = __MAX( 1, __MIN( 15, p_vout->p_sys->i_row ) );
420 #endif
421
422     msg_Dbg( p_vout, "opening a %i x %i wall",
423              p_vout->p_sys->i_col, p_vout->p_sys->i_row );
424
425     p_vout->p_sys->pp_vout = calloc( p_vout->p_sys->i_row *
426                                      p_vout->p_sys->i_col,
427                                      sizeof(struct vout_list_t) );
428     if( p_vout->p_sys->pp_vout == NULL )
429     {
430         free( p_vout->p_sys );
431         return VLC_ENOMEM;
432     }
433
434     psz_method_tmp =
435     psz_method = var_CreateGetNonEmptyString( p_vout, CFG_PREFIX "active" );
436
437     /* If no trailing vout are specified, take them all */
438     if( psz_method == NULL )
439     {
440         for( i_vout = p_vout->p_sys->i_row * p_vout->p_sys->i_col;
441              i_vout--; )
442         {
443             p_vout->p_sys->pp_vout[i_vout].b_active = 1;
444         }
445     }
446     /* If trailing vout are specified, activate only the requested ones */
447     else
448     {
449         for( i_vout = p_vout->p_sys->i_row * p_vout->p_sys->i_col;
450              i_vout--; )
451         {
452             p_vout->p_sys->pp_vout[i_vout].b_active = 0;
453         }
454
455         while( *psz_method )
456         {
457             psz_tmp = psz_method;
458             while( *psz_tmp && *psz_tmp != ',' )
459             {
460                 psz_tmp++;
461             }
462
463             if( *psz_tmp )
464             {
465                 *psz_tmp = '\0';
466                 i_vout = atoi( psz_method );
467                 psz_method = psz_tmp + 1;
468             }
469             else
470             {
471                 i_vout = atoi( psz_method );
472                 psz_method = psz_tmp;
473             }
474
475             if( i_vout >= 0 &&
476                 i_vout < p_vout->p_sys->i_row * p_vout->p_sys->i_col )
477             {
478                 p_vout->p_sys->pp_vout[i_vout].b_active = 1;
479             }
480         }
481     }
482
483     free( psz_method_tmp );
484
485     return VLC_SUCCESS;
486 }
487
488
489 #ifdef OVERLAP
490 /*****************************************************************************
491  * CLIP_0A: clip between 0 and ACCURACY
492  *****************************************************************************/
493 inline static int CLIP_0A( int a )
494 {
495     return (a > ACCURACY) ? ACCURACY : (a < 0) ? 0 : a;
496 }
497
498 #ifdef GAMMA
499 /*****************************************************************************
500  *  Gamma: Gamma correction
501  *****************************************************************************/
502 static double Gamma_Correction(int i_plane, float f_component, float f_BlackCrush[VOUT_MAX_PLANES], float f_WhiteCrush[VOUT_MAX_PLANES], float f_BlackLevel[VOUT_MAX_PLANES], float f_WhiteLevel[VOUT_MAX_PLANES], float f_Gamma[VOUT_MAX_PLANES])
503 {
504     float f_Input;
505
506     f_Input = (f_component * f_BlackLevel[i_plane]) / (f_BlackCrush[i_plane]) + (1.0 - f_BlackLevel[i_plane]);
507     if (f_component <= f_BlackCrush[i_plane])
508     {
509         return pow(f_Input, 1.0 / f_Gamma[i_plane]);
510     }
511     else if (f_component >= f_WhiteCrush[i_plane])
512     {
513         f_Input = (f_component * (1.0 - (f_WhiteLevel[i_plane] + 1.0)) + (f_WhiteLevel[i_plane] + 1.0) * f_WhiteCrush[i_plane] - 1.0) / (f_WhiteCrush[i_plane] - 1.0);
514         return pow(f_Input, 1.0 / f_Gamma[i_plane]);
515     }
516     else
517     {
518         return 1.0;
519     }
520 }
521
522 #ifdef PACKED_YUV
523
524 /*****************************************************************************
525  * F: Function to calculate Gamma correction
526  *****************************************************************************/
527 static uint8_t F(uint8_t i, float gamma)
528 {
529     double input = (double) i / 255.0;
530
531     // return clip(255 * pow(input, 1.0 / gamma));
532
533     if (input < 0.5)
534         return clip_uint8((255 * pow(2 * input, gamma)) / 2);
535     else
536         return clip_uint8(255 * (1 - pow(2 * (1 - input), gamma) / 2));
537 }
538 #endif
539 #endif
540
541 /*****************************************************************************
542  * AdjustHeight: ajust p_sys->i_height to have same BZ width for any ratio
543  *****************************************************************************/
544 static int AdjustHeight( vout_thread_t *p_vout )
545 {
546     bool b_fullscreen = p_vout->b_fullscreen;
547     int i_window_width = p_vout->i_window_width;
548     int i_window_height = p_vout->i_window_height;
549     double d_halfLength = 0;
550     double d_halfLength_crop;
551     double d_halfLength_calculated;
552     int    i_offset = 0;
553
554     // OS DEPENDENT CODE to get display dimensions
555     if (b_fullscreen )
556     {
557 #ifdef WIN32
558         i_window_width  = GetSystemMetrics(SM_CXSCREEN);
559         i_window_height = GetSystemMetrics(SM_CYSCREEN);
560 #else
561         char *psz_display = var_CreateGetNonEmptyString( p_vout,
562                                                         "x11-display" );
563         Display *p_display = XOpenDisplay( psz_display );
564         free( psz_display );
565         if (p_vout->p_sys->b_xinerama)
566         {
567             i_window_width = DisplayWidth(p_display, 0) / p_vout->p_sys->i_col;
568             i_window_height = DisplayHeight(p_display, 0) / p_vout->p_sys->i_row;
569         }
570         else
571         {
572             i_window_width = DisplayWidth(p_display, 0);
573             i_window_height = DisplayHeight(p_display, 0);
574         }
575         XCloseDisplay( p_display );
576 #endif
577         var_SetInteger( p_vout, "width", i_window_width);
578         var_SetInteger( p_vout, "height", i_window_height);
579         p_vout->i_window_width = i_window_width;
580         p_vout->i_window_height = i_window_height;
581     }
582
583     if( p_vout->p_sys->bz_length)
584         if ((!p_vout->p_sys->b_autocrop) && (!p_vout->p_sys->i_ratio))
585         {
586             if ((p_vout->p_sys->i_row > 1) || (p_vout->p_sys->i_col > 1))
587             {
588                 while ((d_halfLength <= 0) || (d_halfLength > p_vout->render.i_width / (2 * p_vout->p_sys->i_col)))
589                 {
590                     if (p_vout->p_sys->bz_length >= 50)
591                     {
592                         d_halfLength = i_window_width * p_vout->render.i_height / (2 * i_window_height * p_vout->p_sys->i_row) - p_vout->render.i_width / (2 * p_vout->p_sys->i_col);
593                     }
594                     else
595                     {
596                         d_halfLength = (p_vout->render.i_width * p_vout->p_sys->bz_length) / (100.0 * p_vout->p_sys->i_col);
597                         d_halfLength = __MAX(i_window_width * p_vout->render.i_height / (2 * i_window_height * p_vout->p_sys->i_row) - p_vout->render.i_width / (2 * p_vout->p_sys->i_col), d_halfLength);
598                     }
599                     if ((d_halfLength <= 0) || (d_halfLength > p_vout->render.i_width / (2 * p_vout->p_sys->i_col)))
600                         p_vout->p_sys->i_row--;
601                     if (p_vout->p_sys->i_row < 1 )
602                     {
603                         p_vout->p_sys->i_row = 1;
604                         break;
605                     }
606                 }
607                 p_vout->p_sys->i_halfLength = (d_halfLength + 0.5);
608                 p_vout->p_sys->bz_length = (p_vout->p_sys->i_halfLength * 100.0 * p_vout->p_sys->i_col) / p_vout->render.i_width;
609                 var_SetInteger( p_vout, "bz-length", p_vout->p_sys->bz_length);
610                 var_SetInteger( p_vout, "panoramix-rows", p_vout->p_sys->i_row);
611             }
612         }
613         else
614         {
615             d_halfLength = ((2 * (double)i_window_width - (double)(p_vout->p_sys->i_ratio_max * i_window_height) / 1000.0 ) * (double)p_vout->p_sys->bz_length) / 200.0;
616             d_halfLength_crop = d_halfLength * VOUT_ASPECT_FACTOR * (double)p_vout->output.i_width
617                         / (double)i_window_height / (double)p_vout->render.i_aspect;
618             p_vout->p_sys->i_halfLength = (d_halfLength_crop + 0.5);
619             d_halfLength_calculated = p_vout->p_sys->i_halfLength * (double)i_window_height *
620                                 (double)p_vout->render.i_aspect  /     VOUT_ASPECT_FACTOR / (double)p_vout->output.i_width;
621
622             if (!p_vout->p_sys->b_attenuate)
623             {
624                 double d_bz_length = (p_vout->p_sys->i_halfLength * p_vout->p_sys->i_col * 100.0) / p_vout->render.i_width;
625                 // F(2x) != 2F(x) in opengl module
626                 if (p_vout->p_sys->i_col == 2) d_bz_length = (100.0 * d_bz_length) / (100.0 - d_bz_length) ;
627                 var_SetInteger( p_vout, "bz-length", (int)(d_bz_length + 0.5));
628             }
629             i_offset =  (int)d_halfLength - (int)
630                         (p_vout->p_sys->i_halfLength * (double)i_window_height *
631                         (double)p_vout->render.i_aspect  /     VOUT_ASPECT_FACTOR / (double)p_vout->output.i_width);
632         }
633     else
634         p_vout->p_sys->i_halfLength = 0;
635
636     return i_offset;
637 }
638 #endif
639
640
641 /*****************************************************************************
642  * Init: initialize Wall video thread output method
643  *****************************************************************************/
644 #define VLC_XCHG( type, a, b ) do { type __tmp = (b); (b) = (a); (a) = __tmp; } while(0)
645
646 static int Init( vout_thread_t *p_vout )
647 {
648     int i_index, i_row, i_col;
649     picture_t *p_pic;
650
651     I_OUTPUTPICTURES = 0;
652
653     /* Initialize the output structure */
654     p_vout->output.i_chroma = p_vout->render.i_chroma;
655     p_vout->output.i_width  = p_vout->render.i_width;
656     p_vout->output.i_height = p_vout->render.i_height;
657     p_vout->output.i_aspect = p_vout->render.i_aspect;
658 #ifdef OVERLAP
659     p_vout->p_sys->b_has_changed = p_vout->p_sys->b_attenuate;
660     int i_video_x = var_GetInteger( p_vout, "video-x");
661     int i_video_y = var_GetInteger( p_vout, "video-y");
662 #ifdef GAMMA
663     if (p_vout->p_sys->b_attenuate)
664     {
665         int i_index2, i_plane;
666         int constantYUV[3] = {0,128,128};
667         float    f_BlackCrush[VOUT_MAX_PLANES];
668         float    f_BlackLevel[VOUT_MAX_PLANES];
669         float    f_WhiteCrush[VOUT_MAX_PLANES];
670         float    f_WhiteLevel[VOUT_MAX_PLANES];
671         p_vout->p_sys->f_gamma[0] = var_CreateGetFloat( p_vout, CFG_PREFIX "bz-gamma-red" );
672         p_vout->p_sys->f_gamma[1] = var_CreateGetFloat( p_vout, CFG_PREFIX "bz-gamma-green" );
673         p_vout->p_sys->f_gamma[2] = var_CreateGetFloat( p_vout, CFG_PREFIX "bz-gamma-blue" );
674         f_BlackCrush[0] = var_CreateGetInteger( p_vout, CFG_PREFIX "bz-blackcrush-red" ) / 255.0;
675         f_BlackCrush[1] = var_CreateGetInteger( p_vout, CFG_PREFIX "bz-blackcrush-green" ) / 255.0;
676         f_BlackCrush[2] = var_CreateGetInteger( p_vout, CFG_PREFIX "bz-blackcrush-blue" ) / 255.0;
677         f_WhiteCrush[0] = var_CreateGetInteger( p_vout, CFG_PREFIX "bz-whitecrush-red" ) / 255.0;
678         f_WhiteCrush[1] = var_CreateGetInteger( p_vout, CFG_PREFIX "bz-whitecrush-green" ) / 255.0;
679         f_WhiteCrush[2] = var_CreateGetInteger( p_vout, CFG_PREFIX "bz-whitecrush-blue" ) / 255.0;
680         f_BlackLevel[0] = var_CreateGetInteger( p_vout, CFG_PREFIX "bz-blacklevel-red" ) / 255.0;
681         f_BlackLevel[1] = var_CreateGetInteger( p_vout, CFG_PREFIX "bz-blacklevel-green" ) / 255.0;
682         f_BlackLevel[2] = var_CreateGetInteger( p_vout, CFG_PREFIX "bz-blacklevel-blue" ) / 255.0;
683         f_WhiteLevel[0] = var_CreateGetInteger( p_vout, CFG_PREFIX "bz-whitelevel-red" ) / 255.0;
684         f_WhiteLevel[1] = var_CreateGetInteger( p_vout, CFG_PREFIX "bz-whitelevel-green" ) / 255.0;
685         f_WhiteLevel[2] = var_CreateGetInteger( p_vout, CFG_PREFIX "bz-whitelevel-blue" ) / 255.0;
686         for( int i = 3; i < VOUT_MAX_PLANES; i++ )
687         {
688             /* Initialize unsupported planes */
689             f_BlackCrush[i] = 140.0/255.0;
690             f_WhiteCrush[i] = 200.0/255.0;
691             f_BlackLevel[i] = 150.0/255.0;
692             f_WhiteLevel[i] = 0.0/255.0;
693             p_vout->p_sys->f_gamma[i] = 1.0;
694         }
695
696         switch (p_vout->render.i_chroma)
697         {
698         // planar YVU
699             case VLC_FOURCC('Y','V','1','2'):
700             case VLC_FOURCC('Y','V','U','9'):
701         // packed UYV
702             case VLC_FOURCC('U','Y','V','Y'):    // packed by 2
703             case VLC_FOURCC('U','Y','N','V'):    // packed by 2
704             case VLC_FOURCC('Y','4','2','2'):    // packed by 2
705     //        case VLC_FOURCC('c','y','u','v'):    // packed by 2
706                 VLC_XCHG( float, p_vout->p_sys->f_gamma[1], p_vout->p_sys->f_gamma[2] );
707                 VLC_XCHG( float, f_BlackCrush[1], f_BlackCrush[2] );
708                 VLC_XCHG( float, f_WhiteCrush[1], f_WhiteCrush[2] );
709                 VLC_XCHG( float, f_BlackLevel[1], f_BlackLevel[2] );
710                 VLC_XCHG( float, f_WhiteLevel[1], f_WhiteLevel[2] );
711         // planar YUV
712             case VLC_FOURCC('I','4','4','4'):
713             case VLC_FOURCC('I','4','2','2'):
714             case VLC_FOURCC('I','4','2','0'):
715             case VLC_FOURCC('I','4','1','1'):
716             case VLC_FOURCC('I','4','1','0'):
717             case VLC_FOURCC('I','Y','U','V'):
718             case VLC_FOURCC('Y','U','V','A'):
719         // packed YUV
720             case VLC_FOURCC('Y','U','Y','2'):    // packed by 2
721             case VLC_FOURCC('Y','U','N','V'):    // packed by 2
722                 for (i_index = 0; i_index < 256; i_index++)
723                     for (i_index2 = 0; i_index2 <= ACCURACY; i_index2++)
724                         for (i_plane = 0; i_plane < VOUT_MAX_PLANES; i_plane++)
725                         {
726                             float f_lut = CLIP_01(1.0 -
727                                      ((ACCURACY - (float)i_index2)
728                                      * Gamma_Correction(i_plane, (float)i_index / 255.0, f_BlackCrush, f_WhiteCrush, f_BlackLevel, f_WhiteLevel, p_vout->p_sys->f_gamma)
729                                      / (ACCURACY - 1)));
730                             p_vout->p_sys->LUT[i_plane][i_index2][i_index] = f_lut * i_index + (int)((1.0 - f_lut) * (float)constantYUV[i_plane]);
731                         }
732                 break;
733         // packed RGB
734             case VLC_FOURCC('R','G','B','2'):    // packed by 1
735             case VLC_FOURCC('R','V','1','5'):    // packed by 2
736             case VLC_FOURCC('R','V','1','6'):    // packed by 2
737             case VLC_FOURCC('R','V','2','4'):    // packed by 3
738             case VLC_FOURCC('R','V','3','2'):    // packed by 4
739             for (i_index = 0; i_index < 256; i_index++)
740                     for (i_index2 = 0; i_index2 <= ACCURACY; i_index2++)
741                         for (i_plane = 0; i_plane < VOUT_MAX_PLANES; i_plane++)
742                         {
743                             float f_lut = CLIP_01(1.0 -
744                                      ((ACCURACY - (float)i_index2)
745                                      * Gamma_Correction(i_plane, (float)i_index / 255.0, f_BlackCrush, f_WhiteCrush, f_BlackLevel, f_WhiteLevel, p_vout->p_sys->f_gamma)
746                                      / (ACCURACY - 1)));
747                             p_vout->p_sys->LUT[i_plane][i_index2][i_index] = f_lut * i_index;
748                         }
749                 break;
750             default:
751                 msg_Err( p_vout, "colorspace not supported by plug-in !!!");
752                 free( p_vout->p_sys );
753                 return VLC_ENOMEM;
754         }
755     }
756 #endif
757     if (p_vout->p_sys->i_offset_x)
758         p_vout->p_sys->i_offset_x = AdjustHeight(p_vout);
759     else
760         AdjustHeight(p_vout);
761     if (p_vout->p_sys->i_row >= 2)
762     {
763         p_vout->p_sys->i_halfHeight = (p_vout->p_sys->i_halfLength * p_vout->p_sys->bz_height) / 100;
764         p_vout->p_sys->i_halfHeight -= (p_vout->p_sys->i_halfHeight % 2);
765     }
766 #endif
767
768     /* Try to open the real video output */
769     msg_Dbg( p_vout, "spawning the real video outputs" );
770
771     /* FIXME: use bresenham instead of those ugly divisions */
772     p_vout->p_sys->i_vout = 0;
773     for( i_row = 0; i_row < p_vout->p_sys->i_row; i_row++ )
774     {
775         for( i_col = 0; i_col < p_vout->p_sys->i_col; i_col++, p_vout->p_sys->i_vout++ )
776         {
777             struct vout_list_t *p_entry = &p_vout->p_sys->pp_vout[ p_vout->p_sys->i_vout ];
778             video_format_t fmt;
779             int i_width, i_height;
780
781             /* */
782             i_width = ( p_vout->render.i_width / p_vout->p_sys->i_col ) & ~0x1;
783             if( i_col + 1 == p_vout->p_sys->i_col )
784                 i_width = p_vout->render.i_width - i_col * i_width;
785
786 #ifdef OVERLAP
787             i_width += p_vout->p_sys->i_halfLength;
788             if (p_vout->p_sys->i_col > 2 )
789                 i_width += p_vout->p_sys->i_halfLength;
790             i_width &= ~0x1;
791 #endif
792
793             /* */
794             i_height = ( p_vout->render.i_height / p_vout->p_sys->i_row ) & ~0x3;
795             if( i_row + 1 == p_vout->p_sys->i_row )
796                 i_height = p_vout->render.i_height - i_row * i_height;
797 #ifdef OVERLAP
798             if(p_vout->p_sys->i_row >= 2 )
799             {
800                 i_height += p_vout->p_sys->i_halfHeight;
801                 if( p_vout->p_sys->i_row > 2 )
802                     i_height += p_vout->p_sys->i_halfHeight;
803             }
804             i_height &= ~0x1;
805 #endif
806             p_entry->i_width = i_width;
807             p_entry->i_height = i_height;
808
809             if( !p_entry->b_active )
810                 continue;
811
812             /* */
813             memset( &fmt, 0, sizeof(video_format_t) );
814             fmt.i_width = fmt.i_visible_width = p_vout->render.i_width;
815             fmt.i_height = fmt.i_visible_height = p_vout->render.i_height;
816             fmt.i_x_offset = fmt.i_y_offset = 0;
817             fmt.i_chroma = p_vout->render.i_chroma;
818             fmt.i_aspect = p_vout->render.i_aspect;
819             fmt.i_sar_num = p_vout->render.i_aspect * fmt.i_height / fmt.i_width;
820             fmt.i_sar_den = VOUT_ASPECT_FACTOR;
821             fmt.i_width = fmt.i_visible_width = i_width;
822             fmt.i_height = fmt.i_visible_height = i_height;
823             fmt.i_aspect = p_vout->render.i_aspect
824                               * p_vout->render.i_height / i_height
825                               * i_width / p_vout->render.i_width;
826 #ifdef OVERLAP
827             if (p_vout->p_sys->i_offset_x < 0)
828             {
829                 var_SetInteger(p_vout, "video-x", -p_vout->p_sys->i_offset_x);
830                 p_vout->p_sys->i_offset_x = 0;
831             }
832 #endif
833             p_entry->p_vout = vout_Create( p_vout, &fmt);
834
835             if( p_entry->p_vout == NULL )
836             {
837                 msg_Err( p_vout, "failed to get %ix%i vout threads",
838                                  p_vout->p_sys->i_col, p_vout->p_sys->i_row );
839                 RemoveAllVout( p_vout );
840                 return VLC_EGENERIC;
841             }
842             ADD_CALLBACKS( p_entry->p_vout, SendEvents );
843 #ifdef OVERLAP
844             p_entry->p_vout->i_alignment = 0;
845             if (i_col == 0)
846                 p_entry->p_vout->i_alignment |= VOUT_ALIGN_RIGHT;
847             else if (i_col == p_vout->p_sys->i_col -1)
848                 p_entry->p_vout->i_alignment |= VOUT_ALIGN_LEFT;
849             if (p_vout->p_sys->i_row > 1)
850             {
851                 if (i_row == 0)
852                     p_entry->p_vout->i_alignment |= VOUT_ALIGN_BOTTOM;
853                 else if (i_row == p_vout->p_sys->i_row -1)
854                     p_entry->p_vout->i_alignment |= VOUT_ALIGN_TOP;
855             }
856             // i_active : number of active pp_vout
857             int i_active = 0;
858             for( int i = 0; i <= p_vout->p_sys->i_vout; i++ )
859             {
860                 if( p_vout->p_sys->pp_vout[i].b_active )
861                     i_active++;
862             }
863             var_SetInteger( p_vout, "align", p_entry->p_vout->i_alignment );
864             var_SetInteger( p_vout, "video-x", i_video_x + p_vout->p_sys->i_offset_x + (i_active % p_vout->p_sys->i_col) * p_vout->i_window_width);
865             var_SetInteger( p_vout, "video-y", i_video_y +                             (i_active / p_vout->p_sys->i_col) * p_vout->i_window_height);
866 #endif
867         }
868     }
869
870     ALLOCATE_DIRECTBUFFERS( VOUT_MAX_PICTURES );
871
872     ADD_PARENT_CALLBACKS( SendEventsToChild );
873
874     return VLC_SUCCESS;
875 }
876
877 /*****************************************************************************
878  * End: terminate Wall video thread output method
879  *****************************************************************************/
880 static void End( vout_thread_t *p_vout )
881 {
882     int i_index;
883
884     DEL_PARENT_CALLBACKS( SendEventsToChild );
885
886     /* Free the fake output buffers we allocated */
887     for( i_index = I_OUTPUTPICTURES ; i_index ; )
888     {
889         i_index--;
890         free( PP_OUTPUTPICTURE[ i_index ]->p_data_orig );
891     }
892
893     RemoveAllVout( p_vout );
894
895 #ifdef OVERLAP
896     var_SetInteger( p_vout, "bz-length", p_vout->p_sys->bz_length);
897 #endif
898 }
899
900 /*****************************************************************************
901  * Destroy: destroy Wall video thread output method
902  *****************************************************************************
903  * Terminate an output method created by WallCreateOutputMethod
904  *****************************************************************************/
905 static void Destroy( vlc_object_t *p_this )
906 {
907     vout_thread_t *p_vout = (vout_thread_t *)p_this;
908
909     free( p_vout->p_sys->pp_vout );
910     free( p_vout->p_sys );
911
912 }
913
914 /*****************************************************************************
915  * RenderPlanarYUV: displays previously rendered output
916  *****************************************************************************
917  * This function send the currently rendered image to Wall image, waits
918  * until it is displayed and switch the two rendering buffers, preparing next
919  * frame.
920  *****************************************************************************/
921 static void RenderPlanarYUV( vout_thread_t *p_vout, picture_t *p_pic )
922 {
923     picture_t *p_outpic = NULL;
924     int i_col, i_row, i_vout, i_plane;
925     int pi_left_skip[VOUT_MAX_PLANES], pi_top_skip[VOUT_MAX_PLANES];
926 #ifdef OVERLAP
927     int TopOffset;
928     int constantYUV[3] = {0,128,128};
929     int Denom;
930     int a_2;
931     int a_1;
932     int a_0;
933     int i_index, i_index2;
934 #endif
935
936     for( i_plane = 0 ; i_plane < p_pic->i_planes ; i_plane++ )
937         pi_top_skip[i_plane] = 0;
938
939     for( i_vout = 0, i_row = 0; i_row < p_vout->p_sys->i_row; i_row++ )
940     {
941         for( i_plane = 0 ; i_plane < p_pic->i_planes ; i_plane++ )
942             pi_left_skip[i_plane] = 0;
943
944         for( i_col = 0; i_col < p_vout->p_sys->i_col; i_col++, i_vout++ )
945         {
946             struct vout_list_t *p_entry = &p_vout->p_sys->pp_vout[ i_vout ];
947             if( !p_entry->b_active )
948             {
949                 for( i_plane = 0 ; i_plane < p_pic->i_planes ; i_plane++ )
950                 {
951                     pi_left_skip[i_plane] += p_entry->i_width * p_pic->p[i_plane].i_pitch / p_vout->output.i_width;
952                 }
953                 continue;
954             }
955
956             while( ( p_outpic = vout_CreatePicture( p_entry->p_vout, 0, 0, 0 )) == NULL )
957             {
958                 if( !vlc_object_alive(p_vout) || p_vout->b_error )
959                 {
960                     vout_DestroyPicture( p_entry->p_vout, p_outpic );
961                     return;
962                 }
963                 msleep( VOUT_OUTMEM_SLEEP );
964             }
965
966             p_outpic->date = p_pic->date;
967             vout_LinkPicture( p_entry->p_vout, p_outpic );
968
969             for( i_plane = 0 ; i_plane < p_pic->i_planes ; i_plane++ )
970             {
971                 uint8_t *p_in, *p_in_end, *p_out;
972                 int i_in_pitch = p_pic->p[i_plane].i_pitch;
973                 int i_out_pitch = p_outpic->p[i_plane].i_pitch;
974                 int i_copy_pitch = p_outpic->p[i_plane].i_visible_pitch;
975                 int i_lines = p_outpic->p[i_plane].i_visible_lines;
976                 const int i_div = p_entry->i_width / i_copy_pitch;
977
978                 const bool b_row_first = i_row == 0;
979                 const bool b_row_last = i_row + 1 == p_vout->p_sys->i_row;
980                 const bool b_col_first = i_col == 0;
981                 const bool b_col_last = i_col + 1 == p_vout->p_sys->i_col;
982
983 #ifdef OVERLAP
984                 if( !b_col_first )
985                     pi_left_skip[i_plane] -= (2 * p_vout->p_sys->i_halfLength ) / i_div;
986
987                 if( p_vout->p_sys->i_row >= 2 )
988                 {
989                     if( !b_row_first && b_col_first )
990                         pi_top_skip[i_plane] -= (2 * p_vout->p_sys->i_halfHeight * p_pic->p[i_plane].i_pitch) / i_div;
991                     if( p_vout->p_sys->i_row > 2 && i_row == 1 && b_col_first )
992                         pi_top_skip[i_plane] -= (2 * p_vout->p_sys->i_halfHeight * p_pic->p[i_plane].i_pitch) / i_div;
993                     if( !p_vout->p_sys->pp_vout[p_vout->p_sys->i_col-1].b_active )
994                         pi_top_skip[i_plane] -= (2 * p_vout->p_sys->i_halfHeight * i_row * p_pic->p[i_plane].i_pitch) / i_div;
995                 }
996 // i_n : previous inactive pp_vout
997                 int i_n=0;
998                 while( (i_col - i_n > 1) && (!p_vout->p_sys->pp_vout[i_row * p_vout->p_sys->i_col + i_col - 1 - i_n].b_active) ) i_n++;
999                 if( i_col > 1 && i_n )
1000                     pi_left_skip[i_plane] -= i_n * (2 * p_vout->p_sys->i_halfLength ) / i_div;
1001
1002
1003                 if( p_vout->p_sys->i_row > 2 && ( b_row_first || b_row_last ) )
1004                     i_lines -= (2 * p_vout->p_sys->i_halfHeight) / i_div;
1005
1006 // 1088 lines bug in a mpeg2 stream of 1080 lines
1007                 if( b_row_last && p_pic->p[i_plane].i_lines == 1088 )
1008                     i_lines -= 8 / i_div;
1009 #endif
1010                 /* */
1011                 p_in = &p_pic->p[i_plane].p_pixels[ pi_top_skip[i_plane] + pi_left_skip[i_plane] ]; /* Wall proprities */
1012                 p_in_end = &p_in[i_lines * p_pic->p[i_plane].i_pitch];
1013
1014                 p_out = p_outpic->p[i_plane].p_pixels;
1015 #ifdef OVERLAP
1016                 if( p_vout->p_sys->i_row > 2 && b_row_first )
1017                     p_out += p_outpic->p[i_plane].i_pitch * (2 * p_vout->p_sys->i_halfHeight) / i_div;
1018
1019                 int i_col_mod;
1020                 int length = 2 * p_vout->p_sys->i_halfLength / i_div;
1021
1022                 if( p_vout->p_sys->b_has_changed )
1023                 {
1024                     Denom = F2(length);
1025                     a_2 = p_vout->p_sys->a_2 * (ACCURACY / 100);
1026                     a_1 = p_vout->p_sys->a_1 * length * (ACCURACY / 100);
1027                     a_0 = p_vout->p_sys->a_0 * Denom * (ACCURACY / 100);
1028                     for( i_col_mod = 0; i_col_mod < 2; i_col_mod++ )
1029                     {
1030                         for( i_index = 0; i_index < length; i_index++ )
1031                         {
1032                             p_vout->p_sys->lambda[i_col_mod][i_plane][i_index] = CLIP_0A(!i_col_mod ? ACCURACY - (F4(a_2, a_1, i_index) + a_0) / Denom : ACCURACY - (F4(a_2, a_1,length - i_index) + a_0) / Denom);
1033                             p_vout->p_sys->cstYUV[i_col_mod][i_plane][i_index] = ((ACCURACY - p_vout->p_sys->lambda[i_col_mod][i_plane][i_index]) * constantYUV[i_plane]) / ACCURACY;
1034                         }
1035                     }
1036                 }
1037 #endif
1038                 while( p_in < p_in_end )
1039                 {
1040 #ifndef OVERLAP
1041                     vlc_memcpy( p_out, p_in, i_copy_pitch);
1042 #else
1043                     if( p_vout->p_sys->i_col > 2 )
1044                     {
1045                         const int halfl = length / 2;
1046                         if( b_col_first)
1047                             vlc_memcpy( &p_out[halfl], &p_in[0], i_copy_pitch - halfl );
1048                         else if( b_col_last )
1049                             vlc_memcpy( &p_out[    0], &p_in[-halfl], i_copy_pitch - halfl );
1050                         else
1051                             vlc_memcpy( &p_out[    0], &p_in[-halfl], i_copy_pitch);
1052
1053                         // black bar
1054                         if( b_col_first )
1055                             memset( &p_out[0], constantYUV[i_plane], halfl);
1056                         else if( b_col_last )
1057                             memset( &p_out[i_copy_pitch - halfl], constantYUV[i_plane], halfl );
1058                     }
1059                     else
1060                     {
1061                         vlc_memcpy( p_out , p_in, i_copy_pitch );
1062                     }
1063
1064                     if( p_vout->p_sys->b_attenuate )
1065                     {
1066                         // vertical blend
1067                         // first blended zone
1068                         if( !b_col_first )
1069                         {
1070                             uint8_t *p_dst = &p_out[0];
1071                             for (i_index = 0; i_index < length; i_index++)
1072                             {
1073 #ifndef GAMMA
1074                                 p_dst[i_index] = (p_vout->p_sys->lambda[1][i_plane][i_index] * p_dst[i_index]) / ACCURACY +
1075                                                         p_vout->p_sys->cstYUV[1][i_plane][i_index];
1076 #else
1077                                 p_dst[i_index] = p_vout->p_sys->LUT[i_plane][p_vout->p_sys->lambda[1][i_plane][i_index]][p_dst[i_index]];
1078 #endif
1079                             }
1080                         }
1081                         // second blended zone
1082                         if( !b_col_last )
1083                         {
1084                             uint8_t *p_dst = &p_out[i_copy_pitch - length];
1085                             for (i_index = 0; i_index < length; i_index++)
1086                             {
1087 #ifndef GAMMA
1088                                 p_dst[i_index] = (p_vout->p_sys->lambda[0][i_plane][i_index] * p_dst[i_index]) / ACCURACY +
1089                                                         p_vout->p_sys->cstYUV[0][i_plane][i_index];
1090 #else
1091                                p_dst[i_index] = p_vout->p_sys->LUT[i_plane][p_vout->p_sys->lambda[0][i_plane][i_index]][p_dst[i_index]];
1092 #endif
1093                             }
1094                         }
1095                         // end blended zone
1096                     }
1097 #endif
1098                     p_in += i_in_pitch;
1099                     p_out += i_out_pitch;
1100                 }
1101 #ifdef OVERLAP
1102        // horizontal blend
1103         if ( p_vout->p_sys->i_row >= 2 )
1104         {
1105            // black bar
1106            if (( p_vout->p_sys->i_row > 2 ) && (( b_row_first ) || ( b_row_last )))
1107            {
1108
1109                int height = 2 * p_vout->p_sys->i_halfHeight / i_div;
1110                if ( b_row_first )
1111                {
1112                     TopOffset = i_lines + (2 * p_vout->p_sys->i_halfHeight) / i_div;
1113                }
1114                else
1115                 {
1116                    TopOffset = height - (2 * p_vout->p_sys->i_halfHeight) / i_div;
1117                 }
1118                 uint8_t *p_dst = p_out - TopOffset * i_out_pitch;
1119                 for (i_index = 0; i_index < height; i_index++)
1120                    for (i_index2 = 0; i_index2 < i_copy_pitch; i_index2++)
1121                        p_dst[i_index * i_out_pitch + i_index2] = constantYUV[i_plane];
1122            }
1123            if( p_vout->p_sys->b_attenuate )
1124            {
1125                length = 2 * p_vout->p_sys->i_halfHeight / (p_vout->p_sys->pp_vout[i_vout].i_width / i_copy_pitch);
1126                if (p_vout->p_sys->b_has_changed)
1127                {
1128                    Denom = F2(length);
1129                    a_2 = p_vout->p_sys->a_2 * (ACCURACY / 100);
1130                    a_1 = p_vout->p_sys->a_1 * length * (ACCURACY / 100);
1131                    a_0 = p_vout->p_sys->a_0 * Denom * (ACCURACY / 100);
1132                    for(i_col_mod = 0; i_col_mod < 2; i_col_mod++)
1133                        for (i_index = 0; i_index < length; i_index++)
1134                        {
1135                            p_vout->p_sys->lambda2[i_col_mod][i_plane][i_index] = CLIP_0A(!i_col_mod ? ACCURACY - (F4(a_2, a_1, i_index) + a_0) / Denom : ACCURACY - (F4(a_2, a_1,length - i_index) + a_0) / Denom);
1136                            p_vout->p_sys->cstYUV2[i_col_mod][i_plane][i_index] = ((ACCURACY - p_vout->p_sys->lambda2[i_col_mod][i_plane][i_index]) * constantYUV[i_plane]) / ACCURACY;
1137                        }
1138                }
1139                // first blended zone
1140                if ( !b_row_first )
1141                {
1142                         TopOffset = i_lines;
1143                         uint8_t *p_dst = p_out - TopOffset * i_out_pitch;
1144
1145                         for (i_index = 0; i_index < length; i_index++)
1146                         {
1147                             for (i_index2 = 0; i_index2 < i_copy_pitch; i_index2++)
1148                             {
1149 #ifndef GAMMA
1150                                 p_dst[i_index * i_out_pitch + i_index2] = ( p_vout->p_sys->lambda2[1][i_plane][i_index] *
1151                                              p_dst[i_index * i_out_pitch + i_index2] ) / ACCURACY +
1152                                              p_vout->p_sys->cstYUV2[1][i_plane][i_index];
1153 #else
1154                                 p_dst[i_index * i_out_pitch + i_index2] = p_vout->p_sys->LUT[i_plane][p_vout->p_sys->lambda2[1][i_plane][i_index]][p_dst[i_index * i_out_pitch + i_index2]];
1155 #endif
1156                             }
1157                         }
1158                }
1159                // second blended zone
1160                if ( !b_row_last )
1161                {
1162                         TopOffset = length;
1163                         uint8_t *p_dst = p_out - TopOffset * p_outpic->p[i_plane].i_pitch;
1164
1165                         for (i_index = 0; i_index < length; i_index++)
1166                         {
1167                             for (i_index2 = 0; i_index2 < i_copy_pitch; i_index2++)
1168                             {
1169 #ifndef GAMMA
1170                                 p_dst[i_index * i_out_pitch + i_index2] = (p_vout->p_sys->lambda2[0][i_plane][i_index] *
1171                                              p_dst[i_index * i_out_pitch + i_index2]) / ACCURACY +
1172                                              p_vout->p_sys->cstYUV2[0][i_plane][i_index];
1173 #else
1174
1175                                 p_dst[i_index * i_out_pitch + i_index2] = p_vout->p_sys->LUT[i_plane][p_vout->p_sys->lambda2[0][i_plane][i_index]][p_dst[i_index * i_out_pitch + i_index2]];
1176 #endif
1177                             }
1178                         }
1179                }
1180            }
1181         }
1182        // end blended zone
1183 #endif
1184                 // bug for wall filter : fix by CC
1185                 //            pi_left_skip[i_plane] += i_out_pitch;
1186                 pi_left_skip[i_plane] += i_copy_pitch;
1187             }
1188
1189             vout_UnlinkPicture( p_vout->p_sys->pp_vout[ i_vout ].p_vout,
1190                                 p_outpic );
1191             vout_DisplayPicture( p_vout->p_sys->pp_vout[ i_vout ].p_vout,
1192                                  p_outpic );
1193         }
1194
1195         for( i_plane = 0 ; i_plane < p_pic->i_planes ; i_plane++ )
1196         {
1197             pi_top_skip[i_plane] += p_vout->p_sys->pp_vout[ i_vout-1 ].i_height
1198                                              * p_pic->p[i_plane].i_lines
1199                                              / p_vout->output.i_height
1200                                              * p_pic->p[i_plane].i_pitch;
1201         }
1202     }
1203 #ifdef OVERLAP
1204     if (p_vout->p_sys->b_has_changed)
1205         p_vout->p_sys->b_has_changed = false;
1206 #endif
1207 }
1208
1209
1210 /*****************************************************************************
1211  * RenderPackedRGB: displays previously rendered output
1212  *****************************************************************************
1213  * This function send the currently rendered image to Wall image, waits
1214  * until it is displayed and switch the two rendering buffers, preparing next
1215  * frame.
1216  *****************************************************************************/
1217 static void RenderPackedRGB( vout_thread_t *p_vout, picture_t *p_pic )
1218 {
1219     picture_t *p_outpic = NULL;
1220     int i_col, i_row, i_vout, i_plane;
1221     int pi_left_skip[VOUT_MAX_PLANES], pi_top_skip[VOUT_MAX_PLANES];
1222 #ifdef OVERLAP
1223     int LeftOffset, TopOffset;
1224     int Denom;
1225     int a_2;
1226     int a_1;
1227     int a_0;
1228     int i_index, i_index2;
1229 #endif
1230
1231     for( i_plane = 0 ; i_plane < p_pic->i_planes ; i_plane++ )
1232         pi_top_skip[i_plane] = 0;
1233
1234     for( i_vout = 0, i_row = 0; i_row < p_vout->p_sys->i_row; i_row++ )
1235     {
1236         for( i_plane = 0 ; i_plane < p_pic->i_planes ; i_plane++ )
1237             pi_left_skip[i_plane] = 0;
1238
1239         for( i_col = 0; i_col < p_vout->p_sys->i_col; i_col++, i_vout++ )
1240         {
1241             if( !p_vout->p_sys->pp_vout[ i_vout ].b_active )
1242             {
1243                 for( i_plane = 0 ; i_plane < p_pic->i_planes ; i_plane++ )
1244                 {
1245                     pi_left_skip[i_plane] +=
1246                         p_vout->p_sys->pp_vout[ i_vout ].i_width * p_pic->p->i_pixel_pitch;
1247                 }
1248                 continue;
1249             }
1250
1251             while( ( p_outpic =
1252                 vout_CreatePicture( p_vout->p_sys->pp_vout[ i_vout ].p_vout,
1253                                     0, 0, 0 )
1254                    ) == NULL )
1255             {
1256                 if( !vlc_object_alive (p_vout) || p_vout->b_error )
1257                 {
1258                     vout_DestroyPicture(
1259                         p_vout->p_sys->pp_vout[ i_vout ].p_vout, p_outpic );
1260                     return;
1261                 }
1262
1263                 msleep( VOUT_OUTMEM_SLEEP );
1264             }
1265
1266             p_outpic->date = p_pic->date;
1267             vout_LinkPicture( p_vout->p_sys->pp_vout[ i_vout ].p_vout,
1268                               p_outpic );
1269
1270             for( i_plane = 0 ; i_plane < p_pic->i_planes ; i_plane++ )
1271             {
1272                 uint8_t *p_in, *p_in_end, *p_out;
1273                 int i_in_pitch = p_pic->p[i_plane].i_pitch;
1274                 int i_out_pitch = p_outpic->p[i_plane].i_pitch;
1275                 int i_copy_pitch = p_outpic->p[i_plane].i_visible_pitch;
1276
1277 #ifdef OVERLAP
1278                 if (i_col)
1279                     pi_left_skip[i_plane] -= (2 * p_vout->p_sys->i_halfLength) * p_pic->p->i_pixel_pitch;
1280                 if( p_vout->p_sys->i_row >= 2 )
1281                 {
1282                     if( (i_row) && (!i_col))
1283                         pi_top_skip[i_plane] -= (2 * p_vout->p_sys->i_halfHeight * p_pic->p[i_plane].i_pitch);
1284                     if( (p_vout->p_sys->i_row > 2) && (i_row == 1) && (!i_col) )
1285                         pi_top_skip[i_plane] -= (2 * p_vout->p_sys->i_halfHeight * p_pic->p[i_plane].i_pitch);
1286                     if( !p_vout->p_sys->pp_vout[p_vout->p_sys->i_col-1].b_active )
1287                         pi_top_skip[i_plane] -= (2 * p_vout->p_sys->i_halfHeight * i_row * p_pic->p[i_plane].i_pitch);
1288                 }
1289 // i_n : previous inactive pp_vout
1290                 int i_n=0;
1291                 while ((!p_vout->p_sys->pp_vout[i_row * p_vout->p_sys->i_col + i_col - 1 - i_n].b_active) && (i_col - i_n > 1)) i_n++;
1292                 if ((i_col > 1) && i_n)
1293                     pi_left_skip[i_plane] -= i_n*(2 * p_vout->p_sys->i_halfLength ) * p_pic->p->i_pixel_pitch;
1294
1295                 p_in = p_pic->p[i_plane].p_pixels
1296                 /* Wall proprities */
1297                 + pi_top_skip[i_plane] + pi_left_skip[i_plane];
1298
1299                 int i_lines = p_outpic->p[i_plane].i_visible_lines;
1300 // 1088 lines bug in a mpeg2 stream of 1080 lines
1301                 if ((p_vout->p_sys->i_row - 1 == i_row) &&
1302                     (p_pic->p[i_plane].i_lines == 1088))
1303                         i_lines -= 8;
1304
1305                 p_in_end = p_in + i_lines * p_pic->p[i_plane].i_pitch;
1306 #else
1307                 p_in = p_pic->p[i_plane].p_pixels
1308                         + pi_top_skip[i_plane] + pi_left_skip[i_plane];
1309
1310                 p_in_end = p_in + p_outpic->p[i_plane].i_visible_lines
1311                                         * p_pic->p[i_plane].i_pitch;
1312 #endif //OVERLAP
1313
1314                 p_out = p_outpic->p[i_plane].p_pixels;
1315
1316
1317 #ifdef OVERLAP
1318         if ((p_vout->p_sys->i_row > 2) && (!i_row))
1319             p_out += (p_outpic->p[i_plane].i_pitch * (2 * p_vout->p_sys->i_halfHeight) * p_pic->p->i_pixel_pitch);
1320
1321         int length;
1322         length = 2 * p_vout->p_sys->i_halfLength * p_pic->p->i_pixel_pitch;
1323
1324         if (p_vout->p_sys->b_has_changed)
1325         {
1326             int i_plane_;
1327             int i_col_mod;
1328             Denom = F2(length / p_pic->p->i_pixel_pitch);
1329             a_2 = p_vout->p_sys->a_2 * (ACCURACY / 100);
1330             a_1 = p_vout->p_sys->a_1 * 2 * p_vout->p_sys->i_halfLength * (ACCURACY / 100);
1331             a_0 = p_vout->p_sys->a_0 * Denom * (ACCURACY / 100);
1332             for(i_col_mod = 0; i_col_mod < 2; i_col_mod++)
1333                 for (i_index = 0; i_index < length / p_pic->p->i_pixel_pitch; i_index++)
1334                     for (i_plane_ =  0; i_plane_ < p_pic->p->i_pixel_pitch; i_plane_++)
1335                         p_vout->p_sys->lambda[i_col_mod][i_plane_][i_index] = CLIP_0A(!i_col_mod ? ACCURACY - (F4(a_2, a_1, i_index) + a_0) / Denom : ACCURACY - (F4(a_2, a_1,(length / p_pic->p->i_pixel_pitch) - i_index) + a_0) / Denom);
1336         }
1337 #endif
1338             while( p_in < p_in_end )
1339             {
1340 #ifndef OVERLAP
1341                 vlc_memcpy( p_out, p_in, i_copy_pitch );
1342 #else
1343                 if (p_vout->p_sys->i_col > 2)
1344                 {
1345                     // vertical blend
1346                     length /= 2;
1347                     if (i_col == 0)
1348                         vlc_memcpy( p_out + length, p_in, i_copy_pitch - length);
1349                     else if (i_col + 1 == p_vout->p_sys->i_col)
1350                         vlc_memcpy( p_out, p_in - length, i_copy_pitch - length);
1351                     else
1352                         vlc_memcpy( p_out, p_in - length, i_copy_pitch);
1353
1354                     if ((i_col == 0))
1355                     // black bar
1356                     {
1357                         LeftOffset = 0;
1358                         p_out += LeftOffset;
1359                         p_in += LeftOffset;
1360                         for (i_index = 0; i_index < length; i_index++)
1361                                 *(p_out + i_index) = 0;
1362                         p_out -= LeftOffset;
1363                         p_in -= LeftOffset;
1364                     }
1365                     else if ((i_col + 1 == p_vout->p_sys->i_col ))
1366                     // black bar
1367                         {
1368                             LeftOffset = i_copy_pitch - length;
1369                             p_out += LeftOffset;
1370                             p_in += LeftOffset;
1371                             for (i_index = 0; i_index < length; i_index++)
1372                                     *(p_out + i_index) = 0;
1373                             p_out -= LeftOffset;
1374                             p_in -= LeftOffset;
1375                         }
1376                     length *= 2;
1377                 }
1378                 else
1379                     vlc_memcpy( p_out, p_in, i_copy_pitch);
1380
1381 // vertical blend
1382 // first blended zone
1383             if (i_col)
1384             {
1385                 LeftOffset = 0;
1386                 p_out += LeftOffset;
1387                 for (i_index = 0; i_index < length; i_index++)
1388 #ifndef GAMMA
1389                     *(p_out + i_index) = (p_vout->p_sys->lambda[1][i_index % p_pic->p->i_pixel_pitch][i_index / p_pic->p->i_pixel_pitch] *
1390                                  (*(p_out + i_index))) / ACCURACY;
1391 #else
1392                     *(p_out + i_index) = p_vout->p_sys->LUT[i_index % p_pic->p->i_pixel_pitch][p_vout->p_sys->lambda[1][i_index % p_pic->p->i_pixel_pitch][i_index / p_pic->p->i_pixel_pitch]][*(p_out + i_index)];
1393 #endif
1394                 p_out -= LeftOffset;
1395             }
1396 // second blended zone
1397             if (i_col + 1 < p_vout->p_sys->i_col)
1398             {
1399                 LeftOffset = i_copy_pitch - length;
1400                 p_out +=  LeftOffset;
1401                 for (i_index = 0; i_index < length; i_index++)
1402 #ifndef GAMMA
1403                     *(p_out + i_index) = (p_vout->p_sys->lambda[0][i_index % p_pic->p->i_pixel_pitch][i_index / p_pic->p->i_pixel_pitch] *
1404                                  (*(p_out + i_index))) / ACCURACY;
1405 #else
1406                     *(p_out + i_index) = p_vout->p_sys->LUT[i_index % p_pic->p->i_pixel_pitch][p_vout->p_sys->lambda[0][i_index % p_pic->p->i_pixel_pitch][i_index / p_pic->p->i_pixel_pitch]][*(p_out + i_index)];
1407 #endif
1408                 p_out -= LeftOffset;
1409             }
1410 // end blended zone
1411 #endif //OVERLAP
1412                 p_in += i_in_pitch;
1413                 p_out += i_out_pitch;
1414             }
1415 #ifdef OVERLAP
1416 // horizontal blend
1417         if (!p_vout->p_sys->b_attenuate)
1418         {
1419             if ((i_row == 0) && (p_vout->p_sys->i_row > 2))
1420             // black bar
1421             {
1422                     TopOffset = i_lines + (2 * p_vout->p_sys->i_halfHeight);
1423                     p_out -= TopOffset * p_outpic->p[i_plane].i_pitch;
1424                     for (i_index = 0; i_index < length; i_index++)
1425                         for (i_index2 = 0; i_index2 < i_copy_pitch; i_index2++)
1426                             *(p_out + (i_index * p_outpic->p[i_plane].i_pitch) + i_index2) = 0;
1427                     p_out += TopOffset * p_outpic->p[i_plane].i_pitch;
1428             }
1429             else if ((i_row + 1 == p_vout->p_sys->i_row) && (p_vout->p_sys->i_row > 2))
1430             // black bar
1431                 {
1432                     TopOffset = length - (2 * p_vout->p_sys->i_halfHeight);
1433                     p_out -= TopOffset * p_outpic->p[i_plane].i_pitch;
1434                     for (i_index = 0; i_index < length; i_index++)
1435                         for (i_index2 = 0; i_index2 < i_copy_pitch; i_index2++)
1436                             *(p_out + (i_index * p_outpic->p[i_plane].i_pitch) + i_index2) = 0;
1437                     p_out += TopOffset * p_outpic->p[i_plane].i_pitch;
1438                 }
1439         }
1440         else
1441         {
1442             if (p_vout->p_sys->i_row >= 2)
1443             {
1444                 length = 2 * p_vout->p_sys->i_halfHeight;
1445                 if (p_vout->p_sys->b_has_changed)
1446                 {
1447                     int i_plane_;
1448                     int i_row_mod;
1449                     Denom = F2(length);
1450                     a_2 = p_vout->p_sys->a_2 * (ACCURACY / 100);
1451                     a_1 = p_vout->p_sys->a_1 * length * (ACCURACY / 100);
1452                     a_0 = p_vout->p_sys->a_0 * Denom * (ACCURACY / 100);
1453                     for(i_row_mod = 0; i_row_mod < 2; i_row_mod++)
1454                       for (i_index = 0; i_index < length; i_index++)
1455                         for (i_plane_ =  0; i_plane_ < p_pic->p->i_pixel_pitch; i_plane_++)
1456                             p_vout->p_sys->lambda2[i_row_mod][i_plane_][i_index] = CLIP_0A(!i_row_mod ? ACCURACY - (F4(a_2, a_1, i_index) + a_0) / Denom : ACCURACY - (F4(a_2, a_1,(length) - i_index) + a_0) / Denom);
1457                 }
1458 // first blended zone
1459
1460             if (i_row)
1461             {
1462                 TopOffset = i_lines;
1463                 p_out -= TopOffset * p_outpic->p[i_plane].i_pitch;
1464                 for (i_index = 0; i_index < length; i_index++)
1465                     for (i_index2 = 0; i_index2 < i_copy_pitch; i_index2++)
1466 #ifndef GAMMA
1467                     *(p_out + (i_index * p_outpic->p[i_plane].i_pitch) + i_index2) = (p_vout->p_sys->lambda2[1][i_index2 % p_pic->p->i_pixel_pitch][i_index] *
1468                                  (*(p_out + (i_index * p_outpic->p[i_plane].i_pitch) + i_index2))) / ACCURACY;
1469 #else
1470                     *(p_out + (i_index * p_outpic->p[i_plane].i_pitch) + i_index2) = p_vout->p_sys->LUT[i_index2 % p_pic->p->i_pixel_pitch][p_vout->p_sys->lambda2[1][i_index2 % p_pic->p->i_pixel_pitch][i_index]][*(p_out + (i_index * p_outpic->p[i_plane].i_pitch) + i_index2)];
1471 #endif
1472                 p_out += TopOffset * p_outpic->p[i_plane].i_pitch;
1473             }
1474             else if (p_vout->p_sys->i_row > 2)
1475             // black bar
1476             {
1477                 TopOffset = i_lines + (2 * p_vout->p_sys->i_halfHeight);
1478                 p_out -= TopOffset * p_outpic->p[i_plane].i_pitch;
1479                 for (i_index = 0; i_index < length; i_index++)
1480                     for (i_index2 = 0; i_index2 < i_copy_pitch; i_index2++)
1481                         *(p_out + (i_index * p_outpic->p[i_plane].i_pitch) + i_index2) = 0;
1482                 p_out += TopOffset * p_outpic->p[i_plane].i_pitch;
1483             }
1484
1485 // second blended zone
1486
1487             if (i_row + 1 < p_vout->p_sys->i_row)
1488             {
1489                 TopOffset = length;
1490                 p_out -= TopOffset * p_outpic->p[i_plane].i_pitch;
1491                 for (i_index = 0; i_index < length; i_index++)
1492                     for (i_index2 = 0; i_index2 < i_copy_pitch; i_index2++)
1493 #ifndef GAMMA
1494                     *(p_out + (i_index * p_outpic->p[i_plane].i_pitch) + i_index2) = (p_vout->p_sys->lambda2[0][i_index2 % p_pic->p->i_pixel_pitch][i_index] *
1495                                  (*(p_out + (i_index * p_outpic->p[i_plane].i_pitch) + i_index2))) / ACCURACY;
1496 #else
1497                     *(p_out + (i_index * p_outpic->p[i_plane].i_pitch) + i_index2) = p_vout->p_sys->LUT[i_index2 % p_pic->p->i_pixel_pitch][p_vout->p_sys->lambda2[0][i_index2 % p_pic->p->i_pixel_pitch][i_index]][*(p_out + (i_index * p_outpic->p[i_plane].i_pitch) + i_index2)];
1498
1499 #endif
1500                 p_out += TopOffset * p_outpic->p[i_plane].i_pitch;
1501             }
1502             else if (p_vout->p_sys->i_row > 2)
1503             // black bar
1504             {
1505                 TopOffset = length - (2 * p_vout->p_sys->i_halfHeight);
1506                 p_out -= TopOffset * p_outpic->p[i_plane].i_pitch;
1507                 for (i_index = 0; i_index < length; i_index++)
1508                     for (i_index2 = 0; i_index2 < i_copy_pitch; i_index2++)
1509                         *(p_out + (i_index * p_outpic->p[i_plane].i_pitch) + i_index2) = 0;
1510                 p_out += TopOffset * p_outpic->p[i_plane].i_pitch;
1511             }
1512 // end blended zone
1513             }
1514         }
1515 #endif
1516 // bug for wall filter : fix by CC
1517 //            pi_left_skip[i_plane] += i_out_pitch;
1518             pi_left_skip[i_plane] += i_copy_pitch;
1519             }
1520
1521             vout_UnlinkPicture( p_vout->p_sys->pp_vout[ i_vout ].p_vout,
1522                                 p_outpic );
1523             vout_DisplayPicture( p_vout->p_sys->pp_vout[ i_vout ].p_vout,
1524                                  p_outpic );
1525         }
1526
1527         for( i_plane = 0 ; i_plane < p_pic->i_planes ; i_plane++ )
1528         {
1529             pi_top_skip[i_plane] += p_vout->p_sys->pp_vout[ i_vout-1 ].i_height
1530                                      * p_pic->p[i_plane].i_lines
1531                                      / p_vout->output.i_height
1532                                      * p_pic->p[i_plane].i_pitch;
1533         }
1534     }
1535 #ifdef OVERLAP
1536     if (p_vout->p_sys->b_has_changed) p_vout->p_sys->b_has_changed = false;
1537 #endif
1538 }
1539
1540
1541 #ifdef PACKED_YUV
1542 // WARNING : NO DEBUGGED
1543 /*****************************************************************************
1544  * RenderPackedYUV: displays previously rendered output
1545  *****************************************************************************
1546  * This function send the currently rendered image to Wall image, waits
1547  * until it is displayed and switch the two rendering buffers, preparing next
1548  * frame.
1549  *****************************************************************************/
1550 static void RenderPackedYUV( vout_thread_t *p_vout, picture_t *p_pic )
1551 {
1552     picture_t *p_outpic = NULL;
1553     int i_col, i_row, i_vout, i_plane;
1554     int pi_left_skip[VOUT_MAX_PLANES], pi_top_skip[VOUT_MAX_PLANES];
1555 #ifdef OVERLAP
1556     int LeftOffset, TopOffset;
1557     int constantYUV[3] = {0,128,128};
1558     int Denom;
1559     int a_2;
1560     int a_1;
1561     int a_0;
1562     int i_index, i_index2;
1563 #endif
1564
1565     for( i_plane = 0 ; i_plane < p_pic->i_planes ; i_plane++ )
1566         pi_top_skip[i_plane] = 0;
1567
1568     for( i_vout = 0;, i_row = 0; i_row < p_vout->p_sys->i_row; i_row++ )
1569     {
1570         for( i_plane = 0 ; i_plane < p_pic->i_planes ; i_plane++ )
1571             pi_left_skip[i_plane] = 0;
1572
1573         for( i_col = 0; i_col < p_vout->p_sys->i_col; i_col++, i_vout++ )
1574         {
1575             if( !p_vout->p_sys->pp_vout[ i_vout ].b_active )
1576             {
1577                 for( i_plane = 0 ; i_plane < p_pic->i_planes ; i_plane++ )
1578                 {
1579                     pi_left_skip[i_plane] +=
1580                         p_vout->p_sys->pp_vout[ i_vout ].i_width
1581                          * p_pic->p[i_plane].i_pitch / p_vout->output.i_width;
1582                 }
1583                 continue;
1584             }
1585
1586             while( ( p_outpic =
1587                 vout_CreatePicture( p_vout->p_sys->pp_vout[ i_vout ].p_vout,
1588                                     0, 0, 0 )
1589                    ) == NULL )
1590             {
1591                 if( !vlc_object_alive (p_vout) || p_vout->b_error )
1592                 {
1593                     vout_DestroyPicture(
1594                         p_vout->p_sys->pp_vout[ i_vout ].p_vout, p_outpic );
1595                     return;
1596                 }
1597
1598                 msleep( VOUT_OUTMEM_SLEEP );
1599             }
1600
1601             p_outpic->date = p_pic->date;
1602             vout_LinkPicture( p_vout->p_sys->pp_vout[ i_vout ].p_vout,
1603                               p_outpic );
1604
1605             for( i_plane = 0 ; i_plane < p_pic->i_planes ; i_plane++ )
1606             {
1607                 uint8_t *p_in, *p_in_end, *p_out;
1608                 int i_in_pitch = p_pic->p[i_plane].i_pitch;
1609                 int i_out_pitch = p_outpic->p[i_plane].i_pitch;
1610                 int i_copy_pitch = p_outpic->p[i_plane].i_visible_pitch;
1611                 const int i_div = p_vout->p_sys->pp_vout[i_vout].i_width / i_copy_pitch;
1612
1613 #ifdef OVERLAP
1614                 if (i_col) pi_left_skip[i_plane] -= (2 * p_vout->p_sys->i_halfLength ) / i_div;
1615                 if ((p_vout->p_sys->i_row >= 2) && (i_row) && (!i_col)) pi_top_skip[i_plane] -= (2 * p_vout->p_sys->i_halfHeight * p_pic->p[i_plane].i_pitch) / i_div;
1616                 if ((p_vout->p_sys->i_row > 2) && (i_row == 1) && (!i_col)) pi_top_skip[i_plane] -= (2 * p_vout->p_sys->i_halfHeight * p_pic->p[i_plane].i_pitch) / i_div;
1617                 if( !p_vout->p_sys->pp_vout[p_vout->p_sys->i_col-1].b_active )
1618                     pi_top_skip[i_plane] -= (2 * p_vout->p_sys->i_halfHeight * i_row * p_pic->p[i_plane].i_pitch) / i_div;
1619 // i_n : previous inactive pp_vout
1620                 int i_n=0;
1621                 while ((!p_vout->p_sys->pp_vout[i_row * p_vout->p_sys->i_col + i_col - 1 - i_n].b_active) && (i_col - i_n > 1)) i_n++;
1622                 if ((i_col > 1) && i_n)
1623                     pi_left_skip[i_plane] -= i_n*(2 * p_vout->p_sys->i_halfLength ) / i_div;
1624
1625                 p_in = p_pic->p[i_plane].p_pixels
1626                 /* Wall proprities */
1627                 + pi_top_skip[i_plane] + pi_left_skip[i_plane];
1628
1629                 int i_lines = p_outpic->p[i_plane].i_visible_lines;
1630 // 1088 lines bug in a mpeg2 stream of 1080 lines
1631                 if ((p_vout->p_sys->i_row - 1 == i_row) &&
1632                     (p_pic->p[i_plane].i_lines == 1088))
1633                         i_lines -= 8;
1634
1635                 p_in_end = p_in + i_lines * p_pic->p[i_plane].i_pitch;
1636 #else
1637                 p_in = p_pic->p[i_plane].p_pixels
1638                         + pi_top_skip[i_plane] + pi_left_skip[i_plane];
1639
1640                 p_in_end = p_in + p_outpic->p[i_plane].i_visible_lines
1641                                         * p_pic->p[i_plane].i_pitch;
1642 #endif
1643                 p_out = p_outpic->p[i_plane].p_pixels;
1644 #ifdef OVERLAP
1645         int length;
1646         length = 2 * p_vout->p_sys->i_halfLength * p_pic->p->i_pixel_pitch;
1647         LeftOffset = (i_col ? 0 : i_copy_pitch - length);
1648         if (p_vout->p_sys->b_has_changed)
1649         {
1650 #ifdef GAMMA
1651             int i_plane_;
1652             for (i_index = 0; i_index < length / p_pic->p->i_pixel_pitch; i_index++)
1653                 for (i_plane_ =  0; i_plane_ < p_pic->p->i_pixel_pitch; i_plane_++)
1654                     for (i_index2 = 0; i_index2 < 256; i_index2++)
1655                             p_vout->p_sys->LUT[i_plane_][i_index2][i_index] = F(i_index2, (length / p_pic->p->i_pixel_pitch, i_index, p_vout->p_sys->f_gamma[i_plane_]));
1656 #endif
1657             switch (p_vout->output.i_chroma)
1658                 {
1659                     case VLC_FOURCC('Y','U','Y','2'):    // packed by 2
1660                     case VLC_FOURCC('Y','U','N','V'):    // packed by 2
1661                         Denom = F2(length / p_pic->p->i_pixel_pitch);
1662                         a_2 = p_vout->p_sys->a_2 * (ACCURACY / 100);
1663                         a_1 = p_vout->p_sys->a_1 * 2 * p_vout->p_sys->i_halfLength * (ACCURACY / 100);
1664                         a_0 = p_vout->p_sys->a_0 * Denom * (ACCURACY / 100);
1665                         for (i_index = 0; i_index < length / p_pic->p->i_pixel_pitch; i_index+=p_pic->p->i_pixel_pitch)
1666                         // for each macropixel
1667                         {
1668                                 // first image pixel
1669                                 p_vout->p_sys->lambda[i_col][0][i_index] = CLIP_0A(!i_col ? ACCURACY - (F4(a_2, a_1, i_index) + a_0) / Denom : ACCURACY - (F4(a_2, a_1,(length / p_pic->p->i_pixel_pitch) - i_index) + a_0) / Denom);
1670                                 p_vout->p_sys->cstYUV[i_col][0][i_index] = ((ACCURACY - p_vout->p_sys->lambda[i_col][0][i_index]) * constantYUV[0]) / ACCURACY;
1671                                 p_vout->p_sys->lambda[i_col][1][i_index] = CLIP_0A(!i_col ? ACCURACY - (F4(a_2, a_1, i_index) + a_0) / Denom : ACCURACY - (F4(a_2, a_1,(length / p_pic->p->i_pixel_pitch) - i_index) + a_0) / Denom);
1672                                 p_vout->p_sys->cstYUV[i_col][1][i_index] = ((ACCURACY - p_vout->p_sys->lambda[i_col][1][i_index]) * constantYUV[1]) / ACCURACY;
1673                                 // second image pixel
1674                                 p_vout->p_sys->lambda[i_col][0][i_index + 1] = CLIP_0A(!i_col ? ACCURACY - (F4(a_2, a_1, i_index + 1) + a_0) / Denom : ACCURACY - (F4(a_2, a_1,(length / p_pic->p->i_pixel_pitch) - (i_index + 1)) + a_0) / Denom);
1675                                 p_vout->p_sys->cstYUV[i_col][0][i_index + 1] = ((ACCURACY - p_vout->p_sys->lambda[i_col][0][i_index]) * constantYUV[0]) / ACCURACY;
1676                                 p_vout->p_sys->lambda[i_col][1][i_index + 1] = p_vout->p_sys->lambda[i_col][1][i_index];
1677                                 p_vout->p_sys->cstYUV[i_col][1][i_index + 1] = p_vout->p_sys->cstYUV[i_col][1][i_index];
1678                         }
1679                         break;
1680                     case VLC_FOURCC('U','Y','V','Y'):    // packed by 2
1681                     case VLC_FOURCC('U','Y','N','V'):    // packed by 2
1682                     case VLC_FOURCC('Y','4','2','2'):    // packed by 2
1683                         Denom = F2(length / p_pic->p->i_pixel_pitch);
1684                         a_2 = p_vout->p_sys->a_2 * (ACCURACY / 100);
1685                         a_1 = p_vout->p_sys->a_1 * 2 * p_vout->p_sys->i_halfLength * (ACCURACY / 100);
1686                         a_0 = p_vout->p_sys->a_0 * Denom * (ACCURACY / 100);
1687                         for (i_index = 0; i_index < length / p_pic->p->i_pixel_pitch; i_index+=p_pic->p->i_pixel_pitch)
1688                         // for each macropixel
1689                         {
1690                                 // first image pixel
1691                                 p_vout->p_sys->lambda[i_col][0][i_index] = CLIP_0A(!i_col ? ACCURACY - (F4(a_2, a_1, i_index) + a_0) / Denom : ACCURACY - (F4(a_2, a_1,(length / p_pic->p->i_pixel_pitch) - i_index) + a_0) / Denom);
1692                                 p_vout->p_sys->cstYUV[i_col][0][i_index] = ((ACCURACY - p_vout->p_sys->lambda[i_col][0][i_index]) * constantYUV[1]) / ACCURACY;
1693                                 p_vout->p_sys->lambda[i_col][1][i_index] = CLIP_0A(!i_col ? ACCURACY - (F4(a_2, a_1, i_index) + a_0) / Denom : ACCURACY - (F4(a_2, a_1,(length / p_pic->p->i_pixel_pitch) - i_index) + a_0) / Denom);
1694                                 p_vout->p_sys->cstYUV[i_col][1][i_index] = ((ACCURACY - p_vout->p_sys->lambda[i_col][1][i_index]) * constantYUV[0]) / ACCURACY;
1695                                 // second image pixel
1696                                 p_vout->p_sys->lambda[i_col][0][i_index + 1] = CLIP_0A(!i_col ? ACCURACY - (F4(a_2, a_1, i_index + 1) + a_0) / Denom : ACCURACY - (F4(a_2, a_1,(length / p_pic->p->i_pixel_pitch) - (i_index + 1)) + a_0) / Denom);
1697                                 p_vout->p_sys->cstYUV[i_col][0][i_index + 1] = ((ACCURACY - p_vout->p_sys->lambda[i_col][0][i_index]) * constantYUV[1]) / ACCURACY;
1698                                 p_vout->p_sys->lambda[i_col][1][i_index + 1] = p_vout->p_sys->lambda[i_col][1][i_index];
1699                                 p_vout->p_sys->cstYUV[i_col][1][i_index + 1] = p_vout->p_sys->cstYUV[i_col][1][i_index];
1700                         }
1701                         break;
1702                     default :
1703                         break;
1704                 }
1705         }
1706 #endif
1707             while( p_in < p_in_end )
1708             {
1709 #ifndef OVERLAP
1710                 vlc_memcpy( p_out, p_in, i_copy_pitch);
1711 #else
1712                 vlc_memcpy( p_out + i_col * length, p_in + i_col * length, i_copy_pitch - length);
1713                 p_out += LeftOffset;
1714                 p_in += LeftOffset;
1715 #ifndef GAMMA
1716                 for (i_index = 0; i_index < length; i_index++)
1717                     *(p_out + i_index) = (p_vout->p_sys->lambda[i_col][i_index % p_pic->p->i_pixel_pitch][i_index / p_pic->p->i_pixel_pitch] *
1718                              (*(p_in + i_index))) / ACCURACY +
1719                              p_vout->p_sys->cstYUV[i_col][i_index % p_pic->p->i_pixel_pitch][i_index / p_pic->p->i_pixel_pitch];
1720 #else
1721                 for (i_index = 0; i_index < length; i_index++)
1722                     *(p_out + i_index) = p_vout->p_sys->LUT[i_index % p_pic->p->i_pixel_pitch][(p_vout->p_sys->lambda[i_col][i_index % p_pic->p->i_pixel_pitch][i_index / p_pic->p->i_pixel_pitch] *
1723                              (*(p_in + i_index))) / ACCURACY +
1724                              p_vout->p_sys->cstYUV[i_col][i_index % p_pic->p->i_pixel_pitch][i_index / p_pic->p->i_pixel_pitch]][i_index / p_pic->p->i_pixel_pitch];
1725 #endif
1726                 p_out -= LeftOffset;
1727                 p_in -= LeftOffset;
1728 #endif
1729                 p_in += i_in_pitch;
1730                 p_out += i_out_pitch;
1731             }
1732 #ifdef OVERLAP
1733             if (p_vout->p_sys->i_row == 2)
1734             {
1735                         length = 2 * p_vout->p_sys->i_halfHeight * p_pic->p->i_pixel_pitch;
1736                         TopOffset = (i_row ? i_lines : length / p_pic->p->i_pixel_pitch);
1737                         if (p_vout->p_sys->b_has_changed)
1738                         {
1739 #ifdef GAMMA
1740                                 int i_plane_;
1741                                 for (i_index = 0; i_index < length / p_pic->p->i_pixel_pitch; i_index++)
1742                                     for (i_plane_ =  0; i_plane_ < p_pic->p->i_pixel_pitch; i_plane_++)
1743                                         for (i_index2 = 0; i_index2 < 256; i_index2++)
1744                                                 p_vout->p_sys->LUT2[i_plane_][i_index2][i_index] = F(i_index2, (length / p_pic->p->i_pixel_pitch, i_index, p_vout->p_sys->f_gamma[i_plane_]));
1745 #endif
1746                                 switch (p_vout->output.i_chroma)
1747                                 {
1748                                     case VLC_FOURCC('Y','U','Y','2'):    // packed by 2
1749                                     case VLC_FOURCC('Y','U','N','V'):    // packed by 2
1750                                         Denom = F2(length / p_pic->p->i_pixel_pitch);
1751                                         a_2 = p_vout->p_sys->a_2 * (ACCURACY / 100);
1752                                         a_1 = p_vout->p_sys->a_1 * 2 * p_vout->p_sys->i_halfHeight * (ACCURACY / 100);
1753                                         a_0 = p_vout->p_sys->a_0 * Denom * (ACCURACY / 100);
1754                                         for (i_index = 0; i_index < length / p_pic->p->i_pixel_pitch; i_index+=p_pic->p->i_pixel_pitch)
1755                                         // for each macropixel
1756                                         {
1757                                                 // first image pixel
1758                                                 p_vout->p_sys->lambda2[i_row][0][i_index] = CLIP_0A(!i_row ? ACCURACY - (F4(a_2, a_1, i_index) + a_0) / Denom : ACCURACY - (F4(a_2, a_1,(length / p_pic->p->i_pixel_pitch) - i_index) + a_0) / Denom);
1759                                                 p_vout->p_sys->cstYUV2[i_row][0][i_index] = ((ACCURACY - p_vout->p_sys->lambda2[i_row][0][i_index]) * constantYUV[0]) / ACCURACY;
1760                                                 p_vout->p_sys->lambda2[i_row][1][i_index] = CLIP_0A(!i_row ? ACCURACY - (F4(a_2, a_1, i_index) + a_0) / Denom : ACCURACY - (F4(a_2, a_1,(length / p_pic->p->i_pixel_pitch) - i_index) + a_0) / Denom);
1761                                                 p_vout->p_sys->cstYUV2[i_row][1][i_index] = ((ACCURACY - p_vout->p_sys->lambda2[i_row][1][i_index]) * constantYUV[1]) / ACCURACY;
1762                                                 // second image pixel
1763                                                 p_vout->p_sys->lambda2[i_row][0][i_index + 1] = CLIP_0A(!i_row ? ACCURACY - (F4(a_2, a_1, i_index + 1) + a_0) / Denom : ACCURACY - (F4(a_2, a_1,(length / p_pic->p->i_pixel_pitch) - (i_index + 1)) + a_0) / Denom);
1764                                                 p_vout->p_sys->cstYUV2[i_row][0][i_index + 1] = ((ACCURACY - p_vout->p_sys->lambda2[i_row][0][i_index]) * constantYUV[0]) / ACCURACY;
1765                                                 p_vout->p_sys->lambda2[i_row][1][i_index + 1] = p_vout->p_sys->lambda2[i_row][1][i_index];
1766                                                 p_vout->p_sys->cstYUV2[i_row][1][i_index + 1] = p_vout->p_sys->cstYUV2[i_row][1][i_index];
1767                                         }
1768                                         break;
1769                                     case VLC_FOURCC('U','Y','V','Y'):    // packed by 2
1770                                     case VLC_FOURCC('U','Y','N','V'):    // packed by 2
1771                                     case VLC_FOURCC('Y','4','2','2'):    // packed by 2
1772                                         Denom = F2(length / p_pic->p->i_pixel_pitch);
1773                                         a_2 = p_vout->p_sys->a_2 * (ACCURACY / 100);
1774                                         a_1 = p_vout->p_sys->a_1 * 2 * p_vout->p_sys->i_halfHeight * (ACCURACY / 100);
1775                                         a_0 = p_vout->p_sys->a_0 * Denom * (ACCURACY / 100);
1776                                         for (i_index = 0; i_index < length / p_pic->p->i_pixel_pitch; i_index+=p_pic->p->i_pixel_pitch)
1777                                         // for each macropixel
1778                                         {
1779                                                 // first image pixel
1780                                                 p_vout->p_sys->lambda2[i_row][0][i_index] = CLIP_0A(!i_row ? ACCURACY - (F4(a_2, a_1, i_index) + a_0) / Denom : ACCURACY - (F4(a_2, a_1,(length / p_pic->p->i_pixel_pitch) - i_index) + a_0) / Denom);
1781                                                 p_vout->p_sys->cstYUV2[i_row][0][i_index] = ((ACCURACY - p_vout->p_sys->lambda2[i_col][0][i_index]) * constantYUV[1]) / ACCURACY;
1782                                                 p_vout->p_sys->lambda2[i_row][1][i_index] = CLIP_0A(!i_row ? ACCURACY - (F4(a_2, a_1, i_index) + a_0) / Denom : ACCURACY - (F4(a_2, a_1,(length / p_pic->p->i_pixel_pitch) - i_index) + a_0) / Denom);
1783                                                 p_vout->p_sys->cstYUV2[i_row][1][i_index] = ((ACCURACY - p_vout->p_sys->lambda2[i_row][1][i_index]) * constantYUV[0]) / ACCURACY;
1784                                                 // second image pixel
1785                                                 p_vout->p_sys->lambda2[i_row][0][i_index + 1] = CLIP_0A(!i_row ? ACCURACY - (F4(a_2, a_1, i_index + 1) + a_0) / Denom : ACCURACY - (F4(a_2, a_1,(length / p_pic->p->i_pixel_pitch) - (i_index + 1)) + a_0) / Denom);
1786                                                 p_vout->p_sys->cstYUV2[i_row][0][i_index + 1] = ((ACCURACY - p_vout->p_sys->lambda2[i_row][0][i_index]) * constantYUV[1]) / ACCURACY;
1787                                                 p_vout->p_sys->lambda2[i_row][1][i_index + 1] = p_vout->p_sys->lambda2[i_row][1][i_index];
1788                                                 p_vout->p_sys->cstYUV2[i_row][1][i_index + 1] = p_vout->p_sys->cstYUV2[i_row][1][i_index];
1789                                         }
1790                                         break;
1791                                     default :
1792                                         break;
1793                                 }
1794                         }
1795                         p_out -= TopOffset * p_outpic->p[i_plane].i_pitch;
1796 #ifndef GAMMA
1797                         for (i_index = 0; i_index < length / p_pic->p->i_pixel_pitch; i_index++)
1798                             for (i_index2 = 0; i_index2 < i_copy_pitch; i_index2++)
1799                                 *(p_out + (i_index * p_outpic->p[i_plane].i_pitch) + i_index2) = (p_vout->p_sys->lambda2[i_row][i_index2 % p_pic->p->i_pixel_pitch][i_index] *
1800                                      (*(p_out + (i_index * p_outpic->p[i_plane].i_pitch) + i_index2))) / ACCURACY +
1801                                      p_vout->p_sys->cstYUV2[i_row][i_index2 % p_pic->p->i_pixel_pitch][i_index];
1802 #else
1803                         for (i_index = 0; i_index < length / p_pic->p->i_pixel_pitch; i_index++)
1804                             for (i_index2 = 0; i_index2 < i_copy_pitch; i_index2++)
1805                                 *(p_out + (i_index * p_outpic->p[i_plane].i_pitch) + i_index2) = p_vout->p_sys->LUT[i_index % p_pic->p->i_pixel_pitch][(p_vout->p_sys->lambda2[i_row][i_index2 % p_pic->p->i_pixel_pitch][i_index] *
1806                                      (*(p_out + (i_index * p_outpic->p[i_plane].i_pitch) + i_index2))) / ACCURACY +
1807                                      p_vout->p_sys->cstYUV2[i_row][i_index2 % p_pic->p->i_pixel_pitch][i_index]][i_index / p_pic->p->i_pixel_pitch];
1808
1809 #endif
1810                         p_out += TopOffset * p_outpic->p[i_plane].i_pitch;
1811             }
1812 #endif
1813 // bug for wall filter : fix by CC
1814 //            pi_left_skip[i_plane] += i_out_pitch;
1815             pi_left_skip[i_plane] += i_copy_pitch;
1816             }
1817
1818             vout_UnlinkPicture( p_vout->p_sys->pp_vout[ i_vout ].p_vout,
1819                                 p_outpic );
1820             vout_DisplayPicture( p_vout->p_sys->pp_vout[ i_vout ].p_vout,
1821                                  p_outpic );
1822         }
1823
1824         for( i_plane = 0 ; i_plane < p_pic->i_planes ; i_plane++ )
1825         {
1826             pi_top_skip[i_plane] += p_vout->p_sys->pp_vout[ i_vout-1 ].i_height
1827                                      * p_pic->p[i_plane].i_lines
1828                                      / p_vout->output.i_height
1829                                      * p_pic->p[i_plane].i_pitch;
1830         }
1831     }
1832 #ifdef OVERLAP
1833     if (p_vout->p_sys->b_has_changed) p_vout->p_sys->b_has_changed = false;
1834 #endif
1835 }
1836 #endif
1837
1838
1839 /*****************************************************************************
1840  * RemoveAllVout: destroy all the child video output threads
1841  *****************************************************************************/
1842 static void RemoveAllVout( vout_thread_t *p_vout )
1843 {
1844     for( int i = 0; i < p_vout->p_sys->i_vout; i++ )
1845     {
1846         if( p_vout->p_sys->pp_vout[i].b_active )
1847         {
1848             DEL_CALLBACKS( p_vout->p_sys->pp_vout[i].p_vout, SendEvents );
1849             vout_CloseAndRelease( p_vout->p_sys->pp_vout[i].p_vout );
1850             p_vout->p_sys->pp_vout[i].p_vout = NULL;
1851         }
1852     }
1853 }
1854
1855 /*****************************************************************************
1856  * SendEvents: forward mouse and keyboard events to the parent p_vout
1857  *****************************************************************************/
1858 static int SendEvents( vlc_object_t *p_this, char const *psz_var,
1859                        vlc_value_t oldval, vlc_value_t newval, void *_p_vout )
1860 {
1861     VLC_UNUSED(oldval);
1862     vout_thread_t *p_vout = (vout_thread_t *)_p_vout;
1863     int i_vout;
1864     vlc_value_t sentval = newval;
1865
1866     /* Find the video output index */
1867     for( i_vout = 0; i_vout < p_vout->p_sys->i_vout; i_vout++ )
1868     {
1869         if( p_this == (vlc_object_t *)p_vout->p_sys->pp_vout[ i_vout ].p_vout )
1870         {
1871             break;
1872         }
1873     }
1874
1875     if( i_vout == p_vout->p_sys->i_vout )
1876     {
1877         return VLC_EGENERIC;
1878     }
1879
1880     /* Translate the mouse coordinates */
1881     if( !strcmp( psz_var, "mouse-x" ) )
1882     {
1883 #ifdef OVERLAP
1884         int i_overlap = ((p_vout->p_sys->i_col > 2) ? 0 : 2 * p_vout->p_sys->i_halfLength);
1885            sentval.i_int += (p_vout->output.i_width - i_overlap)
1886 #else
1887            sentval.i_int += p_vout->output.i_width
1888 #endif
1889                          * (i_vout % p_vout->p_sys->i_col)
1890                           / p_vout->p_sys->i_col;
1891     }
1892     else if( !strcmp( psz_var, "mouse-y" ) )
1893     {
1894 #ifdef OVERLAP
1895         int i_overlap = ((p_vout->p_sys->i_row > 2) ? 0 : 2 * p_vout->p_sys->i_halfHeight);
1896            sentval.i_int += (p_vout->output.i_height - i_overlap)
1897 #else
1898            sentval.i_int += p_vout->output.i_height
1899 #endif
1900 //bug fix in Wall plug-in
1901 //                         * (i_vout / p_vout->p_sys->i_row)
1902                          * (i_vout / p_vout->p_sys->i_col)
1903                           / p_vout->p_sys->i_row;
1904     }
1905
1906     var_Set( p_vout, psz_var, sentval );
1907
1908     return VLC_SUCCESS;
1909 }
1910
1911 /*****************************************************************************
1912  * SendEventsToChild: forward events to the child/children vout
1913  *****************************************************************************/
1914 static int SendEventsToChild( vlc_object_t *p_this, char const *psz_var,
1915                        vlc_value_t oldval, vlc_value_t newval, void *p_data )
1916 {
1917     VLC_UNUSED(oldval); VLC_UNUSED(p_data);
1918     vout_thread_t *p_vout = (vout_thread_t *)p_this;
1919     int i_row, i_col, i_vout = 0;
1920
1921     for( i_row = 0; i_row < p_vout->p_sys->i_row; i_row++ )
1922     {
1923         for( i_col = 0; i_col < p_vout->p_sys->i_col; i_col++ )
1924         {
1925             var_Set( p_vout->p_sys->pp_vout[ i_vout ].p_vout, psz_var, newval);
1926             if( !strcmp( psz_var, "fullscreen" ) ) break;
1927             i_vout++;
1928         }
1929     }
1930
1931     return VLC_SUCCESS;
1932 }