Implement avcodec_decode_video2(), _audio3() and _subtitle2() which takes an
[ffmpeg.git] / libavcodec / cook.c
index 07655b0..9dd13bf 100644 (file)
  * You should have received a copy of the GNU Lesser General Public
  * License along with FFmpeg; if not, write to the Free Software
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
- *
  */
 
 /**
- * @file cook.c
- * Cook compatible decoder.
+ * @file libavcodec/cook.c
+ * Cook compatible decoder. Bastardization of the G.722.1 standard.
  * This decoder handles RealNetworks, RealAudio G2 data.
  * Cook is identified by the codec name cook in RM files.
  *
 #include <stddef.h>
 #include <stdio.h>
 
+#include "libavutil/lfg.h"
+#include "libavutil/random_seed.h"
 #include "avcodec.h"
 #include "bitstream.h"
 #include "dsputil.h"
-#include "common.h"
 #include "bytestream.h"
 
 #include "cookdata.h"
 #define MC_COOK         0x2000000   //multichannel Cook, not supported
 
 #define SUBBAND_SIZE    20
+#define MAX_SUBPACKETS   5
 //#define COOKDEBUG
 
 typedef struct {
-    int     size;
-    int     loccode[8];
-    int     levcode[8];
-} COOKgain;
+    int *now;
+    int *previous;
+} cook_gains;
+
+typedef struct cook {
+    /*
+     * The following 5 functions provide the lowlevel arithmetic on
+     * the internal audio buffers.
+     */
+    void (* scalar_dequant)(struct cook *q, int index, int quant_index,
+                            int* subband_coef_index, int* subband_coef_sign,
+                            float* mlt_p);
 
-typedef struct {
+    void (* decouple) (struct cook *q,
+                       int subband,
+                       float f1, float f2,
+                       float *decode_buffer,
+                       float *mlt_buffer1, float *mlt_buffer2);
+
+    void (* imlt_window) (struct cook *q, float *buffer1,
+                          cook_gains *gains_ptr, float *previous_buffer);
+
+    void (* interpolate) (struct cook *q, float* buffer,
+                          int gain_index, int gain_index_next);
+
+    void (* saturate_output) (struct cook *q, int chan, int16_t *out);
+
+    AVCodecContext*     avctx;
     GetBitContext       gb;
     /* stream data */
     int                 nb_channels;
@@ -88,26 +111,19 @@ typedef struct {
     int                 bits_per_subpacket;
     int                 cookversion;
     /* states */
-    int                 random_state;
+    AVLFG               random_state;
 
     /* transform data */
-    FFTContext          fft_ctx;
-    DECLARE_ALIGNED_16(FFTSample, mlt_tmp[1024]);  /* temporary storage for imlt */
+    MDCTContext         mdct_ctx;
     float*              mlt_window;
-    float*              mlt_precos;
-    float*              mlt_presin;
-    float*              mlt_postcos;
-    int                 fft_size;
-    int                 fft_order;
-    int                 mlt_size;       //modulated lapped transform size
 
     /* gain buffers */
-    COOKgain            *gain_ptr1[2];
-    COOKgain            *gain_ptr2[2];
-    COOKgain            gain_1;
-    COOKgain            gain_2;
-    COOKgain            gain_3;
-    COOKgain            gain_4;
+    cook_gains          gains1;
+    cook_gains          gains2;
+    int                 gain_1[9];
+    int                 gain_2[9];
+    int                 gain_3[9];
+    int                 gain_4[9];
 
     /* VLC data */
     int                 js_vlc_bits;
@@ -118,8 +134,6 @@ typedef struct {
     /* generatable tables and related variables */
     int                 gain_size_factor;
     float               gain_table[23];
-    float               pow2tab[127];
-    float               rootpow2tab[127];
 
     /* data buffers */
 
@@ -129,8 +143,14 @@ typedef struct {
     float               mono_previous_buffer2[1024];
     float               decode_buffer_1[1024];
     float               decode_buffer_2[1024];
+    float               decode_buffer_0[1060]; /* static allocation for joint decode */
+
+    const float         *cplscales[5];
 } COOKContext;
 
+static float     pow2tab[127];
+static float rootpow2tab[127];
+
 /* debug functions */
 
 #ifdef COOKDEBUG
@@ -166,94 +186,85 @@ static void dump_short_table(short* table, int size, int delimiter) {
 /*************** init functions ***************/
 
 /* table generator */
-static void init_pow2table(COOKContext *q){
+static av_cold void init_pow2table(void){
     int i;
-    q->pow2tab[63] = 1.0;
-    for (i=1 ; i<64 ; i++){
-        q->pow2tab[63+i]=(float)((uint64_t)1<<i);
-        q->pow2tab[63-i]=1.0/(float)((uint64_t)1<<i);
+    for (i=-63 ; i<64 ; i++){
+            pow2tab[63+i]=     pow(2, i);
+        rootpow2tab[63+i]=sqrt(pow(2, i));
     }
 }
 
 /* table generator */
-static void init_rootpow2table(COOKContext *q){
-    int i;
-    q->rootpow2tab[63] = 1.0;
-    for (i=1 ; i<64 ; i++){
-        q->rootpow2tab[63+i]=sqrt((float)((uint64_t)1<<i));
-        q->rootpow2tab[63-i]=sqrt(1.0/(float)((uint64_t)1<<i));
-    }
-}
-
-/* table generator */
-static void init_gain_table(COOKContext *q) {
+static av_cold void init_gain_table(COOKContext *q) {
     int i;
     q->gain_size_factor = q->samples_per_channel/8;
     for (i=0 ; i<23 ; i++) {
-        q->gain_table[i] = pow((double)q->pow2tab[i+52] ,
+        q->gain_table[i] = pow(pow2tab[i+52] ,
                                (1.0/(double)q->gain_size_factor));
     }
 }
 
 
-static int init_cook_vlc_tables(COOKContext *q) {
+static av_cold int init_cook_vlc_tables(COOKContext *q) {
     int i, result;
 
     result = 0;
     for (i=0 ; i<13 ; i++) {
-        result &= init_vlc (&q->envelope_quant_index[i], 9, 24,
+        result |= init_vlc (&q->envelope_quant_index[i], 9, 24,
             envelope_quant_index_huffbits[i], 1, 1,
             envelope_quant_index_huffcodes[i], 2, 2, 0);
     }
-    av_log(NULL,AV_LOG_DEBUG,"sqvh VLC init\n");
+    av_log(q->avctx,AV_LOG_DEBUG,"sqvh VLC init\n");
     for (i=0 ; i<7 ; i++) {
-        result &= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
+        result |= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
             cvh_huffbits[i], 1, 1,
             cvh_huffcodes[i], 2, 2, 0);
     }
 
     if (q->nb_channels==2 && q->joint_stereo==1){
-        result &= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1,
+        result |= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1,
             ccpl_huffbits[q->js_vlc_bits-2], 1, 1,
             ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0);
-        av_log(NULL,AV_LOG_DEBUG,"Joint-stereo VLC used.\n");
+        av_log(q->avctx,AV_LOG_DEBUG,"Joint-stereo VLC used.\n");
     }
 
-    av_log(NULL,AV_LOG_DEBUG,"VLC tables initialized.\n");
+    av_log(q->avctx,AV_LOG_DEBUG,"VLC tables initialized.\n");
     return result;
 }
 
-static int init_cook_mlt(COOKContext *q) {
+static av_cold int init_cook_mlt(COOKContext *q) {
     int j;
-    float alpha;
+    int mlt_size = q->samples_per_channel;
 
-    /* Allocate the buffers, could be replaced with a static [512]
-       array if needed. */
-    q->mlt_size = q->samples_per_channel;
-    q->mlt_window = av_malloc(sizeof(float)*q->mlt_size);
-    q->mlt_precos = av_malloc(sizeof(float)*q->mlt_size/2);
-    q->mlt_presin = av_malloc(sizeof(float)*q->mlt_size/2);
-    q->mlt_postcos = av_malloc(sizeof(float)*q->mlt_size/2);
+    if ((q->mlt_window = av_malloc(sizeof(float)*mlt_size)) == 0)
+      return -1;
 
     /* Initialize the MLT window: simple sine window. */
-    alpha = M_PI / (2.0 * (float)q->mlt_size);
-    for(j=0 ; j<q->mlt_size ; j++) {
-        q->mlt_window[j] = sin((j + 512.0/(float)q->mlt_size) * alpha);
+    ff_sine_window_init(q->mlt_window, mlt_size);
+    for(j=0 ; j<mlt_size ; j++)
+        q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
+
+    /* Initialize the MDCT. */
+    if (ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size)+1, 1)) {
+      av_free(q->mlt_window);
+      return -1;
     }
+    av_log(q->avctx,AV_LOG_DEBUG,"MDCT initialized, order = %d.\n",
+           av_log2(mlt_size)+1);
 
-    /* pre/post twiddle factors */
-    for (j=0 ; j<q->mlt_size/2 ; j++){
-        q->mlt_precos[j] = cos( ((j+0.25)*M_PI)/q->mlt_size);
-        q->mlt_presin[j] = sin( ((j+0.25)*M_PI)/q->mlt_size);
-        q->mlt_postcos[j] = (float)sqrt(2.0/(float)q->mlt_size)*cos( ((float)j*M_PI) /q->mlt_size); //sqrt(2/MLT_size) = scalefactor
-    }
+    return 0;
+}
 
-    /* Initialize the FFT. */
-    ff_fft_init(&q->fft_ctx, av_log2(q->mlt_size)-1, 0);
-    av_log(NULL,AV_LOG_DEBUG,"FFT initialized, order = %d.\n",
-           av_log2(q->samples_per_channel)-1);
+static const float *maybe_reformat_buffer32 (COOKContext *q, const float *ptr, int n)
+{
+    if (1)
+        return ptr;
+}
 
-    return (int)(q->mlt_window && q->mlt_precos && q->mlt_presin && q->mlt_postcos);
+static av_cold void init_cplscales_table (COOKContext *q) {
+    int i;
+    for (i=0;i<5;i++)
+        q->cplscales[i] = maybe_reformat_buffer32 (q, cplscales[i], (1<<(i+2))-1);
 }
 
 /*************** init functions end ***********/
@@ -263,7 +274,7 @@ static int init_cook_mlt(COOKContext *q) {
  * Why? No idea, some checksum/error detection method maybe.
  *
  * Out buffer size: extra bytes are needed to cope with
- * padding/missalignment.
+ * padding/misalignment.
  * Subpackets passed to the decoder can contain two, consecutive
  * half-subpackets, of identical but arbitrary size.
  *          1234 1234 1234 1234  extraA extraB
@@ -281,10 +292,10 @@ static int init_cook_mlt(COOKContext *q) {
 #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes)+3) % 4)
 #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
 
-static inline int decode_bytes(uint8_t* inbuffer, uint8_t* out, int bytes){
+static inline int decode_bytes(const uint8_t* inbuffer, uint8_t* out, int bytes){
     int i, off;
     uint32_t c;
-    uint32_t* buf;
+    const uint32_t* buf;
     uint32_t* obuf = (uint32_t*) out;
     /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
      * I'm too lazy though, should be something like
@@ -292,8 +303,8 @@ static inline int decode_bytes(uint8_t* inbuffer, uint8_t* out, int bytes){
      *     (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
      * Buffer alignment needs to be checked. */
 
-    off = (int)((long)inbuffer & 3);
-    buf = (uint32_t*) (inbuffer - off);
+    off = (intptr_t)inbuffer & 3;
+    buf = (const uint32_t*) (inbuffer - off);
     c = be2me_32((0x37c511f2 >> (off*8)) | (0x37c511f2 << (32-(off*8))));
     bytes += 3 + off;
     for (i = 0; i < bytes/4; i++)
@@ -306,7 +317,7 @@ static inline int decode_bytes(uint8_t* inbuffer, uint8_t* out, int bytes){
  * Cook uninit
  */
 
-static int cook_decode_close(AVCodecContext *avctx)
+static av_cold int cook_decode_close(AVCodecContext *avctx)
 {
     int i;
     COOKContext *q = avctx->priv_data;
@@ -314,13 +325,10 @@ static int cook_decode_close(AVCodecContext *avctx)
 
     /* Free allocated memory buffers. */
     av_free(q->mlt_window);
-    av_free(q->mlt_precos);
-    av_free(q->mlt_presin);
-    av_free(q->mlt_postcos);
     av_free(q->decoded_bytes_buffer);
 
     /* Free the transform. */
-    ff_fft_end(&q->fft_ctx);
+    ff_mdct_end(&q->mdct_ctx);
 
     /* Free the VLC tables. */
     for (i=0 ; i<13 ; i++) {
@@ -333,35 +341,33 @@ static int cook_decode_close(AVCodecContext *avctx)
         free_vlc(&q->ccpl);
     }
 
-    av_log(NULL,AV_LOG_DEBUG,"Memory deallocated.\n");
+    av_log(avctx,AV_LOG_DEBUG,"Memory deallocated.\n");
 
     return 0;
 }
 
 /**
- * Fill the COOKgain structure for the timedomain quantization.
+ * Fill the gain array for the timedomain quantization.
  *
  * @param q                 pointer to the COOKContext
- * @param gaininfo          pointer to the COOKgain
+ * @param gaininfo[9]       array of gain indexes
  */
 
-static void decode_gain_info(GetBitContext *gb, COOKgain* gaininfo) {
-    int i;
+static void decode_gain_info(GetBitContext *gb, int *gaininfo)
+{
+    int i, n;
 
     while (get_bits1(gb)) {}
+    n = get_bits_count(gb) - 1;     //amount of elements*2 to update
 
-    gaininfo->size = get_bits_count(gb) - 1;     //amount of elements*2 to update
-
-    if (get_bits_count(gb) - 1 <= 0) return;
+    i = 0;
+    while (n--) {
+        int index = get_bits(gb, 3);
+        int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
 
-    for (i=0 ; i<gaininfo->size ; i++){
-        gaininfo->loccode[i] = get_bits(gb,3);
-        if (get_bits1(gb)) {
-            gaininfo->levcode[i] = get_bits(gb,4) - 7;  //convert to signed
-        } else {
-            gaininfo->levcode[i] = -1;
-        }
+        while (i <= index) gaininfo[i++] = gain;
     }
+    while (i <= 8) gaininfo[i++] = 0;
 }
 
 /**
@@ -373,9 +379,7 @@ static void decode_gain_info(GetBitContext *gb, COOKgain* gaininfo) {
 
 static void decode_envelope(COOKContext *q, int* quant_index_table) {
     int i,j, vlc_index;
-    int bitbias;
 
-    bitbias = get_bits_count(&q->gb);
     quant_index_table[0]= get_bits(&q->gb,6) - 6;       //This is used later in categorize
 
     for (i=1 ; i < q->total_subbands ; i++){
@@ -394,22 +398,6 @@ static void decode_envelope(COOKContext *q, int* quant_index_table) {
     }
 }
 
-/**
- * Create the quant value table.
- *
- * @param q                 pointer to the COOKContext
- * @param quant_value_table pointer to the array
- */
-
-static void inline dequant_envelope(COOKContext *q, int* quant_index_table,
-                                    float* quant_value_table){
-
-    int i;
-    for(i=0 ; i < q->total_subbands ; i++){
-        quant_value_table[i] = q->rootpow2tab[quant_index_table[i]+63];
-    }
-}
-
 /**
  * Calculate the category and category_index vector.
  *
@@ -421,28 +409,25 @@ static void inline dequant_envelope(COOKContext *q, int* quant_index_table,
 
 static void categorize(COOKContext *q, int* quant_index_table,
                        int* category, int* category_index){
-    int exp_idx, bias, tmpbias, bits_left, num_bits, index, v, i, j;
+    int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
     int exp_index2[102];
     int exp_index1[102];
 
-    int tmp_categorize_array1[128];
-    int tmp_categorize_array1_idx=0;
-    int tmp_categorize_array2[128];
-    int tmp_categorize_array2_idx=0;
-    int category_index_size=0;
+    int tmp_categorize_array[128*2];
+    int tmp_categorize_array1_idx=q->numvector_size;
+    int tmp_categorize_array2_idx=q->numvector_size;
 
     bits_left =  q->bits_per_subpacket - get_bits_count(&q->gb);
 
     if(bits_left > q->samples_per_channel) {
         bits_left = q->samples_per_channel +
                     ((bits_left - q->samples_per_channel)*5)/8;
-        //av_log(NULL, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
+        //av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
     }
 
     memset(&exp_index1,0,102*sizeof(int));
     memset(&exp_index2,0,102*sizeof(int));
-    memset(&tmp_categorize_array1,0,128*sizeof(int));
-    memset(&tmp_categorize_array2,0,128*sizeof(int));
+    memset(&tmp_categorize_array,0,128*2*sizeof(int));
 
     bias=-32;
 
@@ -451,12 +436,7 @@ static void categorize(COOKContext *q, int* quant_index_table,
         num_bits = 0;
         index = 0;
         for (j=q->total_subbands ; j>0 ; j--){
-            exp_idx = (i - quant_index_table[index] + bias) / 2;
-            if (exp_idx<0){
-                exp_idx=0;
-            } else if(exp_idx >7) {
-                exp_idx=7;
-            }
+            exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
             index++;
             num_bits+=expbits_tab[exp_idx];
         }
@@ -468,25 +448,20 @@ static void categorize(COOKContext *q, int* quant_index_table,
     /* Calculate total number of bits. */
     num_bits=0;
     for (i=0 ; i<q->total_subbands ; i++) {
-        exp_idx = (bias - quant_index_table[i]) / 2;
-        if (exp_idx<0) {
-            exp_idx=0;
-        } else if(exp_idx >7) {
-            exp_idx=7;
-        }
+        exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
         num_bits += expbits_tab[exp_idx];
         exp_index1[i] = exp_idx;
         exp_index2[i] = exp_idx;
     }
-    tmpbias = bias = num_bits;
+    tmpbias1 = tmpbias2 = num_bits;
 
     for (j = 1 ; j < q->numvector_size ; j++) {
-        if (tmpbias + bias > 2*bits_left) {  /* ---> */
+        if (tmpbias1 + tmpbias2 > 2*bits_left) {  /* ---> */
             int max = -999999;
             index=-1;
             for (i=0 ; i<q->total_subbands ; i++){
                 if (exp_index1[i] < 7) {
-                    v = (-2*exp_index1[i]) - quant_index_table[i] - 32;
+                    v = (-2*exp_index1[i]) - quant_index_table[i] + bias;
                     if ( v >= max) {
                         max = v;
                         index = i;
@@ -494,16 +469,16 @@ static void categorize(COOKContext *q, int* quant_index_table,
                 }
             }
             if(index==-1)break;
-            tmp_categorize_array1[tmp_categorize_array1_idx++] = index;
-            tmpbias -= expbits_tab[exp_index1[index]] -
-                       expbits_tab[exp_index1[index]+1];
+            tmp_categorize_array[tmp_categorize_array1_idx++] = index;
+            tmpbias1 -= expbits_tab[exp_index1[index]] -
+                        expbits_tab[exp_index1[index]+1];
             ++exp_index1[index];
         } else {  /* <--- */
             int min = 999999;
             index=-1;
             for (i=0 ; i<q->total_subbands ; i++){
                 if(exp_index2[i] > 0){
-                    v = (-2*exp_index2[i])-quant_index_table[i];
+                    v = (-2*exp_index2[i])-quant_index_table[i]+bias;
                     if ( v < min) {
                         min = v;
                         index = i;
@@ -511,9 +486,9 @@ static void categorize(COOKContext *q, int* quant_index_table,
                 }
             }
             if(index == -1)break;
-            tmp_categorize_array2[tmp_categorize_array2_idx++] = index;
-            tmpbias -= expbits_tab[exp_index2[index]] -
-                       expbits_tab[exp_index2[index]-1];
+            tmp_categorize_array[--tmp_categorize_array2_idx] = index;
+            tmpbias2 -= expbits_tab[exp_index2[index]] -
+                        expbits_tab[exp_index2[index]-1];
             --exp_index2[index];
         }
     }
@@ -521,17 +496,8 @@ static void categorize(COOKContext *q, int* quant_index_table,
     for(i=0 ; i<q->total_subbands ; i++)
         category[i] = exp_index2[i];
 
-    /* Concatenate the two arrays. */
-    for(i=tmp_categorize_array2_idx-1 ; i >= 0; i--)
-        category_index[category_index_size++] =  tmp_categorize_array2[i];
-
-    for(i=0;i<tmp_categorize_array1_idx;i++)
-        category_index[category_index_size++ ] =  tmp_categorize_array1[i];
-
-    /* FIXME: mc_sich_ra8_20.rm triggers this, not sure with what we
-       should fill the remaining bytes. */
-    for(i=category_index_size;i<q->numvector_size;i++)
-        category_index[i]=0;
+    for(i=0 ; i<q->numvector_size-1 ; i++)
+        category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
 
 }
 
@@ -544,7 +510,7 @@ static void categorize(COOKContext *q, int* quant_index_table,
  * @param category_index        pointer to the category_index array
  */
 
-static void inline expand_category(COOKContext *q, int* category,
+static inline void expand_category(COOKContext *q, int* category,
                                    int* category_index){
     int i;
     for(i=0 ; i<q->num_vectors ; i++){
@@ -557,57 +523,48 @@ static void inline expand_category(COOKContext *q, int* category,
  *
  * @param q                     pointer to the COOKContext
  * @param index                 index
- * @param band                  current subband
- * @param quant_value_table     pointer to the array
+ * @param quant_index           quantisation index
  * @param subband_coef_index    array of indexes to quant_centroid_tab
- * @param subband_coef_noise    use random noise instead of predetermined value
- * @param mlt_buffer            pointer to the mlt buffer
+ * @param subband_coef_sign     signs of coefficients
+ * @param mlt_p                 pointer into the mlt buffer
  */
 
-
-static void scalar_dequant(COOKContext *q, int index, int band,
-                           float* quant_value_table, int* subband_coef_index,
-                           int* subband_coef_noise, float* mlt_buffer){
+static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
+                           int* subband_coef_index, int* subband_coef_sign,
+                           float* mlt_p){
     int i;
     float f1;
 
     for(i=0 ; i<SUBBAND_SIZE ; i++) {
         if (subband_coef_index[i]) {
-            if (subband_coef_noise[i]) {
-                f1 = -quant_centroid_tab[index][subband_coef_index[i]];
-            } else {
-                f1 = quant_centroid_tab[index][subband_coef_index[i]];
-            }
+            f1 = quant_centroid_tab[index][subband_coef_index[i]];
+            if (subband_coef_sign[i]) f1 = -f1;
         } else {
-            /* noise coding if subband_coef_noise[i] == 0 */
-            q->random_state = q->random_state * 214013 + 2531011;    //typical RNG numbers
-            f1 = randsign[(q->random_state/0x1000000)&1] * dither_tab[index]; //>>31
+            /* noise coding if subband_coef_index[i] == 0 */
+            f1 = dither_tab[index];
+            if (av_lfg_get(&q->random_state) < 0x80000000) f1 = -f1;
         }
-        mlt_buffer[band*20+ i] = f1 * quant_value_table[band];
+        mlt_p[i] = f1 * rootpow2tab[quant_index+63];
     }
 }
 /**
- * Unpack the subband_coef_index and subband_coef_noise vectors.
+ * Unpack the subband_coef_index and subband_coef_sign vectors.
  *
  * @param q                     pointer to the COOKContext
  * @param category              pointer to the category array
  * @param subband_coef_index    array of indexes to quant_centroid_tab
- * @param subband_coef_noise    use random noise instead of predetermined value
+ * @param subband_coef_sign     signs of coefficients
  */
 
 static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
-                       int* subband_coef_noise) {
+                       int* subband_coef_sign) {
     int i,j;
     int vlc, vd ,tmp, result;
-    int ub;
-    int cb;
 
     vd = vd_tab[category];
     result = 0;
     for(i=0 ; i<vpr_tab[category] ; i++){
-        ub = get_bits_count(&q->gb);
         vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
-        cb = get_bits_count(&q->gb);
         if (q->bits_per_subpacket < get_bits_count(&q->gb)){
             vlc = 0;
             result = 1;
@@ -620,13 +577,13 @@ static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
         for(j=0 ; j<vd ; j++){
             if (subband_coef_index[i*vd + j]) {
                 if(get_bits_count(&q->gb) < q->bits_per_subpacket){
-                    subband_coef_noise[i*vd+j] = get_bits1(&q->gb);
+                    subband_coef_sign[i*vd+j] = get_bits1(&q->gb);
                 } else {
                     result=1;
-                    subband_coef_noise[i*vd+j]=0;
+                    subband_coef_sign[i*vd+j]=0;
                 }
             } else {
-                subband_coef_noise[i*vd+j]=0;
+                subband_coef_sign[i*vd+j]=0;
             }
         }
     }
@@ -639,41 +596,42 @@ static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
  *
  * @param q                 pointer to the COOKContext
  * @param category          pointer to the category array
- * @param quant_value_table pointer to the array
+ * @param quant_index_table pointer to the array
  * @param mlt_buffer        pointer to mlt coefficients
  */
 
 
 static void decode_vectors(COOKContext* q, int* category,
-                           float* quant_value_table, float* mlt_buffer){
+                           int *quant_index_table, float* mlt_buffer){
     /* A zero in this table means that the subband coefficient is
        random noise coded. */
-    int subband_coef_noise[SUBBAND_SIZE];
+    int subband_coef_index[SUBBAND_SIZE];
     /* A zero in this table means that the subband coefficient is a
        positive multiplicator. */
-    int subband_coef_index[SUBBAND_SIZE];
+    int subband_coef_sign[SUBBAND_SIZE];
     int band, j;
     int index=0;
 
     for(band=0 ; band<q->total_subbands ; band++){
         index = category[band];
         if(category[band] < 7){
-            if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_noise)){
+            if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_sign)){
                 index=7;
                 for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7;
             }
         }
-        if(index==7) {
+        if(index>=7) {
             memset(subband_coef_index, 0, sizeof(subband_coef_index));
-            memset(subband_coef_noise, 0, sizeof(subband_coef_noise));
+            memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
         }
-        scalar_dequant(q, index, band, quant_value_table, subband_coef_index,
-                       subband_coef_noise, mlt_buffer);
+        q->scalar_dequant(q, index, quant_index_table[band],
+                          subband_coef_index, subband_coef_sign,
+                          &mlt_buffer[band * SUBBAND_SIZE]);
     }
 
     if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
         return;
-    }
+    } /* FIXME: should this be removed, or moved into loop above? */
 }
 
 
@@ -681,76 +639,23 @@ static void decode_vectors(COOKContext* q, int* category,
  * function for decoding mono data
  *
  * @param q                 pointer to the COOKContext
- * @param mlt_buffer1       pointer to left channel mlt coefficients
- * @param mlt_buffer2       pointer to right channel mlt coefficients
+ * @param mlt_buffer        pointer to mlt coefficients
  */
 
 static void mono_decode(COOKContext *q, float* mlt_buffer) {
 
     int category_index[128];
-    float quant_value_table[102];
     int quant_index_table[102];
     int category[128];
 
     memset(&category, 0, 128*sizeof(int));
-    memset(&quant_value_table, 0, 102*sizeof(int));
     memset(&category_index, 0, 128*sizeof(int));
 
     decode_envelope(q, quant_index_table);
     q->num_vectors = get_bits(&q->gb,q->log2_numvector_size);
-    dequant_envelope(q, quant_index_table, quant_value_table);
     categorize(q, quant_index_table, category, category_index);
     expand_category(q, category, category_index);
-    decode_vectors(q, category, quant_value_table, mlt_buffer);
-}
-
-
-/**
- * The modulated lapped transform, this takes transform coefficients
- * and transforms them into timedomain samples. This is done through
- * an FFT-based algorithm with pre- and postrotation steps.
- * A window and reorder step is also included.
- *
- * @param q                 pointer to the COOKContext
- * @param inbuffer          pointer to the mltcoefficients
- * @param outbuffer         pointer to the timedomain buffer
- * @param mlt_tmp           pointer to temporary storage space
- */
-
-static void cook_imlt(COOKContext *q, float* inbuffer, float* outbuffer,
-                      float* mlt_tmp){
-    int i;
-
-    /* prerotation */
-    for(i=0 ; i<q->mlt_size ; i+=2){
-        outbuffer[i] = (q->mlt_presin[i/2] * inbuffer[q->mlt_size-1-i]) +
-                       (q->mlt_precos[i/2] * inbuffer[i]);
-        outbuffer[i+1] = (q->mlt_precos[i/2] * inbuffer[q->mlt_size-1-i]) -
-                         (q->mlt_presin[i/2] * inbuffer[i]);
-    }
-
-    /* FFT */
-    ff_fft_permute(&q->fft_ctx, (FFTComplex *) outbuffer);
-    ff_fft_calc (&q->fft_ctx, (FFTComplex *) outbuffer);
-
-    /* postrotation */
-    for(i=0 ; i<q->mlt_size ; i+=2){
-        mlt_tmp[i] =               (q->mlt_postcos[(q->mlt_size-1-i)/2] * outbuffer[i+1]) +
-                                   (q->mlt_postcos[i/2] * outbuffer[i]);
-        mlt_tmp[q->mlt_size-1-i] = (q->mlt_postcos[(q->mlt_size-1-i)/2] * outbuffer[i]) -
-                                   (q->mlt_postcos[i/2] * outbuffer[i+1]);
-    }
-
-    /* window and reorder */
-    for(i=0 ; i<q->mlt_size/2 ; i++){
-        outbuffer[i] = mlt_tmp[q->mlt_size/2-1-i] * q->mlt_window[i];
-        outbuffer[q->mlt_size-1-i]= mlt_tmp[q->mlt_size/2-1-i] *
-                                    q->mlt_window[q->mlt_size-1-i];
-        outbuffer[q->mlt_size+i]= mlt_tmp[q->mlt_size/2+i] *
-                                  q->mlt_window[q->mlt_size-1-i];
-        outbuffer[2*q->mlt_size-1-i]= -(mlt_tmp[q->mlt_size/2+i] *
-                                      q->mlt_window[i]);
-    }
+    decode_vectors(q, category, quant_index_table, mlt_buffer);
 }
 
 
@@ -763,11 +668,11 @@ static void cook_imlt(COOKContext *q, float* inbuffer, float* outbuffer,
  * @param gain_index_next   index for the next block multiplier
  */
 
-static void interpolate(COOKContext *q, float* buffer,
+static void interpolate_float(COOKContext *q, float* buffer,
                         int gain_index, int gain_index_next){
     int i;
     float fc1, fc2;
-    fc1 = q->pow2tab[gain_index+63];
+    fc1 = pow2tab[gain_index+63];
 
     if(gain_index == gain_index_next){              //static gain
         for(i=0 ; i<q->gain_size_factor ; i++){
@@ -785,80 +690,65 @@ static void interpolate(COOKContext *q, float* buffer,
 }
 
 /**
- * timedomain requantization of the timedomain samples
+ * Apply transform window, overlap buffers.
  *
  * @param q                 pointer to the COOKContext
- * @param buffer            pointer to the timedomain buffer
- * @param gain_now          current gain structure
- * @param gain_previous     previous gain structure
+ * @param inbuffer          pointer to the mltcoefficients
+ * @param gains_ptr         current and previous gains
+ * @param previous_buffer   pointer to the previous buffer to be used for overlapping
  */
 
-static void gain_window(COOKContext *q, float* buffer, COOKgain* gain_now,
-                        COOKgain* gain_previous){
-    int i, index;
-    int gain_index[9];
-    int tmp_gain_index;
-
-    gain_index[8]=0;
-    index = gain_previous->size;
-    for (i=7 ; i>=0 ; i--) {
-        if(index && gain_previous->loccode[index-1]==i) {
-            gain_index[i] = gain_previous->levcode[index-1];
-            index--;
-        } else {
-            gain_index[i]=gain_index[i+1];
-        }
-    }
-    /* This is applied to the to be previous data buffer. */
-    for(i=0;i<8;i++){
-        interpolate(q, &buffer[q->samples_per_channel+q->gain_size_factor*i],
-                    gain_index[i], gain_index[i+1]);
-    }
-
-    tmp_gain_index = gain_index[0];
-    index = gain_now->size;
-    for (i=7 ; i>=0 ; i--) {
-        if(index && gain_now->loccode[index-1]==i) {
-            gain_index[i]= gain_now->levcode[index-1];
-            index--;
-        } else {
-            gain_index[i]=gain_index[i+1];
-        }
-    }
+static void imlt_window_float (COOKContext *q, float *buffer1,
+                               cook_gains *gains_ptr, float *previous_buffer)
+{
+    const float fc = pow2tab[gains_ptr->previous[0] + 63];
+    int i;
+    /* The weird thing here, is that the two halves of the time domain
+     * buffer are swapped. Also, the newest data, that we save away for
+     * next frame, has the wrong sign. Hence the subtraction below.
+     * Almost sounds like a complex conjugate/reverse data/FFT effect.
+     */
 
-    /* This is applied to the to be current block. */
-    for(i=0;i<8;i++){
-        interpolate(q, &buffer[i*q->gain_size_factor],
-                    tmp_gain_index+gain_index[i],
-                    tmp_gain_index+gain_index[i+1]);
+    /* Apply window and overlap */
+    for(i = 0; i < q->samples_per_channel; i++){
+        buffer1[i] = buffer1[i] * fc * q->mlt_window[i] -
+          previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
     }
 }
 
-
 /**
- * mlt overlapping and buffer management
+ * The modulated lapped transform, this takes transform coefficients
+ * and transforms them into timedomain samples.
+ * Apply transform window, overlap buffers, apply gain profile
+ * and buffer management.
  *
  * @param q                 pointer to the COOKContext
- * @param buffer            pointer to the timedomain buffer
- * @param gain_now          current gain structure
- * @param gain_previous     previous gain structure
+ * @param inbuffer          pointer to the mltcoefficients
+ * @param gains_ptr         current and previous gains
  * @param previous_buffer   pointer to the previous buffer to be used for overlapping
- *
  */
 
-static void gain_compensate(COOKContext *q, float* buffer, COOKgain* gain_now,
-                            COOKgain* gain_previous, float* previous_buffer) {
+static void imlt_gain(COOKContext *q, float *inbuffer,
+                      cook_gains *gains_ptr, float* previous_buffer)
+{
+    float *buffer0 = q->mono_mdct_output;
+    float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
     int i;
-    if((gain_now->size  || gain_previous->size)) {
-        gain_window(q, buffer, gain_now, gain_previous);
-    }
 
-    /* Overlap with the previous block. */
-    for(i=0 ; i<q->samples_per_channel ; i++) buffer[i]+=previous_buffer[i];
+    /* Inverse modified discrete cosine transform */
+    ff_imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
+
+    q->imlt_window (q, buffer1, gains_ptr, previous_buffer);
+
+    /* Apply gain profile */
+    for (i = 0; i < 8; i++) {
+        if (gains_ptr->now[i] || gains_ptr->now[i + 1])
+            q->interpolate(q, &buffer1[q->gain_size_factor * i],
+                           gains_ptr->now[i], gains_ptr->now[i + 1]);
+    }
 
     /* Save away the current to be previous block. */
-    memcpy(previous_buffer, buffer+q->samples_per_channel,
-           sizeof(float)*q->samples_per_channel);
+    memcpy(previous_buffer, buffer0, sizeof(float)*q->samples_per_channel);
 }
 
 
@@ -892,6 +782,30 @@ static void decouple_info(COOKContext *q, int* decouple_tab){
     return;
 }
 
+/*
+ * function decouples a pair of signals from a single signal via multiplication.
+ *
+ * @param q                 pointer to the COOKContext
+ * @param subband           index of the current subband
+ * @param f1                multiplier for channel 1 extraction
+ * @param f2                multiplier for channel 2 extraction
+ * @param decode_buffer     input buffer
+ * @param mlt_buffer1       pointer to left channel mlt coefficients
+ * @param mlt_buffer2       pointer to right channel mlt coefficients
+ */
+static void decouple_float (COOKContext *q,
+                            int subband,
+                            float f1, float f2,
+                            float *decode_buffer,
+                            float *mlt_buffer1, float *mlt_buffer2)
+{
+    int j, tmp_idx;
+    for (j=0 ; j<SUBBAND_SIZE ; j++) {
+        tmp_idx = ((q->js_subband_start + subband)*SUBBAND_SIZE)+j;
+        mlt_buffer1[SUBBAND_SIZE*subband + j] = f1 * decode_buffer[tmp_idx];
+        mlt_buffer2[SUBBAND_SIZE*subband + j] = f2 * decode_buffer[tmp_idx];
+    }
+}
 
 /**
  * function for decoding joint stereo data
@@ -905,10 +819,10 @@ static void joint_decode(COOKContext *q, float* mlt_buffer1,
                          float* mlt_buffer2) {
     int i,j;
     int decouple_tab[SUBBAND_SIZE];
-    float decode_buffer[1060];
-    int idx, cpl_tmp,tmp_idx;
+    float *decode_buffer = q->decode_buffer_0;
+    int idx, cpl_tmp;
     float f1,f2;
-    float* cplscale;
+    const float* cplscale;
 
     memset(decouple_tab, 0, sizeof(decouple_tab));
     memset(decode_buffer, 0, sizeof(decode_buffer));
@@ -933,14 +847,10 @@ static void joint_decode(COOKContext *q, float* mlt_buffer1,
     for (i=q->js_subband_start ; i<q->subbands ; i++) {
         cpl_tmp = cplband[i];
         idx -=decouple_tab[cpl_tmp];
-        cplscale = (float*)cplscales[q->js_vlc_bits-2];  //choose decoupler table
+        cplscale = q->cplscales[q->js_vlc_bits-2];  //choose decoupler table
         f1 = cplscale[decouple_tab[cpl_tmp]];
         f2 = cplscale[idx-1];
-        for (j=0 ; j<SUBBAND_SIZE ; j++) {
-            tmp_idx = ((q->js_subband_start + i)*20)+j;
-            mlt_buffer1[20*i + j] = f1 * decode_buffer[tmp_idx];
-            mlt_buffer2[20*i + j] = f2 * decode_buffer[tmp_idx];
-        }
+        q->decouple (q, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
         idx = (1 << q->js_vlc_bits) - 1;
     }
 }
@@ -955,8 +865,8 @@ static void joint_decode(COOKContext *q, float* mlt_buffer1,
  */
 
 static inline void
-decode_bytes_and_gain(COOKContext *q, uint8_t *inbuffer,
-                      COOKgain *gain_ptr[])
+decode_bytes_and_gain(COOKContext *q, const uint8_t *inbuffer,
+                      cook_gains *gains_ptr)
 {
     int offset;
 
@@ -964,10 +874,30 @@ decode_bytes_and_gain(COOKContext *q, uint8_t *inbuffer,
                           q->bits_per_subpacket/8);
     init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
                   q->bits_per_subpacket);
-    decode_gain_info(&q->gb, gain_ptr[0]);
+    decode_gain_info(&q->gb, gains_ptr->now);
 
     /* Swap current and previous gains */
-    FFSWAP(COOKgain *, gain_ptr[0], gain_ptr[1]);
+    FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
+}
+
+ /**
+ * Saturate the output signal to signed 16bit integers.
+ *
+ * @param q                 pointer to the COOKContext
+ * @param chan              channel to saturate
+ * @param out               pointer to the output vector
+ */
+static void
+saturate_output_float (COOKContext *q, int chan, int16_t *out)
+{
+    int j;
+    float *output = q->mono_mdct_output + q->samples_per_channel;
+    /* Clip and convert floats to 16 bits.
+     */
+    for (j = 0; j < q->samples_per_channel; j++) {
+        out[chan + q->nb_channels * j] =
+          av_clip_int16(lrintf(output[j]));
+    }
 }
 
 /**
@@ -985,21 +915,11 @@ decode_bytes_and_gain(COOKContext *q, uint8_t *inbuffer,
 
 static inline void
 mlt_compensate_output(COOKContext *q, float *decode_buffer,
-                      COOKgain *gain_ptr[], float *previous_buffer,
+                      cook_gains *gains, float *previous_buffer,
                       int16_t *out, int chan)
 {
-    int j;
-
-    cook_imlt(q, decode_buffer, q->mono_mdct_output, q->mlt_tmp);
-    gain_compensate(q, q->mono_mdct_output, gain_ptr[0],
-                    gain_ptr[1], previous_buffer);
-
-    /* Clip and convert floats to 16 bits.
-     */
-    for (j = 0; j < q->samples_per_channel; j++) {
-        out[chan + q->nb_channels * j] =
-          av_clip(lrintf(q->mono_mdct_output[j]), -32768, 32767);
-    }
+    imlt_gain(q, decode_buffer, gains, previous_buffer);
+    q->saturate_output (q, chan, out);
 }
 
 
@@ -1014,15 +934,15 @@ mlt_compensate_output(COOKContext *q, float *decode_buffer,
  */
 
 
-static int decode_subpacket(COOKContext *q, uint8_t *inbuffer,
+static int decode_subpacket(COOKContext *q, const uint8_t *inbuffer,
                             int sub_packet_size, int16_t *outbuffer) {
     /* packet dump */
 //    for (i=0 ; i<sub_packet_size ; i++) {
-//        av_log(NULL, AV_LOG_ERROR, "%02x", inbuffer[i]);
+//        av_log(q->avctx, AV_LOG_ERROR, "%02x", inbuffer[i]);
 //    }
-//    av_log(NULL, AV_LOG_ERROR, "\n");
+//    av_log(q->avctx, AV_LOG_ERROR, "\n");
 
-    decode_bytes_and_gain(q, inbuffer, q->gain_ptr1);
+    decode_bytes_and_gain(q, inbuffer, &q->gains1);
 
     if (q->joint_stereo) {
         joint_decode(q, q->decode_buffer_1, q->decode_buffer_2);
@@ -1030,21 +950,20 @@ static int decode_subpacket(COOKContext *q, uint8_t *inbuffer,
         mono_decode(q, q->decode_buffer_1);
 
         if (q->nb_channels == 2) {
-            decode_bytes_and_gain(q, inbuffer + sub_packet_size/2,
-                                  q->gain_ptr2);
+            decode_bytes_and_gain(q, inbuffer + sub_packet_size/2, &q->gains2);
             mono_decode(q, q->decode_buffer_2);
         }
     }
 
-    mlt_compensate_output(q, q->decode_buffer_1, q->gain_ptr1,
+    mlt_compensate_output(q, q->decode_buffer_1, &q->gains1,
                           q->mono_previous_buffer1, outbuffer, 0);
 
     if (q->nb_channels == 2) {
         if (q->joint_stereo) {
-            mlt_compensate_output(q, q->decode_buffer_2, q->gain_ptr1,
+            mlt_compensate_output(q, q->decode_buffer_2, &q->gains1,
                                   q->mono_previous_buffer2, outbuffer, 1);
         } else {
-            mlt_compensate_output(q, q->decode_buffer_2, q->gain_ptr2,
+            mlt_compensate_output(q, q->decode_buffer_2, &q->gains2,
                                   q->mono_previous_buffer2, outbuffer, 1);
         }
     }
@@ -1060,7 +979,9 @@ static int decode_subpacket(COOKContext *q, uint8_t *inbuffer,
 
 static int cook_decode_frame(AVCodecContext *avctx,
             void *data, int *data_size,
-            uint8_t *buf, int buf_size) {
+            AVPacket *avpkt) {
+    const uint8_t *buf = avpkt->data;
+    int buf_size = avpkt->size;
     COOKContext *q = avctx->priv_data;
 
     if (buf_size < avctx->block_align)
@@ -1078,14 +999,14 @@ static int cook_decode_frame(AVCodecContext *avctx,
 static void dump_cook_context(COOKContext *q)
 {
     //int i=0;
-#define PRINT(a,b) av_log(NULL,AV_LOG_ERROR," %s = %d\n", a, b);
-    av_log(NULL,AV_LOG_ERROR,"COOKextradata\n");
-    av_log(NULL,AV_LOG_ERROR,"cookversion=%x\n",q->cookversion);
+#define PRINT(a,b) av_log(q->avctx,AV_LOG_ERROR," %s = %d\n", a, b);
+    av_log(q->avctx,AV_LOG_ERROR,"COOKextradata\n");
+    av_log(q->avctx,AV_LOG_ERROR,"cookversion=%x\n",q->cookversion);
     if (q->cookversion > STEREO) {
         PRINT("js_subband_start",q->js_subband_start);
         PRINT("js_vlc_bits",q->js_vlc_bits);
     }
-    av_log(NULL,AV_LOG_ERROR,"COOKContext\n");
+    av_log(q->avctx,AV_LOG_ERROR,"COOKContext\n");
     PRINT("nb_channels",q->nb_channels);
     PRINT("bit_rate",q->bit_rate);
     PRINT("sample_rate",q->sample_rate);
@@ -1093,7 +1014,6 @@ static void dump_cook_context(COOKContext *q)
     PRINT("samples_per_frame",q->samples_per_frame);
     PRINT("subbands",q->subbands);
     PRINT("random_state",q->random_state);
-    PRINT("mlt_size",q->mlt_size);
     PRINT("js_subband_start",q->js_subband_start);
     PRINT("log2_numvector_size",q->log2_numvector_size);
     PRINT("numvector_size",q->numvector_size);
@@ -1101,16 +1021,27 @@ static void dump_cook_context(COOKContext *q)
 }
 #endif
 
+static av_cold int cook_count_channels(unsigned int mask){
+    int i;
+    int channels = 0;
+    for(i = 0;i<32;i++){
+        if(mask & (1<<i))
+            ++channels;
+    }
+    return channels;
+}
+
 /**
  * Cook initialization
  *
  * @param avctx     pointer to the AVCodecContext
  */
 
-static int cook_decode_init(AVCodecContext *avctx)
+static av_cold int cook_decode_init(AVCodecContext *avctx)
 {
     COOKContext *q = avctx->priv_data;
-    uint8_t *edata_ptr = avctx->extradata;
+    const uint8_t *edata_ptr = avctx->extradata;
+    q->avctx = avctx;
 
     /* Take care of the codec specific extradata. */
     if (avctx->extradata_size <= 0) {
@@ -1137,8 +1068,8 @@ static int cook_decode_init(AVCodecContext *avctx)
     q->nb_channels = avctx->channels;
     q->bit_rate = avctx->bit_rate;
 
-    /* Initialize state. */
-    q->random_state = 1;
+    /* Initialize RNG. */
+    av_lfg_init(&q->random_state, ff_random_get_seed());
 
     /* Initialize extradata related variables. */
     q->samples_per_channel = q->samples_per_frame / q->nb_channels;
@@ -1149,7 +1080,7 @@ static int cook_decode_init(AVCodecContext *avctx)
     q->total_subbands = q->subbands;
 
     /* Initialize version-dependent variables */
-    av_log(NULL,AV_LOG_DEBUG,"q->cookversion=%x\n",q->cookversion);
+    av_log(avctx,AV_LOG_DEBUG,"q->cookversion=%x\n",q->cookversion);
     q->joint_stereo = 0;
     switch (q->cookversion) {
         case MONO:
@@ -1193,13 +1124,12 @@ static int cook_decode_init(AVCodecContext *avctx)
     }
 
     /* Initialize variable relations */
-    q->mlt_size = q->samples_per_channel;
     q->numvector_size = (1 << q->log2_numvector_size);
 
     /* Generate tables */
-    init_rootpow2table(q);
-    init_pow2table(q);
+    init_pow2table();
     init_gain_table(q);
+    init_cplscales_table(q);
 
     if (init_cook_vlc_tables(q) != 0)
         return -1;
@@ -1225,15 +1155,24 @@ static int cook_decode_init(AVCodecContext *avctx)
     if (q->decoded_bytes_buffer == NULL)
         return -1;
 
-    q->gain_ptr1[0] = &q->gain_1;
-    q->gain_ptr1[1] = &q->gain_2;
-    q->gain_ptr2[0] = &q->gain_3;
-    q->gain_ptr2[1] = &q->gain_4;
+    q->gains1.now      = q->gain_1;
+    q->gains1.previous = q->gain_2;
+    q->gains2.now      = q->gain_3;
+    q->gains2.previous = q->gain_4;
 
     /* Initialize transform. */
-    if ( init_cook_mlt(q) == 0 )
+    if ( init_cook_mlt(q) != 0 )
         return -1;
 
+    /* Initialize COOK signal arithmetic handling */
+    if (1) {
+        q->scalar_dequant  = scalar_dequant_float;
+        q->decouple        = decouple_float;
+        q->imlt_window     = imlt_window_float;
+        q->interpolate     = interpolate_float;
+        q->saturate_output = saturate_output_float;
+    }
+
     /* Try to catch some obviously faulty streams, othervise it might be exploitable */
     if (q->total_subbands > 53) {
         av_log(avctx,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
@@ -1253,6 +1192,9 @@ static int cook_decode_init(AVCodecContext *avctx)
         return -1;
     }
 
+    avctx->sample_fmt = SAMPLE_FMT_S16;
+    avctx->channel_layout = (avctx->channels==2) ? CH_LAYOUT_STEREO : CH_LAYOUT_MONO;
+
 #ifdef COOKDEBUG
     dump_cook_context(q);
 #endif
@@ -1269,4 +1211,5 @@ AVCodec cook_decoder =
     .init = cook_decode_init,
     .close = cook_decode_close,
     .decode = cook_decode_frame,
+    .long_name = NULL_IF_CONFIG_SMALL("COOK"),
 };