CABAC/CAVLC: use the new bit-iterating macro here too
[x264/x264-sandbox.git] / encoder / me.c
1 /*****************************************************************************
2  * me.c: motion estimation
3  *****************************************************************************
4  * Copyright (C) 2003-2013 x264 project
5  *
6  * Authors: Loren Merritt <lorenm@u.washington.edu>
7  *          Laurent Aimar <fenrir@via.ecp.fr>
8  *          Fiona Glaser <fiona@x264.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02111, USA.
23  *
24  * This program is also available under a commercial proprietary license.
25  * For more information, contact us at licensing@x264.com.
26  *****************************************************************************/
27
28 #include "common/common.h"
29 #include "macroblock.h"
30 #include "me.h"
31
32 /* presets selected from good points on the speed-vs-quality curve of several test videos
33  * subpel_iters[i_subpel_refine] = { refine_hpel, refine_qpel, me_hpel, me_qpel }
34  * where me_* are the number of EPZS iterations run on all candidate block types,
35  * and refine_* are run only on the winner.
36  * the subme=8,9 values are much higher because any amount of satd search makes
37  * up its time by reducing the number of qpel-rd iterations. */
38 static const uint8_t subpel_iterations[][4] =
39    {{0,0,0,0},
40     {1,1,0,0},
41     {0,1,1,0},
42     {0,2,1,0},
43     {0,2,1,1},
44     {0,2,1,2},
45     {0,0,2,2},
46     {0,0,2,2},
47     {0,0,4,10},
48     {0,0,4,10},
49     {0,0,4,10},
50     {0,0,4,10}};
51
52 /* (x-1)%6 */
53 static const uint8_t mod6m1[8] = {5,0,1,2,3,4,5,0};
54 /* radius 2 hexagon. repeated entries are to avoid having to compute mod6 every time. */
55 static const int8_t hex2[8][2] = {{-1,-2}, {-2,0}, {-1,2}, {1,2}, {2,0}, {1,-2}, {-1,-2}, {-2,0}};
56 static const int8_t square1[9][2] = {{0,0}, {0,-1}, {0,1}, {-1,0}, {1,0}, {-1,-1}, {-1,1}, {1,-1}, {1,1}};
57
58 static void refine_subpel( x264_t *h, x264_me_t *m, int hpel_iters, int qpel_iters, int *p_halfpel_thresh, int b_refine_qpel );
59
60 #define BITS_MVD( mx, my )\
61     (p_cost_mvx[(mx)<<2] + p_cost_mvy[(my)<<2])
62
63 #define COST_MV( mx, my )\
64 do\
65 {\
66     int cost = h->pixf.fpelcmp[i_pixel]( p_fenc, FENC_STRIDE,\
67                    &p_fref_w[(my)*stride+(mx)], stride )\
68              + BITS_MVD(mx,my);\
69     COPY3_IF_LT( bcost, cost, bmx, mx, bmy, my );\
70 } while(0)
71
72 #define COST_MV_HPEL( mx, my, cost )\
73 do\
74 {\
75     intptr_t stride2 = 16;\
76     pixel *src = h->mc.get_ref( pix, &stride2, m->p_fref, stride, mx, my, bw, bh, &m->weight[0] );\
77     cost = h->pixf.fpelcmp[i_pixel]( p_fenc, FENC_STRIDE, src, stride2 )\
78          + p_cost_mvx[ mx ] + p_cost_mvy[ my ];\
79 } while(0)
80
81 #define COST_MV_X3_DIR( m0x, m0y, m1x, m1y, m2x, m2y, costs )\
82 {\
83     pixel *pix_base = p_fref_w + bmx + bmy*stride;\
84     h->pixf.fpelcmp_x3[i_pixel]( p_fenc,\
85         pix_base + (m0x) + (m0y)*stride,\
86         pix_base + (m1x) + (m1y)*stride,\
87         pix_base + (m2x) + (m2y)*stride,\
88         stride, costs );\
89     (costs)[0] += BITS_MVD( bmx+(m0x), bmy+(m0y) );\
90     (costs)[1] += BITS_MVD( bmx+(m1x), bmy+(m1y) );\
91     (costs)[2] += BITS_MVD( bmx+(m2x), bmy+(m2y) );\
92 }
93
94 #define COST_MV_X4_DIR( m0x, m0y, m1x, m1y, m2x, m2y, m3x, m3y, costs )\
95 {\
96     pixel *pix_base = p_fref_w + bmx + bmy*stride;\
97     h->pixf.fpelcmp_x4[i_pixel]( p_fenc,\
98         pix_base + (m0x) + (m0y)*stride,\
99         pix_base + (m1x) + (m1y)*stride,\
100         pix_base + (m2x) + (m2y)*stride,\
101         pix_base + (m3x) + (m3y)*stride,\
102         stride, costs );\
103     (costs)[0] += BITS_MVD( bmx+(m0x), bmy+(m0y) );\
104     (costs)[1] += BITS_MVD( bmx+(m1x), bmy+(m1y) );\
105     (costs)[2] += BITS_MVD( bmx+(m2x), bmy+(m2y) );\
106     (costs)[3] += BITS_MVD( bmx+(m3x), bmy+(m3y) );\
107 }
108
109 #define COST_MV_X4( m0x, m0y, m1x, m1y, m2x, m2y, m3x, m3y )\
110 {\
111     pixel *pix_base = p_fref_w + omx + omy*stride;\
112     h->pixf.fpelcmp_x4[i_pixel]( p_fenc,\
113         pix_base + (m0x) + (m0y)*stride,\
114         pix_base + (m1x) + (m1y)*stride,\
115         pix_base + (m2x) + (m2y)*stride,\
116         pix_base + (m3x) + (m3y)*stride,\
117         stride, costs );\
118     costs[0] += BITS_MVD( omx+(m0x), omy+(m0y) );\
119     costs[1] += BITS_MVD( omx+(m1x), omy+(m1y) );\
120     costs[2] += BITS_MVD( omx+(m2x), omy+(m2y) );\
121     costs[3] += BITS_MVD( omx+(m3x), omy+(m3y) );\
122     COPY3_IF_LT( bcost, costs[0], bmx, omx+(m0x), bmy, omy+(m0y) );\
123     COPY3_IF_LT( bcost, costs[1], bmx, omx+(m1x), bmy, omy+(m1y) );\
124     COPY3_IF_LT( bcost, costs[2], bmx, omx+(m2x), bmy, omy+(m2y) );\
125     COPY3_IF_LT( bcost, costs[3], bmx, omx+(m3x), bmy, omy+(m3y) );\
126 }
127
128 #define COST_MV_X3_ABS( m0x, m0y, m1x, m1y, m2x, m2y )\
129 {\
130     h->pixf.fpelcmp_x3[i_pixel]( p_fenc,\
131         p_fref_w + (m0x) + (m0y)*stride,\
132         p_fref_w + (m1x) + (m1y)*stride,\
133         p_fref_w + (m2x) + (m2y)*stride,\
134         stride, costs );\
135     costs[0] += p_cost_mvx[(m0x)<<2]; /* no cost_mvy */\
136     costs[1] += p_cost_mvx[(m1x)<<2];\
137     costs[2] += p_cost_mvx[(m2x)<<2];\
138     COPY3_IF_LT( bcost, costs[0], bmx, m0x, bmy, m0y );\
139     COPY3_IF_LT( bcost, costs[1], bmx, m1x, bmy, m1y );\
140     COPY3_IF_LT( bcost, costs[2], bmx, m2x, bmy, m2y );\
141 }
142
143 /*  1  */
144 /* 101 */
145 /*  1  */
146 #define DIA1_ITER( mx, my )\
147 {\
148     omx = mx; omy = my;\
149     COST_MV_X4( 0,-1, 0,1, -1,0, 1,0 );\
150 }
151
152 #define CROSS( start, x_max, y_max )\
153 {\
154     int i = start;\
155     if( (x_max) <= X264_MIN(mv_x_max-omx, omx-mv_x_min) )\
156         for( ; i < (x_max)-2; i+=4 )\
157             COST_MV_X4( i,0, -i,0, i+2,0, -i-2,0 );\
158     for( ; i < (x_max); i+=2 )\
159     {\
160         if( omx+i <= mv_x_max )\
161             COST_MV( omx+i, omy );\
162         if( omx-i >= mv_x_min )\
163             COST_MV( omx-i, omy );\
164     }\
165     i = start;\
166     if( (y_max) <= X264_MIN(mv_y_max-omy, omy-mv_y_min) )\
167         for( ; i < (y_max)-2; i+=4 )\
168             COST_MV_X4( 0,i, 0,-i, 0,i+2, 0,-i-2 );\
169     for( ; i < (y_max); i+=2 )\
170     {\
171         if( omy+i <= mv_y_max )\
172             COST_MV( omx, omy+i );\
173         if( omy-i >= mv_y_min )\
174             COST_MV( omx, omy-i );\
175     }\
176 }
177
178 #define FPEL(mv) (((mv)+2)>>2) /* Convert subpel MV to fullpel with rounding... */
179 #define SPEL(mv) ((mv)<<2)     /* ... and the reverse. */
180 #define SPELx2(mv) (SPEL(mv)&0xFFFCFFFC) /* for two packed MVs */
181
182 void x264_me_search_ref( x264_t *h, x264_me_t *m, int16_t (*mvc)[2], int i_mvc, int *p_halfpel_thresh )
183 {
184     const int bw = x264_pixel_size[m->i_pixel].w;
185     const int bh = x264_pixel_size[m->i_pixel].h;
186     const int i_pixel = m->i_pixel;
187     const int stride = m->i_stride[0];
188     int i_me_range = h->param.analyse.i_me_range;
189     int bmx, bmy, bcost = COST_MAX;
190     int bpred_cost = COST_MAX;
191     int omx, omy, pmx, pmy;
192     pixel *p_fenc = m->p_fenc[0];
193     pixel *p_fref_w = m->p_fref_w;
194     ALIGNED_ARRAY_16( pixel, pix,[16*16] );
195     ALIGNED_ARRAY_8( int16_t, mvc_temp,[16],[2] );
196
197     int costs[16];
198
199     int mv_x_min = h->mb.mv_limit_fpel[0][0];
200     int mv_y_min = h->mb.mv_limit_fpel[0][1];
201     int mv_x_max = h->mb.mv_limit_fpel[1][0];
202     int mv_y_max = h->mb.mv_limit_fpel[1][1];
203 /* Special version of pack to allow shortcuts in CHECK_MVRANGE */
204 #define pack16to32_mask2(mx,my) ((mx<<16)|(my&0x7FFF))
205     uint32_t mv_min = pack16to32_mask2( -mv_x_min, -mv_y_min );
206     uint32_t mv_max = pack16to32_mask2( mv_x_max, mv_y_max )|0x8000;
207     uint32_t pmv, bpred_mv = 0;
208
209 #define CHECK_MVRANGE(mx,my) (!(((pack16to32_mask2(mx,my) + mv_min) | (mv_max - pack16to32_mask2(mx,my))) & 0x80004000))
210
211     const uint16_t *p_cost_mvx = m->p_cost_mv - m->mvp[0];
212     const uint16_t *p_cost_mvy = m->p_cost_mv - m->mvp[1];
213
214     /* Try extra predictors if provided.  If subme >= 3, check subpel predictors,
215      * otherwise round them to fullpel. */
216     if( h->mb.i_subpel_refine >= 3 )
217     {
218         /* Calculate and check the MVP first */
219         int bpred_mx = x264_clip3( m->mvp[0], SPEL(mv_x_min), SPEL(mv_x_max) );
220         int bpred_my = x264_clip3( m->mvp[1], SPEL(mv_y_min), SPEL(mv_y_max) );
221         pmv = pack16to32_mask( bpred_mx, bpred_my );
222         pmx = FPEL( bpred_mx );
223         pmy = FPEL( bpred_my );
224
225         COST_MV_HPEL( bpred_mx, bpred_my, bpred_cost );
226         int pmv_cost = bpred_cost;
227
228         if( i_mvc > 0 )
229         {
230             /* Clip MV candidates and eliminate those equal to zero and pmv. */
231             int valid_mvcs = x264_predictor_clip( mvc_temp+2, mvc, i_mvc, h->mb.mv_limit_fpel, pmv );
232             if( valid_mvcs > 0 )
233             {
234                 int i = 1, cost;
235                 /* We stuff pmv here to branchlessly pick between pmv and the various
236                  * MV candidates. [0] gets skipped in order to maintain alignment for
237                  * x264_predictor_clip. */
238                 M32( mvc_temp[1] ) = pmv;
239                 bpred_cost <<= 4;
240                 do
241                 {
242                     int mx = mvc_temp[i+1][0];
243                     int my = mvc_temp[i+1][1];
244                     COST_MV_HPEL( mx, my, cost );
245                     COPY1_IF_LT( bpred_cost, (cost << 4) + i );
246                 } while( ++i <= valid_mvcs );
247                 bpred_mx = mvc_temp[(bpred_cost&15)+1][0];
248                 bpred_my = mvc_temp[(bpred_cost&15)+1][1];
249                 bpred_cost >>= 4;
250             }
251         }
252
253         /* Round the best predictor back to fullpel and get the cost, since this is where
254          * we'll be starting the fullpel motion search. */
255         bmx = FPEL( bpred_mx );
256         bmy = FPEL( bpred_my );
257         bpred_mv = pack16to32_mask(bpred_mx, bpred_my);
258         if( bpred_mv&0x00030003 ) /* Only test if the tested predictor is actually subpel... */
259             COST_MV( bmx, bmy );
260         else                          /* Otherwise just copy the cost (we already know it) */
261             bcost = bpred_cost;
262
263         /* Test the zero vector if it hasn't been tested yet. */
264         if( pmv )
265         {
266             if( bmx|bmy ) COST_MV( 0, 0 );
267         }
268         /* If a subpel mv candidate was better than the zero vector, the previous
269          * fullpel check won't have gotten it even if the pmv was zero. So handle
270          * that possibility here. */
271         else
272         {
273             COPY3_IF_LT( bcost, pmv_cost, bmx, 0, bmy, 0 );
274         }
275     }
276     else
277     {
278         /* Calculate and check the fullpel MVP first */
279         bmx = pmx = x264_clip3( FPEL(m->mvp[0]), mv_x_min, mv_x_max );
280         bmy = pmy = x264_clip3( FPEL(m->mvp[1]), mv_y_min, mv_y_max );
281         pmv = pack16to32_mask( bmx, bmy );
282
283         /* Because we are rounding the predicted motion vector to fullpel, there will be
284          * an extra MV cost in 15 out of 16 cases.  However, when the predicted MV is
285          * chosen as the best predictor, it is often the case that the subpel search will
286          * result in a vector at or next to the predicted motion vector.  Therefore, we omit
287          * the cost of the MV from the rounded MVP to avoid unfairly biasing against use of
288          * the predicted motion vector.
289          *
290          * Disclaimer: this is a post-hoc rationalization for why this hack works. */
291         bcost = h->pixf.fpelcmp[i_pixel]( p_fenc, FENC_STRIDE, &p_fref_w[bmy*stride+bmx], stride );
292
293         if( i_mvc > 0 )
294         {
295             /* Like in subme>=3, except we also round the candidates to fullpel. */
296             int valid_mvcs = x264_predictor_roundclip( mvc_temp+2, mvc, i_mvc, h->mb.mv_limit_fpel, pmv );
297             if( valid_mvcs > 0 )
298             {
299                 int i = 1, cost;
300                 M32( mvc_temp[1] ) = pmv;
301                 bcost <<= 4;
302                 do
303                 {
304                     int mx = mvc_temp[i+1][0];
305                     int my = mvc_temp[i+1][1];
306                     cost = h->pixf.fpelcmp[i_pixel]( p_fenc, FENC_STRIDE, &p_fref_w[my*stride+mx], stride ) + BITS_MVD( mx, my );
307                     COPY1_IF_LT( bcost, (cost << 4) + i );
308                 } while( ++i <= valid_mvcs );
309                 bmx = mvc_temp[(bcost&15)+1][0];
310                 bmy = mvc_temp[(bcost&15)+1][1];
311                 bcost >>= 4;
312             }
313         }
314
315         /* Same as above, except the condition is simpler. */
316         if( pmv )
317             COST_MV( 0, 0 );
318     }
319
320     switch( h->mb.i_me_method )
321     {
322         case X264_ME_DIA:
323         {
324             /* diamond search, radius 1 */
325             bcost <<= 4;
326             int i = i_me_range;
327             do
328             {
329                 COST_MV_X4_DIR( 0,-1, 0,1, -1,0, 1,0, costs );
330                 COPY1_IF_LT( bcost, (costs[0]<<4)+1 );
331                 COPY1_IF_LT( bcost, (costs[1]<<4)+3 );
332                 COPY1_IF_LT( bcost, (costs[2]<<4)+4 );
333                 COPY1_IF_LT( bcost, (costs[3]<<4)+12 );
334                 if( !(bcost&15) )
335                     break;
336                 bmx -= (bcost<<28)>>30;
337                 bmy -= (bcost<<30)>>30;
338                 bcost &= ~15;
339             } while( --i && CHECK_MVRANGE(bmx, bmy) );
340             bcost >>= 4;
341             break;
342         }
343
344         case X264_ME_HEX:
345         {
346     me_hex2:
347             /* hexagon search, radius 2 */
348     #if 0
349             for( int i = 0; i < i_me_range/2; i++ )
350             {
351                 omx = bmx; omy = bmy;
352                 COST_MV( omx-2, omy   );
353                 COST_MV( omx-1, omy+2 );
354                 COST_MV( omx+1, omy+2 );
355                 COST_MV( omx+2, omy   );
356                 COST_MV( omx+1, omy-2 );
357                 COST_MV( omx-1, omy-2 );
358                 if( bmx == omx && bmy == omy )
359                     break;
360                 if( !CHECK_MVRANGE(bmx, bmy) )
361                     break;
362             }
363     #else
364             /* equivalent to the above, but eliminates duplicate candidates */
365
366             /* hexagon */
367             COST_MV_X3_DIR( -2,0, -1, 2,  1, 2, costs   );
368             COST_MV_X3_DIR(  2,0,  1,-2, -1,-2, costs+3 );
369             bcost <<= 3;
370             COPY1_IF_LT( bcost, (costs[0]<<3)+2 );
371             COPY1_IF_LT( bcost, (costs[1]<<3)+3 );
372             COPY1_IF_LT( bcost, (costs[2]<<3)+4 );
373             COPY1_IF_LT( bcost, (costs[3]<<3)+5 );
374             COPY1_IF_LT( bcost, (costs[4]<<3)+6 );
375             COPY1_IF_LT( bcost, (costs[5]<<3)+7 );
376
377             if( bcost&7 )
378             {
379                 int dir = (bcost&7)-2;
380                 bmx += hex2[dir+1][0];
381                 bmy += hex2[dir+1][1];
382
383                 /* half hexagon, not overlapping the previous iteration */
384                 for( int i = (i_me_range>>1) - 1; i > 0 && CHECK_MVRANGE(bmx, bmy); i-- )
385                 {
386                     COST_MV_X3_DIR( hex2[dir+0][0], hex2[dir+0][1],
387                                     hex2[dir+1][0], hex2[dir+1][1],
388                                     hex2[dir+2][0], hex2[dir+2][1],
389                                     costs );
390                     bcost &= ~7;
391                     COPY1_IF_LT( bcost, (costs[0]<<3)+1 );
392                     COPY1_IF_LT( bcost, (costs[1]<<3)+2 );
393                     COPY1_IF_LT( bcost, (costs[2]<<3)+3 );
394                     if( !(bcost&7) )
395                         break;
396                     dir += (bcost&7)-2;
397                     dir = mod6m1[dir+1];
398                     bmx += hex2[dir+1][0];
399                     bmy += hex2[dir+1][1];
400                 }
401             }
402             bcost >>= 3;
403     #endif
404             /* square refine */
405             bcost <<= 4;
406             COST_MV_X4_DIR(  0,-1,  0,1, -1,0, 1,0, costs );
407             COPY1_IF_LT( bcost, (costs[0]<<4)+1 );
408             COPY1_IF_LT( bcost, (costs[1]<<4)+2 );
409             COPY1_IF_LT( bcost, (costs[2]<<4)+3 );
410             COPY1_IF_LT( bcost, (costs[3]<<4)+4 );
411             COST_MV_X4_DIR( -1,-1, -1,1, 1,-1, 1,1, costs );
412             COPY1_IF_LT( bcost, (costs[0]<<4)+5 );
413             COPY1_IF_LT( bcost, (costs[1]<<4)+6 );
414             COPY1_IF_LT( bcost, (costs[2]<<4)+7 );
415             COPY1_IF_LT( bcost, (costs[3]<<4)+8 );
416             bmx += square1[bcost&15][0];
417             bmy += square1[bcost&15][1];
418             bcost >>= 4;
419             break;
420         }
421
422         case X264_ME_UMH:
423         {
424             /* Uneven-cross Multi-Hexagon-grid Search
425              * as in JM, except with different early termination */
426
427             static const uint8_t x264_pixel_size_shift[7] = { 0, 1, 1, 2, 3, 3, 4 };
428
429             int ucost1, ucost2;
430             int cross_start = 1;
431
432             /* refine predictors */
433             ucost1 = bcost;
434             DIA1_ITER( pmx, pmy );
435             if( pmx | pmy )
436                 DIA1_ITER( 0, 0 );
437
438             if( i_pixel == PIXEL_4x4 )
439                 goto me_hex2;
440
441             ucost2 = bcost;
442             if( (bmx | bmy) && ((bmx-pmx) | (bmy-pmy)) )
443                 DIA1_ITER( bmx, bmy );
444             if( bcost == ucost2 )
445                 cross_start = 3;
446             omx = bmx; omy = bmy;
447
448             /* early termination */
449 #define SAD_THRESH(v) ( bcost < ( v >> x264_pixel_size_shift[i_pixel] ) )
450             if( bcost == ucost2 && SAD_THRESH(2000) )
451             {
452                 COST_MV_X4( 0,-2, -1,-1, 1,-1, -2,0 );
453                 COST_MV_X4( 2, 0, -1, 1, 1, 1,  0,2 );
454                 if( bcost == ucost1 && SAD_THRESH(500) )
455                     break;
456                 if( bcost == ucost2 )
457                 {
458                     int range = (i_me_range>>1) | 1;
459                     CROSS( 3, range, range );
460                     COST_MV_X4( -1,-2, 1,-2, -2,-1, 2,-1 );
461                     COST_MV_X4( -2, 1, 2, 1, -1, 2, 1, 2 );
462                     if( bcost == ucost2 )
463                         break;
464                     cross_start = range + 2;
465                 }
466             }
467
468             /* adaptive search range */
469             if( i_mvc )
470             {
471                 /* range multipliers based on casual inspection of some statistics of
472                  * average distance between current predictor and final mv found by ESA.
473                  * these have not been tuned much by actual encoding. */
474                 static const uint8_t range_mul[4][4] =
475                 {
476                     { 3, 3, 4, 4 },
477                     { 3, 4, 4, 4 },
478                     { 4, 4, 4, 5 },
479                     { 4, 4, 5, 6 },
480                 };
481                 int mvd;
482                 int sad_ctx, mvd_ctx;
483                 int denom = 1;
484
485                 if( i_mvc == 1 )
486                 {
487                     if( i_pixel == PIXEL_16x16 )
488                         /* mvc is probably the same as mvp, so the difference isn't meaningful.
489                          * but prediction usually isn't too bad, so just use medium range */
490                         mvd = 25;
491                     else
492                         mvd = abs( m->mvp[0] - mvc[0][0] )
493                             + abs( m->mvp[1] - mvc[0][1] );
494                 }
495                 else
496                 {
497                     /* calculate the degree of agreement between predictors. */
498                     /* in 16x16, mvc includes all the neighbors used to make mvp,
499                      * so don't count mvp separately. */
500                     denom = i_mvc - 1;
501                     mvd = 0;
502                     if( i_pixel != PIXEL_16x16 )
503                     {
504                         mvd = abs( m->mvp[0] - mvc[0][0] )
505                             + abs( m->mvp[1] - mvc[0][1] );
506                         denom++;
507                     }
508                     mvd += x264_predictor_difference( mvc, i_mvc );
509                 }
510
511                 sad_ctx = SAD_THRESH(1000) ? 0
512                         : SAD_THRESH(2000) ? 1
513                         : SAD_THRESH(4000) ? 2 : 3;
514                 mvd_ctx = mvd < 10*denom ? 0
515                         : mvd < 20*denom ? 1
516                         : mvd < 40*denom ? 2 : 3;
517
518                 i_me_range = i_me_range * range_mul[mvd_ctx][sad_ctx] >> 2;
519             }
520
521             /* FIXME if the above DIA2/OCT2/CROSS found a new mv, it has not updated omx/omy.
522              * we are still centered on the same place as the DIA2. is this desirable? */
523             CROSS( cross_start, i_me_range, i_me_range>>1 );
524
525             COST_MV_X4( -2,-2, -2,2, 2,-2, 2,2 );
526
527             /* hexagon grid */
528             omx = bmx; omy = bmy;
529             const uint16_t *p_cost_omvx = p_cost_mvx + omx*4;
530             const uint16_t *p_cost_omvy = p_cost_mvy + omy*4;
531             int i = 1;
532             do
533             {
534                 static const int8_t hex4[16][2] = {
535                     { 0,-4}, { 0, 4}, {-2,-3}, { 2,-3},
536                     {-4,-2}, { 4,-2}, {-4,-1}, { 4,-1},
537                     {-4, 0}, { 4, 0}, {-4, 1}, { 4, 1},
538                     {-4, 2}, { 4, 2}, {-2, 3}, { 2, 3},
539                 };
540
541                 if( 4*i > X264_MIN4( mv_x_max-omx, omx-mv_x_min,
542                                      mv_y_max-omy, omy-mv_y_min ) )
543                 {
544                     for( int j = 0; j < 16; j++ )
545                     {
546                         int mx = omx + hex4[j][0]*i;
547                         int my = omy + hex4[j][1]*i;
548                         if( CHECK_MVRANGE(mx, my) )
549                             COST_MV( mx, my );
550                     }
551                 }
552                 else
553                 {
554                     int dir = 0;
555                     pixel *pix_base = p_fref_w + omx + (omy-4*i)*stride;
556                     int dy = i*stride;
557 #define SADS(k,x0,y0,x1,y1,x2,y2,x3,y3)\
558                     h->pixf.fpelcmp_x4[i_pixel]( p_fenc,\
559                             pix_base x0*i+(y0-2*k+4)*dy,\
560                             pix_base x1*i+(y1-2*k+4)*dy,\
561                             pix_base x2*i+(y2-2*k+4)*dy,\
562                             pix_base x3*i+(y3-2*k+4)*dy,\
563                             stride, costs+4*k );\
564                     pix_base += 2*dy;
565 #define ADD_MVCOST(k,x,y) costs[k] += p_cost_omvx[x*4*i] + p_cost_omvy[y*4*i]
566 #define MIN_MV(k,x,y)     COPY2_IF_LT( bcost, costs[k], dir, x*16+(y&15) )
567                     SADS( 0, +0,-4, +0,+4, -2,-3, +2,-3 );
568                     SADS( 1, -4,-2, +4,-2, -4,-1, +4,-1 );
569                     SADS( 2, -4,+0, +4,+0, -4,+1, +4,+1 );
570                     SADS( 3, -4,+2, +4,+2, -2,+3, +2,+3 );
571                     ADD_MVCOST(  0, 0,-4 );
572                     ADD_MVCOST(  1, 0, 4 );
573                     ADD_MVCOST(  2,-2,-3 );
574                     ADD_MVCOST(  3, 2,-3 );
575                     ADD_MVCOST(  4,-4,-2 );
576                     ADD_MVCOST(  5, 4,-2 );
577                     ADD_MVCOST(  6,-4,-1 );
578                     ADD_MVCOST(  7, 4,-1 );
579                     ADD_MVCOST(  8,-4, 0 );
580                     ADD_MVCOST(  9, 4, 0 );
581                     ADD_MVCOST( 10,-4, 1 );
582                     ADD_MVCOST( 11, 4, 1 );
583                     ADD_MVCOST( 12,-4, 2 );
584                     ADD_MVCOST( 13, 4, 2 );
585                     ADD_MVCOST( 14,-2, 3 );
586                     ADD_MVCOST( 15, 2, 3 );
587                     MIN_MV(  0, 0,-4 );
588                     MIN_MV(  1, 0, 4 );
589                     MIN_MV(  2,-2,-3 );
590                     MIN_MV(  3, 2,-3 );
591                     MIN_MV(  4,-4,-2 );
592                     MIN_MV(  5, 4,-2 );
593                     MIN_MV(  6,-4,-1 );
594                     MIN_MV(  7, 4,-1 );
595                     MIN_MV(  8,-4, 0 );
596                     MIN_MV(  9, 4, 0 );
597                     MIN_MV( 10,-4, 1 );
598                     MIN_MV( 11, 4, 1 );
599                     MIN_MV( 12,-4, 2 );
600                     MIN_MV( 13, 4, 2 );
601                     MIN_MV( 14,-2, 3 );
602                     MIN_MV( 15, 2, 3 );
603 #undef SADS
604 #undef ADD_MVCOST
605 #undef MIN_MV
606                     if(dir)
607                     {
608                         bmx = omx + i*(dir>>4);
609                         bmy = omy + i*((dir<<28)>>28);
610                     }
611                 }
612             } while( ++i <= i_me_range>>2 );
613             if( bmy <= mv_y_max && bmy >= mv_y_min && bmx <= mv_x_max && bmx >= mv_x_min )
614                 goto me_hex2;
615             break;
616         }
617
618         case X264_ME_ESA:
619         case X264_ME_TESA:
620         {
621             const int min_x = X264_MAX( bmx - i_me_range, mv_x_min );
622             const int min_y = X264_MAX( bmy - i_me_range, mv_y_min );
623             const int max_x = X264_MIN( bmx + i_me_range, mv_x_max );
624             const int max_y = X264_MIN( bmy + i_me_range, mv_y_max );
625             /* SEA is fastest in multiples of 4 */
626             const int width = (max_x - min_x + 3) & ~3;
627 #if 0
628             /* plain old exhaustive search */
629             for( int my = min_y; my <= max_y; my++ )
630                 for( int mx = min_x; mx < min_x + width; mx++ )
631                     COST_MV( mx, my );
632 #else
633             /* successive elimination by comparing DC before a full SAD,
634              * because sum(abs(diff)) >= abs(diff(sum)). */
635             uint16_t *sums_base = m->integral;
636             ALIGNED_16( static pixel zero[8*FENC_STRIDE] ) = {0};
637             ALIGNED_ARRAY_16( int, enc_dc,[4] );
638             int sad_size = i_pixel <= PIXEL_8x8 ? PIXEL_8x8 : PIXEL_4x4;
639             int delta = x264_pixel_size[sad_size].w;
640             int16_t *xs = h->scratch_buffer;
641             int xn;
642             uint16_t *cost_fpel_mvx = h->cost_mv_fpel[h->mb.i_qp][-m->mvp[0]&3] + (-m->mvp[0]>>2);
643
644             h->pixf.sad_x4[sad_size]( zero, p_fenc, p_fenc+delta,
645                 p_fenc+delta*FENC_STRIDE, p_fenc+delta+delta*FENC_STRIDE,
646                 FENC_STRIDE, enc_dc );
647             if( delta == 4 )
648                 sums_base += stride * (h->fenc->i_lines[0] + PADV*2);
649             if( i_pixel == PIXEL_16x16 || i_pixel == PIXEL_8x16 || i_pixel == PIXEL_4x8 )
650                 delta *= stride;
651             if( i_pixel == PIXEL_8x16 || i_pixel == PIXEL_4x8 )
652                 enc_dc[1] = enc_dc[2];
653
654             if( h->mb.i_me_method == X264_ME_TESA )
655             {
656                 // ADS threshold, then SAD threshold, then keep the best few SADs, then SATD
657                 mvsad_t *mvsads = (mvsad_t *)(xs + ((width+15)&~15) + 4);
658                 int nmvsad = 0, limit;
659                 int sad_thresh = i_me_range <= 16 ? 10 : i_me_range <= 24 ? 11 : 12;
660                 int bsad = h->pixf.sad[i_pixel]( p_fenc, FENC_STRIDE, p_fref_w+bmy*stride+bmx, stride )
661                          + BITS_MVD( bmx, bmy );
662                 for( int my = min_y; my <= max_y; my++ )
663                 {
664                     int i;
665                     int ycost = p_cost_mvy[my<<2];
666                     if( bsad <= ycost )
667                         continue;
668                     bsad -= ycost;
669                     xn = h->pixf.ads[i_pixel]( enc_dc, sums_base + min_x + my * stride, delta,
670                                                cost_fpel_mvx+min_x, xs, width, bsad * 17 >> 4 );
671                     for( i = 0; i < xn-2; i += 3 )
672                     {
673                         pixel *ref = p_fref_w+min_x+my*stride;
674                         int sads[3];
675                         h->pixf.sad_x3[i_pixel]( p_fenc, ref+xs[i], ref+xs[i+1], ref+xs[i+2], stride, sads );
676                         for( int j = 0; j < 3; j++ )
677                         {
678                             int sad = sads[j] + cost_fpel_mvx[xs[i+j]];
679                             if( sad < bsad*sad_thresh>>3 )
680                             {
681                                 COPY1_IF_LT( bsad, sad );
682                                 mvsads[nmvsad].sad = sad + ycost;
683                                 mvsads[nmvsad].mv[0] = min_x+xs[i+j];
684                                 mvsads[nmvsad].mv[1] = my;
685                                 nmvsad++;
686                             }
687                         }
688                     }
689                     for( ; i < xn; i++ )
690                     {
691                         int mx = min_x+xs[i];
692                         int sad = h->pixf.sad[i_pixel]( p_fenc, FENC_STRIDE, p_fref_w+mx+my*stride, stride )
693                                 + cost_fpel_mvx[xs[i]];
694                         if( sad < bsad*sad_thresh>>3 )
695                         {
696                             COPY1_IF_LT( bsad, sad );
697                             mvsads[nmvsad].sad = sad + ycost;
698                             mvsads[nmvsad].mv[0] = mx;
699                             mvsads[nmvsad].mv[1] = my;
700                             nmvsad++;
701                         }
702                     }
703                     bsad += ycost;
704                 }
705
706                 limit = i_me_range >> 1;
707                 sad_thresh = bsad*sad_thresh>>3;
708                 while( nmvsad > limit*2 && sad_thresh > bsad )
709                 {
710                     int i;
711                     // halve the range if the domain is too large... eh, close enough
712                     sad_thresh = (sad_thresh + bsad) >> 1;
713                     for( i = 0; i < nmvsad && mvsads[i].sad <= sad_thresh; i++ );
714                     for( int j = i; j < nmvsad; j++ )
715                     {
716                         uint32_t sad;
717                         if( WORD_SIZE == 8 && sizeof(mvsad_t) == 8 )
718                         {
719                             uint64_t mvsad = M64( &mvsads[i] ) = M64( &mvsads[j] );
720 #if WORDS_BIGENDIAN
721                             mvsad >>= 32;
722 #endif
723                             sad = mvsad;
724                         }
725                         else
726                         {
727                             sad = mvsads[j].sad;
728                             CP32( mvsads[i].mv, mvsads[j].mv );
729                             mvsads[i].sad = sad;
730                         }
731                         i += (sad - (sad_thresh+1)) >> 31;
732                     }
733                     nmvsad = i;
734                 }
735                 while( nmvsad > limit )
736                 {
737                     int bi = 0;
738                     for( int i = 1; i < nmvsad; i++ )
739                         if( mvsads[i].sad > mvsads[bi].sad )
740                             bi = i;
741                     nmvsad--;
742                     if( sizeof( mvsad_t ) == sizeof( uint64_t ) )
743                         CP64( &mvsads[bi], &mvsads[nmvsad] );
744                     else
745                         mvsads[bi] = mvsads[nmvsad];
746                 }
747                 for( int i = 0; i < nmvsad; i++ )
748                     COST_MV( mvsads[i].mv[0], mvsads[i].mv[1] );
749             }
750             else
751             {
752                 // just ADS and SAD
753                 for( int my = min_y; my <= max_y; my++ )
754                 {
755                     int i;
756                     int ycost = p_cost_mvy[my<<2];
757                     if( bcost <= ycost )
758                         continue;
759                     bcost -= ycost;
760                     xn = h->pixf.ads[i_pixel]( enc_dc, sums_base + min_x + my * stride, delta,
761                                                cost_fpel_mvx+min_x, xs, width, bcost );
762                     for( i = 0; i < xn-2; i += 3 )
763                         COST_MV_X3_ABS( min_x+xs[i],my, min_x+xs[i+1],my, min_x+xs[i+2],my );
764                     bcost += ycost;
765                     for( ; i < xn; i++ )
766                         COST_MV( min_x+xs[i], my );
767                 }
768             }
769 #endif
770         }
771         break;
772     }
773
774     /* -> qpel mv */
775     uint32_t bmv = pack16to32_mask(bmx,bmy);
776     uint32_t bmv_spel = SPELx2(bmv);
777     if( h->mb.i_subpel_refine < 3 )
778     {
779         m->cost_mv = p_cost_mvx[bmx<<2] + p_cost_mvy[bmy<<2];
780         m->cost = bcost;
781         /* compute the real cost */
782         if( bmv == pmv ) m->cost += m->cost_mv;
783         M32( m->mv ) = bmv_spel;
784     }
785     else
786     {
787         M32(m->mv) = bpred_cost < bcost ? bpred_mv : bmv_spel;
788         m->cost = X264_MIN( bpred_cost, bcost );
789     }
790
791     /* subpel refine */
792     if( h->mb.i_subpel_refine >= 2 )
793     {
794         int hpel = subpel_iterations[h->mb.i_subpel_refine][2];
795         int qpel = subpel_iterations[h->mb.i_subpel_refine][3];
796         refine_subpel( h, m, hpel, qpel, p_halfpel_thresh, 0 );
797     }
798 }
799 #undef COST_MV
800
801 void x264_me_refine_qpel( x264_t *h, x264_me_t *m )
802 {
803     int hpel = subpel_iterations[h->mb.i_subpel_refine][0];
804     int qpel = subpel_iterations[h->mb.i_subpel_refine][1];
805
806     if( m->i_pixel <= PIXEL_8x8 )
807         m->cost -= m->i_ref_cost;
808
809     refine_subpel( h, m, hpel, qpel, NULL, 1 );
810 }
811
812 void x264_me_refine_qpel_refdupe( x264_t *h, x264_me_t *m, int *p_halfpel_thresh )
813 {
814     refine_subpel( h, m, 0, X264_MIN( 2, subpel_iterations[h->mb.i_subpel_refine][3] ), p_halfpel_thresh, 0 );
815 }
816
817 #define COST_MV_SAD( mx, my ) \
818 { \
819     intptr_t stride = 16; \
820     pixel *src = h->mc.get_ref( pix, &stride, m->p_fref, m->i_stride[0], mx, my, bw, bh, &m->weight[0] ); \
821     int cost = h->pixf.fpelcmp[i_pixel]( m->p_fenc[0], FENC_STRIDE, src, stride ) \
822              + p_cost_mvx[ mx ] + p_cost_mvy[ my ]; \
823     COPY3_IF_LT( bcost, cost, bmx, mx, bmy, my ); \
824 }
825
826 #define COST_MV_SATD( mx, my, dir ) \
827 if( b_refine_qpel || (dir^1) != odir ) \
828 { \
829     intptr_t stride = 16; \
830     pixel *src = h->mc.get_ref( pix, &stride, &m->p_fref[0], m->i_stride[0], mx, my, bw, bh, &m->weight[0] ); \
831     int cost = h->pixf.mbcmp_unaligned[i_pixel]( m->p_fenc[0], FENC_STRIDE, src, stride ) \
832              + p_cost_mvx[ mx ] + p_cost_mvy[ my ]; \
833     if( b_chroma_me && cost < bcost ) \
834     { \
835         if( CHROMA444 ) \
836         { \
837             stride = 16; \
838             src = h->mc.get_ref( pix, &stride, &m->p_fref[4], m->i_stride[1], mx, my, bw, bh, &m->weight[1] ); \
839             cost += h->pixf.mbcmp_unaligned[i_pixel]( m->p_fenc[1], FENC_STRIDE, src, stride ); \
840             if( cost < bcost ) \
841             { \
842                 stride = 16; \
843                 src = h->mc.get_ref( pix, &stride, &m->p_fref[8], m->i_stride[2], mx, my, bw, bh, &m->weight[2] ); \
844                 cost += h->pixf.mbcmp_unaligned[i_pixel]( m->p_fenc[2], FENC_STRIDE, src, stride ); \
845             } \
846         } \
847         else \
848         { \
849             h->mc.mc_chroma( pix, pix+8, 16, m->p_fref[4], m->i_stride[1], \
850                              mx, 2*(my+mvy_offset)>>chroma_v_shift, bw>>1, bh>>chroma_v_shift ); \
851             if( m->weight[1].weightfn ) \
852                 m->weight[1].weightfn[bw>>3]( pix, 16, pix, 16, &m->weight[1], bh>>chroma_v_shift ); \
853             cost += h->pixf.mbcmp[chromapix]( m->p_fenc[1], FENC_STRIDE, pix, 16 ); \
854             if( cost < bcost ) \
855             { \
856                 if( m->weight[2].weightfn ) \
857                     m->weight[2].weightfn[bw>>3]( pix+8, 16, pix+8, 16, &m->weight[2], bh>>chroma_v_shift ); \
858                 cost += h->pixf.mbcmp[chromapix]( m->p_fenc[2], FENC_STRIDE, pix+8, 16 ); \
859             } \
860         } \
861     } \
862     COPY4_IF_LT( bcost, cost, bmx, mx, bmy, my, bdir, dir ); \
863 }
864
865 static void refine_subpel( x264_t *h, x264_me_t *m, int hpel_iters, int qpel_iters, int *p_halfpel_thresh, int b_refine_qpel )
866 {
867     const int bw = x264_pixel_size[m->i_pixel].w;
868     const int bh = x264_pixel_size[m->i_pixel].h;
869     const uint16_t *p_cost_mvx = m->p_cost_mv - m->mvp[0];
870     const uint16_t *p_cost_mvy = m->p_cost_mv - m->mvp[1];
871     const int i_pixel = m->i_pixel;
872     const int b_chroma_me = h->mb.b_chroma_me && (i_pixel <= PIXEL_8x8 || CHROMA444);
873     int chromapix = h->luma2chroma_pixel[i_pixel];
874     int chroma_v_shift = CHROMA_V_SHIFT;
875     int mvy_offset = chroma_v_shift & MB_INTERLACED & m->i_ref ? (h->mb.i_mb_y & 1)*4 - 2 : 0;
876
877     ALIGNED_ARRAY_16( pixel, pix,[64*18] ); // really 17x17x2, but round up for alignment
878
879     int bmx = m->mv[0];
880     int bmy = m->mv[1];
881     int bcost = m->cost;
882     int odir = -1, bdir;
883
884     /* halfpel diamond search */
885     if( hpel_iters )
886     {
887         /* try the subpel component of the predicted mv */
888         if( h->mb.i_subpel_refine < 3 )
889         {
890             int mx = x264_clip3( m->mvp[0], h->mb.mv_min_spel[0]+2, h->mb.mv_max_spel[0]-2 );
891             int my = x264_clip3( m->mvp[1], h->mb.mv_min_spel[1]+2, h->mb.mv_max_spel[1]-2 );
892             if( (mx-bmx)|(my-bmy) )
893                 COST_MV_SAD( mx, my );
894         }
895
896         bcost <<= 6;
897         for( int i = hpel_iters; i > 0; i-- )
898         {
899             int omx = bmx, omy = bmy;
900             int costs[4];
901             intptr_t stride = 64; // candidates are either all hpel or all qpel, so one stride is enough
902             pixel *src0, *src1, *src2, *src3;
903             src0 = h->mc.get_ref( pix,    &stride, m->p_fref, m->i_stride[0], omx, omy-2, bw, bh+1, &m->weight[0] );
904             src2 = h->mc.get_ref( pix+32, &stride, m->p_fref, m->i_stride[0], omx-2, omy, bw+4, bh, &m->weight[0] );
905             src1 = src0 + stride;
906             src3 = src2 + 1;
907             h->pixf.fpelcmp_x4[i_pixel]( m->p_fenc[0], src0, src1, src2, src3, stride, costs );
908             costs[0] += p_cost_mvx[omx  ] + p_cost_mvy[omy-2];
909             costs[1] += p_cost_mvx[omx  ] + p_cost_mvy[omy+2];
910             costs[2] += p_cost_mvx[omx-2] + p_cost_mvy[omy  ];
911             costs[3] += p_cost_mvx[omx+2] + p_cost_mvy[omy  ];
912             COPY1_IF_LT( bcost, (costs[0]<<6)+2 );
913             COPY1_IF_LT( bcost, (costs[1]<<6)+6 );
914             COPY1_IF_LT( bcost, (costs[2]<<6)+16 );
915             COPY1_IF_LT( bcost, (costs[3]<<6)+48 );
916             if( !(bcost&63) )
917                 break;
918             bmx -= (bcost<<26)>>29;
919             bmy -= (bcost<<29)>>29;
920             bcost &= ~63;
921         }
922         bcost >>= 6;
923     }
924
925     if( !b_refine_qpel && (h->pixf.mbcmp_unaligned[0] != h->pixf.fpelcmp[0] || b_chroma_me) )
926     {
927         bcost = COST_MAX;
928         COST_MV_SATD( bmx, bmy, -1 );
929     }
930
931     /* early termination when examining multiple reference frames */
932     if( p_halfpel_thresh )
933     {
934         if( (bcost*7)>>3 > *p_halfpel_thresh )
935         {
936             m->cost = bcost;
937             m->mv[0] = bmx;
938             m->mv[1] = bmy;
939             // don't need cost_mv
940             return;
941         }
942         else if( bcost < *p_halfpel_thresh )
943             *p_halfpel_thresh = bcost;
944     }
945
946     /* quarterpel diamond search */
947     if( h->mb.i_subpel_refine != 1 )
948     {
949         bdir = -1;
950         for( int i = qpel_iters; i > 0; i-- )
951         {
952             if( bmy <= h->mb.mv_min_spel[1] || bmy >= h->mb.mv_max_spel[1] || bmx <= h->mb.mv_min_spel[0] || bmx >= h->mb.mv_max_spel[0] )
953                 break;
954             odir = bdir;
955             int omx = bmx, omy = bmy;
956             COST_MV_SATD( omx, omy - 1, 0 );
957             COST_MV_SATD( omx, omy + 1, 1 );
958             COST_MV_SATD( omx - 1, omy, 2 );
959             COST_MV_SATD( omx + 1, omy, 3 );
960             if( (bmx == omx) & (bmy == omy) )
961                 break;
962         }
963     }
964     /* Special simplified case for subme=1 */
965     else if( bmy > h->mb.mv_min_spel[1] && bmy < h->mb.mv_max_spel[1] && bmx > h->mb.mv_min_spel[0] && bmx < h->mb.mv_max_spel[0] )
966     {
967         int costs[4];
968         int omx = bmx, omy = bmy;
969         /* We have to use mc_luma because all strides must be the same to use fpelcmp_x4 */
970         h->mc.mc_luma( pix   , 64, m->p_fref, m->i_stride[0], omx, omy-1, bw, bh, &m->weight[0] );
971         h->mc.mc_luma( pix+16, 64, m->p_fref, m->i_stride[0], omx, omy+1, bw, bh, &m->weight[0] );
972         h->mc.mc_luma( pix+32, 64, m->p_fref, m->i_stride[0], omx-1, omy, bw, bh, &m->weight[0] );
973         h->mc.mc_luma( pix+48, 64, m->p_fref, m->i_stride[0], omx+1, omy, bw, bh, &m->weight[0] );
974         h->pixf.fpelcmp_x4[i_pixel]( m->p_fenc[0], pix, pix+16, pix+32, pix+48, 64, costs );
975         costs[0] += p_cost_mvx[omx  ] + p_cost_mvy[omy-1];
976         costs[1] += p_cost_mvx[omx  ] + p_cost_mvy[omy+1];
977         costs[2] += p_cost_mvx[omx-1] + p_cost_mvy[omy  ];
978         costs[3] += p_cost_mvx[omx+1] + p_cost_mvy[omy  ];
979         bcost <<= 4;
980         COPY1_IF_LT( bcost, (costs[0]<<4)+1 );
981         COPY1_IF_LT( bcost, (costs[1]<<4)+3 );
982         COPY1_IF_LT( bcost, (costs[2]<<4)+4 );
983         COPY1_IF_LT( bcost, (costs[3]<<4)+12 );
984         bmx -= (bcost<<28)>>30;
985         bmy -= (bcost<<30)>>30;
986         bcost >>= 4;
987     }
988
989     m->cost = bcost;
990     m->mv[0] = bmx;
991     m->mv[1] = bmy;
992     m->cost_mv = p_cost_mvx[bmx] + p_cost_mvy[bmy];
993 }
994
995 #define BIME_CACHE( dx, dy, list )\
996 {\
997     x264_me_t *m = m##list;\
998     int i = 4 + 3*dx + dy;\
999     int mvx = bm##list##x+dx;\
1000     int mvy = bm##list##y+dy;\
1001     stride[0][list][i] = bw;\
1002     src[0][list][i] = h->mc.get_ref( pixy_buf[list][i], &stride[0][list][i], &m->p_fref[0],\
1003                                      m->i_stride[0], mvx, mvy, bw, bh, x264_weight_none );\
1004     if( rd )\
1005     {\
1006         if( CHROMA444 )\
1007         {\
1008             stride[1][list][i] = bw;\
1009             src[1][list][i] = h->mc.get_ref( pixu_buf[list][i], &stride[1][list][i], &m->p_fref[4],\
1010                                              m->i_stride[1], mvx, mvy, bw, bh, x264_weight_none );\
1011             stride[2][list][i] = bw;\
1012             src[2][list][i] = h->mc.get_ref( pixv_buf[list][i], &stride[2][list][i], &m->p_fref[8],\
1013                                              m->i_stride[2], mvx, mvy, bw, bh, x264_weight_none );\
1014         }\
1015         else\
1016             h->mc.mc_chroma( pixu_buf[list][i], pixv_buf[list][i], 8, m->p_fref[4], m->i_stride[1],\
1017                              mvx, 2*(mvy+mv##list##y_offset)>>chroma_v_shift, bw>>1, bh>>chroma_v_shift );\
1018     }\
1019 }
1020
1021 #define SATD_THRESH(cost) (cost+(cost>>4))
1022
1023 /* Don't unroll the BIME_CACHE loop. I couldn't find any way to force this
1024  * other than making its iteration count not a compile-time constant. */
1025 int x264_iter_kludge = 0;
1026
1027 static void ALWAYS_INLINE x264_me_refine_bidir( x264_t *h, x264_me_t *m0, x264_me_t *m1, int i_weight, int i8, int i_lambda2, int rd )
1028 {
1029     int x = i8&1;
1030     int y = i8>>1;
1031     int s8 = X264_SCAN8_0 + 2*x + 16*y;
1032     int16_t *cache0_mv = h->mb.cache.mv[0][s8];
1033     int16_t *cache1_mv = h->mb.cache.mv[1][s8];
1034     const int i_pixel = m0->i_pixel;
1035     const int bw = x264_pixel_size[i_pixel].w;
1036     const int bh = x264_pixel_size[i_pixel].h;
1037     ALIGNED_ARRAY_16( pixel, pixy_buf,[2],[9][16*16] );
1038     ALIGNED_ARRAY_16( pixel, pixu_buf,[2],[9][16*16] );
1039     ALIGNED_ARRAY_16( pixel, pixv_buf,[2],[9][16*16] );
1040     pixel *src[3][2][9];
1041     int chromapix = h->luma2chroma_pixel[i_pixel];
1042     int chroma_v_shift = CHROMA_V_SHIFT;
1043     int chroma_x = (8 >> CHROMA_H_SHIFT) * x;
1044     int chroma_y = (8 >> chroma_v_shift) * y;
1045     pixel *pix  = &h->mb.pic.p_fdec[0][8*x + 8*y*FDEC_STRIDE];
1046     pixel *pixu = &h->mb.pic.p_fdec[1][chroma_x + chroma_y*FDEC_STRIDE];
1047     pixel *pixv = &h->mb.pic.p_fdec[2][chroma_x + chroma_y*FDEC_STRIDE];
1048     int ref0 = h->mb.cache.ref[0][s8];
1049     int ref1 = h->mb.cache.ref[1][s8];
1050     const int mv0y_offset = chroma_v_shift & MB_INTERLACED & ref0 ? (h->mb.i_mb_y & 1)*4 - 2 : 0;
1051     const int mv1y_offset = chroma_v_shift & MB_INTERLACED & ref1 ? (h->mb.i_mb_y & 1)*4 - 2 : 0;
1052     intptr_t stride[3][2][9];
1053     int bm0x = m0->mv[0];
1054     int bm0y = m0->mv[1];
1055     int bm1x = m1->mv[0];
1056     int bm1y = m1->mv[1];
1057     int bcost = COST_MAX;
1058     int mc_list0 = 1, mc_list1 = 1;
1059     uint64_t bcostrd = COST_MAX64;
1060     uint16_t amvd;
1061     /* each byte of visited represents 8 possible m1y positions, so a 4D array isn't needed */
1062     ALIGNED_ARRAY_16( uint8_t, visited,[8],[8][8] );
1063     /* all permutations of an offset in up to 2 of the dimensions */
1064     ALIGNED_4( static const int8_t dia4d[33][4] ) =
1065     {
1066         {0,0,0,0},
1067         {0,0,0,1}, {0,0,0,-1}, {0,0,1,0}, {0,0,-1,0},
1068         {0,1,0,0}, {0,-1,0,0}, {1,0,0,0}, {-1,0,0,0},
1069         {0,0,1,1}, {0,0,-1,-1},{0,1,1,0}, {0,-1,-1,0},
1070         {1,1,0,0}, {-1,-1,0,0},{1,0,0,1}, {-1,0,0,-1},
1071         {0,1,0,1}, {0,-1,0,-1},{1,0,1,0}, {-1,0,-1,0},
1072         {0,0,-1,1},{0,0,1,-1}, {0,-1,1,0},{0,1,-1,0},
1073         {-1,1,0,0},{1,-1,0,0}, {1,0,0,-1},{-1,0,0,1},
1074         {0,-1,0,1},{0,1,0,-1}, {-1,0,1,0},{1,0,-1,0},
1075     };
1076
1077     if( bm0y < h->mb.mv_min_spel[1] + 8 || bm1y < h->mb.mv_min_spel[1] + 8 ||
1078         bm0y > h->mb.mv_max_spel[1] - 8 || bm1y > h->mb.mv_max_spel[1] - 8 ||
1079         bm0x < h->mb.mv_min_spel[0] + 8 || bm1x < h->mb.mv_min_spel[0] + 8 ||
1080         bm0x > h->mb.mv_max_spel[0] - 8 || bm1x > h->mb.mv_max_spel[0] - 8 )
1081         return;
1082
1083     if( rd && m0->i_pixel != PIXEL_16x16 && i8 != 0 )
1084     {
1085         x264_mb_predict_mv( h, 0, i8<<2, bw>>2, m0->mvp );
1086         x264_mb_predict_mv( h, 1, i8<<2, bw>>2, m1->mvp );
1087     }
1088
1089     const uint16_t *p_cost_m0x = m0->p_cost_mv - m0->mvp[0];
1090     const uint16_t *p_cost_m0y = m0->p_cost_mv - m0->mvp[1];
1091     const uint16_t *p_cost_m1x = m1->p_cost_mv - m1->mvp[0];
1092     const uint16_t *p_cost_m1y = m1->p_cost_mv - m1->mvp[1];
1093
1094     h->mc.memzero_aligned( visited, sizeof(uint8_t[8][8][8]) );
1095
1096     for( int pass = 0; pass < 8; pass++ )
1097     {
1098         int bestj = 0;
1099         /* check all mv pairs that differ in at most 2 components from the current mvs. */
1100         /* doesn't do chroma ME. this probably doesn't matter, as the gains
1101          * from bidir ME are the same with and without chroma ME. */
1102
1103         if( mc_list0 )
1104             for( int j = x264_iter_kludge; j < 9; j++ )
1105                 BIME_CACHE( square1[j][0], square1[j][1], 0 );
1106
1107         if( mc_list1 )
1108             for( int j = x264_iter_kludge; j < 9; j++ )
1109                 BIME_CACHE( square1[j][0], square1[j][1], 1 );
1110
1111         for( int j = !!pass; j < 33; j++ )
1112         {
1113             int m0x = dia4d[j][0] + bm0x;
1114             int m0y = dia4d[j][1] + bm0y;
1115             int m1x = dia4d[j][2] + bm1x;
1116             int m1y = dia4d[j][3] + bm1y;
1117             if( !pass || !((visited[(m0x)&7][(m0y)&7][(m1x)&7] & (1<<((m1y)&7)))) )
1118             {
1119                 int i0 = 4 + 3*dia4d[j][0] + dia4d[j][1];
1120                 int i1 = 4 + 3*dia4d[j][2] + dia4d[j][3];
1121                 visited[(m0x)&7][(m0y)&7][(m1x)&7] |= (1<<((m1y)&7));
1122                 h->mc.avg[i_pixel]( pix, FDEC_STRIDE, src[0][0][i0], stride[0][0][i0], src[0][1][i1], stride[0][1][i1], i_weight );
1123                 int cost = h->pixf.mbcmp[i_pixel]( m0->p_fenc[0], FENC_STRIDE, pix, FDEC_STRIDE )
1124                          + p_cost_m0x[m0x] + p_cost_m0y[m0y] + p_cost_m1x[m1x] + p_cost_m1y[m1y];
1125                 if( rd )
1126                 {
1127                     if( cost < SATD_THRESH(bcost) )
1128                     {
1129                         bcost = X264_MIN( cost, bcost );
1130                         M32( cache0_mv ) = pack16to32_mask(m0x,m0y);
1131                         M32( cache1_mv ) = pack16to32_mask(m1x,m1y);
1132                         if( CHROMA444 )
1133                         {
1134                             h->mc.avg[i_pixel]( pixu, FDEC_STRIDE, src[1][0][i0], stride[1][0][i0], src[1][1][i1], stride[1][1][i1], i_weight );
1135                             h->mc.avg[i_pixel]( pixv, FDEC_STRIDE, src[2][0][i0], stride[2][0][i0], src[2][1][i1], stride[2][1][i1], i_weight );
1136                         }
1137                         else
1138                         {
1139                             h->mc.avg[chromapix]( pixu, FDEC_STRIDE, pixu_buf[0][i0], 8, pixu_buf[1][i1], 8, i_weight );
1140                             h->mc.avg[chromapix]( pixv, FDEC_STRIDE, pixv_buf[0][i0], 8, pixv_buf[1][i1], 8, i_weight );
1141                         }
1142                         uint64_t costrd = x264_rd_cost_part( h, i_lambda2, i8*4, m0->i_pixel );
1143                         COPY2_IF_LT( bcostrd, costrd, bestj, j );
1144                     }
1145                 }
1146                 else
1147                     COPY2_IF_LT( bcost, cost, bestj, j );
1148             }
1149         }
1150
1151         if( !bestj )
1152             break;
1153
1154         bm0x += dia4d[bestj][0];
1155         bm0y += dia4d[bestj][1];
1156         bm1x += dia4d[bestj][2];
1157         bm1y += dia4d[bestj][3];
1158
1159         mc_list0 = M16( &dia4d[bestj][0] );
1160         mc_list1 = M16( &dia4d[bestj][2] );
1161     }
1162
1163     if( rd )
1164     {
1165         x264_macroblock_cache_mv ( h, 2*x, 2*y, bw>>2, bh>>2, 0, pack16to32_mask(bm0x, bm0y) );
1166         amvd = pack8to16( X264_MIN(abs(bm0x - m0->mvp[0]),33), X264_MIN(abs(bm0y - m0->mvp[1]),33) );
1167         x264_macroblock_cache_mvd( h, 2*x, 2*y, bw>>2, bh>>2, 0, amvd );
1168
1169         x264_macroblock_cache_mv ( h, 2*x, 2*y, bw>>2, bh>>2, 1, pack16to32_mask(bm1x, bm1y) );
1170         amvd = pack8to16( X264_MIN(abs(bm1x - m1->mvp[0]),33), X264_MIN(abs(bm1y - m1->mvp[1]),33) );
1171         x264_macroblock_cache_mvd( h, 2*x, 2*y, bw>>2, bh>>2, 1, amvd );
1172     }
1173
1174     m0->mv[0] = bm0x;
1175     m0->mv[1] = bm0y;
1176     m1->mv[0] = bm1x;
1177     m1->mv[1] = bm1y;
1178 }
1179
1180 void x264_me_refine_bidir_satd( x264_t *h, x264_me_t *m0, x264_me_t *m1, int i_weight )
1181 {
1182     x264_me_refine_bidir( h, m0, m1, i_weight, 0, 0, 0 );
1183 }
1184
1185 void x264_me_refine_bidir_rd( x264_t *h, x264_me_t *m0, x264_me_t *m1, int i_weight, int i8, int i_lambda2 )
1186 {
1187     /* Motion compensation is done as part of bidir_rd; don't repeat
1188      * it in encoding. */
1189     h->mb.b_skip_mc = 1;
1190     x264_me_refine_bidir( h, m0, m1, i_weight, i8, i_lambda2, 1 );
1191     h->mb.b_skip_mc = 0;
1192 }
1193
1194 #undef COST_MV_SATD
1195 #define COST_MV_SATD( mx, my, dst, avoid_mvp ) \
1196 { \
1197     if( !avoid_mvp || !(mx == pmx && my == pmy) ) \
1198     { \
1199         h->mc.mc_luma( pix, FDEC_STRIDE, m->p_fref, m->i_stride[0], mx, my, bw, bh, &m->weight[0] ); \
1200         dst = h->pixf.mbcmp[i_pixel]( m->p_fenc[0], FENC_STRIDE, pix, FDEC_STRIDE ) \
1201             + p_cost_mvx[mx] + p_cost_mvy[my]; \
1202         COPY1_IF_LT( bsatd, dst ); \
1203     } \
1204     else \
1205         dst = COST_MAX; \
1206 }
1207
1208 #define COST_MV_RD( mx, my, satd, do_dir, mdir ) \
1209 { \
1210     if( satd <= SATD_THRESH(bsatd) ) \
1211     { \
1212         uint64_t cost; \
1213         M32( cache_mv ) = pack16to32_mask(mx,my); \
1214         if( CHROMA444 ) \
1215         { \
1216             h->mc.mc_luma( pixu, FDEC_STRIDE, &m->p_fref[4], m->i_stride[1], mx, my, bw, bh, &m->weight[1] ); \
1217             h->mc.mc_luma( pixv, FDEC_STRIDE, &m->p_fref[8], m->i_stride[2], mx, my, bw, bh, &m->weight[2] ); \
1218         } \
1219         else if( m->i_pixel <= PIXEL_8x8 ) \
1220         { \
1221             h->mc.mc_chroma( pixu, pixv, FDEC_STRIDE, m->p_fref[4], m->i_stride[1], \
1222                              mx, 2*(my+mvy_offset)>>chroma_v_shift, bw>>1, bh>>chroma_v_shift ); \
1223             if( m->weight[1].weightfn ) \
1224                 m->weight[1].weightfn[bw>>3]( pixu, FDEC_STRIDE, pixu, FDEC_STRIDE, &m->weight[1], bh>>chroma_v_shift ); \
1225             if( m->weight[2].weightfn ) \
1226                 m->weight[2].weightfn[bw>>3]( pixv, FDEC_STRIDE, pixv, FDEC_STRIDE, &m->weight[2], bh>>chroma_v_shift ); \
1227         } \
1228         cost = x264_rd_cost_part( h, i_lambda2, i4, m->i_pixel ); \
1229         COPY4_IF_LT( bcost, cost, bmx, mx, bmy, my, dir, do_dir?mdir:dir ); \
1230     } \
1231 }
1232
1233 void x264_me_refine_qpel_rd( x264_t *h, x264_me_t *m, int i_lambda2, int i4, int i_list )
1234 {
1235     int16_t *cache_mv = h->mb.cache.mv[i_list][x264_scan8[i4]];
1236     const uint16_t *p_cost_mvx, *p_cost_mvy;
1237     const int bw = x264_pixel_size[m->i_pixel].w;
1238     const int bh = x264_pixel_size[m->i_pixel].h;
1239     const int i_pixel = m->i_pixel;
1240     int chroma_v_shift = CHROMA_V_SHIFT;
1241     int mvy_offset = chroma_v_shift & MB_INTERLACED & m->i_ref ? (h->mb.i_mb_y & 1)*4 - 2 : 0;
1242
1243     uint64_t bcost = COST_MAX64;
1244     int bmx = m->mv[0];
1245     int bmy = m->mv[1];
1246     int omx, omy, pmx, pmy;
1247     int satd, bsatd;
1248     int dir = -2;
1249     int i8 = i4>>2;
1250     uint16_t amvd;
1251
1252     pixel *pix  = &h->mb.pic.p_fdec[0][block_idx_xy_fdec[i4]];
1253     pixel *pixu, *pixv;
1254     if( CHROMA444 )
1255     {
1256         pixu = &h->mb.pic.p_fdec[1][block_idx_xy_fdec[i4]];
1257         pixv = &h->mb.pic.p_fdec[2][block_idx_xy_fdec[i4]];
1258     }
1259     else
1260     {
1261         pixu = &h->mb.pic.p_fdec[1][(i8>>1)*(8*FDEC_STRIDE>>chroma_v_shift)+(i8&1)*4];
1262         pixv = &h->mb.pic.p_fdec[2][(i8>>1)*(8*FDEC_STRIDE>>chroma_v_shift)+(i8&1)*4];
1263     }
1264
1265     h->mb.b_skip_mc = 1;
1266
1267     if( m->i_pixel != PIXEL_16x16 && i4 != 0 )
1268         x264_mb_predict_mv( h, i_list, i4, bw>>2, m->mvp );
1269     pmx = m->mvp[0];
1270     pmy = m->mvp[1];
1271     p_cost_mvx = m->p_cost_mv - pmx;
1272     p_cost_mvy = m->p_cost_mv - pmy;
1273     COST_MV_SATD( bmx, bmy, bsatd, 0 );
1274     if( m->i_pixel != PIXEL_16x16 )
1275         COST_MV_RD( bmx, bmy, 0, 0, 0 )
1276     else
1277         bcost = m->cost;
1278
1279     /* check the predicted mv */
1280     if( (bmx != pmx || bmy != pmy)
1281         && pmx >= h->mb.mv_min_spel[0] && pmx <= h->mb.mv_max_spel[0]
1282         && pmy >= h->mb.mv_min_spel[1] && pmy <= h->mb.mv_max_spel[1] )
1283     {
1284         COST_MV_SATD( pmx, pmy, satd, 0 );
1285         COST_MV_RD  ( pmx, pmy, satd, 0, 0 );
1286         /* The hex motion search is guaranteed to not repeat the center candidate,
1287          * so if pmv is chosen, set the "MV to avoid checking" to bmv instead. */
1288         if( bmx == pmx && bmy == pmy )
1289         {
1290             pmx = m->mv[0];
1291             pmy = m->mv[1];
1292         }
1293     }
1294
1295     if( bmy < h->mb.mv_min_spel[1] + 3 || bmy > h->mb.mv_max_spel[1] - 3 ||
1296         bmx < h->mb.mv_min_spel[0] + 3 || bmx > h->mb.mv_max_spel[0] - 3 )
1297     {
1298         h->mb.b_skip_mc = 0;
1299         return;
1300     }
1301
1302     /* subpel hex search, same pattern as ME HEX. */
1303     dir = -2;
1304     omx = bmx;
1305     omy = bmy;
1306     for( int j = 0; j < 6; j++ )
1307     {
1308         COST_MV_SATD( omx + hex2[j+1][0], omy + hex2[j+1][1], satd, 1 );
1309         COST_MV_RD  ( omx + hex2[j+1][0], omy + hex2[j+1][1], satd, 1, j );
1310     }
1311
1312     if( dir != -2 )
1313     {
1314         /* half hexagon, not overlapping the previous iteration */
1315         for( int i = 1; i < 10; i++ )
1316         {
1317             const int odir = mod6m1[dir+1];
1318             if( bmy < h->mb.mv_min_spel[1] + 3 ||
1319                 bmy > h->mb.mv_max_spel[1] - 3 )
1320                 break;
1321             dir = -2;
1322             omx = bmx;
1323             omy = bmy;
1324             for( int j = 0; j < 3; j++ )
1325             {
1326                 COST_MV_SATD( omx + hex2[odir+j][0], omy + hex2[odir+j][1], satd, 1 );
1327                 COST_MV_RD  ( omx + hex2[odir+j][0], omy + hex2[odir+j][1], satd, 1, odir-1+j );
1328             }
1329             if( dir == -2 )
1330                 break;
1331         }
1332     }
1333
1334     /* square refine, same pattern as ME HEX. */
1335     omx = bmx;
1336     omy = bmy;
1337     for( int i = 0; i < 8; i++ )
1338     {
1339         COST_MV_SATD( omx + square1[i+1][0], omy + square1[i+1][1], satd, 1 );
1340         COST_MV_RD  ( omx + square1[i+1][0], omy + square1[i+1][1], satd, 0, 0 );
1341     }
1342
1343     m->cost = bcost;
1344     m->mv[0] = bmx;
1345     m->mv[1] = bmy;
1346     x264_macroblock_cache_mv ( h, block_idx_x[i4], block_idx_y[i4], bw>>2, bh>>2, i_list, pack16to32_mask(bmx, bmy) );
1347     amvd = pack8to16( X264_MIN(abs(bmx - m->mvp[0]),66), X264_MIN(abs(bmy - m->mvp[1]),66) );
1348     x264_macroblock_cache_mvd( h, block_idx_x[i4], block_idx_y[i4], bw>>2, bh>>2, i_list, amvd );
1349     h->mb.b_skip_mc = 0;
1350 }