Merge commit 'ba30b74686f0cb6c9dd465ac4820059c48bf9d08'
authorJames Almer <jamrial@gmail.com>
Thu, 28 Sep 2017 02:48:40 +0000 (23:48 -0300)
committerJames Almer <jamrial@gmail.com>
Thu, 28 Sep 2017 02:49:06 +0000 (23:49 -0300)
* commit 'ba30b74686f0cb6c9dd465ac4820059c48bf9d08':
  aac: Validate the sbr sample rate before using the value

See cf5f4c5169639349262aa221ae485a0de188afb1

Merged-by: James Almer <jamrial@gmail.com>
1  2 
libavcodec/aacsbr_template.c

index 930d33e,0000000..3fe78d5
mode 100644,000000..100644
--- /dev/null
@@@ -1,1571 -1,0 +1,1571 @@@
-     if (sbr->sample_rate < 32000) {
-         temp = 3000;
-     } else if (sbr->sample_rate < 64000) {
-         temp = 4000;
-     } else
-         temp = 5000;
 +/*
 + * AAC Spectral Band Replication decoding functions
 + * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
 + * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
 + *
 + * Fixed point code
 + * Copyright (c) 2013
 + *      MIPS Technologies, Inc., California.
 + *
 + * This file is part of FFmpeg.
 + *
 + * FFmpeg is free software; you can redistribute it and/or
 + * modify it under the terms of the GNU Lesser General Public
 + * License as published by the Free Software Foundation; either
 + * version 2.1 of the License, or (at your option) any later version.
 + *
 + * FFmpeg is distributed in the hope that it will be useful,
 + * but WITHOUT ANY WARRANTY; without even the implied warranty of
 + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 + * Lesser General Public License for more details.
 + *
 + * You should have received a copy of the GNU Lesser General Public
 + * License along with FFmpeg; if not, write to the Free Software
 + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 + */
 +
 +/**
 + * @file
 + * AAC Spectral Band Replication decoding functions
 + * @author Robert Swain ( rob opendot cl )
 + * @author Stanislav Ocovaj ( stanislav.ocovaj@imgtec.com )
 + * @author Zoran Basaric ( zoran.basaric@imgtec.com )
 + */
 +
 +#include "libavutil/qsort.h"
 +
 +av_cold void AAC_RENAME(ff_aac_sbr_init)(void)
 +{
 +    static const struct {
 +        const void *sbr_codes, *sbr_bits;
 +        const unsigned int table_size, elem_size;
 +    } sbr_tmp[] = {
 +        SBR_VLC_ROW(t_huffman_env_1_5dB),
 +        SBR_VLC_ROW(f_huffman_env_1_5dB),
 +        SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
 +        SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
 +        SBR_VLC_ROW(t_huffman_env_3_0dB),
 +        SBR_VLC_ROW(f_huffman_env_3_0dB),
 +        SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
 +        SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
 +        SBR_VLC_ROW(t_huffman_noise_3_0dB),
 +        SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
 +    };
 +
 +    // SBR VLC table initialization
 +    SBR_INIT_VLC_STATIC(0, 1098);
 +    SBR_INIT_VLC_STATIC(1, 1092);
 +    SBR_INIT_VLC_STATIC(2, 768);
 +    SBR_INIT_VLC_STATIC(3, 1026);
 +    SBR_INIT_VLC_STATIC(4, 1058);
 +    SBR_INIT_VLC_STATIC(5, 1052);
 +    SBR_INIT_VLC_STATIC(6, 544);
 +    SBR_INIT_VLC_STATIC(7, 544);
 +    SBR_INIT_VLC_STATIC(8, 592);
 +    SBR_INIT_VLC_STATIC(9, 512);
 +
 +    aacsbr_tableinit();
 +
 +    AAC_RENAME(ff_ps_init)();
 +}
 +
 +/** Places SBR in pure upsampling mode. */
 +static void sbr_turnoff(SpectralBandReplication *sbr) {
 +    sbr->start = 0;
 +    sbr->ready_for_dequant = 0;
 +    // Init defults used in pure upsampling mode
 +    sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
 +    sbr->m[1] = 0;
 +    // Reset values for first SBR header
 +    sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
 +    memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
 +}
 +
 +av_cold void AAC_RENAME(ff_aac_sbr_ctx_init)(AACContext *ac, SpectralBandReplication *sbr, int id_aac)
 +{
 +    if(sbr->mdct.mdct_bits)
 +        return;
 +    sbr->kx[0] = sbr->kx[1];
 +    sbr->id_aac = id_aac;
 +    sbr_turnoff(sbr);
 +    sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
 +    sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
 +    /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
 +     * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
 +     * and scale back down at synthesis. */
 +    AAC_RENAME_32(ff_mdct_init)(&sbr->mdct,     7, 1, 1.0 / (64 * 32768.0));
 +    AAC_RENAME_32(ff_mdct_init)(&sbr->mdct_ana, 7, 1, -2.0 * 32768.0);
 +    AAC_RENAME(ff_ps_ctx_init)(&sbr->ps);
 +    AAC_RENAME(ff_sbrdsp_init)(&sbr->dsp);
 +    aacsbr_func_ptr_init(&sbr->c);
 +}
 +
 +av_cold void AAC_RENAME(ff_aac_sbr_ctx_close)(SpectralBandReplication *sbr)
 +{
 +    AAC_RENAME_32(ff_mdct_end)(&sbr->mdct);
 +    AAC_RENAME_32(ff_mdct_end)(&sbr->mdct_ana);
 +}
 +
 +static int qsort_comparison_function_int16(const void *a, const void *b)
 +{
 +    return *(const int16_t *)a - *(const int16_t *)b;
 +}
 +
 +static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
 +{
 +    int i;
 +    for (i = 0; i <= last_el; i++)
 +        if (table[i] == needle)
 +            return 1;
 +    return 0;
 +}
 +
 +/// Limiter Frequency Band Table (14496-3 sp04 p198)
 +static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
 +{
 +    int k;
 +    if (sbr->bs_limiter_bands > 0) {
 +        static const INTFLOAT bands_warped[3] = { Q23(1.32715174233856803909f),   //2^(0.49/1.2)
 +                                               Q23(1.18509277094158210129f),   //2^(0.49/2)
 +                                               Q23(1.11987160404675912501f) }; //2^(0.49/3)
 +        const INTFLOAT lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
 +        int16_t patch_borders[7];
 +        uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
 +
 +        patch_borders[0] = sbr->kx[1];
 +        for (k = 1; k <= sbr->num_patches; k++)
 +            patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
 +
 +        memcpy(sbr->f_tablelim, sbr->f_tablelow,
 +               (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
 +        if (sbr->num_patches > 1)
 +            memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
 +                   (sbr->num_patches - 1) * sizeof(patch_borders[0]));
 +
 +        AV_QSORT(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
 +              uint16_t,
 +              qsort_comparison_function_int16);
 +
 +        sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
 +        while (out < sbr->f_tablelim + sbr->n_lim) {
 +#if USE_FIXED
 +            if ((*in << 23) >= *out * lim_bands_per_octave_warped) {
 +#else
 +            if (*in >= *out * lim_bands_per_octave_warped) {
 +#endif /* USE_FIXED */
 +                *++out = *in++;
 +            } else if (*in == *out ||
 +                !in_table_int16(patch_borders, sbr->num_patches, *in)) {
 +                in++;
 +                sbr->n_lim--;
 +            } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
 +                *out = *in++;
 +                sbr->n_lim--;
 +            } else {
 +                *++out = *in++;
 +            }
 +        }
 +    } else {
 +        sbr->f_tablelim[0] = sbr->f_tablelow[0];
 +        sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
 +        sbr->n_lim = 1;
 +    }
 +}
 +
 +static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
 +{
 +    unsigned int cnt = get_bits_count(gb);
 +    uint8_t bs_header_extra_1;
 +    uint8_t bs_header_extra_2;
 +    int old_bs_limiter_bands = sbr->bs_limiter_bands;
 +    SpectrumParameters old_spectrum_params;
 +
 +    sbr->start = 1;
 +    sbr->ready_for_dequant = 0;
 +
 +    // Save last spectrum parameters variables to compare to new ones
 +    memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
 +
 +    sbr->bs_amp_res_header              = get_bits1(gb);
 +    sbr->spectrum_params.bs_start_freq  = get_bits(gb, 4);
 +    sbr->spectrum_params.bs_stop_freq   = get_bits(gb, 4);
 +    sbr->spectrum_params.bs_xover_band  = get_bits(gb, 3);
 +                                          skip_bits(gb, 2); // bs_reserved
 +
 +    bs_header_extra_1 = get_bits1(gb);
 +    bs_header_extra_2 = get_bits1(gb);
 +
 +    if (bs_header_extra_1) {
 +        sbr->spectrum_params.bs_freq_scale  = get_bits(gb, 2);
 +        sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
 +        sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
 +    } else {
 +        sbr->spectrum_params.bs_freq_scale  = 2;
 +        sbr->spectrum_params.bs_alter_scale = 1;
 +        sbr->spectrum_params.bs_noise_bands = 2;
 +    }
 +
 +    // Check if spectrum parameters changed
 +    if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
 +        sbr->reset = 1;
 +
 +    if (bs_header_extra_2) {
 +        sbr->bs_limiter_bands  = get_bits(gb, 2);
 +        sbr->bs_limiter_gains  = get_bits(gb, 2);
 +        sbr->bs_interpol_freq  = get_bits1(gb);
 +        sbr->bs_smoothing_mode = get_bits1(gb);
 +    } else {
 +        sbr->bs_limiter_bands  = 2;
 +        sbr->bs_limiter_gains  = 2;
 +        sbr->bs_interpol_freq  = 1;
 +        sbr->bs_smoothing_mode = 1;
 +    }
 +
 +    if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
 +        sbr_make_f_tablelim(sbr);
 +
 +    return get_bits_count(gb) - cnt;
 +}
 +
 +static int array_min_int16(const int16_t *array, int nel)
 +{
 +    int i, min = array[0];
 +    for (i = 1; i < nel; i++)
 +        min = FFMIN(array[i], min);
 +    return min;
 +}
 +
 +static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
 +{
 +    // Requirements (14496-3 sp04 p205)
 +    if (n_master <= 0) {
 +        av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
 +        return -1;
 +    }
 +    if (bs_xover_band >= n_master) {
 +        av_log(avctx, AV_LOG_ERROR,
 +               "Invalid bitstream, crossover band index beyond array bounds: %d\n",
 +               bs_xover_band);
 +        return -1;
 +    }
 +    return 0;
 +}
 +
 +/// Master Frequency Band Table (14496-3 sp04 p194)
 +static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
 +                             SpectrumParameters *spectrum)
 +{
 +    unsigned int temp, max_qmf_subbands = 0;
 +    unsigned int start_min, stop_min;
 +    int k;
 +    const int8_t *sbr_offset_ptr;
 +    int16_t stop_dk[13];
 +
 +    switch (sbr->sample_rate) {
 +    case 16000:
 +        sbr_offset_ptr = sbr_offset[0];
 +        break;
 +    case 22050:
 +        sbr_offset_ptr = sbr_offset[1];
 +        break;
 +    case 24000:
 +        sbr_offset_ptr = sbr_offset[2];
 +        break;
 +    case 32000:
 +        sbr_offset_ptr = sbr_offset[3];
 +        break;
 +    case 44100: case 48000: case 64000:
 +        sbr_offset_ptr = sbr_offset[4];
 +        break;
 +    case 88200: case 96000: case 128000: case 176400: case 192000:
 +        sbr_offset_ptr = sbr_offset[5];
 +        break;
 +    default:
 +        av_log(ac->avctx, AV_LOG_ERROR,
 +               "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
 +        return -1;
 +    }
 +
++    if (sbr->sample_rate < 32000) {
++        temp = 3000;
++    } else if (sbr->sample_rate < 64000) {
++        temp = 4000;
++    } else
++        temp = 5000;
++
 +    start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
 +    stop_min  = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
 +
 +    sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
 +
 +    if (spectrum->bs_stop_freq < 14) {
 +        sbr->k[2] = stop_min;
 +        make_bands(stop_dk, stop_min, 64, 13);
 +        AV_QSORT(stop_dk, 13, int16_t, qsort_comparison_function_int16);
 +        for (k = 0; k < spectrum->bs_stop_freq; k++)
 +            sbr->k[2] += stop_dk[k];
 +    } else if (spectrum->bs_stop_freq == 14) {
 +        sbr->k[2] = 2*sbr->k[0];
 +    } else if (spectrum->bs_stop_freq == 15) {
 +        sbr->k[2] = 3*sbr->k[0];
 +    } else {
 +        av_log(ac->avctx, AV_LOG_ERROR,
 +               "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
 +        return -1;
 +    }
 +    sbr->k[2] = FFMIN(64, sbr->k[2]);
 +
 +    // Requirements (14496-3 sp04 p205)
 +    if (sbr->sample_rate <= 32000) {
 +        max_qmf_subbands = 48;
 +    } else if (sbr->sample_rate == 44100) {
 +        max_qmf_subbands = 35;
 +    } else if (sbr->sample_rate >= 48000)
 +        max_qmf_subbands = 32;
 +    else
 +        av_assert0(0);
 +
 +    if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
 +        av_log(ac->avctx, AV_LOG_ERROR,
 +               "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
 +        return -1;
 +    }
 +
 +    if (!spectrum->bs_freq_scale) {
 +        int dk, k2diff;
 +
 +        dk = spectrum->bs_alter_scale + 1;
 +        sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
 +        if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
 +            return -1;
 +
 +        for (k = 1; k <= sbr->n_master; k++)
 +            sbr->f_master[k] = dk;
 +
 +        k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
 +        if (k2diff < 0) {
 +            sbr->f_master[1]--;
 +            sbr->f_master[2]-= (k2diff < -1);
 +        } else if (k2diff) {
 +            sbr->f_master[sbr->n_master]++;
 +        }
 +
 +        sbr->f_master[0] = sbr->k[0];
 +        for (k = 1; k <= sbr->n_master; k++)
 +            sbr->f_master[k] += sbr->f_master[k - 1];
 +
 +    } else {
 +        int half_bands = 7 - spectrum->bs_freq_scale;      // bs_freq_scale  = {1,2,3}
 +        int two_regions, num_bands_0;
 +        int vdk0_max, vdk1_min;
 +        int16_t vk0[49];
 +#if USE_FIXED
 +        int tmp, nz = 0;
 +#endif /* USE_FIXED */
 +
 +        if (49 * sbr->k[2] > 110 * sbr->k[0]) {
 +            two_regions = 1;
 +            sbr->k[1] = 2 * sbr->k[0];
 +        } else {
 +            two_regions = 0;
 +            sbr->k[1] = sbr->k[2];
 +        }
 +
 +#if USE_FIXED
 +        tmp = (sbr->k[1] << 23) / sbr->k[0];
 +        while (tmp < 0x40000000) {
 +          tmp <<= 1;
 +          nz++;
 +        }
 +        tmp = fixed_log(tmp - 0x80000000);
 +        tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
 +        tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
 +        num_bands_0 = ((tmp + 0x400000) >> 23) * 2;
 +#else
 +        num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
 +#endif /* USE_FIXED */
 +
 +        if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
 +            av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
 +            return -1;
 +        }
 +
 +        vk0[0] = 0;
 +
 +        make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
 +
 +        AV_QSORT(vk0 + 1, num_bands_0, int16_t, qsort_comparison_function_int16);
 +        vdk0_max = vk0[num_bands_0];
 +
 +        vk0[0] = sbr->k[0];
 +        for (k = 1; k <= num_bands_0; k++) {
 +            if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
 +                av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
 +                return -1;
 +            }
 +            vk0[k] += vk0[k-1];
 +        }
 +
 +        if (two_regions) {
 +            int16_t vk1[49];
 +#if USE_FIXED
 +            int num_bands_1;
 +
 +            tmp = (sbr->k[2] << 23) / sbr->k[1];
 +            nz = 0;
 +            while (tmp < 0x40000000) {
 +              tmp <<= 1;
 +              nz++;
 +            }
 +            tmp = fixed_log(tmp - 0x80000000);
 +            tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
 +            tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
 +            if (spectrum->bs_alter_scale)
 +                tmp = (int)(((int64_t)tmp * CONST_076923 + 0x40000000) >> 31);
 +            num_bands_1 = ((tmp + 0x400000) >> 23) * 2;
 +#else
 +            float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
 +                                                     : 1.0f; // bs_alter_scale = {0,1}
 +            int num_bands_1 = lrintf(half_bands * invwarp *
 +                                     log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
 +#endif /* USE_FIXED */
 +            make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
 +
 +            vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
 +
 +            if (vdk1_min < vdk0_max) {
 +                int change;
 +                AV_QSORT(vk1 + 1, num_bands_1, int16_t, qsort_comparison_function_int16);
 +                change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
 +                vk1[1]           += change;
 +                vk1[num_bands_1] -= change;
 +            }
 +
 +            AV_QSORT(vk1 + 1, num_bands_1, int16_t, qsort_comparison_function_int16);
 +
 +            vk1[0] = sbr->k[1];
 +            for (k = 1; k <= num_bands_1; k++) {
 +                if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
 +                    av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
 +                    return -1;
 +                }
 +                vk1[k] += vk1[k-1];
 +            }
 +
 +            sbr->n_master = num_bands_0 + num_bands_1;
 +            if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
 +                return -1;
 +            memcpy(&sbr->f_master[0],               vk0,
 +                   (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
 +            memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
 +                    num_bands_1      * sizeof(sbr->f_master[0]));
 +
 +        } else {
 +            sbr->n_master = num_bands_0;
 +            if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
 +                return -1;
 +            memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
 +        }
 +    }
 +
 +    return 0;
 +}
 +
 +/// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
 +static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
 +{
 +    int i, k, last_k = -1, last_msb = -1, sb = 0;
 +    int msb = sbr->k[0];
 +    int usb = sbr->kx[1];
 +    int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
 +
 +    sbr->num_patches = 0;
 +
 +    if (goal_sb < sbr->kx[1] + sbr->m[1]) {
 +        for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
 +    } else
 +        k = sbr->n_master;
 +
 +    do {
 +        int odd = 0;
 +        if (k == last_k && msb == last_msb) {
 +            av_log(ac->avctx, AV_LOG_ERROR, "patch construction failed\n");
 +            return AVERROR_INVALIDDATA;
 +        }
 +        last_k = k;
 +        last_msb = msb;
 +        for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
 +            sb = sbr->f_master[i];
 +            odd = (sb + sbr->k[0]) & 1;
 +        }
 +
 +        // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
 +        // After this check the final number of patches can still be six which is
 +        // illegal however the Coding Technologies decoder check stream has a final
 +        // count of 6 patches
 +        if (sbr->num_patches > 5) {
 +            av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
 +            return -1;
 +        }
 +
 +        sbr->patch_num_subbands[sbr->num_patches]  = FFMAX(sb - usb, 0);
 +        sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
 +
 +        if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
 +            usb = sb;
 +            msb = sb;
 +            sbr->num_patches++;
 +        } else
 +            msb = sbr->kx[1];
 +
 +        if (sbr->f_master[k] - sb < 3)
 +            k = sbr->n_master;
 +    } while (sb != sbr->kx[1] + sbr->m[1]);
 +
 +    if (sbr->num_patches > 1 &&
 +        sbr->patch_num_subbands[sbr->num_patches - 1] < 3)
 +        sbr->num_patches--;
 +
 +    return 0;
 +}
 +
 +/// Derived Frequency Band Tables (14496-3 sp04 p197)
 +static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
 +{
 +    int k, temp;
 +#if USE_FIXED
 +    int nz = 0;
 +#endif /* USE_FIXED */
 +
 +    sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
 +    sbr->n[0] = (sbr->n[1] + 1) >> 1;
 +
 +    memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
 +           (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
 +    sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
 +    sbr->kx[1] = sbr->f_tablehigh[0];
 +
 +    // Requirements (14496-3 sp04 p205)
 +    if (sbr->kx[1] + sbr->m[1] > 64) {
 +        av_log(ac->avctx, AV_LOG_ERROR,
 +               "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
 +        return -1;
 +    }
 +    if (sbr->kx[1] > 32) {
 +        av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
 +        return -1;
 +    }
 +
 +    sbr->f_tablelow[0] = sbr->f_tablehigh[0];
 +    temp = sbr->n[1] & 1;
 +    for (k = 1; k <= sbr->n[0]; k++)
 +        sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
 +#if USE_FIXED
 +    temp = (sbr->k[2] << 23) / sbr->kx[1];
 +    while (temp < 0x40000000) {
 +        temp <<= 1;
 +        nz++;
 +    }
 +    temp = fixed_log(temp - 0x80000000);
 +    temp = (int)(((int64_t)temp * CONST_RECIP_LN2 + 0x20000000) >> 30);
 +    temp = (((temp + 0x80) >> 8) + ((8 - nz) << 23)) * sbr->spectrum_params.bs_noise_bands;
 +
 +    sbr->n_q = (temp + 0x400000) >> 23;
 +    if (sbr->n_q < 1)
 +        sbr->n_q = 1;
 +#else
 +    sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
 +                               log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
 +#endif /* USE_FIXED */
 +
 +    if (sbr->n_q > 5) {
 +        av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
 +        return -1;
 +    }
 +
 +    sbr->f_tablenoise[0] = sbr->f_tablelow[0];
 +    temp = 0;
 +    for (k = 1; k <= sbr->n_q; k++) {
 +        temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
 +        sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
 +    }
 +
 +    if (sbr_hf_calc_npatches(ac, sbr) < 0)
 +        return -1;
 +
 +    sbr_make_f_tablelim(sbr);
 +
 +    sbr->data[0].f_indexnoise = 0;
 +    sbr->data[1].f_indexnoise = 0;
 +
 +    return 0;
 +}
 +
 +static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
 +                                              int elements)
 +{
 +    int i;
 +    for (i = 0; i < elements; i++) {
 +        vec[i] = get_bits1(gb);
 +    }
 +}
 +
 +/** ceil(log2(index+1)) */
 +static const int8_t ceil_log2[] = {
 +    0, 1, 2, 2, 3, 3,
 +};
 +
 +static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
 +                         GetBitContext *gb, SBRData *ch_data)
 +{
 +    int i;
 +    int bs_pointer = 0;
 +    // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
 +    int abs_bord_trail = 16;
 +    int num_rel_lead, num_rel_trail;
 +    unsigned bs_num_env_old = ch_data->bs_num_env;
 +    int bs_frame_class, bs_num_env;
 +
 +    ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
 +    ch_data->bs_amp_res = sbr->bs_amp_res_header;
 +    ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
 +
 +    switch (bs_frame_class = get_bits(gb, 2)) {
 +    case FIXFIX:
 +        bs_num_env = 1 << get_bits(gb, 2);
 +        if (bs_num_env > 4) {
 +            av_log(ac->avctx, AV_LOG_ERROR,
 +                   "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
 +                   bs_num_env);
 +            return -1;
 +        }
 +        ch_data->bs_num_env = bs_num_env;
 +        num_rel_lead                        = ch_data->bs_num_env - 1;
 +        if (ch_data->bs_num_env == 1)
 +            ch_data->bs_amp_res = 0;
 +
 +
 +        ch_data->t_env[0]                   = 0;
 +        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
 +
 +        abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
 +                   ch_data->bs_num_env;
 +        for (i = 0; i < num_rel_lead; i++)
 +            ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
 +
 +        ch_data->bs_freq_res[1] = get_bits1(gb);
 +        for (i = 1; i < ch_data->bs_num_env; i++)
 +            ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
 +        break;
 +    case FIXVAR:
 +        abs_bord_trail                     += get_bits(gb, 2);
 +        num_rel_trail                       = get_bits(gb, 2);
 +        ch_data->bs_num_env                 = num_rel_trail + 1;
 +        ch_data->t_env[0]                   = 0;
 +        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
 +
 +        for (i = 0; i < num_rel_trail; i++)
 +            ch_data->t_env[ch_data->bs_num_env - 1 - i] =
 +                ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
 +
 +        bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
 +
 +        for (i = 0; i < ch_data->bs_num_env; i++)
 +            ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
 +        break;
 +    case VARFIX:
 +        ch_data->t_env[0]                   = get_bits(gb, 2);
 +        num_rel_lead                        = get_bits(gb, 2);
 +        ch_data->bs_num_env                 = num_rel_lead + 1;
 +        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
 +
 +        for (i = 0; i < num_rel_lead; i++)
 +            ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
 +
 +        bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
 +
 +        get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
 +        break;
 +    case VARVAR:
 +        ch_data->t_env[0]                   = get_bits(gb, 2);
 +        abs_bord_trail                     += get_bits(gb, 2);
 +        num_rel_lead                        = get_bits(gb, 2);
 +        num_rel_trail                       = get_bits(gb, 2);
 +        bs_num_env                          = num_rel_lead + num_rel_trail + 1;
 +
 +        if (bs_num_env > 5) {
 +            av_log(ac->avctx, AV_LOG_ERROR,
 +                   "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
 +                   bs_num_env);
 +            return -1;
 +        }
 +        ch_data->bs_num_env = bs_num_env;
 +
 +        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
 +
 +        for (i = 0; i < num_rel_lead; i++)
 +            ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
 +        for (i = 0; i < num_rel_trail; i++)
 +            ch_data->t_env[ch_data->bs_num_env - 1 - i] =
 +                ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
 +
 +        bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
 +
 +        get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
 +        break;
 +    }
 +    ch_data->bs_frame_class = bs_frame_class;
 +
 +    av_assert0(bs_pointer >= 0);
 +    if (bs_pointer > ch_data->bs_num_env + 1) {
 +        av_log(ac->avctx, AV_LOG_ERROR,
 +               "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
 +               bs_pointer);
 +        return -1;
 +    }
 +
 +    for (i = 1; i <= ch_data->bs_num_env; i++) {
 +        if (ch_data->t_env[i-1] >= ch_data->t_env[i]) {
 +            av_log(ac->avctx, AV_LOG_ERROR, "Not strictly monotone time borders\n");
 +            return -1;
 +        }
 +    }
 +
 +    ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
 +
 +    ch_data->t_q[0]                     = ch_data->t_env[0];
 +    ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
 +    if (ch_data->bs_num_noise > 1) {
 +        int idx;
 +        if (ch_data->bs_frame_class == FIXFIX) {
 +            idx = ch_data->bs_num_env >> 1;
 +        } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
 +            idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
 +        } else { // VARFIX
 +            if (!bs_pointer)
 +                idx = 1;
 +            else if (bs_pointer == 1)
 +                idx = ch_data->bs_num_env - 1;
 +            else // bs_pointer > 1
 +                idx = bs_pointer - 1;
 +        }
 +        ch_data->t_q[1] = ch_data->t_env[idx];
 +    }
 +
 +    ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
 +    ch_data->e_a[1] = -1;
 +    if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
 +        ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
 +    } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
 +        ch_data->e_a[1] = bs_pointer - 1;
 +
 +    return 0;
 +}
 +
 +static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
 +    //These variables are saved from the previous frame rather than copied
 +    dst->bs_freq_res[0]    = dst->bs_freq_res[dst->bs_num_env];
 +    dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
 +    dst->e_a[0]            = -(dst->e_a[1] != dst->bs_num_env);
 +
 +    //These variables are read from the bitstream and therefore copied
 +    memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
 +    memcpy(dst->t_env,         src->t_env,         sizeof(dst->t_env));
 +    memcpy(dst->t_q,           src->t_q,           sizeof(dst->t_q));
 +    dst->bs_num_env        = src->bs_num_env;
 +    dst->bs_amp_res        = src->bs_amp_res;
 +    dst->bs_num_noise      = src->bs_num_noise;
 +    dst->bs_frame_class    = src->bs_frame_class;
 +    dst->e_a[1]            = src->e_a[1];
 +}
 +
 +/// Read how the envelope and noise floor data is delta coded
 +static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
 +                          SBRData *ch_data)
 +{
 +    get_bits1_vector(gb, ch_data->bs_df_env,   ch_data->bs_num_env);
 +    get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
 +}
 +
 +/// Read inverse filtering data
 +static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
 +                          SBRData *ch_data)
 +{
 +    int i;
 +
 +    memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
 +    for (i = 0; i < sbr->n_q; i++)
 +        ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
 +}
 +
 +static int read_sbr_envelope(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb,
 +                              SBRData *ch_data, int ch)
 +{
 +    int bits;
 +    int i, j, k;
 +    VLC_TYPE (*t_huff)[2], (*f_huff)[2];
 +    int t_lav, f_lav;
 +    const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
 +    const int odd = sbr->n[1] & 1;
 +
 +    if (sbr->bs_coupling && ch) {
 +        if (ch_data->bs_amp_res) {
 +            bits   = 5;
 +            t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
 +            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
 +            f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
 +            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
 +        } else {
 +            bits   = 6;
 +            t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
 +            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
 +            f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
 +            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
 +        }
 +    } else {
 +        if (ch_data->bs_amp_res) {
 +            bits   = 6;
 +            t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
 +            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
 +            f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
 +            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
 +        } else {
 +            bits   = 7;
 +            t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
 +            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
 +            f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
 +            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
 +        }
 +    }
 +
 +    for (i = 0; i < ch_data->bs_num_env; i++) {
 +        if (ch_data->bs_df_env[i]) {
 +            // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
 +            if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
 +                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
 +                    ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
 +                    if (ch_data->env_facs_q[i + 1][j] > 127U) {
 +                        av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
 +                        return AVERROR_INVALIDDATA;
 +                    }
 +                }
 +            } else if (ch_data->bs_freq_res[i + 1]) {
 +                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
 +                    k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
 +                    ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
 +                    if (ch_data->env_facs_q[i + 1][j] > 127U) {
 +                        av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
 +                        return AVERROR_INVALIDDATA;
 +                    }
 +                }
 +            } else {
 +                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
 +                    k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
 +                    ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
 +                    if (ch_data->env_facs_q[i + 1][j] > 127U) {
 +                        av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
 +                        return AVERROR_INVALIDDATA;
 +                    }
 +                }
 +            }
 +        } else {
 +            ch_data->env_facs_q[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
 +            for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
 +                ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
 +                if (ch_data->env_facs_q[i + 1][j] > 127U) {
 +                    av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
 +                    return AVERROR_INVALIDDATA;
 +                }
 +            }
 +        }
 +    }
 +
 +    //assign 0th elements of env_facs_q from last elements
 +    memcpy(ch_data->env_facs_q[0], ch_data->env_facs_q[ch_data->bs_num_env],
 +           sizeof(ch_data->env_facs_q[0]));
 +
 +    return 0;
 +}
 +
 +static int read_sbr_noise(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb,
 +                           SBRData *ch_data, int ch)
 +{
 +    int i, j;
 +    VLC_TYPE (*t_huff)[2], (*f_huff)[2];
 +    int t_lav, f_lav;
 +    int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
 +
 +    if (sbr->bs_coupling && ch) {
 +        t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
 +        t_lav  = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
 +        f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
 +        f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
 +    } else {
 +        t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
 +        t_lav  = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
 +        f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
 +        f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
 +    }
 +
 +    for (i = 0; i < ch_data->bs_num_noise; i++) {
 +        if (ch_data->bs_df_noise[i]) {
 +            for (j = 0; j < sbr->n_q; j++) {
 +                ch_data->noise_facs_q[i + 1][j] = ch_data->noise_facs_q[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
 +                if (ch_data->noise_facs_q[i + 1][j] > 30U) {
 +                    av_log(ac->avctx, AV_LOG_ERROR, "noise_facs_q %d is invalid\n", ch_data->noise_facs_q[i + 1][j]);
 +                    return AVERROR_INVALIDDATA;
 +                }
 +            }
 +        } else {
 +            ch_data->noise_facs_q[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
 +            for (j = 1; j < sbr->n_q; j++) {
 +                ch_data->noise_facs_q[i + 1][j] = ch_data->noise_facs_q[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
 +                if (ch_data->noise_facs_q[i + 1][j] > 30U) {
 +                    av_log(ac->avctx, AV_LOG_ERROR, "noise_facs_q %d is invalid\n", ch_data->noise_facs_q[i + 1][j]);
 +                    return AVERROR_INVALIDDATA;
 +                }
 +            }
 +        }
 +    }
 +
 +    //assign 0th elements of noise_facs_q from last elements
 +    memcpy(ch_data->noise_facs_q[0], ch_data->noise_facs_q[ch_data->bs_num_noise],
 +           sizeof(ch_data->noise_facs_q[0]));
 +    return 0;
 +}
 +
 +static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
 +                               GetBitContext *gb,
 +                               int bs_extension_id, int *num_bits_left)
 +{
 +    switch (bs_extension_id) {
 +    case EXTENSION_ID_PS:
 +        if (!ac->oc[1].m4ac.ps) {
 +            av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
 +            skip_bits_long(gb, *num_bits_left); // bs_fill_bits
 +            *num_bits_left = 0;
 +        } else {
 +            *num_bits_left -= AAC_RENAME(ff_ps_read_data)(ac->avctx, gb, &sbr->ps, *num_bits_left);
 +            ac->avctx->profile = FF_PROFILE_AAC_HE_V2;
 +        }
 +        break;
 +    default:
 +        // some files contain 0-padding
 +        if (bs_extension_id || *num_bits_left > 16 || show_bits(gb, *num_bits_left))
 +            avpriv_request_sample(ac->avctx, "Reserved SBR extensions");
 +        skip_bits_long(gb, *num_bits_left); // bs_fill_bits
 +        *num_bits_left = 0;
 +        break;
 +    }
 +}
 +
 +static int read_sbr_single_channel_element(AACContext *ac,
 +                                            SpectralBandReplication *sbr,
 +                                            GetBitContext *gb)
 +{
 +    int ret;
 +
 +    if (get_bits1(gb)) // bs_data_extra
 +        skip_bits(gb, 4); // bs_reserved
 +
 +    if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
 +        return -1;
 +    read_sbr_dtdf(sbr, gb, &sbr->data[0]);
 +    read_sbr_invf(sbr, gb, &sbr->data[0]);
 +    if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
 +        return ret;
 +    if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
 +        return ret;
 +
 +    if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
 +        get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
 +
 +    return 0;
 +}
 +
 +static int read_sbr_channel_pair_element(AACContext *ac,
 +                                          SpectralBandReplication *sbr,
 +                                          GetBitContext *gb)
 +{
 +    int ret;
 +
 +    if (get_bits1(gb))    // bs_data_extra
 +        skip_bits(gb, 8); // bs_reserved
 +
 +    if ((sbr->bs_coupling = get_bits1(gb))) {
 +        if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
 +            return -1;
 +        copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
 +        read_sbr_dtdf(sbr, gb, &sbr->data[0]);
 +        read_sbr_dtdf(sbr, gb, &sbr->data[1]);
 +        read_sbr_invf(sbr, gb, &sbr->data[0]);
 +        memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
 +        memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
 +        if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
 +            return ret;
 +        if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
 +            return ret;
 +        if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[1], 1)) < 0)
 +            return ret;
 +        if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[1], 1)) < 0)
 +            return ret;
 +    } else {
 +        if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
 +            read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
 +            return -1;
 +        read_sbr_dtdf(sbr, gb, &sbr->data[0]);
 +        read_sbr_dtdf(sbr, gb, &sbr->data[1]);
 +        read_sbr_invf(sbr, gb, &sbr->data[0]);
 +        read_sbr_invf(sbr, gb, &sbr->data[1]);
 +        if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
 +            return ret;
 +        if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[1], 1)) < 0)
 +            return ret;
 +        if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
 +            return ret;
 +        if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[1], 1)) < 0)
 +            return ret;
 +    }
 +
 +    if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
 +        get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
 +    if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
 +        get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
 +
 +    return 0;
 +}
 +
 +static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
 +                                  GetBitContext *gb, int id_aac)
 +{
 +    unsigned int cnt = get_bits_count(gb);
 +
 +    sbr->id_aac = id_aac;
 +    sbr->ready_for_dequant = 1;
 +
 +    if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
 +        if (read_sbr_single_channel_element(ac, sbr, gb)) {
 +            sbr_turnoff(sbr);
 +            return get_bits_count(gb) - cnt;
 +        }
 +    } else if (id_aac == TYPE_CPE) {
 +        if (read_sbr_channel_pair_element(ac, sbr, gb)) {
 +            sbr_turnoff(sbr);
 +            return get_bits_count(gb) - cnt;
 +        }
 +    } else {
 +        av_log(ac->avctx, AV_LOG_ERROR,
 +            "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
 +        sbr_turnoff(sbr);
 +        return get_bits_count(gb) - cnt;
 +    }
 +    if (get_bits1(gb)) { // bs_extended_data
 +        int num_bits_left = get_bits(gb, 4); // bs_extension_size
 +        if (num_bits_left == 15)
 +            num_bits_left += get_bits(gb, 8); // bs_esc_count
 +
 +        num_bits_left <<= 3;
 +        while (num_bits_left > 7) {
 +            num_bits_left -= 2;
 +            read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
 +        }
 +        if (num_bits_left < 0) {
 +            av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
 +        }
 +        if (num_bits_left > 0)
 +            skip_bits(gb, num_bits_left);
 +    }
 +
 +    return get_bits_count(gb) - cnt;
 +}
 +
 +static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
 +{
 +    int err;
 +    err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
 +    if (err >= 0)
 +        err = sbr_make_f_derived(ac, sbr);
 +    if (err < 0) {
 +        av_log(ac->avctx, AV_LOG_ERROR,
 +               "SBR reset failed. Switching SBR to pure upsampling mode.\n");
 +        sbr_turnoff(sbr);
 +    }
 +}
 +
 +/**
 + * Decode Spectral Band Replication extension data; reference: table 4.55.
 + *
 + * @param   crc flag indicating the presence of CRC checksum
 + * @param   cnt length of TYPE_FIL syntactic element in bytes
 + *
 + * @return  Returns number of bytes consumed from the TYPE_FIL element.
 + */
 +int AAC_RENAME(ff_decode_sbr_extension)(AACContext *ac, SpectralBandReplication *sbr,
 +                            GetBitContext *gb_host, int crc, int cnt, int id_aac)
 +{
 +    unsigned int num_sbr_bits = 0, num_align_bits;
 +    unsigned bytes_read;
 +    GetBitContext gbc = *gb_host, *gb = &gbc;
 +    skip_bits_long(gb_host, cnt*8 - 4);
 +
 +    sbr->reset = 0;
 +
 +    if (!sbr->sample_rate)
 +        sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
 +    if (!ac->oc[1].m4ac.ext_sample_rate)
 +        ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;
 +
 +    if (crc) {
 +        skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
 +        num_sbr_bits += 10;
 +    }
 +
 +    //Save some state from the previous frame.
 +    sbr->kx[0] = sbr->kx[1];
 +    sbr->m[0] = sbr->m[1];
 +    sbr->kx_and_m_pushed = 1;
 +
 +    num_sbr_bits++;
 +    if (get_bits1(gb)) // bs_header_flag
 +        num_sbr_bits += read_sbr_header(sbr, gb);
 +
 +    if (sbr->reset)
 +        sbr_reset(ac, sbr);
 +
 +    if (sbr->start)
 +        num_sbr_bits  += read_sbr_data(ac, sbr, gb, id_aac);
 +
 +    num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
 +    bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
 +
 +    if (bytes_read > cnt) {
 +        av_log(ac->avctx, AV_LOG_ERROR,
 +               "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
 +        sbr_turnoff(sbr);
 +    }
 +    return cnt;
 +}
 +
 +/**
 + * Analysis QMF Bank (14496-3 sp04 p206)
 + *
 + * @param   x       pointer to the beginning of the first sample window
 + * @param   W       array of complex-valued samples split into subbands
 + */
 +#ifndef sbr_qmf_analysis
 +#if USE_FIXED
 +static void sbr_qmf_analysis(AVFixedDSPContext *dsp, FFTContext *mdct,
 +#else
 +static void sbr_qmf_analysis(AVFloatDSPContext *dsp, FFTContext *mdct,
 +#endif /* USE_FIXED */
 +                             SBRDSPContext *sbrdsp, const INTFLOAT *in, INTFLOAT *x,
 +                             INTFLOAT z[320], INTFLOAT W[2][32][32][2], int buf_idx)
 +{
 +    int i;
 +#if USE_FIXED
 +    int j;
 +#endif
 +    memcpy(x    , x+1024, (320-32)*sizeof(x[0]));
 +    memcpy(x+288, in,         1024*sizeof(x[0]));
 +    for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
 +                               // are not supported
 +        dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
 +        sbrdsp->sum64x5(z);
 +        sbrdsp->qmf_pre_shuffle(z);
 +#if USE_FIXED
 +        for (j = 64; j < 128; j++) {
 +            if (z[j] > 1<<24) {
 +                av_log(NULL, AV_LOG_WARNING,
 +                       "sbr_qmf_analysis: value %09d too large, setting to %09d\n",
 +                       z[j], 1<<24);
 +                z[j] = 1<<24;
 +            } else if (z[j] < -(1<<24)) {
 +                av_log(NULL, AV_LOG_WARNING,
 +                       "sbr_qmf_analysis: value %09d too small, setting to %09d\n",
 +                       z[j], -(1<<24));
 +                z[j] = -(1<<24);
 +            }
 +        }
 +#endif
 +        mdct->imdct_half(mdct, z, z+64);
 +        sbrdsp->qmf_post_shuffle(W[buf_idx][i], z);
 +        x += 32;
 +    }
 +}
 +#endif
 +
 +/**
 + * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
 + * (14496-3 sp04 p206)
 + */
 +#ifndef sbr_qmf_synthesis
 +static void sbr_qmf_synthesis(FFTContext *mdct,
 +#if USE_FIXED
 +                              SBRDSPContext *sbrdsp, AVFixedDSPContext *dsp,
 +#else
 +                              SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp,
 +#endif /* USE_FIXED */
 +                              INTFLOAT *out, INTFLOAT X[2][38][64],
 +                              INTFLOAT mdct_buf[2][64],
 +                              INTFLOAT *v0, int *v_off, const unsigned int div)
 +{
 +    int i, n;
 +    const INTFLOAT *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
 +    const int step = 128 >> div;
 +    INTFLOAT *v;
 +    for (i = 0; i < 32; i++) {
 +        if (*v_off < step) {
 +            int saved_samples = (1280 - 128) >> div;
 +            memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(INTFLOAT));
 +            *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
 +        } else {
 +            *v_off -= step;
 +        }
 +        v = v0 + *v_off;
 +        if (div) {
 +            for (n = 0; n < 32; n++) {
 +                X[0][i][   n] = -X[0][i][n];
 +                X[0][i][32+n] =  X[1][i][31-n];
 +            }
 +            mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
 +            sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
 +        } else {
 +            sbrdsp->neg_odd_64(X[1][i]);
 +            mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
 +            mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
 +            sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
 +        }
 +        dsp->vector_fmul    (out, v                , sbr_qmf_window                       , 64 >> div);
 +        dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out   , 64 >> div);
 +        dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out   , 64 >> div);
 +        dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out   , 64 >> div);
 +        dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out   , 64 >> div);
 +        dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out   , 64 >> div);
 +        dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out   , 64 >> div);
 +        dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out   , 64 >> div);
 +        dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out   , 64 >> div);
 +        dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out   , 64 >> div);
 +        out += 64 >> div;
 +    }
 +}
 +#endif
 +
 +/// Generate the subband filtered lowband
 +static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
 +                      INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2],
 +                      int buf_idx)
 +{
 +    int i, k;
 +    const int t_HFGen = 8;
 +    const int i_f = 32;
 +    memset(X_low, 0, 32*sizeof(*X_low));
 +    for (k = 0; k < sbr->kx[1]; k++) {
 +        for (i = t_HFGen; i < i_f + t_HFGen; i++) {
 +            X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
 +            X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
 +        }
 +    }
 +    buf_idx = 1-buf_idx;
 +    for (k = 0; k < sbr->kx[0]; k++) {
 +        for (i = 0; i < t_HFGen; i++) {
 +            X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
 +            X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
 +        }
 +    }
 +    return 0;
 +}
 +
 +/// High Frequency Generator (14496-3 sp04 p215)
 +static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
 +                      INTFLOAT X_high[64][40][2], const INTFLOAT X_low[32][40][2],
 +                      const INTFLOAT (*alpha0)[2], const INTFLOAT (*alpha1)[2],
 +                      const INTFLOAT bw_array[5], const uint8_t *t_env,
 +                      int bs_num_env)
 +{
 +    int j, x;
 +    int g = 0;
 +    int k = sbr->kx[1];
 +    for (j = 0; j < sbr->num_patches; j++) {
 +        for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
 +            const int p = sbr->patch_start_subband[j] + x;
 +            while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
 +                g++;
 +            g--;
 +
 +            if (g < 0) {
 +                av_log(ac->avctx, AV_LOG_ERROR,
 +                       "ERROR : no subband found for frequency %d\n", k);
 +                return -1;
 +            }
 +
 +            sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
 +                            X_low[p]  + ENVELOPE_ADJUSTMENT_OFFSET,
 +                            alpha0[p], alpha1[p], bw_array[g],
 +                            2 * t_env[0], 2 * t_env[bs_num_env]);
 +        }
 +    }
 +    if (k < sbr->m[1] + sbr->kx[1])
 +        memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
 +
 +    return 0;
 +}
 +
 +/// Generate the subband filtered lowband
 +static int sbr_x_gen(SpectralBandReplication *sbr, INTFLOAT X[2][38][64],
 +                     const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2],
 +                     const INTFLOAT X_low[32][40][2], int ch)
 +{
 +    int k, i;
 +    const int i_f = 32;
 +    const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
 +    memset(X, 0, 2*sizeof(*X));
 +    for (k = 0; k < sbr->kx[0]; k++) {
 +        for (i = 0; i < i_Temp; i++) {
 +            X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
 +            X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
 +        }
 +    }
 +    for (; k < sbr->kx[0] + sbr->m[0]; k++) {
 +        for (i = 0; i < i_Temp; i++) {
 +            X[0][i][k] = Y0[i + i_f][k][0];
 +            X[1][i][k] = Y0[i + i_f][k][1];
 +        }
 +    }
 +
 +    for (k = 0; k < sbr->kx[1]; k++) {
 +        for (i = i_Temp; i < 38; i++) {
 +            X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
 +            X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
 +        }
 +    }
 +    for (; k < sbr->kx[1] + sbr->m[1]; k++) {
 +        for (i = i_Temp; i < i_f; i++) {
 +            X[0][i][k] = Y1[i][k][0];
 +            X[1][i][k] = Y1[i][k][1];
 +        }
 +    }
 +    return 0;
 +}
 +
 +/** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
 + * (14496-3 sp04 p217)
 + */
 +static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
 +                        SBRData *ch_data, int e_a[2])
 +{
 +    int e, i, m;
 +
 +    memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
 +    for (e = 0; e < ch_data->bs_num_env; e++) {
 +        const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
 +        uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
 +        int k;
 +
 +        if (sbr->kx[1] != table[0]) {
 +            av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
 +                   "Derived frequency tables were not regenerated.\n");
 +            sbr_turnoff(sbr);
 +            return AVERROR_BUG;
 +        }
 +        for (i = 0; i < ilim; i++)
 +            for (m = table[i]; m < table[i + 1]; m++)
 +                sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
 +
 +        // ch_data->bs_num_noise > 1 => 2 noise floors
 +        k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
 +        for (i = 0; i < sbr->n_q; i++)
 +            for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
 +                sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
 +
 +        for (i = 0; i < sbr->n[1]; i++) {
 +            if (ch_data->bs_add_harmonic_flag) {
 +                const unsigned int m_midpoint =
 +                    (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
 +
 +                ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
 +                    (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
 +            }
 +        }
 +
 +        for (i = 0; i < ilim; i++) {
 +            int additional_sinusoid_present = 0;
 +            for (m = table[i]; m < table[i + 1]; m++) {
 +                if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
 +                    additional_sinusoid_present = 1;
 +                    break;
 +                }
 +            }
 +            memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
 +                   (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
 +        }
 +    }
 +
 +    memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
 +    return 0;
 +}
 +
 +/// Estimation of current envelope (14496-3 sp04 p218)
 +static void sbr_env_estimate(AAC_FLOAT (*e_curr)[48], INTFLOAT X_high[64][40][2],
 +                             SpectralBandReplication *sbr, SBRData *ch_data)
 +{
 +    int e, m;
 +    int kx1 = sbr->kx[1];
 +
 +    if (sbr->bs_interpol_freq) {
 +        for (e = 0; e < ch_data->bs_num_env; e++) {
 +#if USE_FIXED
 +            const SoftFloat recip_env_size = av_int2sf(0x20000000 / (ch_data->t_env[e + 1] - ch_data->t_env[e]), 30);
 +#else
 +            const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
 +#endif /* USE_FIXED */
 +            int ilb = ch_data->t_env[e]     * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
 +            int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
 +
 +            for (m = 0; m < sbr->m[1]; m++) {
 +                AAC_FLOAT sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
 +#if USE_FIXED
 +                e_curr[e][m] = av_mul_sf(sum, recip_env_size);
 +#else
 +                e_curr[e][m] = sum * recip_env_size;
 +#endif /* USE_FIXED */
 +            }
 +        }
 +    } else {
 +        int k, p;
 +
 +        for (e = 0; e < ch_data->bs_num_env; e++) {
 +            const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
 +            int ilb = ch_data->t_env[e]     * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
 +            int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
 +            const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
 +
 +            for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
 +#if USE_FIXED
 +                SoftFloat sum = FLOAT_0;
 +                const SoftFloat den = av_int2sf(0x20000000 / (env_size * (table[p + 1] - table[p])), 29);
 +                for (k = table[p]; k < table[p + 1]; k++) {
 +                    sum = av_add_sf(sum, sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb));
 +                }
 +                sum = av_mul_sf(sum, den);
 +#else
 +                float sum = 0.0f;
 +                const int den = env_size * (table[p + 1] - table[p]);
 +
 +                for (k = table[p]; k < table[p + 1]; k++) {
 +                    sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
 +                }
 +                sum /= den;
 +#endif /* USE_FIXED */
 +                for (k = table[p]; k < table[p + 1]; k++) {
 +                    e_curr[e][k - kx1] = sum;
 +                }
 +            }
 +        }
 +    }
 +}
 +
 +void AAC_RENAME(ff_sbr_apply)(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
 +                  INTFLOAT* L, INTFLOAT* R)
 +{
 +    int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
 +    int ch;
 +    int nch = (id_aac == TYPE_CPE) ? 2 : 1;
 +    int err;
 +
 +    if (id_aac != sbr->id_aac) {
 +        av_log(ac->avctx, id_aac == TYPE_LFE ? AV_LOG_VERBOSE : AV_LOG_WARNING,
 +            "element type mismatch %d != %d\n", id_aac, sbr->id_aac);
 +        sbr_turnoff(sbr);
 +    }
 +
 +    if (sbr->start && !sbr->ready_for_dequant) {
 +        av_log(ac->avctx, AV_LOG_ERROR,
 +               "No quantized data read for sbr_dequant.\n");
 +        sbr_turnoff(sbr);
 +    }
 +
 +    if (!sbr->kx_and_m_pushed) {
 +        sbr->kx[0] = sbr->kx[1];
 +        sbr->m[0] = sbr->m[1];
 +    } else {
 +        sbr->kx_and_m_pushed = 0;
 +    }
 +
 +    if (sbr->start) {
 +        sbr_dequant(sbr, id_aac);
 +        sbr->ready_for_dequant = 0;
 +    }
 +    for (ch = 0; ch < nch; ch++) {
 +        /* decode channel */
 +        sbr_qmf_analysis(ac->fdsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
 +                         (INTFLOAT*)sbr->qmf_filter_scratch,
 +                         sbr->data[ch].W, sbr->data[ch].Ypos);
 +        sbr->c.sbr_lf_gen(ac, sbr, sbr->X_low,
 +                          (const INTFLOAT (*)[32][32][2]) sbr->data[ch].W,
 +                          sbr->data[ch].Ypos);
 +        sbr->data[ch].Ypos ^= 1;
 +        if (sbr->start) {
 +            sbr->c.sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1,
 +                                         (const INTFLOAT (*)[40][2]) sbr->X_low, sbr->k[0]);
 +            sbr_chirp(sbr, &sbr->data[ch]);
 +            av_assert0(sbr->data[ch].bs_num_env > 0);
 +            sbr_hf_gen(ac, sbr, sbr->X_high,
 +                       (const INTFLOAT (*)[40][2]) sbr->X_low,
 +                       (const INTFLOAT (*)[2]) sbr->alpha0,
 +                       (const INTFLOAT (*)[2]) sbr->alpha1,
 +                       sbr->data[ch].bw_array, sbr->data[ch].t_env,
 +                       sbr->data[ch].bs_num_env);
 +
 +            // hf_adj
 +            err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
 +            if (!err) {
 +                sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
 +                sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
 +                sbr->c.sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
 +                                (const INTFLOAT (*)[40][2]) sbr->X_high,
 +                                sbr, &sbr->data[ch],
 +                                sbr->data[ch].e_a);
 +            }
 +        }
 +
 +        /* synthesis */
 +        sbr->c.sbr_x_gen(sbr, sbr->X[ch],
 +                  (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[1-sbr->data[ch].Ypos],
 +                  (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[  sbr->data[ch].Ypos],
 +                  (const INTFLOAT (*)[40][2]) sbr->X_low, ch);
 +    }
 +
 +    if (ac->oc[1].m4ac.ps == 1) {
 +        if (sbr->ps.start) {
 +            AAC_RENAME(ff_ps_apply)(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
 +        } else {
 +            memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
 +        }
 +        nch = 2;
 +    }
 +
 +    sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
 +                      L, sbr->X[0], sbr->qmf_filter_scratch,
 +                      sbr->data[0].synthesis_filterbank_samples,
 +                      &sbr->data[0].synthesis_filterbank_samples_offset,
 +                      downsampled);
 +    if (nch == 2)
 +        sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
 +                          R, sbr->X[1], sbr->qmf_filter_scratch,
 +                          sbr->data[1].synthesis_filterbank_samples,
 +                          &sbr->data[1].synthesis_filterbank_samples_offset,
 +                          downsampled);
 +}
 +
 +static void aacsbr_func_ptr_init(AACSBRContext *c)
 +{
 +    c->sbr_lf_gen            = sbr_lf_gen;
 +    c->sbr_hf_assemble       = sbr_hf_assemble;
 +    c->sbr_x_gen             = sbr_x_gen;
 +    c->sbr_hf_inverse_filter = sbr_hf_inverse_filter;
 +
 +#if !USE_FIXED
 +    if(ARCH_MIPS)
 +        ff_aacsbr_func_ptr_init_mips(c);
 +#endif
 +}