Merge commit 'b70d7a4ac72d23f3448f3b08b770fdf5f57de222'
authorMichael Niedermayer <michaelni@gmx.at>
Thu, 15 May 2014 12:50:12 +0000 (14:50 +0200)
committerMichael Niedermayer <michaelni@gmx.at>
Thu, 15 May 2014 16:20:17 +0000 (18:20 +0200)
* commit 'b70d7a4ac72d23f3448f3b08b770fdf5f57de222':
  lavc: add a native Opus decoder.

Conflicts:
Changelog
configure
libavcodec/version.h

Fate tests pass with both avresample as well as swresample based opus decoder, but
are disabled (reference files are very large so i want to think a day or 2 about
if theres an alternative or if they could be avoided, they also dont match the
official samples)

Merged-by: Michael Niedermayer <michaelni@gmx.at>
14 files changed:
1  2 
Changelog
configure
libavcodec/Makefile
libavcodec/allcodecs.c
libavcodec/opus.c
libavcodec/opus.h
libavcodec/opus_celt.c
libavcodec/opus_imdct.c
libavcodec/opus_parser.c
libavcodec/opus_silk.c
libavcodec/opusdec.c
libavcodec/version.h
tests/Makefile
tests/fate/opus.mak

diff --cc Changelog
+++ b/Changelog
@@@ -2,273 -2,140 +2,274 @@@ Entries are sorted chronologically fro
  releases are sorted from youngest to oldest.
  
  version <next>:
 -- libx265 encoder
 +- AC3 fixed-point decoding
  - shuffleplanes filter
 +- subfile protocol
 +- Phantom Cine demuxer
  - replaygain data export
 +- VP7 video decoder
  - Alias PIX image encoder and decoder
 -- BRender PIX image decoder
 -- Amazing Studio PAF playback support
 -- XBM decoder
 -- bmp standalone parser
 -- OpenEXR image decoder
 -- support encoding and decoding 4-channel SGI images
 +- Improvments to the BRender PIX image decoder
 +- Improvments to the XBM decoder
 +- QTKit input device
 +- improvments to OpenEXR image decoder
  - support decoding 16-bit RLE SGI images
 -- VP7 video decoder
 -- LucasArts SMUSH SANM video decoder
 -- LucasArts SMUSH VIMA audio decoder (ADPCM)
 -- LucasArts SMUSH demuxer
 -- MP2 encoding via TwoLAME
 -- asettb filter
 -- Silicon Graphics RLE 8-bit video decoder
 -- Silicon Graphics Motion Video Compressor 1 & 2 decoder
 -- Silicon Graphics Movie demuxer
 +- GDI screen grabbing for Windows
 +- alternative rendition support for HTTP Live Streaming
 +- AVFoundation input device
 +- Direct Stream Digital (DSD) decoder
 +- Magic Lantern Video (MLV) demuxer
  - On2 AVC (Audio for Video) decoder
 -- support for decoding through DXVA2 in avconv
 +- support for decoding through DXVA2 in ffmpeg
  - libbs2b-based stereo-to-binaural audio filter
 +- libx264 reference frames count limiting depending on level
+ - native Opus decoder
  
  
 -version 10:
 -- av_strnstr
 -- support ID3v2 tags in ASF files
 +version 2.2:
 +
 +- HNM version 4 demuxer and video decoder
 +- Live HDS muxer
 +- setsar/setdar filters now support variables in ratio expressions
 +- elbg filter
 +- string validation in ffprobe
 +- support for decoding through VDPAU in ffmpeg (the -hwaccel option)
 +- complete Voxware MetaSound decoder
 +- remove mp3_header_compress bitstream filter
 +- Windows resource files for shared libraries
 +- aeval filter
 +- stereoscopic 3d metadata handling
 +- WebP encoding via libwebp
 +- ATRAC3+ decoder
 +- VP8 in Ogg demuxing
 +- side & metadata support in NUT
 +- framepack filter
 +- XYZ12 rawvideo support in NUT
 +- Exif metadata support in WebP decoder
 +- OpenGL device
 +- Use metadata_header_padding to control padding in ID3 tags (currently used in
 +  MP3, AIFF, and OMA files), FLAC header, and the AVI "junk" block.
 +- Mirillis FIC video decoder
 +- Support DNx444
 +- libx265 encoder
 +- dejudder filter
 +- Autodetect VDA like all other hardware accelerations
 +
 +
 +version 2.1:
 +
 +- aecho filter
 +- perspective filter ported from libmpcodecs
 +- ffprobe -show_programs option
 +- compand filter
 +- RTMP seek support
 +- when transcoding with ffmpeg (i.e. not streamcopying), -ss is now accurate
 +  even when used as an input option. Previous behavior can be restored with
 +  the -noaccurate_seek option.
 +- ffmpeg -t option can now be used for inputs, to limit the duration of
 +  data read from an input file
 +- incomplete Voxware MetaSound decoder
 +- read EXIF metadata from JPEG
 +- DVB teletext decoder
 +- phase filter ported from libmpcodecs
 +- w3fdif filter
 +- Opus support in Matroska
 +- FFV1 version 1.3 is stable and no longer experimental
 +- FFV1: YUVA(444,422,420) 9, 10 and 16 bit support
 +- changed DTS stream id in lavf mpeg ps muxer from 0x8a to 0x88, to be
 +  more consistent with other muxers.
 +- adelay filter
 +- pullup filter ported from libmpcodecs
 +- ffprobe -read_intervals option
 +- Lossless and alpha support for WebP decoder
 +- Error Resilient AAC syntax (ER AAC LC) decoding
 +- Low Delay AAC (ER AAC LD) decoding
 +- mux chapters in ASF files
 +- SFTP protocol (via libssh)
 +- libx264: add ability to encode in YUVJ422P and YUVJ444P
 +- Fraps: use BT.709 colorspace by default for yuv, as reference fraps decoder does
 +- make decoding alpha optional for prores, ffv1 and vp6 by setting
 +  the skip_alpha flag.
 +- ladspa wrapper filter
 +- native VP9 decoder
 +- dpx parser
 +- max_error_rate parameter in ffmpeg
 +- PulseAudio output device
 +- ReplayGain scanner
 +- Enhanced Low Delay AAC (ER AAC ELD) decoding (no LD SBR support)
 +- Linux framebuffer output device
 +- HEVC decoder
 +- raw HEVC, HEVC in MOV/MP4, HEVC in Matroska, HEVC in MPEG-TS demuxing
 +- mergeplanes filter
 +
 +
 +version 2.0:
 +
 +- curves filter
  - reference-counting for AVFrame and AVPacket data
 -- avconv now fails when input options are used for output file
 +- ffmpeg now fails when input options are used for output file
    or vice versa
 -- avconv options -filter_script and -filter_complex_script, which allow a
 +- support for Monkey's Audio versions from 3.93
 +- perms and aperms filters
 +- audio filtering support in ffplay
 +- 10% faster aac encoding on x86 and MIPS
 +- sine audio filter source
 +- WebP demuxing and decoding support
 +- ffmpeg options -filter_script and -filter_complex_script, which allow a
    filtergraph description to be read from a file
 +- OpenCL support
 +- audio phaser filter
 +- separatefields filter
 +- libquvi demuxer
  - uniform options syntax across all filters
 +- telecine filter
  - interlace filter
 -- JPEG 2000 decoder
 -- asetpts filter (same as setpts, but for audio)
 +- smptehdbars source
 +- inverse telecine filters (fieldmatch and decimate)
 +- colorbalance filter
 +- colorchannelmixer filter
 +- The matroska demuxer can now output proper verbatim ASS packets. It will
 +  become the default at the next libavformat major bump.
 +- decent native animated GIF encoding
 +- asetrate filter
 +- interleave filter
 +- timeline editing with filters
 +- vidstabdetect and vidstabtransform filters for video stabilization using
 +  the vid.stab library
 +- astats filter
  - trim and atrim filters
 -- avconv -t and -ss (output-only) options are now sample-accurate when
 +- ffmpeg -t and -ss (output-only) options are now sample-accurate when
    transcoding audio
  - Matroska muxer can now put the index at the beginning of the file.
 -- avconv -deinterlace option removed, the yadif filter should be used instead
 +- extractplanes filter
 +- avectorscope filter
 +- ADPCM DTK decoder
 +- ADP demuxer
 +- RSD demuxer
 +- RedSpark demuxer
 +- ADPCM IMA Radical decoder
 +- zmq filters
 +- DCT denoiser filter (dctdnoiz)
 +- Wavelet denoiser filter ported from libmpcodecs as owdenoise (formerly "ow")
  - Apple Intermediate Codec decoder
  - Escape 130 video decoder
 +- FTP protocol support
 +- V4L2 output device
 +- 3D LUT filter (lut3d)
 +- SMPTE 302M audio encoder
  - support for slice multithreading in libavfilter
 +- Hald CLUT support (generation and filtering)
  - VC-1 interlaced B-frame support
  - support for WavPack muxing (raw and in Matroska)
 +- XVideo output device
 +- vignette filter
 +- True Audio (TTA) encoder
  - Go2Webinar decoder
 +- mcdeint filter ported from libmpcodecs
 +- sab filter ported from libmpcodecs
 +- ffprobe -show_chapters option
  - WavPack encoding through libwavpack
 -- Added the -n parameter to avconv
 -- RTMP seek support
 -- when transcoding with avconv (i.e. not streamcopying), -ss is now accurate
 -  even when used as an input option. Previous behavior can be restored with
 -  the -noaccurate_seek option.
 -- avconv -t option can now be used for inputs, to limit the duration of
 -  data read from an input file
 -- Voxware MetaSound decoder
 -- WebP decoder
 -- Error Resilient AAC syntax (ER AAC LC) decoding
 -- Low Delay AAC (ER AAC LD) decoding
 -- mux chapters in ASF files
 -- Opus in Ogg demuxing
 -- Enhanced Low Delay AAC (ER AAC ELD) decoding (no LD SBR support)
 -- F4V muxer
 -- HNM version 4 demuxer and video decoder
 -- HEVC decoder
 -- raw HEVC, HEVC in MOV/MP4, HEVC in Matroska, HEVC in MPEG-TS demuxing
 -- remove avplay -vismv option, which has not worked for a long time
 -- Live HDS muxer
 -- setsar/setdar filters now support variables in ratio expressions
 -- dar variable in the scale filter now returns the actual DAR (i.e. a * sar)
 -- VP9 decoder
 -- support for decoding through VDPAU in avconv (the -hwaccel option)
 -- remove mp3_header_(de)compress bitstream filters
 -- stereoscopic 3d metadata handling
 -- png standalone parser
 -- WebP encoding via libwebp
 -- ATRAC3+ decoder
 -- framepack filter
 -- Mirillis FIC video decoder
 -- Support DNx444
 -- compand audio filter
 +- rotate filter
 +- spp filter ported from libmpcodecs
 +- libgme support
 +- psnr filter
  
  
 -version 9:
 -- av_basename and av_dirname
 -- adobe and limelight publisher authentication in RTMP
 +version 1.2:
 +
  - VDPAU hardware acceleration through normal hwaccel
  - SRTP support
 +- Error diffusion dither in Swscale
 +- Chained Ogg support
 +- Theora Midstream reconfiguration support
 +- EVRC decoder
 +- audio fade filter
 +- filtering audio with unknown channel layout
 +- allpass, bass, bandpass, bandreject, biquad, equalizer, highpass, lowpass
 +  and treble audio filter
 +- improved showspectrum filter, with multichannel support and sox-like colors
 +- histogram filter
 +- tee muxer
 +- il filter ported from libmpcodecs
 +- support ID3v2 tags in ASF files
 +- encrypted TTA stream decoding support
 +- RF64 support in WAV muxer
 +- noise filter ported from libmpcodecs
 +- Subtitles character encoding conversion
 +- blend filter
 +- stereo3d filter ported from libmpcodecs
  
  
 -version 9_beta3:
 -- ashowinfo audio filter
 +version 1.1:
 +
 +- stream disposition information printing in ffprobe
 +- filter for loudness analysis following EBU R128
 +- Opus encoder using libopus
 +- ffprobe -select_streams option
 +- Pinnacle TARGA CineWave YUV16 decoder
 +- TAK demuxer, decoder and parser
 +- DTS-HD demuxer
 +- remove -same_quant, it hasn't worked for years
 +- FFM2 support
 +- X-Face image encoder and decoder
  - 24-bit FLAC encoding
 -- audio volume filter
 -- deprecated the avconv -vol option. the volume filter is to be used instead.
  - multi-channel ALAC encoding up to 7.1
 -- TAK demuxer, parser, and decoder
 -- adaptive frame-level multithreading for H.264
 -
 -
 -version 9_beta2:
  - metadata (INFO tag) support in WAV muxer
 +- subtitles raw text decoder
  - support for building DLLs using MSVC
 -- remove avserver daemon mode
 +- LVF demuxer
 +- ffescape tool
 +- metadata (info chunk) support in CAF muxer
 +- field filter ported from libmpcodecs
 +- AVR demuxer
 +- geq filter ported from libmpcodecs
 +- remove ffserver daemon mode
 +- AST muxer/demuxer
 +- new expansion syntax for drawtext
 +- BRender PIX image decoder
 +- ffprobe -show_entries option
 +- ffprobe -sections option
 +- ADPCM IMA Dialogic decoder
 +- BRSTM demuxer
 +- animated GIF decoder and demuxer
 +- PVF demuxer
 +- subtitles filter
 +- IRCAM muxer/demuxer
 +- Paris Audio File demuxer
 +- Virtual concatenation demuxer
 +- VobSub demuxer
 +- JSON captions for TED talks decoding support
 +- SOX Resampler support in libswresample
 +- aselect filter
 +- SGI RLE 8-bit / Silicon Graphics RLE 8-bit video decoder
 +- Silicon Graphics Motion Video Compressor 1 & 2 decoder
 +- Silicon Graphics Movie demuxer
 +- apad filter
 +- Resolution & pixel format change support with multithreading for H.264
 +- documentation split into per-component manuals
 +- pp (postproc) filter ported from MPlayer
 +- NIST Sphere demuxer
 +- MPL2, VPlayer, MPlayer, AQTitle, PJS and SubViewer v1 subtitles demuxers and decoders
 +- Sony Wave64 muxer
 +- adobe and limelight publisher authentication in RTMP
 +- data: URI scheme
  - support building on the Plan 9 operating system
 -- ffv1: support version 1.3
 +- kerndeint filter ported from MPlayer
 +- histeq filter ported from VirtualDub
 +- Megalux Frame demuxer
 +- 012v decoder
 +- Improved AVC Intra decoding support
  
  
 -version 9_beta1:
 +version 1.0:
  
 -- XWD encoder and decoder
 -- Support for fragmentation in the mov/mp4 muxer
 -- ISMV (Smooth Streaming) muxer
 -- CDXL demuxer and decoder
 -- Apple ProRes encoder
 -- Sun Rasterfile Encoder
 -- remove libpostproc
 -- ID3v2 attached pictures reading and writing
 -- WMA Lossless decoder
 -- XBM encoder
 -- RealAudio Lossless decoder
 -- ZeroCodec decoder
 -- drop support for avconv without libavfilter
 -- add libavresample audio conversion library
 -- audio filters support in libavfilter and avconv
 -- add fps filter
 -- audio split filter
 -- audio mix filter
 -- avprobe output is now standard INI or JSON. The old format can still
 -  be used with -of old.
 +- INI and flat output in ffprobe
 +- Scene detection in libavfilter
  - Indeo Audio decoder
  - channelsplit audio filter
 +- setnsamples audio filter
 +- atempo filter
 +- ffprobe -show_data option
  - RTMPT protocol support
  - iLBC encoding/decoding via libilbc
  - Microsoft Screen 1 decoder
diff --cc configure
+++ b/configure
@@@ -2110,8 -1822,10 +2110,9 @@@ nellymoser_decoder_select="mdct sinewin
  nellymoser_encoder_select="audio_frame_queue mdct sinewin"
  nuv_decoder_select="dsputil lzo"
  on2avc_decoder_select="mdct"
 -png_decoder_deps="zlib"
 -png_encoder_deps="zlib"
 -png_encoder_select="dsputil"
+ opus_decoder_deps="avresample"
 +png_decoder_select="zlib"
 +png_encoder_select="dsputil zlib"
  prores_decoder_select="dsputil"
  prores_encoder_select="dsputil"
  qcelp_decoder_select="lsp"
@@@ -5115,30 -4384,12 +5116,32 @@@ for thread in $THREADS_LIST; d
  done
  
  # conditional library dependencies, in linking order
 +enabled aconvert_filter     && prepend avfilter_deps "swresample"
 +enabled amovie_filter       && prepend avfilter_deps "avformat avcodec"
 +enabled aresample_filter    && prepend avfilter_deps "swresample"
 +enabled asyncts_filter      && prepend avfilter_deps "avresample"
 +enabled atempo_filter       && prepend avfilter_deps "avcodec"
 +enabled decimate_filter     && prepend avfilter_deps "avcodec"
 +enabled deshake_filter      && prepend avfilter_deps "avcodec"
 +enabled ebur128_filter && enabled swresample && prepend avfilter_deps "swresample"
 +enabled elbg_filter         && prepend avfilter_deps "avcodec"
 +enabled mcdeint_filter      && prepend avfilter_deps "avcodec"
  enabled movie_filter    && prepend avfilter_deps "avformat avcodec"
 +enabled mp_filter           && prepend avfilter_deps "avcodec"
 +enabled pan_filter          && prepend avfilter_deps "swresample"
 +enabled pp_filter           && prepend avfilter_deps "postproc"
 +enabled removelogo_filter   && prepend avfilter_deps "avformat avcodec swscale"
  enabled resample_filter && prepend avfilter_deps "avresample"
 +enabled sab_filter          && prepend avfilter_deps "swscale"
  enabled scale_filter    && prepend avfilter_deps "swscale"
 +enabled showspectrum_filter && prepend avfilter_deps "avcodec"
 +enabled smartblur_filter    && prepend avfilter_deps "swscale"
 +enabled subtitles_filter    && prepend avfilter_deps "avformat avcodec"
 +
 +enabled lavfi_indev         && prepend avdevice_deps "avfilter"
  
+ enabled opus_decoder    && prepend avcodec_deps "avresample"
  expand_deps(){
      lib_deps=${1}_deps
      eval "deps=\$$lib_deps"
Simple merge
Simple merge
index 0000000,91021ce..e76c510
mode 000000,100644..100644
--- /dev/null
@@@ -1,0 -1,428 +1,428 @@@
 - * This file is part of Libav.
+ /*
+  * Copyright (c) 2012 Andrew D'Addesio
+  * Copyright (c) 2013-2014 Mozilla Corporation
+  *
 - * Libav is free software; you can redistribute it and/or
++ * This file is part of FFmpeg.
+  *
 - * Libav is distributed in the hope that it will be useful,
++ * FFmpeg is free software; you can redistribute it and/or
+  * modify it under the terms of the GNU Lesser General Public
+  * License as published by the Free Software Foundation; either
+  * version 2.1 of the License, or (at your option) any later version.
+  *
 - * License along with Libav; if not, write to the Free Software
++ * FFmpeg is distributed in the hope that it will be useful,
+  * but WITHOUT ANY WARRANTY; without even the implied warranty of
+  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+  * Lesser General Public License for more details.
+  *
+  * You should have received a copy of the GNU Lesser General Public
++ * License along with FFmpeg; if not, write to the Free Software
+  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+  */
+ /**
+  * @file
+  * Opus decoder/parser shared code
+  */
+ #include <stdint.h>
+ #include "libavutil/error.h"
+ #include "opus.h"
+ #include "vorbis.h"
+ static const uint16_t opus_frame_duration[32] = {
+     480, 960, 1920, 2880,
+     480, 960, 1920, 2880,
+     480, 960, 1920, 2880,
+     480, 960,
+     480, 960,
+     120, 240,  480,  960,
+     120, 240,  480,  960,
+     120, 240,  480,  960,
+     120, 240,  480,  960,
+ };
+ /**
+  * Read a 1- or 2-byte frame length
+  */
+ static inline int xiph_lacing_16bit(const uint8_t **ptr, const uint8_t *end)
+ {
+     int val;
+     if (*ptr >= end)
+         return AVERROR_INVALIDDATA;
+     val = *(*ptr)++;
+     if (val >= 252) {
+         if (*ptr >= end)
+             return AVERROR_INVALIDDATA;
+         val += 4 * *(*ptr)++;
+     }
+     return val;
+ }
+ /**
+  * Read a multi-byte length (used for code 3 packet padding size)
+  */
+ static inline int xiph_lacing_full(const uint8_t **ptr, const uint8_t *end)
+ {
+     int val = 0;
+     int next;
+     while (1) {
+         if (*ptr >= end || val > INT_MAX - 254)
+             return AVERROR_INVALIDDATA;
+         next = *(*ptr)++;
+         val += next;
+         if (next < 255)
+             break;
+         else
+             val--;
+     }
+     return val;
+ }
+ /**
+  * Parse Opus packet info from raw packet data
+  */
+ int ff_opus_parse_packet(OpusPacket *pkt, const uint8_t *buf, int buf_size,
+                          int self_delimiting)
+ {
+     const uint8_t *ptr = buf;
+     const uint8_t *end = buf + buf_size;
+     int padding = 0;
+     int frame_bytes, i;
+     if (buf_size < 1)
+         goto fail;
+     /* TOC byte */
+     i = *ptr++;
+     pkt->code   = (i     ) & 0x3;
+     pkt->stereo = (i >> 2) & 0x1;
+     pkt->config = (i >> 3) & 0x1F;
+     /* code 2 and code 3 packets have at least 1 byte after the TOC */
+     if (pkt->code >= 2 && buf_size < 2)
+         goto fail;
+     switch (pkt->code) {
+     case 0:
+         /* 1 frame */
+         pkt->frame_count = 1;
+         pkt->vbr         = 0;
+         if (self_delimiting) {
+             int len = xiph_lacing_16bit(&ptr, end);
+             if (len < 0 || len > end - ptr)
+                 goto fail;
+             end      = ptr + len;
+             buf_size = end - buf;
+         }
+         frame_bytes = end - ptr;
+         if (frame_bytes > MAX_FRAME_SIZE)
+             goto fail;
+         pkt->frame_offset[0] = ptr - buf;
+         pkt->frame_size[0]   = frame_bytes;
+         break;
+     case 1:
+         /* 2 frames, equal size */
+         pkt->frame_count = 2;
+         pkt->vbr         = 0;
+         if (self_delimiting) {
+             int len = xiph_lacing_16bit(&ptr, end);
+             if (len < 0 || 2 * len > end - ptr)
+                 goto fail;
+             end      = ptr + 2 * len;
+             buf_size = end - buf;
+         }
+         frame_bytes = end - ptr;
+         if (frame_bytes & 1 || frame_bytes >> 1 > MAX_FRAME_SIZE)
+             goto fail;
+         pkt->frame_offset[0] = ptr - buf;
+         pkt->frame_size[0]   = frame_bytes >> 1;
+         pkt->frame_offset[1] = pkt->frame_offset[0] + pkt->frame_size[0];
+         pkt->frame_size[1]   = frame_bytes >> 1;
+         break;
+     case 2:
+         /* 2 frames, different sizes */
+         pkt->frame_count = 2;
+         pkt->vbr         = 1;
+         /* read 1st frame size */
+         frame_bytes = xiph_lacing_16bit(&ptr, end);
+         if (frame_bytes < 0)
+             goto fail;
+         if (self_delimiting) {
+             int len = xiph_lacing_16bit(&ptr, end);
+             if (len < 0 || len + frame_bytes > end - ptr)
+                 goto fail;
+             end      = ptr + frame_bytes + len;
+             buf_size = end - buf;
+         }
+         pkt->frame_offset[0] = ptr - buf;
+         pkt->frame_size[0]   = frame_bytes;
+         /* calculate 2nd frame size */
+         frame_bytes = end - ptr - pkt->frame_size[0];
+         if (frame_bytes < 0 || frame_bytes > MAX_FRAME_SIZE)
+             goto fail;
+         pkt->frame_offset[1] = pkt->frame_offset[0] + pkt->frame_size[0];
+         pkt->frame_size[1]   = frame_bytes;
+         break;
+     case 3:
+         /* 1 to 48 frames, can be different sizes */
+         i = *ptr++;
+         pkt->frame_count = (i     ) & 0x3F;
+         padding          = (i >> 6) & 0x01;
+         pkt->vbr         = (i >> 7) & 0x01;
+         if (pkt->frame_count == 0 || pkt->frame_count > MAX_FRAMES)
+             goto fail;
+         /* read padding size */
+         if (padding) {
+             padding = xiph_lacing_full(&ptr, end);
+             if (padding < 0)
+                 goto fail;
+         }
+         /* read frame sizes */
+         if (pkt->vbr) {
+             /* for VBR, all frames except the final one have their size coded
+                in the bitstream. the last frame size is implicit. */
+             int total_bytes = 0;
+             for (i = 0; i < pkt->frame_count - 1; i++) {
+                 frame_bytes = xiph_lacing_16bit(&ptr, end);
+                 if (frame_bytes < 0)
+                     goto fail;
+                 pkt->frame_size[i] = frame_bytes;
+                 total_bytes += frame_bytes;
+             }
+             if (self_delimiting) {
+                 int len = xiph_lacing_16bit(&ptr, end);
+                 if (len < 0 || len + total_bytes + padding > end - ptr)
+                     goto fail;
+                 end      = ptr + total_bytes + len + padding;
+                 buf_size = end - buf;
+             }
+             frame_bytes = end - ptr - padding;
+             if (total_bytes > frame_bytes)
+                 goto fail;
+             pkt->frame_offset[0] = ptr - buf;
+             for (i = 1; i < pkt->frame_count; i++)
+                 pkt->frame_offset[i] = pkt->frame_offset[i-1] + pkt->frame_size[i-1];
+             pkt->frame_size[pkt->frame_count-1] = frame_bytes - total_bytes;
+         } else {
+             /* for CBR, the remaining packet bytes are divided evenly between
+                the frames */
+             if (self_delimiting) {
+                 frame_bytes = xiph_lacing_16bit(&ptr, end);
+                 if (frame_bytes < 0 || pkt->frame_count * frame_bytes + padding > end - ptr)
+                     goto fail;
+                 end      = ptr + pkt->frame_count * frame_bytes + padding;
+                 buf_size = end - buf;
+             } else {
+                 frame_bytes = end - ptr - padding;
+                 if (frame_bytes % pkt->frame_count ||
+                     frame_bytes / pkt->frame_count > MAX_FRAME_SIZE)
+                     goto fail;
+                 frame_bytes /= pkt->frame_count;
+             }
+             pkt->frame_offset[0] = ptr - buf;
+             pkt->frame_size[0]   = frame_bytes;
+             for (i = 1; i < pkt->frame_count; i++) {
+                 pkt->frame_offset[i] = pkt->frame_offset[i-1] + pkt->frame_size[i-1];
+                 pkt->frame_size[i]   = frame_bytes;
+             }
+         }
+     }
+     pkt->packet_size = buf_size;
+     pkt->data_size   = pkt->packet_size - padding;
+     /* total packet duration cannot be larger than 120ms */
+     pkt->frame_duration = opus_frame_duration[pkt->config];
+     if (pkt->frame_duration * pkt->frame_count > MAX_PACKET_DUR)
+         goto fail;
+     /* set mode and bandwidth */
+     if (pkt->config < 12) {
+         pkt->mode = OPUS_MODE_SILK;
+         pkt->bandwidth = pkt->config >> 2;
+     } else if (pkt->config < 16) {
+         pkt->mode = OPUS_MODE_HYBRID;
+         pkt->bandwidth = OPUS_BANDWIDTH_SUPERWIDEBAND + (pkt->config >= 14);
+     } else {
+         pkt->mode = OPUS_MODE_CELT;
+         pkt->bandwidth = (pkt->config - 16) >> 2;
+         /* skip mediumband */
+         if (pkt->bandwidth)
+             pkt->bandwidth++;
+     }
+     return 0;
+ fail:
+     memset(pkt, 0, sizeof(*pkt));
+     return AVERROR_INVALIDDATA;
+ }
+ static int channel_reorder_vorbis(int nb_channels, int channel_idx)
+ {
+     return ff_vorbis_channel_layout_offsets[nb_channels - 1][channel_idx];
+ }
+ static int channel_reorder_unknown(int nb_channels, int channel_idx)
+ {
+     return channel_idx;
+ }
+ av_cold int ff_opus_parse_extradata(AVCodecContext *avctx,
+                                     OpusContext *s)
+ {
+     static const uint8_t default_channel_map[2] = { 0, 1 };
+     uint8_t default_extradata[19] = {
+         'O', 'p', 'u', 's', 'H', 'e', 'a', 'd',
+         1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+     };
+     int (*channel_reorder)(int, int) = channel_reorder_unknown;
+     const uint8_t *extradata, *channel_map;
+     int extradata_size;
+     int version, channels, map_type, streams, stereo_streams, i, j;
+     uint64_t layout;
+     if (!avctx->extradata) {
+         if (avctx->channels > 2) {
+             av_log(avctx, AV_LOG_ERROR,
+                    "Multichannel configuration without extradata.\n");
+             return AVERROR(EINVAL);
+         }
+         default_extradata[9] = (avctx->channels == 1) ? 1 : 2;
+         extradata      = default_extradata;
+         extradata_size = sizeof(default_extradata);
+     } else {
+         extradata = avctx->extradata;
+         extradata_size = avctx->extradata_size;
+     }
+     if (extradata_size < 19) {
+         av_log(avctx, AV_LOG_ERROR, "Invalid extradata size: %d\n",
+                extradata_size);
+         return AVERROR_INVALIDDATA;
+     }
+     version = extradata[8];
+     if (version > 15) {
+         avpriv_request_sample(avctx, "Extradata version %d", version);
+         return AVERROR_PATCHWELCOME;
+     }
+     avctx->delay = AV_RL16(extradata + 10);
+     channels = extradata[9];
+     if (!channels) {
+         av_log(avctx, AV_LOG_ERROR, "Zero channel count specified in the extadata\n");
+         return AVERROR_INVALIDDATA;
+     }
+     s->gain_i = AV_RL16(extradata + 16);
+     if (s->gain_i)
+         s->gain = pow(10, s->gain_i / (20.0 * 256));
+     map_type = extradata[18];
+     if (!map_type) {
+         if (channels > 2) {
+             av_log(avctx, AV_LOG_ERROR,
+                    "Channel mapping 0 is only specified for up to 2 channels\n");
+             return AVERROR_INVALIDDATA;
+         }
+         layout         = (channels == 1) ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
+         streams        = 1;
+         stereo_streams = channels - 1;
+         channel_map    = default_channel_map;
+     } else if (map_type == 1 || map_type == 255) {
+         if (extradata_size < 21 + channels) {
+             av_log(avctx, AV_LOG_ERROR, "Invalid extradata size: %d\n",
+                    extradata_size);
+             return AVERROR_INVALIDDATA;
+         }
+         streams        = extradata[19];
+         stereo_streams = extradata[20];
+         if (!streams || stereo_streams > streams ||
+             streams + stereo_streams > 255) {
+             av_log(avctx, AV_LOG_ERROR,
+                    "Invalid stream/stereo stream count: %d/%d\n", streams, stereo_streams);
+             return AVERROR_INVALIDDATA;
+         }
+         if (map_type == 1) {
+             if (channels > 8) {
+                 av_log(avctx, AV_LOG_ERROR,
+                        "Channel mapping 1 is only specified for up to 8 channels\n");
+                 return AVERROR_INVALIDDATA;
+             }
+             layout = ff_vorbis_channel_layouts[channels - 1];
+             channel_reorder = channel_reorder_vorbis;
+         } else
+             layout = 0;
+         channel_map = extradata + 21;
+     } else {
+         avpriv_request_sample(avctx, "Mapping type %d", map_type);
+         return AVERROR_PATCHWELCOME;
+     }
+     s->channel_maps = av_mallocz_array(channels, sizeof(*s->channel_maps));
+     if (!s->channel_maps)
+         return AVERROR(ENOMEM);
+     for (i = 0; i < channels; i++) {
+         ChannelMap *map = &s->channel_maps[i];
+         uint8_t     idx = channel_map[channel_reorder(channels, i)];
+         if (idx == 255) {
+             map->silence = 1;
+             continue;
+         } else if (idx >= streams + stereo_streams) {
+             av_log(avctx, AV_LOG_ERROR,
+                    "Invalid channel map for output channel %d: %d\n", i, idx);
+             return AVERROR_INVALIDDATA;
+         }
+         /* check that we din't see this index yet */
+         map->copy = 0;
+         for (j = 0; j < i; j++)
+             if (channel_map[channel_reorder(channels, j)] == idx) {
+                 map->copy     = 1;
+                 map->copy_idx = j;
+                 break;
+             }
+         if (idx < 2 * stereo_streams) {
+             map->stream_idx  = idx / 2;
+             map->channel_idx = idx & 1;
+         } else {
+             map->stream_idx  = idx - stereo_streams;
+             map->channel_idx = 0;
+         }
+     }
+     avctx->channels       = channels;
+     avctx->channel_layout = layout;
+     s->nb_streams         = streams;
+     s->nb_stereo_streams  = stereo_streams;
+     return 0;
+ }
index 0000000,ab2975f..a6eea02
mode 000000,100644..100644
--- /dev/null
@@@ -1,0 -1,429 +1,429 @@@
 - * This file is part of Libav.
+ /*
+  * Opus decoder/demuxer common functions
+  * Copyright (c) 2012 Andrew D'Addesio
+  * Copyright (c) 2013-2014 Mozilla Corporation
+  *
 - * Libav is free software; you can redistribute it and/or
++ * This file is part of FFmpeg.
+  *
 - * Libav is distributed in the hope that it will be useful,
++ * FFmpeg is free software; you can redistribute it and/or
+  * modify it under the terms of the GNU Lesser General Public
+  * License as published by the Free Software Foundation; either
+  * version 2.1 of the License, or (at your option) any later version.
+  *
 - * License along with Libav; if not, write to the Free Software
++ * FFmpeg is distributed in the hope that it will be useful,
+  * but WITHOUT ANY WARRANTY; without even the implied warranty of
+  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+  * Lesser General Public License for more details.
+  *
+  * You should have received a copy of the GNU Lesser General Public
++ * License along with FFmpeg; if not, write to the Free Software
+  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+  */
+ #ifndef AVCODEC_OPUS_H
+ #define AVCODEC_OPUS_H
+ #include <stdint.h>
+ #include "libavutil/audio_fifo.h"
+ #include "libavutil/float_dsp.h"
+ #include "libavutil/frame.h"
+ #include "libavresample/avresample.h"
+ #include "avcodec.h"
+ #include "get_bits.h"
+ #define MAX_FRAME_SIZE               1275
+ #define MAX_FRAMES                   48
+ #define MAX_PACKET_DUR               5760
+ #define CELT_SHORT_BLOCKSIZE         120
+ #define CELT_OVERLAP                 CELT_SHORT_BLOCKSIZE
+ #define CELT_MAX_LOG_BLOCKS          3
+ #define CELT_MAX_FRAME_SIZE          (CELT_SHORT_BLOCKSIZE * (1 << CELT_MAX_LOG_BLOCKS))
+ #define CELT_MAX_BANDS               21
+ #define CELT_VECTORS                 11
+ #define CELT_ALLOC_STEPS             6
+ #define CELT_FINE_OFFSET             21
+ #define CELT_MAX_FINE_BITS           8
+ #define CELT_NORM_SCALE              16384
+ #define CELT_QTHETA_OFFSET           4
+ #define CELT_QTHETA_OFFSET_TWOPHASE  16
+ #define CELT_DEEMPH_COEFF            0.85000610f
+ #define CELT_POSTFILTER_MINPERIOD    15
+ #define CELT_ENERGY_SILENCE          (-28.0f)
+ #define SILK_HISTORY                 322
+ #define SILK_MAX_LPC                 16
+ #define ROUND_MULL(a,b,s) (((MUL64(a, b) >> (s - 1)) + 1) >> 1)
+ #define ROUND_MUL16(a,b)  ((MUL16(a, b) + 16384) >> 15)
+ #define opus_ilog(i) (av_log2(i) + !!(i))
+ enum OpusMode {
+     OPUS_MODE_SILK,
+     OPUS_MODE_HYBRID,
+     OPUS_MODE_CELT
+ };
+ enum OpusBandwidth {
+     OPUS_BANDWIDTH_NARROWBAND,
+     OPUS_BANDWIDTH_MEDIUMBAND,
+     OPUS_BANDWIDTH_WIDEBAND,
+     OPUS_BANDWIDTH_SUPERWIDEBAND,
+     OPUS_BANDWIDTH_FULLBAND
+ };
+ typedef struct RawBitsContext {
+     const uint8_t *position;
+     unsigned int bytes;
+     unsigned int cachelen;
+     unsigned int cacheval;
+ } RawBitsContext;
+ typedef struct OpusRangeCoder {
+     GetBitContext gb;
+     RawBitsContext rb;
+     unsigned int range;
+     unsigned int value;
+     unsigned int total_read_bits;
+ } OpusRangeCoder;
+ typedef struct SilkContext SilkContext;
+ typedef struct CeltIMDCTContext CeltIMDCTContext;
+ typedef struct CeltContext CeltContext;
+ typedef struct OpusPacket {
+     int packet_size;                /** packet size */
+     int data_size;                  /** size of the useful data -- packet size - padding */
+     int code;                       /** packet code: specifies the frame layout */
+     int stereo;                     /** whether this packet is mono or stereo */
+     int vbr;                        /** vbr flag */
+     int config;                     /** configuration: tells the audio mode,
+                                      **                bandwidth, and frame duration */
+     int frame_count;                /** frame count */
+     int frame_offset[MAX_FRAMES];   /** frame offsets */
+     int frame_size[MAX_FRAMES];     /** frame sizes */
+     int frame_duration;             /** frame duration, in samples @ 48kHz */
+     enum OpusMode mode;             /** mode */
+     enum OpusBandwidth bandwidth;   /** bandwidth */
+ } OpusPacket;
+ typedef struct OpusStreamContext {
+     AVCodecContext *avctx;
+     int output_channels;
+     OpusRangeCoder rc;
+     OpusRangeCoder redundancy_rc;
+     SilkContext *silk;
+     CeltContext *celt;
+     AVFloatDSPContext *fdsp;
+     float silk_buf[2][960];
+     float *silk_output[2];
+     DECLARE_ALIGNED(32, float, celt_buf)[2][960];
+     float *celt_output[2];
+     float redundancy_buf[2][960];
+     float *redundancy_output[2];
+     /* data buffers for the final output data */
+     float *out[2];
+     int out_size;
+     float *out_dummy;
+     int    out_dummy_allocated_size;
+     AVAudioResampleContext *avr;
+     AVAudioFifo *celt_delay;
+     int silk_samplerate;
+     /* number of samples we still want to get from the resampler */
+     int delayed_samples;
+     OpusPacket packet;
+     int redundancy_idx;
+ } OpusStreamContext;
+ // a mapping between an opus stream and an output channel
+ typedef struct ChannelMap {
+     int stream_idx;
+     int channel_idx;
+     // when a single decoded channel is mapped to multiple output channels, we
+     // write to the first output directly and copy from it to the others
+     // this field is set to 1 for those copied output channels
+     int copy;
+     // this is the index of the output channel to copy from
+     int copy_idx;
+     // this channel is silent
+     int silence;
+ } ChannelMap;
+ typedef struct OpusContext {
+     OpusStreamContext *streams;
+     int             nb_streams;
+     int      nb_stereo_streams;
+     AVFloatDSPContext fdsp;
+     int16_t gain_i;
+     float   gain;
+     ChannelMap *channel_maps;
+ } OpusContext;
+ static av_always_inline void opus_rc_normalize(OpusRangeCoder *rc)
+ {
+     while (rc->range <= 1<<23) {
+         rc->value = ((rc->value << 8) | (get_bits(&rc->gb, 8) ^ 0xFF)) & ((1u << 31) - 1);
+         rc->range          <<= 8;
+         rc->total_read_bits += 8;
+     }
+ }
+ static av_always_inline void opus_rc_update(OpusRangeCoder *rc, unsigned int scale,
+                                           unsigned int low, unsigned int high,
+                                           unsigned int total)
+ {
+     rc->value -= scale * (total - high);
+     rc->range  = low ? scale * (high - low)
+                       : rc->range - scale * (total - high);
+     opus_rc_normalize(rc);
+ }
+ static av_always_inline unsigned int opus_rc_getsymbol(OpusRangeCoder *rc, const uint16_t *cdf)
+ {
+     unsigned int k, scale, total, symbol, low, high;
+     total = *cdf++;
+     scale   = rc->range / total;
+     symbol = rc->value / scale + 1;
+     symbol = total - FFMIN(symbol, total);
+     for (k = 0; cdf[k] <= symbol; k++);
+     high = cdf[k];
+     low  = k ? cdf[k-1] : 0;
+     opus_rc_update(rc, scale, low, high, total);
+     return k;
+ }
+ static av_always_inline unsigned int opus_rc_p2model(OpusRangeCoder *rc, unsigned int bits)
+ {
+     unsigned int k, scale;
+     scale = rc->range >> bits; // in this case, scale = symbol
+     if (rc->value >= scale) {
+         rc->value -= scale;
+         rc->range -= scale;
+         k = 0;
+     } else {
+         rc->range = scale;
+         k = 1;
+     }
+     opus_rc_normalize(rc);
+     return k;
+ }
+ /**
+  * CELT: estimate bits of entropy that have thus far been consumed for the
+  *       current CELT frame, to integer and fractional (1/8th bit) precision
+  */
+ static av_always_inline unsigned int opus_rc_tell(const OpusRangeCoder *rc)
+ {
+     return rc->total_read_bits - av_log2(rc->range) - 1;
+ }
+ static av_always_inline unsigned int opus_rc_tell_frac(const OpusRangeCoder *rc)
+ {
+     unsigned int i, total_bits, rcbuffer, range;
+     total_bits = rc->total_read_bits << 3;
+     rcbuffer   = av_log2(rc->range) + 1;
+     range      = rc->range >> (rcbuffer-16);
+     for (i = 0; i < 3; i++) {
+         int bit;
+         range = range * range >> 15;
+         bit = range >> 16;
+         rcbuffer = rcbuffer << 1 | bit;
+         range >>= bit;
+     }
+     return total_bits - rcbuffer;
+ }
+ /**
+  * CELT: read 1-25 raw bits at the end of the frame, backwards byte-wise
+  */
+ static av_always_inline unsigned int opus_getrawbits(OpusRangeCoder *rc, unsigned int count)
+ {
+     unsigned int value = 0;
+     while (rc->rb.bytes && rc->rb.cachelen < count) {
+         rc->rb.cacheval |= *--rc->rb.position << rc->rb.cachelen;
+         rc->rb.cachelen += 8;
+         rc->rb.bytes--;
+     }
+     value = rc->rb.cacheval & ((1<<count)-1);
+     rc->rb.cacheval    >>= count;
+     rc->rb.cachelen     -= count;
+     rc->total_read_bits += count;
+     return value;
+ }
+ /**
+  * CELT: read a uniform distribution
+  */
+ static av_always_inline unsigned int opus_rc_unimodel(OpusRangeCoder *rc, unsigned int size)
+ {
+     unsigned int bits, k, scale, total;
+     bits  = opus_ilog(size - 1);
+     total = (bits > 8) ? ((size - 1) >> (bits - 8)) + 1 : size;
+     scale  = rc->range / total;
+     k      = rc->value / scale + 1;
+     k      = total - FFMIN(k, total);
+     opus_rc_update(rc, scale, k, k + 1, total);
+     if (bits > 8) {
+         k = k << (bits - 8) | opus_getrawbits(rc, bits - 8);
+         return FFMIN(k, size - 1);
+     } else
+         return k;
+ }
+ static av_always_inline int opus_rc_laplace(OpusRangeCoder *rc, unsigned int symbol, int decay)
+ {
+     /* extends the range coder to model a Laplace distribution */
+     int value = 0;
+     unsigned int scale, low = 0, center;
+     scale  = rc->range >> 15;
+     center = rc->value / scale + 1;
+     center = (1 << 15) - FFMIN(center, 1 << 15);
+     if (center >= symbol) {
+         value++;
+         low = symbol;
+         symbol = 1 + ((32768 - 32 - symbol) * (16384-decay) >> 15);
+         while (symbol > 1 && center >= low + 2 * symbol) {
+             value++;
+             symbol *= 2;
+             low    += symbol;
+             symbol  = (((symbol - 2) * decay) >> 15) + 1;
+         }
+         if (symbol <= 1) {
+             int distance = (center - low) >> 1;
+             value += distance;
+             low   += 2 * distance;
+         }
+         if (center < low + symbol)
+             value *= -1;
+         else
+             low += symbol;
+     }
+     opus_rc_update(rc, scale, low, FFMIN(low + symbol, 32768), 32768);
+     return value;
+ }
+ static av_always_inline unsigned int opus_rc_stepmodel(OpusRangeCoder *rc, int k0)
+ {
+     /* Use a probability of 3 up to itheta=8192 and then use 1 after */
+     unsigned int k, scale, symbol, total = (k0+1)*3 + k0;
+     scale  = rc->range / total;
+     symbol = rc->value / scale + 1;
+     symbol = total - FFMIN(symbol, total);
+     k = (symbol < (k0+1)*3) ? symbol/3 : symbol - (k0+1)*2;
+     opus_rc_update(rc, scale, (k <= k0) ? 3*(k+0) : (k-1-k0) + 3*(k0+1),
+                    (k <= k0) ? 3*(k+1) : (k-0-k0) + 3*(k0+1), total);
+     return k;
+ }
+ static av_always_inline unsigned int opus_rc_trimodel(OpusRangeCoder *rc, int qn)
+ {
+     unsigned int k, scale, symbol, total, low, center;
+     total = ((qn>>1) + 1) * ((qn>>1) + 1);
+     scale   = rc->range / total;
+     center = rc->value / scale + 1;
+     center = total - FFMIN(center, total);
+     if (center < total >> 1) {
+         k      = (ff_sqrt(8 * center + 1) - 1) >> 1;
+         low    = k * (k + 1) >> 1;
+         symbol = k + 1;
+     } else {
+         k      = (2*(qn + 1) - ff_sqrt(8*(total - center - 1) + 1)) >> 1;
+         low    = total - ((qn + 1 - k) * (qn + 2 - k) >> 1);
+         symbol = qn + 1 - k;
+     }
+     opus_rc_update(rc, scale, low, low + symbol, total);
+     return k;
+ }
+ int ff_opus_parse_packet(OpusPacket *pkt, const uint8_t *buf, int buf_size,
+                          int self_delimited);
+ int ff_opus_parse_extradata(AVCodecContext *avctx, OpusContext *s);
+ int ff_silk_init(AVCodecContext *avctx, SilkContext **ps, int output_channels);
+ void ff_silk_free(SilkContext **ps);
+ void ff_silk_flush(SilkContext *s);
+ /**
+  * Decode the LP layer of one Opus frame (which may correspond to several SILK
+  * frames).
+  */
+ int ff_silk_decode_superframe(SilkContext *s, OpusRangeCoder *rc,
+                               float *output[2],
+                               enum OpusBandwidth bandwidth, int coded_channels,
+                               int duration_ms);
+ /**
+  * Init an iMDCT of the length 2 * 15 * (2^N)
+  */
+ int ff_celt_imdct_init(CeltIMDCTContext **s, int N);
+ /**
+  * Free an iMDCT.
+  */
+ void ff_celt_imdct_uninit(CeltIMDCTContext **s);
+ /**
+  * Calculate the middle half of the iMDCT
+  */
+ void ff_celt_imdct_half(CeltIMDCTContext *s, float *dst, const float *src,
+                         int src_stride, float scale);
+ int ff_celt_init(AVCodecContext *avctx, CeltContext **s, int output_channels);
+ void ff_celt_free(CeltContext **s);
+ void ff_celt_flush(CeltContext *s);
+ int ff_celt_decode_frame(CeltContext *s, OpusRangeCoder *rc,
+                          float **output, int coded_channels, int frame_size,
+                          int startband,  int endband);
+ extern const float ff_celt_window2[120];
+ #endif /* AVCODEC_OPUS_H */
index 0000000,6757136..0a6429e
mode 000000,100644..100644
--- /dev/null
@@@ -1,0 -1,2220 +1,2220 @@@
 - * This file is part of Libav.
+ /*
+  * Copyright (c) 2012 Andrew D'Addesio
+  * Copyright (c) 2013-2014 Mozilla Corporation
+  *
 - * Libav is free software; you can redistribute it and/or
++ * This file is part of FFmpeg.
+  *
 - * Libav is distributed in the hope that it will be useful,
++ * FFmpeg is free software; you can redistribute it and/or
+  * modify it under the terms of the GNU Lesser General Public
+  * License as published by the Free Software Foundation; either
+  * version 2.1 of the License, or (at your option) any later version.
+  *
 - * License along with Libav; if not, write to the Free Software
++ * FFmpeg is distributed in the hope that it will be useful,
+  * but WITHOUT ANY WARRANTY; without even the implied warranty of
+  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+  * Lesser General Public License for more details.
+  *
+  * You should have received a copy of the GNU Lesser General Public
++ * License along with FFmpeg; if not, write to the Free Software
+  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+  */
+ /**
+  * @file
+  * Opus CELT decoder
+  */
+ #include <stdint.h>
+ #include "libavutil/float_dsp.h"
+ #include "opus.h"
+ enum CeltSpread {
+     CELT_SPREAD_NONE,
+     CELT_SPREAD_LIGHT,
+     CELT_SPREAD_NORMAL,
+     CELT_SPREAD_AGGRESSIVE
+ };
+ typedef struct CeltFrame {
+     float energy[CELT_MAX_BANDS];
+     float prev_energy[2][CELT_MAX_BANDS];
+     uint8_t collapse_masks[CELT_MAX_BANDS];
+     /* buffer for mdct output + postfilter */
+     DECLARE_ALIGNED(32, float, buf)[2048];
+     /* postfilter parameters */
+     int pf_period_new;
+     float pf_gains_new[3];
+     int pf_period;
+     float pf_gains[3];
+     int pf_period_old;
+     float pf_gains_old[3];
+     float deemph_coeff;
+ } CeltFrame;
+ struct CeltContext {
+     // constant values that do not change during context lifetime
+     AVCodecContext    *avctx;
+     CeltIMDCTContext  *imdct[4];
+     AVFloatDSPContext  dsp;
+     int output_channels;
+     // values that have inter-frame effect and must be reset on flush
+     CeltFrame frame[2];
+     uint32_t seed;
+     int flushed;
+     // values that only affect a single frame
+     int coded_channels;
+     int framebits;
+     int duration;
+     /* number of iMDCT blocks in the frame */
+     int blocks;
+     /* size of each block */
+     int blocksize;
+     int startband;
+     int endband;
+     int codedbands;
+     int anticollapse_bit;
+     int intensitystereo;
+     int dualstereo;
+     enum CeltSpread spread;
+     int remaining;
+     int remaining2;
+     int fine_bits    [CELT_MAX_BANDS];
+     int fine_priority[CELT_MAX_BANDS];
+     int pulses       [CELT_MAX_BANDS];
+     int tf_change    [CELT_MAX_BANDS];
+     DECLARE_ALIGNED(32, float, coeffs)[2][CELT_MAX_FRAME_SIZE];
+     DECLARE_ALIGNED(32, float, scratch)[22 * 8]; // MAX(celt_freq_range) * 1<<CELT_MAX_LOG_BLOCKS
+ };
+ static const uint16_t celt_model_tapset[] = { 4, 2, 3, 4 };
+ static const uint16_t celt_model_spread[] = { 32, 7, 9, 30, 32 };
+ static const uint16_t celt_model_alloc_trim[] = {
+     128,   2,   4,   9,  19,  41,  87, 109, 119, 124, 126, 128
+ };
+ static const uint16_t celt_model_energy_small[] = { 4, 2, 3, 4 };
+ static const uint8_t celt_freq_bands[] = { /* in steps of 200Hz */
+     0,  1,  2,  3,  4,  5,  6,  7,  8, 10, 12, 14, 16, 20, 24, 28, 34, 40, 48, 60, 78, 100
+ };
+ static const uint8_t celt_freq_range[] = {
+     1,  1,  1,  1,  1,  1,  1,  1,  2,  2,  2,  2,  4,  4,  4,  6,  6,  8, 12, 18, 22
+ };
+ static const uint8_t celt_log_freq_range[] = {
+     0,  0,  0,  0,  0,  0,  0,  0,  8,  8,  8,  8, 16, 16, 16, 21, 21, 24, 29, 34, 36
+ };
+ static const int8_t celt_tf_select[4][2][2][2] = {
+     { { { 0, -1 }, { 0, -1 } }, { { 0, -1 }, { 0, -1 } } },
+     { { { 0, -1 }, { 0, -2 } }, { { 1,  0 }, { 1, -1 } } },
+     { { { 0, -2 }, { 0, -3 } }, { { 2,  0 }, { 1, -1 } } },
+     { { { 0, -2 }, { 0, -3 } }, { { 3,  0 }, { 1, -1 } } }
+ };
+ static const float celt_mean_energy[] = {
+     6.437500f, 6.250000f, 5.750000f, 5.312500f, 5.062500f,
+     4.812500f, 4.500000f, 4.375000f, 4.875000f, 4.687500f,
+     4.562500f, 4.437500f, 4.875000f, 4.625000f, 4.312500f,
+     4.500000f, 4.375000f, 4.625000f, 4.750000f, 4.437500f,
+     3.750000f, 3.750000f, 3.750000f, 3.750000f, 3.750000f
+ };
+ static const float celt_alpha_coef[] = {
+     29440.0f/32768.0f,    26112.0f/32768.0f,    21248.0f/32768.0f,    16384.0f/32768.0f
+ };
+ static const float celt_beta_coef[] = { /* TODO: precompute 1 minus this if the code ends up neater */
+     30147.0f/32768.0f,    22282.0f/32768.0f,    12124.0f/32768.0f,     6554.0f/32768.0f
+ };
+ static const uint8_t celt_coarse_energy_dist[4][2][42] = {
+     {
+         {       // 120-sample inter
+              72, 127,  65, 129,  66, 128,  65, 128,  64, 128,  62, 128,  64, 128,
+              64, 128,  92,  78,  92,  79,  92,  78,  90,  79, 116,  41, 115,  40,
+             114,  40, 132,  26, 132,  26, 145,  17, 161,  12, 176,  10, 177,  11
+         }, {    // 120-sample intra
+              24, 179,  48, 138,  54, 135,  54, 132,  53, 134,  56, 133,  55, 132,
+              55, 132,  61, 114,  70,  96,  74,  88,  75,  88,  87,  74,  89,  66,
+              91,  67, 100,  59, 108,  50, 120,  40, 122,  37,  97,  43,  78,  50
+         }
+     }, {
+         {       // 240-sample inter
+              83,  78,  84,  81,  88,  75,  86,  74,  87,  71,  90,  73,  93,  74,
+              93,  74, 109,  40, 114,  36, 117,  34, 117,  34, 143,  17, 145,  18,
+             146,  19, 162,  12, 165,  10, 178,   7, 189,   6, 190,   8, 177,   9
+         }, {    // 240-sample intra
+              23, 178,  54, 115,  63, 102,  66,  98,  69,  99,  74,  89,  71,  91,
+              73,  91,  78,  89,  86,  80,  92,  66,  93,  64, 102,  59, 103,  60,
+             104,  60, 117,  52, 123,  44, 138,  35, 133,  31,  97,  38,  77,  45
+         }
+     }, {
+         {       // 480-sample inter
+              61,  90,  93,  60, 105,  42, 107,  41, 110,  45, 116,  38, 113,  38,
+             112,  38, 124,  26, 132,  27, 136,  19, 140,  20, 155,  14, 159,  16,
+             158,  18, 170,  13, 177,  10, 187,   8, 192,   6, 175,   9, 159,  10
+         }, {    // 480-sample intra
+              21, 178,  59, 110,  71,  86,  75,  85,  84,  83,  91,  66,  88,  73,
+              87,  72,  92,  75,  98,  72, 105,  58, 107,  54, 115,  52, 114,  55,
+             112,  56, 129,  51, 132,  40, 150,  33, 140,  29,  98,  35,  77,  42
+         }
+     }, {
+         {       // 960-sample inter
+              42, 121,  96,  66, 108,  43, 111,  40, 117,  44, 123,  32, 120,  36,
+             119,  33, 127,  33, 134,  34, 139,  21, 147,  23, 152,  20, 158,  25,
+             154,  26, 166,  21, 173,  16, 184,  13, 184,  10, 150,  13, 139,  15
+         }, {    // 960-sample intra
+              22, 178,  63, 114,  74,  82,  84,  83,  92,  82, 103,  62,  96,  72,
+              96,  67, 101,  73, 107,  72, 113,  55, 118,  52, 125,  52, 118,  52,
+             117,  55, 135,  49, 137,  39, 157,  32, 145,  29,  97,  33,  77,  40
+         }
+     }
+ };
+ static const uint8_t celt_static_alloc[11][21] = {  /* 1/32 bit/sample */
+     {   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0,   0 },
+     {  90,  80,  75,  69,  63,  56,  49,  40,  34,  29,  20,  18,  10,   0,   0,   0,   0,   0,   0,   0,   0 },
+     { 110, 100,  90,  84,  78,  71,  65,  58,  51,  45,  39,  32,  26,  20,  12,   0,   0,   0,   0,   0,   0 },
+     { 118, 110, 103,  93,  86,  80,  75,  70,  65,  59,  53,  47,  40,  31,  23,  15,   4,   0,   0,   0,   0 },
+     { 126, 119, 112, 104,  95,  89,  83,  78,  72,  66,  60,  54,  47,  39,  32,  25,  17,  12,   1,   0,   0 },
+     { 134, 127, 120, 114, 103,  97,  91,  85,  78,  72,  66,  60,  54,  47,  41,  35,  29,  23,  16,  10,   1 },
+     { 144, 137, 130, 124, 113, 107, 101,  95,  88,  82,  76,  70,  64,  57,  51,  45,  39,  33,  26,  15,   1 },
+     { 152, 145, 138, 132, 123, 117, 111, 105,  98,  92,  86,  80,  74,  67,  61,  55,  49,  43,  36,  20,   1 },
+     { 162, 155, 148, 142, 133, 127, 121, 115, 108, 102,  96,  90,  84,  77,  71,  65,  59,  53,  46,  30,   1 },
+     { 172, 165, 158, 152, 143, 137, 131, 125, 118, 112, 106, 100,  94,  87,  81,  75,  69,  63,  56,  45,  20 },
+     { 200, 200, 200, 200, 200, 200, 200, 200, 198, 193, 188, 183, 178, 173, 168, 163, 158, 153, 148, 129, 104 }
+ };
+ static const uint8_t celt_static_caps[4][2][21] = {
+     {       // 120-sample
+         {224, 224, 224, 224, 224, 224, 224, 224, 160, 160,
+          160, 160, 185, 185, 185, 178, 178, 168, 134,  61,  37},
+         {224, 224, 224, 224, 224, 224, 224, 224, 240, 240,
+          240, 240, 207, 207, 207, 198, 198, 183, 144,  66,  40},
+     }, {    // 240-sample
+         {160, 160, 160, 160, 160, 160, 160, 160, 185, 185,
+          185, 185, 193, 193, 193, 183, 183, 172, 138,  64,  38},
+         {240, 240, 240, 240, 240, 240, 240, 240, 207, 207,
+          207, 207, 204, 204, 204, 193, 193, 180, 143,  66,  40},
+     }, {    // 480-sample
+         {185, 185, 185, 185, 185, 185, 185, 185, 193, 193,
+          193, 193, 193, 193, 193, 183, 183, 172, 138,  65,  39},
+         {207, 207, 207, 207, 207, 207, 207, 207, 204, 204,
+          204, 204, 201, 201, 201, 188, 188, 176, 141,  66,  40},
+     }, {    // 960-sample
+         {193, 193, 193, 193, 193, 193, 193, 193, 193, 193,
+          193, 193, 194, 194, 194, 184, 184, 173, 139,  65,  39},
+         {204, 204, 204, 204, 204, 204, 204, 204, 201, 201,
+          201, 201, 198, 198, 198, 187, 187, 175, 140,  66,  40}
+     }
+ };
+ static const uint8_t celt_cache_bits[392] = {
+     40, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+     7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
+     7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 40, 15, 23, 28,
+     31, 34, 36, 38, 39, 41, 42, 43, 44, 45, 46, 47, 47, 49, 50,
+     51, 52, 53, 54, 55, 55, 57, 58, 59, 60, 61, 62, 63, 63, 65,
+     66, 67, 68, 69, 70, 71, 71, 40, 20, 33, 41, 48, 53, 57, 61,
+     64, 66, 69, 71, 73, 75, 76, 78, 80, 82, 85, 87, 89, 91, 92,
+     94, 96, 98, 101, 103, 105, 107, 108, 110, 112, 114, 117, 119, 121, 123,
+     124, 126, 128, 40, 23, 39, 51, 60, 67, 73, 79, 83, 87, 91, 94,
+     97, 100, 102, 105, 107, 111, 115, 118, 121, 124, 126, 129, 131, 135, 139,
+     142, 145, 148, 150, 153, 155, 159, 163, 166, 169, 172, 174, 177, 179, 35,
+     28, 49, 65, 78, 89, 99, 107, 114, 120, 126, 132, 136, 141, 145, 149,
+     153, 159, 165, 171, 176, 180, 185, 189, 192, 199, 205, 211, 216, 220, 225,
+     229, 232, 239, 245, 251, 21, 33, 58, 79, 97, 112, 125, 137, 148, 157,
+     166, 174, 182, 189, 195, 201, 207, 217, 227, 235, 243, 251, 17, 35, 63,
+     86, 106, 123, 139, 152, 165, 177, 187, 197, 206, 214, 222, 230, 237, 250,
+     25, 31, 55, 75, 91, 105, 117, 128, 138, 146, 154, 161, 168, 174, 180,
+     185, 190, 200, 208, 215, 222, 229, 235, 240, 245, 255, 16, 36, 65, 89,
+     110, 128, 144, 159, 173, 185, 196, 207, 217, 226, 234, 242, 250, 11, 41,
+     74, 103, 128, 151, 172, 191, 209, 225, 241, 255, 9, 43, 79, 110, 138,
+     163, 186, 207, 227, 246, 12, 39, 71, 99, 123, 144, 164, 182, 198, 214,
+     228, 241, 253, 9, 44, 81, 113, 142, 168, 192, 214, 235, 255, 7, 49,
+     90, 127, 160, 191, 220, 247, 6, 51, 95, 134, 170, 203, 234, 7, 47,
+     87, 123, 155, 184, 212, 237, 6, 52, 97, 137, 174, 208, 240, 5, 57,
+     106, 151, 192, 231, 5, 59, 111, 158, 202, 243, 5, 55, 103, 147, 187,
+     224, 5, 60, 113, 161, 206, 248, 4, 65, 122, 175, 224, 4, 67, 127,
+     182, 234
+ };
+ static const int16_t celt_cache_index[105] = {
+     -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 41, 41, 41,
+     82, 82, 123, 164, 200, 222, 0, 0, 0, 0, 0, 0, 0, 0, 41,
+     41, 41, 41, 123, 123, 123, 164, 164, 240, 266, 283, 295, 41, 41, 41,
+     41, 41, 41, 41, 41, 123, 123, 123, 123, 240, 240, 240, 266, 266, 305,
+     318, 328, 336, 123, 123, 123, 123, 123, 123, 123, 123, 240, 240, 240, 240,
+     305, 305, 305, 318, 318, 343, 351, 358, 364, 240, 240, 240, 240, 240, 240,
+     240, 240, 305, 305, 305, 305, 343, 343, 343, 351, 351, 370, 376, 382, 387,
+ };
+ static const uint8_t celt_log2_frac[] = {
+     0, 8, 13, 16, 19, 21, 23, 24, 26, 27, 28, 29, 30, 31, 32, 32, 33, 34, 34, 35, 36, 36, 37, 37
+ };
+ static const uint8_t celt_bit_interleave[] = {
+     0, 1, 1, 1, 2, 3, 3, 3, 2, 3, 3, 3, 2, 3, 3, 3
+ };
+ static const uint8_t celt_bit_deinterleave[] = {
+     0x00, 0x03, 0x0C, 0x0F, 0x30, 0x33, 0x3C, 0x3F,
+     0xC0, 0xC3, 0xCC, 0xCF, 0xF0, 0xF3, 0xFC, 0xFF
+ };
+ static const uint8_t celt_hadamard_ordery[] = {
+     1,   0,
+     3,   0,  2,  1,
+     7,   0,  4,  3,  6,  1,  5,  2,
+     15,  0,  8,  7, 12,  3, 11,  4, 14,  1,  9,  6, 13,  2, 10,  5
+ };
+ static const uint16_t celt_qn_exp2[] = {
+     16384, 17866, 19483, 21247, 23170, 25267, 27554, 30048
+ };
+ static const uint32_t celt_pvq_u[1272] = {
+     /* N = 0, K = 0...176 */
+     1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+     0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+     /* N = 1, K = 1...176 */
+     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+     1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+     /* N = 2, K = 2...176 */
+     3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41,
+     43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79,
+     81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113,
+     115, 117, 119, 121, 123, 125, 127, 129, 131, 133, 135, 137, 139, 141, 143,
+     145, 147, 149, 151, 153, 155, 157, 159, 161, 163, 165, 167, 169, 171, 173,
+     175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203,
+     205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233,
+     235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 263,
+     265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293,
+     295, 297, 299, 301, 303, 305, 307, 309, 311, 313, 315, 317, 319, 321, 323,
+     325, 327, 329, 331, 333, 335, 337, 339, 341, 343, 345, 347, 349, 351,
+     /* N = 3, K = 3...176 */
+     13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613,
+     685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861,
+     1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785,
+     3961, 4141, 4325, 4513, 4705, 4901, 5101, 5305, 5513, 5725, 5941, 6161, 6385,
+     6613, 6845, 7081, 7321, 7565, 7813, 8065, 8321, 8581, 8845, 9113, 9385, 9661,
+     9941, 10225, 10513, 10805, 11101, 11401, 11705, 12013, 12325, 12641, 12961,
+     13285, 13613, 13945, 14281, 14621, 14965, 15313, 15665, 16021, 16381, 16745,
+     17113, 17485, 17861, 18241, 18625, 19013, 19405, 19801, 20201, 20605, 21013,
+     21425, 21841, 22261, 22685, 23113, 23545, 23981, 24421, 24865, 25313, 25765,
+     26221, 26681, 27145, 27613, 28085, 28561, 29041, 29525, 30013, 30505, 31001,
+     31501, 32005, 32513, 33025, 33541, 34061, 34585, 35113, 35645, 36181, 36721,
+     37265, 37813, 38365, 38921, 39481, 40045, 40613, 41185, 41761, 42341, 42925,
+     43513, 44105, 44701, 45301, 45905, 46513, 47125, 47741, 48361, 48985, 49613,
+     50245, 50881, 51521, 52165, 52813, 53465, 54121, 54781, 55445, 56113, 56785,
+     57461, 58141, 58825, 59513, 60205, 60901, 61601,
+     /* N = 4, K = 4...176 */
+     63, 129, 231, 377, 575, 833, 1159, 1561, 2047, 2625, 3303, 4089, 4991, 6017,
+     7175, 8473, 9919, 11521, 13287, 15225, 17343, 19649, 22151, 24857, 27775,
+     30913, 34279, 37881, 41727, 45825, 50183, 54809, 59711, 64897, 70375, 76153,
+     82239, 88641, 95367, 102425, 109823, 117569, 125671, 134137, 142975, 152193,
+     161799, 171801, 182207, 193025, 204263, 215929, 228031, 240577, 253575,
+     267033, 280959, 295361, 310247, 325625, 341503, 357889, 374791, 392217,
+     410175, 428673, 447719, 467321, 487487, 508225, 529543, 551449, 573951,
+     597057, 620775, 645113, 670079, 695681, 721927, 748825, 776383, 804609,
+     833511, 863097, 893375, 924353, 956039, 988441, 1021567, 1055425, 1090023,
+     1125369, 1161471, 1198337, 1235975, 1274393, 1313599, 1353601, 1394407,
+     1436025, 1478463, 1521729, 1565831, 1610777, 1656575, 1703233, 1750759,
+     1799161, 1848447, 1898625, 1949703, 2001689, 2054591, 2108417, 2163175,
+     2218873, 2275519, 2333121, 2391687, 2451225, 2511743, 2573249, 2635751,
+     2699257, 2763775, 2829313, 2895879, 2963481, 3032127, 3101825, 3172583,
+     3244409, 3317311, 3391297, 3466375, 3542553, 3619839, 3698241, 3777767,
+     3858425, 3940223, 4023169, 4107271, 4192537, 4278975, 4366593, 4455399,
+     4545401, 4636607, 4729025, 4822663, 4917529, 5013631, 5110977, 5209575,
+     5309433, 5410559, 5512961, 5616647, 5721625, 5827903, 5935489, 6044391,
+     6154617, 6266175, 6379073, 6493319, 6608921, 6725887, 6844225, 6963943,
+     7085049, 7207551,
+     /* N = 5, K = 5...176 */
+     321, 681, 1289, 2241, 3649, 5641, 8361, 11969, 16641, 22569, 29961, 39041,
+     50049, 63241, 78889, 97281, 118721, 143529, 172041, 204609, 241601, 283401,
+     330409, 383041, 441729, 506921, 579081, 658689, 746241, 842249, 947241,
+     1061761, 1186369, 1321641, 1468169, 1626561, 1797441, 1981449, 2179241,
+     2391489, 2618881, 2862121, 3121929, 3399041, 3694209, 4008201, 4341801,
+     4695809, 5071041, 5468329, 5888521, 6332481, 6801089, 7295241, 7815849,
+     8363841, 8940161, 9545769, 10181641, 10848769, 11548161, 12280841, 13047849,
+     13850241, 14689089, 15565481, 16480521, 17435329, 18431041, 19468809,
+     20549801, 21675201, 22846209, 24064041, 25329929, 26645121, 28010881,
+     29428489, 30899241, 32424449, 34005441, 35643561, 37340169, 39096641,
+     40914369, 42794761, 44739241, 46749249, 48826241, 50971689, 53187081,
+     55473921, 57833729, 60268041, 62778409, 65366401, 68033601, 70781609,
+     73612041, 76526529, 79526721, 82614281, 85790889, 89058241, 92418049,
+     95872041, 99421961, 103069569, 106816641, 110664969, 114616361, 118672641,
+     122835649, 127107241, 131489289, 135983681, 140592321, 145317129, 150160041,
+     155123009, 160208001, 165417001, 170752009, 176215041, 181808129, 187533321,
+     193392681, 199388289, 205522241, 211796649, 218213641, 224775361, 231483969,
+     238341641, 245350569, 252512961, 259831041, 267307049, 274943241, 282741889,
+     290705281, 298835721, 307135529, 315607041, 324252609, 333074601, 342075401,
+     351257409, 360623041, 370174729, 379914921, 389846081, 399970689, 410291241,
+     420810249, 431530241, 442453761, 453583369, 464921641, 476471169, 488234561,
+     500214441, 512413449, 524834241, 537479489, 550351881, 563454121, 576788929,
+     590359041, 604167209, 618216201, 632508801,
+     /* N = 6, K = 6...96 (technically V(109,5) fits in 32 bits, but that can't be
+      achieved by splitting an Opus band) */
+     1683, 3653, 7183, 13073, 22363, 36365, 56695, 85305, 124515, 177045, 246047,
+     335137, 448427, 590557, 766727, 982729, 1244979, 1560549, 1937199, 2383409,
+     2908411, 3522221, 4235671, 5060441, 6009091, 7095093, 8332863, 9737793,
+     11326283, 13115773, 15124775, 17372905, 19880915, 22670725, 25765455,
+     29189457, 32968347, 37129037, 41699767, 46710137, 52191139, 58175189,
+     64696159, 71789409, 79491819, 87841821, 96879431, 106646281, 117185651,
+     128542501, 140763503, 153897073, 167993403, 183104493, 199284183, 216588185,
+     235074115, 254801525, 275831935, 298228865, 322057867, 347386557, 374284647,
+     402823977, 433078547, 465124549, 499040399, 534906769, 572806619, 612825229,
+     655050231, 699571641, 746481891, 795875861, 847850911, 902506913, 959946283,
+     1020274013, 1083597703, 1150027593, 1219676595, 1292660325, 1369097135,
+     1449108145, 1532817275, 1620351277, 1711839767, 1807415257, 1907213187,
+     2011371957, 2120032959,
+     /* N = 7, K = 7...54 (technically V(60,6) fits in 32 bits, but that can't be
+      achieved by splitting an Opus band) */
+     8989, 19825, 40081, 75517, 134245, 227305, 369305, 579125, 880685, 1303777,
+     1884961, 2668525, 3707509, 5064793, 6814249, 9041957, 11847485, 15345233,
+     19665841, 24957661, 31388293, 39146185, 48442297, 59511829, 72616013,
+     88043969, 106114625, 127178701, 151620757, 179861305, 212358985, 249612805,
+     292164445, 340600625, 395555537, 457713341, 527810725, 606639529, 695049433,
+     793950709, 904317037, 1027188385, 1163673953, 1314955181, 1482288821,
+     1667010073, 1870535785, 2094367717,
+     /* N = 8, K = 8...37 (technically V(40,7) fits in 32 bits, but that can't be
+      achieved by splitting an Opus band) */
+     48639, 108545, 224143, 433905, 795455, 1392065, 2340495, 3800305, 5984767,
+     9173505, 13726991, 20103025, 28875327, 40754369, 56610575, 77500017,
+     104692735, 139703809, 184327311, 240673265, 311207743, 398796225, 506750351,
+     638878193, 799538175, 993696769, 1226990095, 1505789553, 1837271615,
+     2229491905,
+     /* N = 9, K = 9...28 (technically V(29,8) fits in 32 bits, but that can't be
+      achieved by splitting an Opus band) */
+     265729, 598417, 1256465, 2485825, 4673345, 8405905, 14546705, 24331777,
+     39490049, 62390545, 96220561, 145198913, 214828609, 312193553, 446304145,
+     628496897, 872893441, 1196924561, 1621925137, 2173806145,
+     /* N = 10, K = 10...24 */
+     1462563, 3317445, 7059735, 14218905, 27298155, 50250765, 89129247, 152951073,
+     254831667, 413442773, 654862247, 1014889769, 1541911931, 2300409629,
+     3375210671,
+     /* N = 11, K = 11...19 (technically V(20,10) fits in 32 bits, but that can't be
+      achieved by splitting an Opus band) */
+     8097453, 18474633, 39753273, 81270333, 158819253, 298199265, 540279585,
+     948062325, 1616336765,
+     /* N = 12, K = 12...18 */
+     45046719, 103274625, 224298231, 464387817, 921406335, 1759885185,
+     3248227095,
+     /* N = 13, K = 13...16 */
+     251595969, 579168825, 1267854873, 2653649025,
+     /* N = 14, K = 14 */
+     1409933619
+ };
+ DECLARE_ALIGNED(32, static const float, celt_window)[120] = {
+     6.7286966e-05f, 0.00060551348f, 0.0016815970f, 0.0032947962f, 0.0054439943f,
+     0.0081276923f, 0.011344001f, 0.015090633f, 0.019364886f, 0.024163635f,
+     0.029483315f, 0.035319905f, 0.041668911f, 0.048525347f, 0.055883718f,
+     0.063737999f, 0.072081616f, 0.080907428f, 0.090207705f, 0.099974111f,
+     0.11019769f, 0.12086883f, 0.13197729f, 0.14351214f, 0.15546177f,
+     0.16781389f, 0.18055550f, 0.19367290f, 0.20715171f, 0.22097682f,
+     0.23513243f, 0.24960208f, 0.26436860f, 0.27941419f, 0.29472040f,
+     0.31026818f, 0.32603788f, 0.34200931f, 0.35816177f, 0.37447407f,
+     0.39092462f, 0.40749142f, 0.42415215f, 0.44088423f, 0.45766484f,
+     0.47447104f, 0.49127978f, 0.50806798f, 0.52481261f, 0.54149077f,
+     0.55807973f, 0.57455701f, 0.59090049f, 0.60708841f, 0.62309951f,
+     0.63891306f, 0.65450896f, 0.66986776f, 0.68497077f, 0.69980010f,
+     0.71433873f, 0.72857055f, 0.74248043f, 0.75605424f, 0.76927895f,
+     0.78214257f, 0.79463430f, 0.80674445f, 0.81846456f, 0.82978733f,
+     0.84070669f, 0.85121779f, 0.86131698f, 0.87100183f, 0.88027111f,
+     0.88912479f, 0.89756398f, 0.90559094f, 0.91320904f, 0.92042270f,
+     0.92723738f, 0.93365955f, 0.93969656f, 0.94535671f, 0.95064907f,
+     0.95558353f, 0.96017067f, 0.96442171f, 0.96834849f, 0.97196334f,
+     0.97527906f, 0.97830883f, 0.98106616f, 0.98356480f, 0.98581869f,
+     0.98784191f, 0.98964856f, 0.99125274f, 0.99266849f, 0.99390969f,
+     0.99499004f, 0.99592297f, 0.99672162f, 0.99739874f, 0.99796667f,
+     0.99843728f, 0.99882195f, 0.99913147f, 0.99937606f, 0.99956527f,
+     0.99970802f, 0.99981248f, 0.99988613f, 0.99993565f, 0.99996697f,
+     0.99998518f, 0.99999457f, 0.99999859f, 0.99999982f, 1.0000000f,
+ };
+ /* square of the window, used for the postfilter */
+ const float ff_celt_window2[120] = {
+     4.5275357e-09f, 3.66647e-07f, 2.82777e-06f, 1.08557e-05f, 2.96371e-05f, 6.60594e-05f,
+     0.000128686f, 0.000227727f, 0.000374999f, 0.000583881f, 0.000869266f, 0.0012475f,
+     0.0017363f, 0.00235471f, 0.00312299f, 0.00406253f, 0.00519576f, 0.00654601f,
+     0.00813743f, 0.00999482f, 0.0121435f, 0.0146093f, 0.017418f, 0.0205957f, 0.0241684f,
+     0.0281615f, 0.0326003f, 0.0375092f, 0.0429118f, 0.0488308f, 0.0552873f, 0.0623012f,
+     0.0698908f, 0.0780723f, 0.0868601f, 0.0962664f, 0.106301f, 0.11697f, 0.12828f,
+     0.140231f, 0.152822f, 0.166049f, 0.179905f, 0.194379f, 0.209457f, 0.225123f, 0.241356f,
+     0.258133f, 0.275428f, 0.293212f, 0.311453f, 0.330116f, 0.349163f, 0.368556f, 0.388253f,
+     0.40821f, 0.428382f, 0.448723f, 0.469185f, 0.48972f, 0.51028f, 0.530815f, 0.551277f,
+     0.571618f, 0.59179f, 0.611747f, 0.631444f, 0.650837f, 0.669884f, 0.688547f, 0.706788f,
+     0.724572f, 0.741867f, 0.758644f, 0.774877f, 0.790543f, 0.805621f, 0.820095f, 0.833951f,
+     0.847178f, 0.859769f, 0.87172f, 0.88303f, 0.893699f, 0.903734f, 0.91314f, 0.921928f,
+     0.930109f, 0.937699f, 0.944713f, 0.951169f, 0.957088f, 0.962491f, 0.9674f, 0.971838f,
+     0.975832f, 0.979404f, 0.982582f, 0.985391f, 0.987857f, 0.990005f, 0.991863f, 0.993454f,
+     0.994804f, 0.995937f, 0.996877f, 0.997645f, 0.998264f, 0.998753f, 0.999131f, 0.999416f,
+     0.999625f, 0.999772f, 0.999871f, 0.999934f, 0.99997f, 0.999989f, 0.999997f, 0.99999964f, 1.0f,
+ };
+ static const uint32_t * const celt_pvq_u_row[15] = {
+     celt_pvq_u +    0, celt_pvq_u +  176, celt_pvq_u +  351,
+     celt_pvq_u +  525, celt_pvq_u +  698, celt_pvq_u +  870,
+     celt_pvq_u + 1041, celt_pvq_u + 1131, celt_pvq_u + 1178,
+     celt_pvq_u + 1207, celt_pvq_u + 1226, celt_pvq_u + 1240,
+     celt_pvq_u + 1248, celt_pvq_u + 1254, celt_pvq_u + 1257
+ };
+ static inline int16_t celt_cos(int16_t x)
+ {
+     x = (MUL16(x, x) + 4096) >> 13;
+     x = (32767-x) + ROUND_MUL16(x, (-7651 + ROUND_MUL16(x, (8277 + ROUND_MUL16(-626, x)))));
+     return 1+x;
+ }
+ static inline int celt_log2tan(int isin, int icos)
+ {
+     int lc, ls;
+     lc = opus_ilog(icos);
+     ls = opus_ilog(isin);
+     icos <<= 15 - lc;
+     isin <<= 15 - ls;
+     return (ls << 11) - (lc << 11) +
+            ROUND_MUL16(isin, ROUND_MUL16(isin, -2597) + 7932) -
+            ROUND_MUL16(icos, ROUND_MUL16(icos, -2597) + 7932);
+ }
+ static inline uint32_t celt_rng(CeltContext *s)
+ {
+     s->seed = 1664525 * s->seed + 1013904223;
+     return s->seed;
+ }
+ static void celt_decode_coarse_energy(CeltContext *s, OpusRangeCoder *rc)
+ {
+     int i, j;
+     float prev[2] = {0};
+     float alpha, beta;
+     const uint8_t *model;
+     /* use the 2D z-transform to apply prediction in both */
+     /* the time domain (alpha) and the frequency domain (beta) */
+     if (opus_rc_tell(rc)+3 <= s->framebits && opus_rc_p2model(rc, 3)) {
+         /* intra frame */
+         alpha = 0;
+         beta  = 1.0f - 4915.0f/32768.0f;
+         model = celt_coarse_energy_dist[s->duration][1];
+     } else {
+         alpha = celt_alpha_coef[s->duration];
+         beta  = 1.0f - celt_beta_coef[s->duration];
+         model = celt_coarse_energy_dist[s->duration][0];
+     }
+     for (i = 0; i < CELT_MAX_BANDS; i++) {
+         for (j = 0; j < s->coded_channels; j++) {
+             CeltFrame *frame = &s->frame[j];
+             float value;
+             int available;
+             if (i < s->startband || i >= s->endband) {
+                 frame->energy[i] = 0.0;
+                 continue;
+             }
+             available = s->framebits - opus_rc_tell(rc);
+             if (available >= 15) {
+                 /* decode using a Laplace distribution */
+                 int k = FFMIN(i, 20) << 1;
+                 value = opus_rc_laplace(rc, model[k] << 7, model[k+1] << 6);
+             } else if (available >= 2) {
+                 int x = opus_rc_getsymbol(rc, celt_model_energy_small);
+                 value = (x>>1) ^ -(x&1);
+             } else if (available >= 1) {
+                 value = -(float)opus_rc_p2model(rc, 1);
+             } else value = -1;
+             frame->energy[i] = FFMAX(-9.0f, frame->energy[i]) * alpha + prev[j] + value;
+             prev[j] += beta * value;
+         }
+     }
+ }
+ static void celt_decode_fine_energy(CeltContext *s, OpusRangeCoder *rc)
+ {
+     int i;
+     for (i = s->startband; i < s->endband; i++) {
+         int j;
+         if (!s->fine_bits[i])
+             continue;
+         for (j = 0; j < s->coded_channels; j++) {
+             CeltFrame *frame = &s->frame[j];
+             int q2;
+             float offset;
+             q2 = opus_getrawbits(rc, s->fine_bits[i]);
+             offset = (q2 + 0.5f) * (1 << (14 - s->fine_bits[i])) / 16384.0f - 0.5f;
+             frame->energy[i] += offset;
+         }
+     }
+ }
+ static void celt_decode_final_energy(CeltContext *s, OpusRangeCoder *rc,
+                                      int bits_left)
+ {
+     int priority, i, j;
+     for (priority = 0; priority < 2; priority++) {
+         for (i = s->startband; i < s->endband && bits_left >= s->coded_channels; i++) {
+             if (s->fine_priority[i] != priority || s->fine_bits[i] >= CELT_MAX_FINE_BITS)
+                 continue;
+             for (j = 0; j < s->coded_channels; j++) {
+                 int q2;
+                 float offset;
+                 q2 = opus_getrawbits(rc, 1);
+                 offset = (q2 - 0.5f) * (1 << (14 - s->fine_bits[i] - 1)) / 16384.0f;
+                 s->frame[j].energy[i] += offset;
+                 bits_left--;
+             }
+         }
+     }
+ }
+ static void celt_decode_tf_changes(CeltContext *s, OpusRangeCoder *rc,
+                                    int transient)
+ {
+     int i, diff = 0, tf_select = 0, tf_changed = 0, tf_select_bit;
+     int consumed, bits = transient ? 2 : 4;
+     consumed = opus_rc_tell(rc);
+     tf_select_bit = (s->duration != 0 && consumed+bits+1 <= s->framebits);
+     for (i = s->startband; i < s->endband; i++) {
+         if (consumed+bits+tf_select_bit <= s->framebits) {
+             diff ^= opus_rc_p2model(rc, bits);
+             consumed = opus_rc_tell(rc);
+             tf_changed |= diff;
+         }
+         s->tf_change[i] = diff;
+         bits = transient ? 4 : 5;
+     }
+     if (tf_select_bit && celt_tf_select[s->duration][transient][0][tf_changed] !=
+                          celt_tf_select[s->duration][transient][1][tf_changed])
+         tf_select = opus_rc_p2model(rc, 1);
+     for (i = s->startband; i < s->endband; i++) {
+         s->tf_change[i] = celt_tf_select[s->duration][transient][tf_select][s->tf_change[i]];
+     }
+ }
+ static void celt_decode_allocation(CeltContext *s, OpusRangeCoder *rc)
+ {
+     // approx. maximum bit allocation for each band before boost/trim
+     int cap[CELT_MAX_BANDS];
+     int boost[CELT_MAX_BANDS];
+     int threshold[CELT_MAX_BANDS];
+     int bits1[CELT_MAX_BANDS];
+     int bits2[CELT_MAX_BANDS];
+     int trim_offset[CELT_MAX_BANDS];
+     int skip_startband = s->startband;
+     int dynalloc       = 6;
+     int alloctrim      = 5;
+     int extrabits      = 0;
+     int skip_bit            = 0;
+     int intensitystereo_bit = 0;
+     int dualstereo_bit      = 0;
+     int remaining, bandbits;
+     int low, high, total, done;
+     int totalbits;
+     int consumed;
+     int i, j;
+     consumed = opus_rc_tell(rc);
+     /* obtain spread flag */
+     s->spread = CELT_SPREAD_NORMAL;
+     if (consumed + 4 <= s->framebits)
+         s->spread = opus_rc_getsymbol(rc, celt_model_spread);
+     /* generate static allocation caps */
+     for (i = 0; i < CELT_MAX_BANDS; i++) {
+         cap[i] = (celt_static_caps[s->duration][s->coded_channels - 1][i] + 64)
+                  * celt_freq_range[i] << (s->coded_channels - 1) << s->duration >> 2;
+     }
+     /* obtain band boost */
+     totalbits = s->framebits << 3; // convert to 1/8 bits
+     consumed = opus_rc_tell_frac(rc);
+     for (i = s->startband; i < s->endband; i++) {
+         int quanta, band_dynalloc;
+         boost[i] = 0;
+         quanta = celt_freq_range[i] << (s->coded_channels - 1) << s->duration;
+         quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta));
+         band_dynalloc = dynalloc;
+         while (consumed + (band_dynalloc<<3) < totalbits && boost[i] < cap[i]) {
+             int add = opus_rc_p2model(rc, band_dynalloc);
+             consumed = opus_rc_tell_frac(rc);
+             if (!add)
+                 break;
+             boost[i]     += quanta;
+             totalbits    -= quanta;
+             band_dynalloc = 1;
+         }
+         /* dynalloc is more likely to occur if it's already been used for earlier bands */
+         if (boost[i])
+             dynalloc = FFMAX(2, dynalloc - 1);
+     }
+     /* obtain allocation trim */
+     if (consumed + (6 << 3) <= totalbits)
+         alloctrim = opus_rc_getsymbol(rc, celt_model_alloc_trim);
+     /* anti-collapse bit reservation */
+     totalbits = (s->framebits << 3) - opus_rc_tell_frac(rc) - 1;
+     s->anticollapse_bit = 0;
+     if (s->blocks > 1 && s->duration >= 2 &&
+         totalbits >= ((s->duration + 2) << 3))
+         s->anticollapse_bit = 1 << 3;
+     totalbits -= s->anticollapse_bit;
+     /* band skip bit reservation */
+     if (totalbits >= 1 << 3)
+         skip_bit = 1 << 3;
+     totalbits -= skip_bit;
+     /* intensity/dual stereo bit reservation */
+     if (s->coded_channels == 2) {
+         intensitystereo_bit = celt_log2_frac[s->endband - s->startband];
+         if (intensitystereo_bit <= totalbits) {
+             totalbits -= intensitystereo_bit;
+             if (totalbits >= 1 << 3) {
+                 dualstereo_bit = 1 << 3;
+                 totalbits -= 1 << 3;
+             }
+         } else
+             intensitystereo_bit = 0;
+     }
+     for (i = s->startband; i < s->endband; i++) {
+         int trim     = alloctrim - 5 - s->duration;
+         int band     = celt_freq_range[i] * (s->endband - i - 1);
+         int duration = s->duration + 3;
+         int scale    = duration + s->coded_channels - 1;
+         /* PVQ minimum allocation threshold, below this value the band is
+          * skipped */
+         threshold[i] = FFMAX(3 * celt_freq_range[i] << duration >> 4,
+                              s->coded_channels << 3);
+         trim_offset[i] = trim * (band << scale) >> 6;
+         if (celt_freq_range[i] << s->duration == 1)
+             trim_offset[i] -= s->coded_channels << 3;
+     }
+     /* bisection */
+     low  = 1;
+     high = CELT_VECTORS - 1;
+     while (low <= high) {
+         int center = (low + high) >> 1;
+         done = total = 0;
+         for (i = s->endband - 1; i >= s->startband; i--) {
+             bandbits = celt_freq_range[i] * celt_static_alloc[center][i]
+                        << (s->coded_channels - 1) << s->duration >> 2;
+             if (bandbits)
+                 bandbits = FFMAX(0, bandbits + trim_offset[i]);
+             bandbits += boost[i];
+             if (bandbits >= threshold[i] || done) {
+                 done = 1;
+                 total += FFMIN(bandbits, cap[i]);
+             } else if (bandbits >= s->coded_channels << 3)
+                 total += s->coded_channels << 3;
+         }
+         if (total > totalbits)
+             high = center - 1;
+         else
+             low = center + 1;
+     }
+     high = low--;
+     for (i = s->startband; i < s->endband; i++) {
+         bits1[i] = celt_freq_range[i] * celt_static_alloc[low][i]
+                    << (s->coded_channels - 1) << s->duration >> 2;
+         bits2[i] = high >= CELT_VECTORS ? cap[i] :
+                    celt_freq_range[i] * celt_static_alloc[high][i]
+                    << (s->coded_channels - 1) << s->duration >> 2;
+         if (bits1[i])
+             bits1[i] = FFMAX(0, bits1[i] + trim_offset[i]);
+         if (bits2[i])
+             bits2[i] = FFMAX(0, bits2[i] + trim_offset[i]);
+         if (low)
+             bits1[i] += boost[i];
+         bits2[i] += boost[i];
+         if (boost[i])
+             skip_startband = i;
+         bits2[i] = FFMAX(0, bits2[i] - bits1[i]);
+     }
+     /* bisection */
+     low  = 0;
+     high = 1 << CELT_ALLOC_STEPS;
+     for (i = 0; i < CELT_ALLOC_STEPS; i++) {
+         int center = (low + high) >> 1;
+         done = total = 0;
+         for (j = s->endband - 1; j >= s->startband; j--) {
+             bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS);
+             if (bandbits >= threshold[j] || done) {
+                 done = 1;
+                 total += FFMIN(bandbits, cap[j]);
+             } else if (bandbits >= s->coded_channels << 3)
+                 total += s->coded_channels << 3;
+         }
+         if (total > totalbits)
+             high = center;
+         else
+             low = center;
+     }
+     done = total = 0;
+     for (i = s->endband - 1; i >= s->startband; i--) {
+         bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS);
+         if (bandbits >= threshold[i] || done)
+             done = 1;
+         else
+             bandbits = (bandbits >= s->coded_channels << 3) ?
+                        s->coded_channels << 3 : 0;
+         bandbits     = FFMIN(bandbits, cap[i]);
+         s->pulses[i] = bandbits;
+         total      += bandbits;
+     }
+     /* band skipping */
+     for (s->codedbands = s->endband; ; s->codedbands--) {
+         int allocation;
+         j = s->codedbands - 1;
+         if (j == skip_startband) {
+             /* all remaining bands are not skipped */
+             totalbits += skip_bit;
+             break;
+         }
+         /* determine the number of bits available for coding "do not skip" markers */
+         remaining   = totalbits - total;
+         bandbits    = remaining / (celt_freq_bands[j+1] - celt_freq_bands[s->startband]);
+         remaining  -= bandbits  * (celt_freq_bands[j+1] - celt_freq_bands[s->startband]);
+         allocation  = s->pulses[j] + bandbits * celt_freq_range[j]
+                       + FFMAX(0, remaining - (celt_freq_bands[j] - celt_freq_bands[s->startband]));
+         /* a "do not skip" marker is only coded if the allocation is
+            above the chosen threshold */
+         if (allocation >= FFMAX(threshold[j], (s->coded_channels + 1) <<3 )) {
+             if (opus_rc_p2model(rc, 1))
+                 break;
+             total      += 1 << 3;
+             allocation -= 1 << 3;
+         }
+         /* the band is skipped, so reclaim its bits */
+         total -= s->pulses[j];
+         if (intensitystereo_bit) {
+             total -= intensitystereo_bit;
+             intensitystereo_bit = celt_log2_frac[j - s->startband];
+             total += intensitystereo_bit;
+         }
+         total += s->pulses[j] = (allocation >= s->coded_channels << 3) ?
+                               s->coded_channels << 3 : 0;
+     }
+     /* obtain stereo flags */
+     s->intensitystereo = 0;
+     s->dualstereo      = 0;
+     if (intensitystereo_bit)
+         s->intensitystereo = s->startband +
+                           opus_rc_unimodel(rc, s->codedbands + 1 - s->startband);
+     if (s->intensitystereo <= s->startband)
+         totalbits += dualstereo_bit; /* no intensity stereo means no dual stereo */
+     else if (dualstereo_bit)
+         s->dualstereo = opus_rc_p2model(rc, 1);
+     /* supply the remaining bits in this frame to lower bands */
+     remaining = totalbits - total;
+     bandbits  = remaining / (celt_freq_bands[s->codedbands] - celt_freq_bands[s->startband]);
+     remaining -= bandbits * (celt_freq_bands[s->codedbands] - celt_freq_bands[s->startband]);
+     for (i = s->startband; i < s->codedbands; i++) {
+         int bits = FFMIN(remaining, celt_freq_range[i]);
+         s->pulses[i] += bits + bandbits * celt_freq_range[i];
+         remaining    -= bits;
+     }
+     for (i = s->startband; i < s->codedbands; i++) {
+         int N = celt_freq_range[i] << s->duration;
+         int prev_extra = extrabits;
+         s->pulses[i] += extrabits;
+         if (N > 1) {
+             int dof;        // degrees of freedom
+             int temp;       // dof * channels * log(dof)
+             int offset;     // fine energy quantization offset, i.e.
+                             // extra bits assigned over the standard
+                             // totalbits/dof
+             int fine_bits, max_bits;
+             extrabits = FFMAX(0, s->pulses[i] - cap[i]);
+             s->pulses[i] -= extrabits;
+             /* intensity stereo makes use of an extra degree of freedom */
+             dof = N * s->coded_channels
+                   + (s->coded_channels == 2 && N > 2 && !s->dualstereo && i < s->intensitystereo);
+             temp = dof * (celt_log_freq_range[i] + (s->duration<<3));
+             offset = (temp >> 1) - dof * CELT_FINE_OFFSET;
+             if (N == 2) /* dof=2 is the only case that doesn't fit the model */
+                 offset += dof<<1;
+             /* grant an additional bias for the first and second pulses */
+             if (s->pulses[i] + offset < 2 * (dof << 3))
+                 offset += temp >> 2;
+             else if (s->pulses[i] + offset < 3 * (dof << 3))
+                 offset += temp >> 3;
+             fine_bits = (s->pulses[i] + offset + (dof << 2)) / (dof << 3);
+             max_bits  = FFMIN((s->pulses[i]>>3) >> (s->coded_channels - 1),
+                               CELT_MAX_FINE_BITS);
+             max_bits  = FFMAX(max_bits, 0);
+             s->fine_bits[i] = av_clip(fine_bits, 0, max_bits);
+             /* if fine_bits was rounded down or capped,
+                give priority for the final fine energy pass */
+             s->fine_priority[i] = (s->fine_bits[i] * (dof<<3) >= s->pulses[i] + offset);
+             /* the remaining bits are assigned to PVQ */
+             s->pulses[i] -= s->fine_bits[i] << (s->coded_channels - 1) << 3;
+         } else {
+             /* all bits go to fine energy except for the sign bit */
+             extrabits = FFMAX(0, s->pulses[i] - (s->coded_channels << 3));
+             s->pulses[i] -= extrabits;
+             s->fine_bits[i] = 0;
+             s->fine_priority[i] = 1;
+         }
+         /* hand back a limited number of extra fine energy bits to this band */
+         if (extrabits > 0) {
+             int fineextra = FFMIN(extrabits >> (s->coded_channels + 2),
+                                   CELT_MAX_FINE_BITS - s->fine_bits[i]);
+             s->fine_bits[i] += fineextra;
+             fineextra <<= s->coded_channels + 2;
+             s->fine_priority[i] = (fineextra >= extrabits - prev_extra);
+             extrabits -= fineextra;
+         }
+     }
+     s->remaining = extrabits;
+     /* skipped bands dedicate all of their bits for fine energy */
+     for (; i < s->endband; i++) {
+         s->fine_bits[i]     = s->pulses[i] >> (s->coded_channels - 1) >> 3;
+         s->pulses[i]        = 0;
+         s->fine_priority[i] = s->fine_bits[i] < 1;
+     }
+ }
+ static inline int celt_bits2pulses(const uint8_t *cache, int bits)
+ {
+     // TODO: Find the size of cache and make it into an array in the parameters list
+     int i, low = 0, high;
+     high = cache[0];
+     bits--;
+     for (i = 0; i < 6; i++) {
+         int center = (low + high + 1) >> 1;
+         if (cache[center] >= bits)
+             high = center;
+         else
+             low = center;
+     }
+     return (bits - (low == 0 ? -1 : cache[low]) <= cache[high] - bits) ? low : high;
+ }
+ static inline int celt_pulses2bits(const uint8_t *cache, int pulses)
+ {
+     // TODO: Find the size of cache and make it into an array in the parameters list
+    return (pulses == 0) ? 0 : cache[pulses] + 1;
+ }
+ static inline void celt_normalize_residual(const int * restrict iy, float * restrict X,
+                                            int N, float g)
+ {
+     int i;
+     for (i = 0; i < N; i++)
+         X[i] = g * iy[i];
+ }
+ static void celt_exp_rotation1(float *X, unsigned int len, unsigned int stride,
+                                float c, float s)
+ {
+     float *Xptr;
+     int i;
+     Xptr = X;
+     for (i = 0; i < len - stride; i++) {
+         float x1, x2;
+         x1           = Xptr[0];
+         x2           = Xptr[stride];
+         Xptr[stride] = c * x2 + s * x1;
+         *Xptr++      = c * x1 - s * x2;
+     }
+     Xptr = &X[len - 2 * stride - 1];
+     for (i = len - 2 * stride - 1; i >= 0; i--) {
+         float x1, x2;
+         x1           = Xptr[0];
+         x2           = Xptr[stride];
+         Xptr[stride] = c * x2 + s * x1;
+         *Xptr--      = c * x1 - s * x2;
+     }
+ }
+ static inline void celt_exp_rotation(float *X, unsigned int len,
+                                      unsigned int stride, unsigned int K,
+                                      enum CeltSpread spread)
+ {
+     unsigned int stride2 = 0;
+     float c, s;
+     float gain, theta;
+     int i;
+     if (2*K >= len || spread == CELT_SPREAD_NONE)
+         return;
+     gain = (float)len / (len + (20 - 5*spread) * K);
+     theta = M_PI * gain * gain / 4;
+     c = cos(theta);
+     s = sin(theta);
+     if (len >= stride << 3) {
+         stride2 = 1;
+         /* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding.
+         It's basically incrementing long as (stride2+0.5)^2 < len/stride. */
+         while ((stride2 * stride2 + stride2) * stride + (stride >> 2) < len)
+             stride2++;
+     }
+     /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
+     extract_collapse_mask().*/
+     len /= stride;
+     for (i = 0; i < stride; i++) {
+         if (stride2)
+             celt_exp_rotation1(X + i * len, len, stride2, s, c);
+         celt_exp_rotation1(X + i * len, len, 1, c, s);
+     }
+ }
+ static inline unsigned int celt_extract_collapse_mask(const int *iy,
+                                                       unsigned int N,
+                                                       unsigned int B)
+ {
+     unsigned int collapse_mask;
+     int N0;
+     int i, j;
+     if (B <= 1)
+         return 1;
+     /*NOTE: As a minor optimization, we could be passing around log2(B), not B, for both this and for
+     exp_rotation().*/
+     N0 = N/B;
+     collapse_mask = 0;
+     for (i = 0; i < B; i++)
+         for (j = 0; j < N0; j++)
+             collapse_mask |= (iy[i*N0+j]!=0)<<i;
+     return collapse_mask;
+ }
+ static inline void celt_renormalize_vector(float *X, int N, float gain)
+ {
+     int i;
+     float g = 1e-15f;
+     for (i = 0; i < N; i++)
+         g += X[i] * X[i];
+     g = gain / sqrtf(g);
+     for (i = 0; i < N; i++)
+         X[i] *= g;
+ }
+ static inline void celt_stereo_merge(float *X, float *Y, float mid, int N)
+ {
+     int i;
+     float xp = 0, side = 0;
+     float E[2];
+     float mid2;
+     float t, gain[2];
+     /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */
+     for (i = 0; i < N; i++) {
+         xp   += X[i] * Y[i];
+         side += Y[i] * Y[i];
+     }
+     /* Compensating for the mid normalization */
+     xp *= mid;
+     mid2 = mid;
+     E[0] = mid2 * mid2 + side - 2 * xp;
+     E[1] = mid2 * mid2 + side + 2 * xp;
+     if (E[0] < 6e-4f || E[1] < 6e-4f) {
+         for (i = 0; i < N; i++)
+             Y[i] = X[i];
+         return;
+     }
+     t = E[0];
+     gain[0] = 1.0f / sqrtf(t);
+     t = E[1];
+     gain[1] = 1.0f / sqrtf(t);
+     for (i = 0; i < N; i++) {
+         float value[2];
+         /* Apply mid scaling (side is already scaled) */
+         value[0] = mid * X[i];
+         value[1] = Y[i];
+         X[i] = gain[0] * (value[0] - value[1]);
+         Y[i] = gain[1] * (value[0] + value[1]);
+     }
+ }
+ static void celt_interleave_hadamard(float *tmp, float *X, int N0,
+                                      int stride, int hadamard)
+ {
+     int i, j;
+     int N = N0*stride;
+     if (hadamard) {
+         const uint8_t *ordery = celt_hadamard_ordery + stride - 2;
+         for (i = 0; i < stride; i++)
+             for (j = 0; j < N0; j++)
+                 tmp[j*stride+i] = X[ordery[i]*N0+j];
+     } else {
+         for (i = 0; i < stride; i++)
+             for (j = 0; j < N0; j++)
+                 tmp[j*stride+i] = X[i*N0+j];
+     }
+     for (i = 0; i < N; i++)
+         X[i] = tmp[i];
+ }
+ static void celt_deinterleave_hadamard(float *tmp, float *X, int N0,
+                                        int stride, int hadamard)
+ {
+     int i, j;
+     int N = N0*stride;
+     if (hadamard) {
+         const uint8_t *ordery = celt_hadamard_ordery + stride - 2;
+         for (i = 0; i < stride; i++)
+             for (j = 0; j < N0; j++)
+                 tmp[ordery[i]*N0+j] = X[j*stride+i];
+     } else {
+         for (i = 0; i < stride; i++)
+             for (j = 0; j < N0; j++)
+                 tmp[i*N0+j] = X[j*stride+i];
+     }
+     for (i = 0; i < N; i++)
+         X[i] = tmp[i];
+ }
+ static void celt_haar1(float *X, int N0, int stride)
+ {
+     int i, j;
+     N0 >>= 1;
+     for (i = 0; i < stride; i++) {
+         for (j = 0; j < N0; j++) {
+             float x0 = X[stride * (2 * j + 0) + i];
+             float x1 = X[stride * (2 * j + 1) + i];
+             X[stride * (2 * j + 0) + i] = (x0 + x1) * M_SQRT1_2;
+             X[stride * (2 * j + 1) + i] = (x0 - x1) * M_SQRT1_2;
+         }
+     }
+ }
+ static inline int celt_compute_qn(int N, int b, int offset, int pulse_cap,
+                                   int dualstereo)
+ {
+     int qn, qb;
+     int N2 = 2 * N - 1;
+     if (dualstereo && N == 2)
+         N2--;
+     /* The upper limit ensures that in a stereo split with itheta==16384, we'll
+      * always have enough bits left over to code at least one pulse in the
+      * side; otherwise it would collapse, since it doesn't get folded. */
+     qb = FFMIN3(b - pulse_cap - (4 << 3), (b + N2 * offset) / N2, 8 << 3);
+     qn = (qb < (1 << 3 >> 1)) ? 1 : ((celt_qn_exp2[qb & 0x7] >> (14 - (qb >> 3))) + 1) >> 1 << 1;
+     return qn;
+ }
+ // this code was adapted from libopus
+ static inline uint64_t celt_cwrsi(unsigned int N, unsigned int K, unsigned int i, int *y)
+ {
+     uint64_t norm = 0;
+     uint32_t p;
+     int s, val;
+     int k0;
+     while (N > 2) {
+         uint32_t q;
+         /*Lots of pulses case:*/
+         if (K >= N) {
+             const uint32_t *row = celt_pvq_u_row[N];
+             /* Are the pulses in this dimension negative? */
+             p  = row[K + 1];
+             s  = -(i >= p);
+             i -= p & s;
+             /*Count how many pulses were placed in this dimension.*/
+             k0 = K;
+             q = row[N];
+             if (q > i) {
+                 K = N;
+                 do {
+                     p = celt_pvq_u_row[--K][N];
+                 } while (p > i);
+             } else
+                 for (p = row[K]; p > i; p = row[K])
+                     K--;
+             i    -= p;
+             val   = (k0 - K + s) ^ s;
+             norm += val * val;
+             *y++  = val;
+         } else { /*Lots of dimensions case:*/
+             /*Are there any pulses in this dimension at all?*/
+             p = celt_pvq_u_row[K    ][N];
+             q = celt_pvq_u_row[K + 1][N];
+             if (p <= i && i < q) {
+                 i -= p;
+                 *y++ = 0;
+             } else {
+                 /*Are the pulses in this dimension negative?*/
+                 s  = -(i >= q);
+                 i -= q & s;
+                 /*Count how many pulses were placed in this dimension.*/
+                 k0 = K;
+                 do p = celt_pvq_u_row[--K][N];
+                 while (p > i);
+                 i    -= p;
+                 val   = (k0 - K + s) ^ s;
+                 norm += val * val;
+                 *y++  = val;
+             }
+         }
+         N--;
+     }
+     /* N == 2 */
+     p  = 2 * K + 1;
+     s  = -(i >= p);
+     i -= p & s;
+     k0 = K;
+     K  = (i + 1) / 2;
+     if (K)
+         i -= 2 * K - 1;
+     val   = (k0 - K + s) ^ s;
+     norm += val * val;
+     *y++  = val;
+     /* N==1 */
+     s     = -i;
+     val   = (K + s) ^ s;
+     norm += val * val;
+     *y    = val;
+     return norm;
+ }
+ static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, unsigned int N, unsigned int K)
+ {
+     unsigned int idx;
+ #define CELT_PVQ_U(n, k) (celt_pvq_u_row[FFMIN(n, k)][FFMAX(n, k)])
+ #define CELT_PVQ_V(n, k) (CELT_PVQ_U(n, k) + CELT_PVQ_U(n, k + 1))
+     idx = opus_rc_unimodel(rc, CELT_PVQ_V(N, K));
+     return celt_cwrsi(N, K, idx, y);
+ }
+ /** Decode pulse vector and combine the result with the pitch vector to produce
+     the final normalised signal in the current band. */
+ static inline unsigned int celt_alg_unquant(OpusRangeCoder *rc, float *X,
+                                             unsigned int N, unsigned int K,
+                                             enum CeltSpread spread,
+                                             unsigned int blocks, float gain)
+ {
+     int y[176];
+     gain /= sqrtf(celt_decode_pulses(rc, y, N, K));
+     celt_normalize_residual(y, X, N, gain);
+     celt_exp_rotation(X, N, blocks, K, spread);
+     return celt_extract_collapse_mask(y, N, blocks);
+ }
+ static unsigned int celt_decode_band(CeltContext *s, OpusRangeCoder *rc,
+                                      const int band, float *X, float *Y,
+                                      int N, int b, unsigned int blocks,
+                                      float *lowband, int duration,
+                                      float *lowband_out, int level,
+                                      float gain, float *lowband_scratch,
+                                      int fill)
+ {
+     const uint8_t *cache;
+     int dualstereo, split;
+     int imid = 0, iside = 0;
+     unsigned int N0 = N;
+     int N_B;
+     int N_B0;
+     int B0 = blocks;
+     int time_divide = 0;
+     int recombine = 0;
+     int inv = 0;
+     float mid = 0, side = 0;
+     int longblocks = (B0 == 1);
+     unsigned int cm = 0;
+     N_B0 = N_B = N / blocks;
+     split = dualstereo = (Y != NULL);
+     if (N == 1) {
+         /* special case for one sample */
+         int i;
+         float *x = X;
+         for (i = 0; i <= dualstereo; i++) {
+             int sign = 0;
+             if (s->remaining2 >= 1<<3) {
+                 sign           = opus_getrawbits(rc, 1);
+                 s->remaining2 -= 1 << 3;
+                 b             -= 1 << 3;
+             }
+             x[0] = sign ? -1.0f : 1.0f;
+             x = Y;
+         }
+         if (lowband_out)
+             lowband_out[0] = X[0];
+         return 1;
+     }
+     if (!dualstereo && level == 0) {
+         int tf_change = s->tf_change[band];
+         int k;
+         if (tf_change > 0)
+             recombine = tf_change;
+         /* Band recombining to increase frequency resolution */
+         if (lowband &&
+             (recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) {
+             int j;
+             for (j = 0; j < N; j++)
+                 lowband_scratch[j] = lowband[j];
+             lowband = lowband_scratch;
+         }
+         for (k = 0; k < recombine; k++) {
+             if (lowband)
+                 celt_haar1(lowband, N >> k, 1 << k);
+             fill = celt_bit_interleave[fill & 0xF] | celt_bit_interleave[fill >> 4] << 2;
+         }
+         blocks >>= recombine;
+         N_B <<= recombine;
+         /* Increasing the time resolution */
+         while ((N_B & 1) == 0 && tf_change < 0) {
+             if (lowband)
+                 celt_haar1(lowband, N_B, blocks);
+             fill |= fill << blocks;
+             blocks <<= 1;
+             N_B >>= 1;
+             time_divide++;
+             tf_change++;
+         }
+         B0 = blocks;
+         N_B0 = N_B;
+         /* Reorganize the samples in time order instead of frequency order */
+         if (B0 > 1 && lowband)
+             celt_deinterleave_hadamard(s->scratch, lowband, N_B >> recombine,
+                                        B0 << recombine, longblocks);
+     }
+     /* If we need 1.5 more bit than we can produce, split the band in two. */
+     cache = celt_cache_bits +
+             celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band];
+     if (!dualstereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) {
+         N >>= 1;
+         Y = X + N;
+         split = 1;
+         duration -= 1;
+         if (blocks == 1)
+             fill = (fill & 1) | (fill << 1);
+         blocks = (blocks + 1) >> 1;
+     }
+     if (split) {
+         int qn;
+         int itheta = 0;
+         int mbits, sbits, delta;
+         int qalloc;
+         int pulse_cap;
+         int offset;
+         int orig_fill;
+         int tell;
+         /* Decide on the resolution to give to the split parameter theta */
+         pulse_cap = celt_log_freq_range[band] + duration * 8;
+         offset = (pulse_cap >> 1) - (dualstereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE :
+                                                           CELT_QTHETA_OFFSET);
+         qn = (dualstereo && band >= s->intensitystereo) ? 1 :
+              celt_compute_qn(N, b, offset, pulse_cap, dualstereo);
+         tell = opus_rc_tell_frac(rc);
+         if (qn != 1) {
+             /* Entropy coding of the angle. We use a uniform pdf for the
+             time split, a step for stereo, and a triangular one for the rest. */
+             if (dualstereo && N > 2)
+                 itheta = opus_rc_stepmodel(rc, qn/2);
+             else if (dualstereo || B0 > 1)
+                 itheta = opus_rc_unimodel(rc, qn+1);
+             else
+                 itheta = opus_rc_trimodel(rc, qn);
+             itheta = itheta * 16384 / qn;
+             /* NOTE: Renormalising X and Y *may* help fixed-point a bit at very high rate.
+             Let's do that at higher complexity */
+         } else if (dualstereo) {
+             inv = (b > 2 << 3 && s->remaining2 > 2 << 3) ? opus_rc_p2model(rc, 2) : 0;
+             itheta = 0;
+         }
+         qalloc = opus_rc_tell_frac(rc) - tell;
+         b -= qalloc;
+         orig_fill = fill;
+         if (itheta == 0) {
+             imid = 32767;
+             iside = 0;
+             fill &= (1 << blocks) - 1;
+             delta = -16384;
+         } else if (itheta == 16384) {
+             imid = 0;
+             iside = 32767;
+             fill &= ((1 << blocks) - 1) << blocks;
+             delta = 16384;
+         } else {
+             imid = celt_cos(itheta);
+             iside = celt_cos(16384-itheta);
+             /* This is the mid vs side allocation that minimizes squared error
+             in that band. */
+             delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid));
+         }
+         mid  = imid  / 32768.0f;
+         side = iside / 32768.0f;
+         /* This is a special case for N=2 that only works for stereo and takes
+         advantage of the fact that mid and side are orthogonal to encode
+         the side with just one bit. */
+         if (N == 2 && dualstereo) {
+             int c;
+             int sign = 0;
+             float tmp;
+             float *x2, *y2;
+             mbits = b;
+             /* Only need one bit for the side */
+             sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0;
+             mbits -= sbits;
+             c = (itheta > 8192);
+             s->remaining2 -= qalloc+sbits;
+             x2 = c ? Y : X;
+             y2 = c ? X : Y;
+             if (sbits)
+                 sign = opus_getrawbits(rc, 1);
+             sign = 1 - 2 * sign;
+             /* We use orig_fill here because we want to fold the side, but if
+             itheta==16384, we'll have cleared the low bits of fill. */
+             cm = celt_decode_band(s, rc, band, x2, NULL, N, mbits, blocks,
+                                   lowband, duration, lowband_out, level, gain,
+                                   lowband_scratch, orig_fill);
+             /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
+             and there's no need to worry about mixing with the other channel. */
+             y2[0] = -sign * x2[1];
+             y2[1] =  sign * x2[0];
+             X[0] *= mid;
+             X[1] *= mid;
+             Y[0] *= side;
+             Y[1] *= side;
+             tmp = X[0];
+             X[0] = tmp - Y[0];
+             Y[0] = tmp + Y[0];
+             tmp = X[1];
+             X[1] = tmp - Y[1];
+             Y[1] = tmp + Y[1];
+         } else {
+             /* "Normal" split code */
+             float *next_lowband2     = NULL;
+             float *next_lowband_out1 = NULL;
+             int next_level = 0;
+             int rebalance;
+             /* Give more bits to low-energy MDCTs than they would
+              * otherwise deserve */
+             if (B0 > 1 && !dualstereo && (itheta & 0x3fff)) {
+                 if (itheta > 8192)
+                     /* Rough approximation for pre-echo masking */
+                     delta -= delta >> (4 - duration);
+                 else
+                     /* Corresponds to a forward-masking slope of
+                      * 1.5 dB per 10 ms */
+                     delta = FFMIN(0, delta + (N << 3 >> (5 - duration)));
+             }
+             mbits = av_clip((b - delta) / 2, 0, b);
+             sbits = b - mbits;
+             s->remaining2 -= qalloc;
+             if (lowband && !dualstereo)
+                 next_lowband2 = lowband + N; /* >32-bit split case */
+             /* Only stereo needs to pass on lowband_out.
+              * Otherwise, it's handled at the end */
+             if (dualstereo)
+                 next_lowband_out1 = lowband_out;
+             else
+                 next_level = level + 1;
+             rebalance = s->remaining2;
+             if (mbits >= sbits) {
+                 /* In stereo mode, we do not apply a scaling to the mid
+                  * because we need the normalized mid for folding later */
+                 cm = celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks,
+                                       lowband, duration, next_lowband_out1,
+                                       next_level, dualstereo ? 1.0f : (gain * mid),
+                                       lowband_scratch, fill);
+                 rebalance = mbits - (rebalance - s->remaining2);
+                 if (rebalance > 3 << 3 && itheta != 0)
+                     sbits += rebalance - (3 << 3);
+                 /* For a stereo split, the high bits of fill are always zero,
+                  * so no folding will be done to the side. */
+                 cm |= celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks,
+                                        next_lowband2, duration, NULL,
+                                        next_level, gain * side, NULL,
+                                        fill >> blocks) << ((B0 >> 1) & (dualstereo - 1));
+             } else {
+                 /* For a stereo split, the high bits of fill are always zero,
+                  * so no folding will be done to the side. */
+                 cm = celt_decode_band(s, rc, band, Y, NULL, N, sbits, blocks,
+                                       next_lowband2, duration, NULL,
+                                       next_level, gain * side, NULL,
+                                       fill >> blocks) << ((B0 >> 1) & (dualstereo - 1));
+                 rebalance = sbits - (rebalance - s->remaining2);
+                 if (rebalance > 3 << 3 && itheta != 16384)
+                     mbits += rebalance - (3 << 3);
+                 /* In stereo mode, we do not apply a scaling to the mid because
+                  * we need the normalized mid for folding later */
+                 cm |= celt_decode_band(s, rc, band, X, NULL, N, mbits, blocks,
+                                        lowband, duration, next_lowband_out1,
+                                        next_level, dualstereo ? 1.0f : (gain * mid),
+                                        lowband_scratch, fill);
+             }
+         }
+     } else {
+         /* This is the basic no-split case */
+         unsigned int q         = celt_bits2pulses(cache, b);
+         unsigned int curr_bits = celt_pulses2bits(cache, q);
+         s->remaining2 -= curr_bits;
+         /* Ensures we can never bust the budget */
+         while (s->remaining2 < 0 && q > 0) {
+             s->remaining2 += curr_bits;
+             curr_bits      = celt_pulses2bits(cache, --q);
+             s->remaining2 -= curr_bits;
+         }
+         if (q != 0) {
+             /* Finally do the actual quantization */
+             cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
+                                   s->spread, blocks, gain);
+         } else {
+             /* If there's no pulse, fill the band anyway */
+             int j;
+             unsigned int cm_mask = (1 << blocks) - 1;
+             fill &= cm_mask;
+             if (!fill) {
+                 for (j = 0; j < N; j++)
+                     X[j] = 0.0f;
+             } else {
+                 if (lowband == NULL) {
+                     /* Noise */
+                     for (j = 0; j < N; j++)
+                         X[j] = (((int32_t)celt_rng(s)) >> 20);
+                     cm = cm_mask;
+                 } else {
+                     /* Folded spectrum */
+                     for (j = 0; j < N; j++) {
+                         /* About 48 dB below the "normal" folding level */
+                         X[j] = lowband[j] + (((celt_rng(s)) & 0x8000) ? 1.0f / 256 : -1.0f / 256);
+                     }
+                     cm = fill;
+                 }
+                 celt_renormalize_vector(X, N, gain);
+             }
+         }
+     }
+     /* This code is used by the decoder and by the resynthesis-enabled encoder */
+     if (dualstereo) {
+         int j;
+         if (N != 2)
+             celt_stereo_merge(X, Y, mid, N);
+         if (inv) {
+             for (j = 0; j < N; j++)
+                 Y[j] *= -1;
+         }
+     } else if (level == 0) {
+         int k;
+         /* Undo the sample reorganization going from time order to frequency order */
+         if (B0 > 1)
+             celt_interleave_hadamard(s->scratch, X, N_B>>recombine,
+                                      B0<<recombine, longblocks);
+         /* Undo time-freq changes that we did earlier */
+         N_B = N_B0;
+         blocks = B0;
+         for (k = 0; k < time_divide; k++) {
+             blocks >>= 1;
+             N_B <<= 1;
+             cm |= cm >> blocks;
+             celt_haar1(X, N_B, blocks);
+         }
+         for (k = 0; k < recombine; k++) {
+             cm = celt_bit_deinterleave[cm];
+             celt_haar1(X, N0>>k, 1<<k);
+         }
+         blocks <<= recombine;
+         /* Scale output for later folding */
+         if (lowband_out) {
+             int j;
+             float n = sqrtf(N0);
+             for (j = 0; j < N0; j++)
+                 lowband_out[j] = n * X[j];
+         }
+         cm &= (1 << blocks) - 1;
+     }
+     return cm;
+ }
+ static void celt_denormalize(CeltContext *s, CeltFrame *frame, float *data)
+ {
+     int i, j;
+     for (i = s->startband; i < s->endband; i++) {
+         float *dst = data + (celt_freq_bands[i] << s->duration);
+         float norm = pow(2, frame->energy[i] + celt_mean_energy[i]);
+         for (j = 0; j < celt_freq_range[i] << s->duration; j++)
+             dst[j] *= norm;
+     }
+ }
+ static void celt_postfilter_apply_transition(CeltFrame *frame, float *data)
+ {
+     const int T0 = frame->pf_period_old;
+     const int T1 = frame->pf_period;
+     float g00, g01, g02;
+     float g10, g11, g12;
+     float x0, x1, x2, x3, x4;
+     int i;
+     if (frame->pf_gains[0]     == 0.0 &&
+         frame->pf_gains_old[0] == 0.0)
+         return;
+     g00 = frame->pf_gains_old[0];
+     g01 = frame->pf_gains_old[1];
+     g02 = frame->pf_gains_old[2];
+     g10 = frame->pf_gains[0];
+     g11 = frame->pf_gains[1];
+     g12 = frame->pf_gains[2];
+     x1 = data[-T1 + 1];
+     x2 = data[-T1];
+     x3 = data[-T1 - 1];
+     x4 = data[-T1 - 2];
+     for (i = 0; i < CELT_OVERLAP; i++) {
+         float w = ff_celt_window2[i];
+         x0 = data[i - T1 + 2];
+         data[i] +=  (1.0 - w) * g00 * data[i - T0]                          +
+                     (1.0 - w) * g01 * (data[i - T0 - 1] + data[i - T0 + 1]) +
+                     (1.0 - w) * g02 * (data[i - T0 - 2] + data[i - T0 + 2]) +
+                     w         * g10 * x2                                    +
+                     w         * g11 * (x1 + x3)                             +
+                     w         * g12 * (x0 + x4);
+         x4 = x3;
+         x3 = x2;
+         x2 = x1;
+         x1 = x0;
+     }
+ }
+ static void celt_postfilter_apply(CeltFrame *frame,
+                                   float *data, int len)
+ {
+     const int T = frame->pf_period;
+     float g0, g1, g2;
+     float x0, x1, x2, x3, x4;
+     int i;
+     if (frame->pf_gains[0] == 0.0 || len <= 0)
+         return;
+     g0 = frame->pf_gains[0];
+     g1 = frame->pf_gains[1];
+     g2 = frame->pf_gains[2];
+     x4 = data[-T - 2];
+     x3 = data[-T - 1];
+     x2 = data[-T];
+     x1 = data[-T + 1];
+     for (i = 0; i < len; i++) {
+         x0 = data[i - T + 2];
+         data[i] += g0 * x2        +
+                    g1 * (x1 + x3) +
+                    g2 * (x0 + x4);
+         x4 = x3;
+         x3 = x2;
+         x2 = x1;
+         x1 = x0;
+     }
+ }
+ static void celt_postfilter(CeltContext *s, CeltFrame *frame)
+ {
+     int len = s->blocksize * s->blocks;
+     celt_postfilter_apply_transition(frame, frame->buf + 1024);
+     frame->pf_period_old = frame->pf_period;
+     memcpy(frame->pf_gains_old, frame->pf_gains, sizeof(frame->pf_gains));
+     frame->pf_period = frame->pf_period_new;
+     memcpy(frame->pf_gains, frame->pf_gains_new, sizeof(frame->pf_gains));
+     if (len > CELT_OVERLAP) {
+         celt_postfilter_apply_transition(frame, frame->buf + 1024 + CELT_OVERLAP);
+         celt_postfilter_apply(frame, frame->buf + 1024 + 2 * CELT_OVERLAP,
+                               len - 2 * CELT_OVERLAP);
+         frame->pf_period_old = frame->pf_period;
+         memcpy(frame->pf_gains_old, frame->pf_gains, sizeof(frame->pf_gains));
+     }
+     memmove(frame->buf, frame->buf + len, (1024 + CELT_OVERLAP / 2) * sizeof(float));
+ }
+ static int parse_postfilter(CeltContext *s, OpusRangeCoder *rc, int consumed)
+ {
+     static const float postfilter_taps[3][3] = {
+         { 0.3066406250f, 0.2170410156f, 0.1296386719f },
+         { 0.4638671875f, 0.2680664062f, 0.0           },
+         { 0.7998046875f, 0.1000976562f, 0.0           }
+     };
+     int i;
+     memset(s->frame[0].pf_gains_new, 0, sizeof(s->frame[0].pf_gains_new));
+     memset(s->frame[1].pf_gains_new, 0, sizeof(s->frame[1].pf_gains_new));
+     if (s->startband == 0 && consumed + 16 <= s->framebits) {
+         int has_postfilter = opus_rc_p2model(rc, 1);
+         if (has_postfilter) {
+             float gain;
+             int tapset, octave, period;
+             octave = opus_rc_unimodel(rc, 6);
+             period = (16 << octave) + opus_getrawbits(rc, 4 + octave) - 1;
+             gain   = 0.09375f * (opus_getrawbits(rc, 3) + 1);
+             tapset = (opus_rc_tell(rc) + 2 <= s->framebits) ?
+                      opus_rc_getsymbol(rc, celt_model_tapset) : 0;
+             for (i = 0; i < 2; i++) {
+                 CeltFrame *frame = &s->frame[i];
+                 frame->pf_period_new = FFMAX(period, CELT_POSTFILTER_MINPERIOD);
+                 frame->pf_gains_new[0] = gain * postfilter_taps[tapset][0];
+                 frame->pf_gains_new[1] = gain * postfilter_taps[tapset][1];
+                 frame->pf_gains_new[2] = gain * postfilter_taps[tapset][2];
+             }
+         }
+         consumed = opus_rc_tell(rc);
+     }
+     return consumed;
+ }
+ static void process_anticollapse(CeltContext *s, CeltFrame *frame, float *X)
+ {
+     int i, j, k;
+     for (i = s->startband; i < s->endband; i++) {
+         int renormalize = 0;
+         float *xptr;
+         float prev[2];
+         float Ediff, r;
+         float thresh, sqrt_1;
+         int depth;
+         /* depth in 1/8 bits */
+         depth = (1 + s->pulses[i]) / (celt_freq_range[i] << s->duration);
+         thresh = pow(2, -1.0 - 0.125f * depth);
+         sqrt_1 = 1.0f / sqrtf(celt_freq_range[i] << s->duration);
+         xptr = X + (celt_freq_bands[i] << s->duration);
+         prev[0] = frame->prev_energy[0][i];
+         prev[1] = frame->prev_energy[1][i];
+         if (s->coded_channels == 1) {
+             CeltFrame *frame1 = &s->frame[1];
+             prev[0] = FFMAX(prev[0], frame1->prev_energy[0][i]);
+             prev[1] = FFMAX(prev[1], frame1->prev_energy[1][i]);
+         }
+         Ediff = frame->energy[i] - FFMIN(prev[0], prev[1]);
+         Ediff = FFMAX(0, Ediff);
+         /* r needs to be multiplied by 2 or 2*sqrt(2) depending on LM because
+         short blocks don't have the same energy as long */
+         r = pow(2, 1 - Ediff);
+         if (s->duration == 3)
+             r *= M_SQRT2;
+         r = FFMIN(thresh, r) * sqrt_1;
+         for (k = 0; k < 1 << s->duration; k++) {
+             /* Detect collapse */
+             if (!(frame->collapse_masks[i] & 1 << k)) {
+                 /* Fill with noise */
+                 for (j = 0; j < celt_freq_range[i]; j++)
+                     xptr[(j << s->duration) + k] = (celt_rng(s) & 0x8000) ? r : -r;
+                 renormalize = 1;
+             }
+         }
+         /* We just added some energy, so we need to renormalize */
+         if (renormalize)
+             celt_renormalize_vector(xptr, celt_freq_range[i] << s->duration, 1.0f);
+     }
+ }
+ static void celt_decode_bands(CeltContext *s, OpusRangeCoder *rc)
+ {
+     float lowband_scratch[8 * 22];
+     float norm[2 * 8 * 100];
+     int totalbits = (s->framebits << 3) - s->anticollapse_bit;
+     int update_lowband = 1;
+     int lowband_offset = 0;
+     int i, j;
+     memset(s->coeffs, 0, sizeof(s->coeffs));
+     for (i = s->startband; i < s->endband; i++) {
+         int band_offset = celt_freq_bands[i] << s->duration;
+         int band_size   = celt_freq_range[i] << s->duration;
+         float *X = s->coeffs[0] + band_offset;
+         float *Y = (s->coded_channels == 2) ? s->coeffs[1] + band_offset : NULL;
+         int consumed = opus_rc_tell_frac(rc);
+         float *norm2 = norm + 8 * 100;
+         int effective_lowband = -1;
+         unsigned int cm[2];
+         int b;
+         /* Compute how many bits we want to allocate to this band */
+         if (i != s->startband)
+             s->remaining -= consumed;
+         s->remaining2 = totalbits - consumed - 1;
+         if (i <= s->codedbands - 1) {
+             int curr_balance = s->remaining / FFMIN(3, s->codedbands-i);
+             b = av_clip(FFMIN(s->remaining2 + 1, s->pulses[i] + curr_balance), 0, 16383);
+         } else
+             b = 0;
+         if (celt_freq_bands[i] - celt_freq_range[i] >= celt_freq_bands[s->startband] &&
+             (update_lowband || lowband_offset == 0))
+             lowband_offset = i;
+         /* Get a conservative estimate of the collapse_mask's for the bands we're
+         going to be folding from. */
+         if (lowband_offset != 0 && (s->spread != CELT_SPREAD_AGGRESSIVE ||
+                                     s->blocks > 1 || s->tf_change[i] < 0)) {
+             int foldstart, foldend;
+             /* This ensures we never repeat spectral content within one band */
+             effective_lowband = FFMAX(celt_freq_bands[s->startband],
+                                       celt_freq_bands[lowband_offset] - celt_freq_range[i]);
+             foldstart = lowband_offset;
+             while (celt_freq_bands[--foldstart] > effective_lowband);
+             foldend = lowband_offset - 1;
+             while (celt_freq_bands[++foldend] < effective_lowband + celt_freq_range[i]);
+             cm[0] = cm[1] = 0;
+             for (j = foldstart; j < foldend; j++) {
+                 cm[0] |= s->frame[0].collapse_masks[j];
+                 cm[1] |= s->frame[s->coded_channels - 1].collapse_masks[j];
+             }
+         } else
+             /* Otherwise, we'll be using the LCG to fold, so all blocks will (almost
+             always) be non-zero.*/
+             cm[0] = cm[1] = (1 << s->blocks) - 1;
+         if (s->dualstereo && i == s->intensitystereo) {
+             /* Switch off dual stereo to do intensity */
+             s->dualstereo = 0;
+             for (j = celt_freq_bands[s->startband] << s->duration; j < band_offset; j++)
+                 norm[j] = (norm[j] + norm2[j]) / 2;
+         }
+         if (s->dualstereo) {
+             cm[0] = celt_decode_band(s, rc, i, X, NULL, band_size, b / 2, s->blocks,
+                                      effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration,
+             norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]);
+             cm[1] = celt_decode_band(s, rc, i, Y, NULL, band_size, b/2, s->blocks,
+                                      effective_lowband != -1 ? norm2 + (effective_lowband << s->duration) : NULL, s->duration,
+             norm2 + band_offset, 0, 1.0f, lowband_scratch, cm[1]);
+         } else {
+             cm[0] = celt_decode_band(s, rc, i, X, Y, band_size, b, s->blocks,
+             effective_lowband != -1 ? norm + (effective_lowband << s->duration) : NULL, s->duration,
+             norm + band_offset, 0, 1.0f, lowband_scratch, cm[0]|cm[1]);
+             cm[1] = cm[0];
+         }
+         s->frame[0].collapse_masks[i]                     = (uint8_t)cm[0];
+         s->frame[s->coded_channels - 1].collapse_masks[i] = (uint8_t)cm[1];
+         s->remaining += s->pulses[i] + consumed;
+         /* Update the folding position only as long as we have 1 bit/sample depth */
+         update_lowband = (b > band_size << 3);
+     }
+ }
+ int ff_celt_decode_frame(CeltContext *s, OpusRangeCoder *rc,
+                          float **output, int coded_channels, int frame_size,
+                          int startband,  int endband)
+ {
+     int i, j;
+     int consumed;           // bits of entropy consumed thus far for this frame
+     int silence = 0;
+     int transient = 0;
+     int anticollapse = 0;
+     CeltIMDCTContext *imdct;
+     float imdct_scale = 1.0;
+     if (coded_channels != 1 && coded_channels != 2) {
+         av_log(s->avctx, AV_LOG_ERROR, "Invalid number of coded channels: %d\n",
+                coded_channels);
+         return AVERROR_INVALIDDATA;
+     }
+     if (startband < 0 || startband > endband || endband > CELT_MAX_BANDS) {
+         av_log(s->avctx, AV_LOG_ERROR, "Invalid start/end band: %d %d\n",
+                startband, endband);
+         return AVERROR_INVALIDDATA;
+     }
+     s->flushed        = 0;
+     s->coded_channels = coded_channels;
+     s->startband      = startband;
+     s->endband        = endband;
+     s->framebits      = rc->rb.bytes * 8;
+     s->duration = av_log2(frame_size / CELT_SHORT_BLOCKSIZE);
+     if (s->duration > CELT_MAX_LOG_BLOCKS ||
+         frame_size != CELT_SHORT_BLOCKSIZE * (1 << s->duration)) {
+         av_log(s->avctx, AV_LOG_ERROR, "Invalid CELT frame size: %d\n",
+                frame_size);
+         return AVERROR_INVALIDDATA;
+     }
+     if (!s->output_channels)
+         s->output_channels = coded_channels;
+     memset(s->frame[0].collapse_masks, 0, sizeof(s->frame[0].collapse_masks));
+     memset(s->frame[1].collapse_masks, 0, sizeof(s->frame[1].collapse_masks));
+     consumed = opus_rc_tell(rc);
+     /* obtain silence flag */
+     if (consumed >= s->framebits)
+         silence = 1;
+     else if (consumed == 1)
+         silence = opus_rc_p2model(rc, 15);
+     if (silence) {
+         consumed = s->framebits;
+         rc->total_read_bits += s->framebits - opus_rc_tell(rc);
+     }
+     /* obtain post-filter options */
+     consumed = parse_postfilter(s, rc, consumed);
+     /* obtain transient flag */
+     if (s->duration != 0 && consumed+3 <= s->framebits)
+         transient = opus_rc_p2model(rc, 3);
+     s->blocks    = transient ? 1 << s->duration : 1;
+     s->blocksize = frame_size / s->blocks;
+     imdct = s->imdct[transient ? 0 : s->duration];
+     if (coded_channels == 1) {
+         for (i = 0; i < CELT_MAX_BANDS; i++)
+             s->frame[0].energy[i] = FFMAX(s->frame[0].energy[i], s->frame[1].energy[i]);
+     }
+     celt_decode_coarse_energy(s, rc);
+     celt_decode_tf_changes   (s, rc, transient);
+     celt_decode_allocation   (s, rc);
+     celt_decode_fine_energy  (s, rc);
+     celt_decode_bands        (s, rc);
+     if (s->anticollapse_bit)
+         anticollapse = opus_getrawbits(rc, 1);
+     celt_decode_final_energy(s, rc, s->framebits - opus_rc_tell(rc));
+     /* apply anti-collapse processing and denormalization to
+      * each coded channel */
+     for (i = 0; i < s->coded_channels; i++) {
+         CeltFrame *frame = &s->frame[i];
+         if (anticollapse)
+             process_anticollapse(s, frame, s->coeffs[i]);
+         celt_denormalize(s, frame, s->coeffs[i]);
+     }
+     /* stereo -> mono downmix */
+     if (s->output_channels < s->coded_channels) {
+         s->dsp.vector_fmac_scalar(s->coeffs[0], s->coeffs[1], 1.0, FFALIGN(frame_size, 16));
+         imdct_scale = 0.5;
+     } else if (s->output_channels > s->coded_channels)
+         memcpy(s->coeffs[1], s->coeffs[0], frame_size * sizeof(float));
+     if (silence) {
+         for (i = 0; i < 2; i++) {
+             CeltFrame *frame = &s->frame[i];
+             for (j = 0; j < FF_ARRAY_ELEMS(frame->energy); j++)
+                 frame->energy[j] = CELT_ENERGY_SILENCE;
+         }
+         memset(s->coeffs, 0, sizeof(s->coeffs));
+     }
+     /* transform and output for each output channel */
+     for (i = 0; i < s->output_channels; i++) {
+         CeltFrame *frame = &s->frame[i];
+         float m = frame->deemph_coeff;
+         /* iMDCT and overlap-add */
+         for (j = 0; j < s->blocks; j++) {
+             float *dst  = frame->buf + 1024 + j * s->blocksize;
+             ff_celt_imdct_half(imdct, dst + CELT_OVERLAP / 2, s->coeffs[i] + j,
+                                s->blocks, imdct_scale);
+             s->dsp.vector_fmul_window(dst, dst, dst + CELT_OVERLAP / 2,
+                                       celt_window, CELT_OVERLAP / 2);
+         }
+         /* postfilter */
+         celt_postfilter(s, frame);
+         /* deemphasis and output scaling */
+         for (j = 0; j < frame_size; j++) {
+             float tmp = frame->buf[1024 - frame_size + j] + m;
+             m = tmp * CELT_DEEMPH_COEFF;
+             output[i][j] = tmp / 32768.;
+         }
+         frame->deemph_coeff = m;
+     }
+     if (coded_channels == 1)
+         memcpy(s->frame[1].energy, s->frame[0].energy, sizeof(s->frame[0].energy));
+     for (i = 0; i < 2; i++ ) {
+         CeltFrame *frame = &s->frame[i];
+         if (!transient) {
+             memcpy(frame->prev_energy[1], frame->prev_energy[0], sizeof(frame->prev_energy[0]));
+             memcpy(frame->prev_energy[0], frame->energy,         sizeof(frame->prev_energy[0]));
+         } else {
+             for (j = 0; j < CELT_MAX_BANDS; j++)
+                 frame->prev_energy[0][j] = FFMIN(frame->prev_energy[0][j], frame->energy[j]);
+         }
+         for (j = 0; j < s->startband; j++) {
+             frame->prev_energy[0][j] = CELT_ENERGY_SILENCE;
+             frame->energy[j]         = 0.0;
+         }
+         for (j = s->endband; j < CELT_MAX_BANDS; j++) {
+             frame->prev_energy[0][j] = CELT_ENERGY_SILENCE;
+             frame->energy[j]         = 0.0;
+         }
+     }
+     s->seed = rc->range;
+     return 0;
+ }
+ void ff_celt_flush(CeltContext *s)
+ {
+     int i, j;
+     if (s->flushed)
+         return;
+     for (i = 0; i < 2; i++) {
+         CeltFrame *frame = &s->frame[i];
+         for (j = 0; j < CELT_MAX_BANDS; j++)
+             frame->prev_energy[0][j] = frame->prev_energy[1][j] = CELT_ENERGY_SILENCE;
+         memset(frame->energy, 0, sizeof(frame->energy));
+         memset(frame->buf,    0, sizeof(frame->buf));
+         memset(frame->pf_gains,     0, sizeof(frame->pf_gains));
+         memset(frame->pf_gains_old, 0, sizeof(frame->pf_gains_old));
+         memset(frame->pf_gains_new, 0, sizeof(frame->pf_gains_new));
+         frame->deemph_coeff = 0.0;
+     }
+     s->seed = 0;
+     s->flushed = 1;
+ }
+ void ff_celt_free(CeltContext **ps)
+ {
+     CeltContext *s = *ps;
+     int i;
+     if (!s)
+         return;
+     for (i = 0; i < FF_ARRAY_ELEMS(s->imdct); i++)
+         ff_celt_imdct_uninit(&s->imdct[i]);
+     av_freep(ps);
+ }
+ int ff_celt_init(AVCodecContext *avctx, CeltContext **ps, int output_channels)
+ {
+     CeltContext *s;
+     int i, ret;
+     if (output_channels != 1 && output_channels != 2) {
+         av_log(avctx, AV_LOG_ERROR, "Invalid number of output channels: %d\n",
+                output_channels);
+         return AVERROR(EINVAL);
+     }
+     s = av_mallocz(sizeof(*s));
+     if (!s)
+         return AVERROR(ENOMEM);
+     s->avctx           = avctx;
+     s->output_channels = output_channels;
+     for (i = 0; i < FF_ARRAY_ELEMS(s->imdct); i++) {
+         ret = ff_celt_imdct_init(&s->imdct[i], i + 3);
+         if (ret < 0)
+             goto fail;
+     }
+     avpriv_float_dsp_init(&s->dsp, avctx->flags & CODEC_FLAG_BITEXACT);
+     ff_celt_flush(s);
+     *ps = s;
+     return 0;
+ fail:
+     ff_celt_free(&s);
+     return ret;
+ }
index 0000000,7bbaa35..d6f0fab
mode 000000,100644..100644
--- /dev/null
@@@ -1,0 -1,268 +1,268 @@@
 - * This file is part of Libav.
+ /*
+  * Copyright (c) 2013-2014 Mozilla Corporation
+  *
 - * Libav is free software; you can redistribute it and/or
++ * This file is part of FFmpeg.
+  *
 - * Libav is distributed in the hope that it will be useful,
++ * FFmpeg is free software; you can redistribute it and/or
+  * modify it under the terms of the GNU Lesser General Public
+  * License as published by the Free Software Foundation; either
+  * version 2.1 of the License, or (at your option) any later version.
+  *
 - * License along with Libav; if not, write to the Free Software
++ * FFmpeg is distributed in the hope that it will be useful,
+  * but WITHOUT ANY WARRANTY; without even the implied warranty of
+  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+  * Lesser General Public License for more details.
+  *
+  * You should have received a copy of the GNU Lesser General Public
++ * License along with FFmpeg; if not, write to the Free Software
+  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+  */
+ /**
+  * @file
+  * Celt non-power of 2 iMDCT
+  */
+ #include <float.h>
+ #include <math.h>
+ #include "libavutil/attributes.h"
+ #include "libavutil/common.h"
+ #include "fft.h"
+ #include "opus.h"
+ // complex c = a * b
+ #define CMUL3(cre, cim, are, aim, bre, bim)          \
+ do {                                                 \
+     cre = are * bre - aim * bim;                     \
+     cim = are * bim + aim * bre;                     \
+ } while (0)
+ #define CMUL(c, a, b) CMUL3((c).re, (c).im, (a).re, (a).im, (b).re, (b).im)
+ // complex c = a * b
+ //         d = a * conjugate(b)
+ #define CMUL2(c, d, a, b)                            \
+ do {                                                 \
+     float are = (a).re;                              \
+     float aim = (a).im;                              \
+     float bre = (b).re;                              \
+     float bim = (b).im;                              \
+     float rr  = are * bre;                           \
+     float ri  = are * bim;                           \
+     float ir  = aim * bre;                           \
+     float ii  = aim * bim;                           \
+     (c).re =  rr - ii;                               \
+     (c).im =  ri + ir;                               \
+     (d).re =  rr + ii;                               \
+     (d).im = -ri + ir;                               \
+ } while (0)
+ struct CeltIMDCTContext {
+     int fft_n;
+     int len2;
+     int len4;
+     FFTComplex *tmp;
+     FFTComplex *twiddle_exptab;
+     FFTComplex *exptab[6];
+ };
+ av_cold void ff_celt_imdct_uninit(CeltIMDCTContext **ps)
+ {
+     CeltIMDCTContext *s = *ps;
+     int i;
+     if (!s)
+         return;
+     for (i = 0; i < FF_ARRAY_ELEMS(s->exptab); i++)
+         av_freep(&s->exptab[i]);
+     av_freep(&s->twiddle_exptab);
+     av_freep(&s->tmp);
+     av_freep(ps);
+ }
+ av_cold int ff_celt_imdct_init(CeltIMDCTContext **ps, int N)
+ {
+     CeltIMDCTContext *s;
+     int len2 = 15 * (1 << N);
+     int len  = 2 * len2;
+     int i, j;
+     if (len2 > CELT_MAX_FRAME_SIZE)
+         return AVERROR(EINVAL);
+     s = av_mallocz(sizeof(*s));
+     if (!s)
+         return AVERROR(ENOMEM);
+     s->fft_n = N - 1;
+     s->len4 = len2 / 2;
+     s->len2 = len2;
+     s->tmp  = av_malloc(len * 2 * sizeof(*s->tmp));
+     if (!s->tmp)
+         goto fail;
+     s->twiddle_exptab  = av_malloc(s->len4 * sizeof(*s->twiddle_exptab));
+     if (!s->twiddle_exptab)
+         goto fail;
+     for (i = 0; i < s->len4; i++) {
+         s->twiddle_exptab[i].re = cos(2 * M_PI * (i + 0.125 + s->len4) / len);
+         s->twiddle_exptab[i].im = sin(2 * M_PI * (i + 0.125 + s->len4) / len);
+     }
+     for (i = 0; i < FF_ARRAY_ELEMS(s->exptab); i++) {
+         int N = 15 * (1 << i);
+         s->exptab[i] = av_malloc(sizeof(*s->exptab[i]) * FFMAX(N, 19));
+         if (!s->exptab[i])
+             goto fail;
+         for (j = 0; j < N; j++) {
+             s->exptab[i][j].re = cos(2 * M_PI * j / N);
+             s->exptab[i][j].im = sin(2 * M_PI * j / N);
+         }
+     }
+     // wrap around to simplify fft15
+     for (j = 15; j < 19; j++)
+         s->exptab[0][j] = s->exptab[0][j - 15];
+     *ps = s;
+     return 0;
+ fail:
+     ff_celt_imdct_uninit(&s);
+     return AVERROR(ENOMEM);
+ }
+ static void fft5(FFTComplex *out, const FFTComplex *in, int stride)
+ {
+     // [0] = exp(2 * i * pi / 5), [1] = exp(2 * i * pi * 2 / 5)
+     static const FFTComplex fact[] = { { 0.30901699437494745,  0.95105651629515353 },
+                                        { -0.80901699437494734, 0.58778525229247325 } };
+     FFTComplex z[4][4];
+     CMUL2(z[0][0], z[0][3], in[1 * stride], fact[0]);
+     CMUL2(z[0][1], z[0][2], in[1 * stride], fact[1]);
+     CMUL2(z[1][0], z[1][3], in[2 * stride], fact[0]);
+     CMUL2(z[1][1], z[1][2], in[2 * stride], fact[1]);
+     CMUL2(z[2][0], z[2][3], in[3 * stride], fact[0]);
+     CMUL2(z[2][1], z[2][2], in[3 * stride], fact[1]);
+     CMUL2(z[3][0], z[3][3], in[4 * stride], fact[0]);
+     CMUL2(z[3][1], z[3][2], in[4 * stride], fact[1]);
+     out[0].re = in[0].re + in[stride].re + in[2 * stride].re + in[3 * stride].re + in[4 * stride].re;
+     out[0].im = in[0].im + in[stride].im + in[2 * stride].im + in[3 * stride].im + in[4 * stride].im;
+     out[1].re = in[0].re + z[0][0].re + z[1][1].re + z[2][2].re + z[3][3].re;
+     out[1].im = in[0].im + z[0][0].im + z[1][1].im + z[2][2].im + z[3][3].im;
+     out[2].re = in[0].re + z[0][1].re + z[1][3].re + z[2][0].re + z[3][2].re;
+     out[2].im = in[0].im + z[0][1].im + z[1][3].im + z[2][0].im + z[3][2].im;
+     out[3].re = in[0].re + z[0][2].re + z[1][0].re + z[2][3].re + z[3][1].re;
+     out[3].im = in[0].im + z[0][2].im + z[1][0].im + z[2][3].im + z[3][1].im;
+     out[4].re = in[0].re + z[0][3].re + z[1][2].re + z[2][1].re + z[3][0].re;
+     out[4].im = in[0].im + z[0][3].im + z[1][2].im + z[2][1].im + z[3][0].im;
+ }
+ static void fft15(CeltIMDCTContext *s, FFTComplex *out, const FFTComplex *in, int stride)
+ {
+     const FFTComplex *exptab = s->exptab[0];
+     FFTComplex tmp[5];
+     FFTComplex tmp1[5];
+     FFTComplex tmp2[5];
+     int k;
+     fft5(tmp,  in,              stride * 3);
+     fft5(tmp1, in +     stride, stride * 3);
+     fft5(tmp2, in + 2 * stride, stride * 3);
+     for (k = 0; k < 5; k++) {
+         FFTComplex t1, t2;
+         CMUL(t1, tmp1[k], exptab[k]);
+         CMUL(t2, tmp2[k], exptab[2 * k]);
+         out[k].re = tmp[k].re + t1.re + t2.re;
+         out[k].im = tmp[k].im + t1.im + t2.im;
+         CMUL(t1, tmp1[k], exptab[k + 5]);
+         CMUL(t2, tmp2[k], exptab[2 * (k + 5)]);
+         out[k + 5].re = tmp[k].re + t1.re + t2.re;
+         out[k + 5].im = tmp[k].im + t1.im + t2.im;
+         CMUL(t1, tmp1[k], exptab[k + 10]);
+         CMUL(t2, tmp2[k], exptab[2 * k + 5]);
+         out[k + 10].re = tmp[k].re + t1.re + t2.re;
+         out[k + 10].im = tmp[k].im + t1.im + t2.im;
+     }
+ }
+ /*
+  * FFT of the length 15 * (2^N)
+  */
+ static void fft_calc(CeltIMDCTContext *s, FFTComplex *out, const FFTComplex *in, int N, int stride)
+ {
+     if (N) {
+         const FFTComplex *exptab = s->exptab[N];
+         const int len2 = 15 * (1 << (N - 1));
+         int k;
+         fft_calc(s, out,        in,          N - 1, stride * 2);
+         fft_calc(s, out + len2, in + stride, N - 1, stride * 2);
+         for (k = 0; k < len2; k++) {
+             FFTComplex t;
+             CMUL(t, out[len2 + k], exptab[k]);
+             out[len2 + k].re = out[k].re - t.re;
+             out[len2 + k].im = out[k].im - t.im;
+             out[k].re += t.re;
+             out[k].im += t.im;
+         }
+     } else
+         fft15(s, out, in, stride);
+ }
+ void ff_celt_imdct_half(CeltIMDCTContext *s, float *dst, const float *src,
+                         int stride, float scale)
+ {
+     FFTComplex *z = (FFTComplex *)dst;
+     const int len8 = s->len4 / 2;
+     const float *in1 = src;
+     const float *in2 = src + (s->len2 - 1) * stride;
+     int i;
+     for (i = 0; i < s->len4; i++) {
+         FFTComplex tmp = { *in2, *in1 };
+         CMUL(s->tmp[i], tmp, s->twiddle_exptab[i]);
+         in1 += 2 * stride;
+         in2 -= 2 * stride;
+     }
+     fft_calc(s, z, s->tmp, s->fft_n, 1);
+     for (i = 0; i < len8; i++) {
+         float r0, i0, r1, i1;
+         CMUL3(r0, i1, z[len8 - i - 1].im, z[len8 - i - 1].re,  s->twiddle_exptab[len8 - i - 1].im, s->twiddle_exptab[len8 - i - 1].re);
+         CMUL3(r1, i0, z[len8 + i].im,     z[len8 + i].re,      s->twiddle_exptab[len8 + i].im,     s->twiddle_exptab[len8 + i].re);
+         z[len8 - i - 1].re = scale * r0;
+         z[len8 - i - 1].im = scale * i0;
+         z[len8 + i].re     = scale * r1;
+         z[len8 + i].im     = scale * i1;
+     }
+ }
index 0000000,8a2bc22..7eb72f9
mode 000000,100644..100644
--- /dev/null
@@@ -1,0 -1,75 +1,75 @@@
 - * This file is part of Libav.
+ /*
+  * Copyright (c) 2013-2014 Mozilla Corporation
+  *
 - * Libav is free software; you can redistribute it and/or
++ * This file is part of FFmpeg.
+  *
 - * Libav is distributed in the hope that it will be useful,
++ * FFmpeg is free software; you can redistribute it and/or
+  * modify it under the terms of the GNU Lesser General Public
+  * License as published by the Free Software Foundation; either
+  * version 2.1 of the License, or (at your option) any later version.
+  *
 - * License along with Libav; if not, write to the Free Software
++ * FFmpeg is distributed in the hope that it will be useful,
+  * but WITHOUT ANY WARRANTY; without even the implied warranty of
+  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+  * Lesser General Public License for more details.
+  *
+  * You should have received a copy of the GNU Lesser General Public
++ * License along with FFmpeg; if not, write to the Free Software
+  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+  */
+ /**
+  * @file
+  * Opus parser
+  *
+  * Determines the duration for each packet.
+  */
+ #include "avcodec.h"
+ #include "opus.h"
+ typedef struct OpusParseContext {
+     OpusContext ctx;
+     OpusPacket pkt;
+     int extradata_parsed;
+ } OpusParseContext;
+ static int opus_parse(AVCodecParserContext *ctx, AVCodecContext *avctx,
+                       const uint8_t **poutbuf, int *poutbuf_size,
+                       const uint8_t *buf, int buf_size)
+ {
+     OpusParseContext *s = ctx->priv_data;
+     int ret;
+     if (!buf_size)
+         return 0;
+     if (avctx->extradata && !s->extradata_parsed) {
+         ret = ff_opus_parse_extradata(avctx, &s->ctx);
+         if (ret < 0) {
+             av_log(avctx, AV_LOG_ERROR, "Error parsing Ogg extradata.\n");
+             goto fail;
+         }
+         av_freep(&s->ctx.channel_maps);
+         s->extradata_parsed = 1;
+     }
+     ret = ff_opus_parse_packet(&s->pkt, buf, buf_size, s->ctx.nb_streams > 1);
+     if (ret < 0) {
+         av_log(avctx, AV_LOG_ERROR, "Error parsing Opus packet header.\n");
+         goto fail;
+     }
+     ctx->duration = s->pkt.frame_count * s->pkt.frame_duration;
+ fail:
+     *poutbuf = buf;
+     *poutbuf_size = buf_size;
+     return buf_size;
+ }
+ AVCodecParser ff_opus_parser = {
+     .codec_ids      = { AV_CODEC_ID_OPUS },
+     .priv_data_size = sizeof(OpusParseContext),
+     .parser_parse   = opus_parse,
+ };
index 0000000,3552484..7a89479
mode 000000,100644..100644
--- /dev/null
@@@ -1,0 -1,1597 +1,1597 @@@
 - * This file is part of Libav.
+ /*
+  * Copyright (c) 2012 Andrew D'Addesio
+  * Copyright (c) 2013-2014 Mozilla Corporation
+  *
 - * Libav is free software; you can redistribute it and/or
++ * This file is part of FFmpeg.
+  *
 - * Libav is distributed in the hope that it will be useful,
++ * FFmpeg is free software; you can redistribute it and/or
+  * modify it under the terms of the GNU Lesser General Public
+  * License as published by the Free Software Foundation; either
+  * version 2.1 of the License, or (at your option) any later version.
+  *
 - * License along with Libav; if not, write to the Free Software
++ * FFmpeg is distributed in the hope that it will be useful,
+  * but WITHOUT ANY WARRANTY; without even the implied warranty of
+  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+  * Lesser General Public License for more details.
+  *
+  * You should have received a copy of the GNU Lesser General Public
++ * License along with FFmpeg; if not, write to the Free Software
+  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+  */
+ /**
+  * @file
+  * Opus SILK decoder
+  */
+ #include <stdint.h>
+ #include "opus.h"
+ typedef struct SilkFrame {
+     int coded;
+     int log_gain;
+     int16_t nlsf[16];
+     float    lpc[16];
+     float output     [2 * SILK_HISTORY];
+     float lpc_history[2 * SILK_HISTORY];
+     int primarylag;
+     int prev_voiced;
+ } SilkFrame;
+ struct SilkContext {
+     AVCodecContext *avctx;
+     int output_channels;
+     int midonly;
+     int subframes;
+     int sflength;
+     int flength;
+     int nlsf_interp_factor;
+     enum OpusBandwidth bandwidth;
+     int wb;
+     SilkFrame frame[2];
+     float prev_stereo_weights[2];
+     float stereo_weights[2];
+     int prev_coded_channels;
+ };
+ static const uint16_t silk_model_stereo_s1[] = {
+     256,   7,   9,  10,  11,  12,  22,  46,  54,  55,  56,  59,  82, 174, 197, 200,
+     201, 202, 210, 234, 244, 245, 246, 247, 249, 256
+ };
+ static const uint16_t silk_model_stereo_s2[] = {256, 85, 171, 256};
+ static const uint16_t silk_model_stereo_s3[] = {256, 51, 102, 154, 205, 256};
+ static const uint16_t silk_model_mid_only[] = {256, 192, 256};
+ static const uint16_t silk_model_frame_type_inactive[] = {256, 26, 256};
+ static const uint16_t silk_model_frame_type_active[] = {256, 24, 98, 246, 256};
+ static const uint16_t silk_model_gain_highbits[3][9] = {
+     {256,  32, 144, 212, 241, 253, 254, 255, 256},
+     {256,   2,  19,  64, 124, 186, 233, 252, 256},
+     {256,   1,   4,  30, 101, 195, 245, 254, 256}
+ };
+ static const uint16_t silk_model_gain_lowbits[] = {256, 32, 64, 96, 128, 160, 192, 224, 256};
+ static const uint16_t silk_model_gain_delta[] = {
+     256,   6,  11,  22,  53, 185, 206, 214, 218, 221, 223, 225, 227, 228, 229, 230,
+     231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246,
+     247, 248, 249, 250, 251, 252, 253, 254, 255, 256
+ };
+ static const uint16_t silk_model_lsf_s1[2][2][33] = {
+     {
+         {    // NB or MB, unvoiced
+             256,  44,  78, 108, 127, 148, 160, 171, 174, 177, 179, 195, 197, 199, 200, 205,
+             207, 208, 211, 214, 215, 216, 218, 220, 222, 225, 226, 235, 244, 246, 253, 255, 256
+         }, { // NB or MB, voiced
+             256,   1,  11,  12,  20,  23,  31,  39,  53,  66,  80,  81,  95, 107, 120, 131,
+             142, 154, 165, 175, 185, 196, 204, 213, 221, 228, 236, 237, 238, 244, 245, 251, 256
+         }
+     }, {
+         {    // WB, unvoiced
+             256,  31,  52,  55,  72,  73,  81,  98, 102, 103, 121, 137, 141, 143, 146, 147,
+             157, 158, 161, 177, 188, 204, 206, 208, 211, 213, 224, 225, 229, 238, 246, 253, 256
+         }, { // WB, voiced
+             256,   1,   5,  21,  26,  44,  55,  60,  74,  89,  90,  93, 105, 118, 132, 146,
+             152, 166, 178, 180, 186, 187, 199, 211, 222, 232, 235, 245, 250, 251, 252, 253, 256
+         }
+     }
+ };
+ static const uint16_t silk_model_lsf_s2[32][10] = {
+     // NB, MB
+     { 256,   1,   2,   3,  18, 242, 253, 254, 255, 256 },
+     { 256,   1,   2,   4,  38, 221, 253, 254, 255, 256 },
+     { 256,   1,   2,   6,  48, 197, 252, 254, 255, 256 },
+     { 256,   1,   2,  10,  62, 185, 246, 254, 255, 256 },
+     { 256,   1,   4,  20,  73, 174, 248, 254, 255, 256 },
+     { 256,   1,   4,  21,  76, 166, 239, 254, 255, 256 },
+     { 256,   1,   8,  32,  85, 159, 226, 252, 255, 256 },
+     { 256,   1,   2,  20,  83, 161, 219, 249, 255, 256 },
+     // WB
+     { 256,   1,   2,   3,  12, 244, 253, 254, 255, 256 },
+     { 256,   1,   2,   4,  32, 218, 253, 254, 255, 256 },
+     { 256,   1,   2,   5,  47, 199, 252, 254, 255, 256 },
+     { 256,   1,   2,  12,  61, 187, 252, 254, 255, 256 },
+     { 256,   1,   5,  24,  72, 172, 249, 254, 255, 256 },
+     { 256,   1,   2,  16,  70, 170, 242, 254, 255, 256 },
+     { 256,   1,   2,  17,  78, 165, 226, 251, 255, 256 },
+     { 256,   1,   8,  29,  79, 156, 237, 254, 255, 256 }
+ };
+ static const uint16_t silk_model_lsf_s2_ext[] = { 256, 156, 216, 240, 249, 253, 255, 256 };
+ static const uint16_t silk_model_lsf_interpolation_offset[] = { 256, 13, 35, 64, 75, 256 };
+ static const uint16_t silk_model_pitch_highbits[] = {
+     256,   3,   6,  12,  23,  44,  74, 106, 125, 136, 146, 158, 171, 184, 196, 207,
+     216, 224, 231, 237, 241, 243, 245, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256
+ };
+ static const uint16_t silk_model_pitch_lowbits_nb[]= { 256, 64, 128, 192, 256 };
+ static const uint16_t silk_model_pitch_lowbits_mb[]= { 256, 43, 85, 128, 171, 213, 256 };
+ static const uint16_t silk_model_pitch_lowbits_wb[]= { 256, 32, 64, 96, 128, 160, 192, 224, 256 };
+ static const uint16_t silk_model_pitch_delta[] = {
+     256,  46,  48,  50,  53,  57,  63,  73,  88, 114, 152, 182, 204, 219, 229, 236,
+     242, 246, 250, 252, 254, 256
+ };
+ static const uint16_t silk_model_pitch_contour_nb10ms[] = { 256, 143, 193, 256 };
+ static const uint16_t silk_model_pitch_contour_nb20ms[] = {
+     256,  68,  80, 101, 118, 137, 159, 189, 213, 230, 246, 256
+ };
+ static const uint16_t silk_model_pitch_contour_mbwb10ms[] = {
+     256,  91, 137, 176, 195, 209, 221, 229, 236, 242, 247, 252, 256
+ };
+ static const uint16_t silk_model_pitch_contour_mbwb20ms[] = {
+     256,  33,  55,  73,  89, 104, 118, 132, 145, 158, 168, 177, 186, 194, 200, 206,
+     212, 217, 221, 225, 229, 232, 235, 238, 240, 242, 244, 246, 248, 250, 252, 253,
+     254, 255, 256
+ };
+ static const uint16_t silk_model_ltp_filter[] = { 256, 77, 157, 256 };
+ static const uint16_t silk_model_ltp_filter0_sel[] = {
+     256, 185, 200, 213, 226, 235, 244, 250, 256
+ };
+ static const uint16_t silk_model_ltp_filter1_sel[] = {
+     256,  57,  91, 112, 132, 147, 160, 172, 185, 195, 205, 214, 224, 233, 241, 248, 256
+ };
+ static const uint16_t silk_model_ltp_filter2_sel[] = {
+     256,  15,  31,  45,  57,  69,  81,  92, 103, 114, 124, 133, 142, 151, 160, 168,
+     176, 184, 192, 199, 206, 212, 218, 223, 227, 232, 236, 240, 244, 247, 251, 254, 256
+ };
+ static const uint16_t silk_model_ltp_scale_index[] = { 256, 128, 192, 256 };
+ static const uint16_t silk_model_lcg_seed[] = { 256, 64, 128, 192, 256 };
+ static const uint16_t silk_model_exc_rate[2][10] = {
+     { 256,  15,  66,  78, 124, 169, 182, 215, 242, 256 }, // unvoiced
+     { 256,  33,  63,  99, 116, 150, 199, 217, 238, 256 }  // voiced
+ };
+ static const uint16_t silk_model_pulse_count[11][19] = {
+     { 256, 131, 205, 230, 238, 241, 244, 245, 246,
+       247, 248, 249, 250, 251, 252, 253, 254, 255, 256 },
+     { 256,  58, 151, 211, 234, 241, 244, 245, 246,
+       247, 248, 249, 250, 251, 252, 253, 254, 255, 256 },
+     { 256,  43,  94, 140, 173, 197, 213, 224, 232,
+       238, 241, 244, 247, 249, 250, 251, 253, 254, 256 },
+     { 256,  17,  69, 140, 197, 228, 240, 245, 246,
+       247, 248, 249, 250, 251, 252, 253, 254, 255, 256 },
+     { 256,   6,  27,  68, 121, 170, 205, 226, 237,
+       243, 246, 248, 250, 251, 252, 253, 254, 255, 256 },
+     { 256,   7,  21,  43,  71, 100, 128, 153, 173,
+       190, 203, 214, 223, 230, 235, 239, 243, 246, 256 },
+     { 256,   2,   7,  21,  50,  92, 138, 179, 210,
+       229, 240, 246, 249, 251, 252, 253, 254, 255, 256 },
+     { 256,   1,   3,   7,  17,  36,  65, 100, 137,
+       171, 199, 219, 233, 241, 246, 250, 252, 254, 256 },
+     { 256,   1,   3,   5,  10,  19,  33,  53,  77,
+       104, 132, 158, 181, 201, 216, 227, 235, 241, 256 },
+     { 256,   1,   2,   3,   9,  36,  94, 150, 189,
+       214, 228, 238, 244, 247, 250, 252, 253, 254, 256 },
+     { 256,   2,   3,   9,  36,  94, 150, 189, 214,
+       228, 238, 244, 247, 250, 252, 253, 254, 256, 256 }
+ };
+ static const uint16_t silk_model_pulse_location[4][168] = {
+     {
+         256, 126, 256,
+         256, 56, 198, 256,
+         256, 25, 126, 230, 256,
+         256, 12, 72, 180, 244, 256,
+         256, 7, 42, 126, 213, 250, 256,
+         256, 4, 24, 83, 169, 232, 253, 256,
+         256, 3, 15, 53, 125, 200, 242, 254, 256,
+         256, 2, 10, 35, 89, 162, 221, 248, 255, 256,
+         256, 2, 7, 24, 63, 126, 191, 233, 251, 255, 256,
+         256, 1, 5, 17, 45, 94, 157, 211, 241, 252, 255, 256,
+         256, 1, 5, 13, 33, 70, 125, 182, 223, 245, 253, 255, 256,
+         256, 1, 4, 11, 26, 54, 98, 151, 199, 232, 248, 254, 255, 256,
+         256, 1, 3, 9, 21, 42, 77, 124, 172, 212, 237, 249, 254, 255, 256,
+         256, 1, 2, 6, 16, 33, 60, 97, 144, 187, 220, 241, 250, 254, 255, 256,
+         256, 1, 2, 3, 11, 25, 47, 80, 120, 163, 201, 229, 245, 253, 254, 255, 256,
+         256, 1, 2, 3, 4, 17, 35, 62, 98, 139, 180, 214, 238, 252, 253, 254, 255, 256
+     },{
+         256, 127, 256,
+         256, 53, 202, 256,
+         256, 22, 127, 233, 256,
+         256, 11, 72, 183, 246, 256,
+         256, 6, 41, 127, 215, 251, 256,
+         256, 4, 24, 83, 170, 232, 253, 256,
+         256, 3, 16, 56, 127, 200, 241, 254, 256,
+         256, 3, 12, 39, 92, 162, 218, 246, 255, 256,
+         256, 3, 11, 30, 67, 124, 185, 229, 249, 255, 256,
+         256, 3, 10, 25, 53, 97, 151, 200, 233, 250, 255, 256,
+         256, 1, 8, 21, 43, 77, 123, 171, 209, 237, 251, 255, 256,
+         256, 1, 2, 13, 35, 62, 97, 139, 186, 219, 244, 254, 255, 256,
+         256, 1, 2, 8, 22, 48, 85, 128, 171, 208, 234, 248, 254, 255, 256,
+         256, 1, 2, 6, 16, 36, 67, 107, 149, 189, 220, 240, 250, 254, 255, 256,
+         256, 1, 2, 5, 13, 29, 55, 90, 128, 166, 201, 227, 243, 251, 254, 255, 256,
+         256, 1, 2, 4, 10, 22, 43, 73, 109, 147, 183, 213, 234, 246, 252, 254, 255, 256
+     },{
+         256, 127, 256,
+         256, 49, 206, 256,
+         256, 20, 127, 236, 256,
+         256, 11, 71, 184, 246, 256,
+         256, 7, 43, 127, 214, 250, 256,
+         256, 6, 30, 87, 169, 229, 252, 256,
+         256, 5, 23, 62, 126, 194, 236, 252, 256,
+         256, 6, 20, 49, 96, 157, 209, 239, 253, 256,
+         256, 1, 16, 39, 74, 125, 175, 215, 245, 255, 256,
+         256, 1, 2, 23, 55, 97, 149, 195, 236, 254, 255, 256,
+         256, 1, 7, 23, 50, 86, 128, 170, 206, 233, 249, 255, 256,
+         256, 1, 6, 18, 39, 70, 108, 148, 186, 217, 238, 250, 255, 256,
+         256, 1, 4, 13, 30, 56, 90, 128, 166, 200, 226, 243, 252, 255, 256,
+         256, 1, 4, 11, 25, 47, 76, 110, 146, 180, 209, 231, 245, 252, 255, 256,
+         256, 1, 3, 8, 19, 37, 62, 93, 128, 163, 194, 219, 237, 248, 253, 255, 256,
+         256, 1, 2, 6, 15, 30, 51, 79, 111, 145, 177, 205, 226, 241, 250, 254, 255, 256
+     },{
+         256, 128, 256,
+         256, 42, 214, 256,
+         256, 21, 128, 235, 256,
+         256, 12, 72, 184, 245, 256,
+         256, 8, 42, 128, 214, 249, 256,
+         256, 8, 31, 86, 176, 231, 251, 256,
+         256, 5, 20, 58, 130, 202, 238, 253, 256,
+         256, 6, 18, 45, 97, 174, 221, 241, 251, 256,
+         256, 6, 25, 53, 88, 128, 168, 203, 231, 250, 256,
+         256, 4, 18, 40, 71, 108, 148, 185, 216, 238, 252, 256,
+         256, 3, 13, 31, 57, 90, 128, 166, 199, 225, 243, 253, 256,
+         256, 2, 10, 23, 44, 73, 109, 147, 183, 212, 233, 246, 254, 256,
+         256, 1, 6, 16, 33, 58, 90, 128, 166, 198, 223, 240, 250, 255, 256,
+         256, 1, 5, 12, 25, 46, 75, 110, 146, 181, 210, 231, 244, 251, 255, 256,
+         256, 1, 3, 8, 18, 35, 60, 92, 128, 164, 196, 221, 238, 248, 253, 255, 256,
+         256, 1, 3, 7, 14, 27, 48, 76, 110, 146, 180, 208, 229, 242, 249, 253, 255, 256
+     }
+ };
+ static const uint16_t silk_model_excitation_lsb[] = {256, 136, 256};
+ static const uint16_t silk_model_excitation_sign[3][2][7][3] = {
+     {    // Inactive
+         {    // Low offset
+             {256,   2, 256},
+             {256, 207, 256},
+             {256, 189, 256},
+             {256, 179, 256},
+             {256, 174, 256},
+             {256, 163, 256},
+             {256, 157, 256}
+         }, { // High offset
+             {256,  58, 256},
+             {256, 245, 256},
+             {256, 238, 256},
+             {256, 232, 256},
+             {256, 225, 256},
+             {256, 220, 256},
+             {256, 211, 256}
+         }
+     }, { // Unvoiced
+         {    // Low offset
+             {256,   1, 256},
+             {256, 210, 256},
+             {256, 190, 256},
+             {256, 178, 256},
+             {256, 169, 256},
+             {256, 162, 256},
+             {256, 152, 256}
+         }, { // High offset
+             {256,  48, 256},
+             {256, 242, 256},
+             {256, 235, 256},
+             {256, 224, 256},
+             {256, 214, 256},
+             {256, 205, 256},
+             {256, 190, 256}
+         }
+     }, { // Voiced
+         {    // Low offset
+             {256,   1, 256},
+             {256, 162, 256},
+             {256, 152, 256},
+             {256, 147, 256},
+             {256, 144, 256},
+             {256, 141, 256},
+             {256, 138, 256}
+         }, { // High offset
+             {256,   8, 256},
+             {256, 203, 256},
+             {256, 187, 256},
+             {256, 176, 256},
+             {256, 168, 256},
+             {256, 161, 256},
+             {256, 154, 256}
+         }
+     }
+ };
+ static const int16_t silk_stereo_weights[] = {
+     -13732, -10050,  -8266,  -7526,  -6500,  -5000,  -2950,   -820,
+        820,   2950,   5000,   6500,   7526,   8266,  10050,  13732
+ };
+ static const uint8_t silk_lsf_s2_model_sel_nbmb[32][10] = {
+     { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
+     { 1, 3, 1, 2, 2, 1, 2, 1, 1, 1 },
+     { 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
+     { 1, 2, 2, 2, 2, 1, 2, 1, 1, 1 },
+     { 2, 3, 3, 3, 3, 2, 2, 2, 2, 2 },
+     { 0, 5, 3, 3, 2, 2, 2, 2, 1, 1 },
+     { 0, 2, 2, 2, 2, 2, 2, 2, 2, 1 },
+     { 2, 3, 6, 4, 4, 4, 5, 4, 5, 5 },
+     { 2, 4, 5, 5, 4, 5, 4, 6, 4, 4 },
+     { 2, 4, 4, 7, 4, 5, 4, 5, 5, 4 },
+     { 4, 3, 3, 3, 2, 3, 2, 2, 2, 2 },
+     { 1, 5, 5, 6, 4, 5, 4, 5, 5, 5 },
+     { 2, 7, 4, 6, 5, 5, 5, 5, 5, 5 },
+     { 2, 7, 5, 5, 5, 5, 5, 6, 5, 4 },
+     { 3, 3, 5, 4, 4, 5, 4, 5, 4, 4 },
+     { 2, 3, 3, 5, 5, 4, 4, 4, 4, 4 },
+     { 2, 4, 4, 6, 4, 5, 4, 5, 5, 5 },
+     { 2, 5, 4, 6, 5, 5, 5, 4, 5, 4 },
+     { 2, 7, 4, 5, 4, 5, 4, 5, 5, 5 },
+     { 2, 5, 4, 6, 7, 6, 5, 6, 5, 4 },
+     { 3, 6, 7, 4, 6, 5, 5, 6, 4, 5 },
+     { 2, 7, 6, 4, 4, 4, 5, 4, 5, 5 },
+     { 4, 5, 5, 4, 6, 6, 5, 6, 5, 4 },
+     { 2, 5, 5, 6, 5, 6, 4, 6, 4, 4 },
+     { 4, 5, 5, 5, 3, 7, 4, 5, 5, 4 },
+     { 2, 3, 4, 5, 5, 6, 4, 5, 5, 4 },
+     { 2, 3, 2, 3, 3, 4, 2, 3, 3, 3 },
+     { 1, 1, 2, 2, 2, 2, 2, 3, 2, 2 },
+     { 4, 5, 5, 6, 6, 6, 5, 6, 4, 5 },
+     { 3, 5, 5, 4, 4, 4, 4, 3, 3, 2 },
+     { 2, 5, 3, 7, 5, 5, 4, 4, 5, 4 },
+     { 4, 4, 5, 4, 5, 6, 5, 6, 5, 4 }
+ };
+ static const uint8_t silk_lsf_s2_model_sel_wb[32][16] = {
+     {  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8 },
+     { 10, 11, 11, 11, 11, 11, 10, 10, 10, 10, 10,  9,  9,  9,  8, 11 },
+     { 10, 13, 13, 11, 15, 12, 12, 13, 10, 13, 12, 13, 13, 12, 11, 11 },
+     {  8, 10,  9, 10, 10,  9,  9,  9,  9,  9,  8,  8,  8,  8,  8,  9 },
+     {  8, 14, 13, 12, 14, 12, 15, 13, 12, 12, 12, 13, 13, 12, 12, 11 },
+     {  8, 11, 13, 13, 12, 11, 11, 13, 11, 11, 11, 11, 11, 11, 10, 12 },
+     {  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8 },
+     {  8, 10, 14, 11, 15, 10, 13, 11, 12, 13, 13, 12, 11, 11, 10, 11 },
+     {  8, 14, 10, 14, 14, 12, 13, 12, 14, 13, 12, 12, 13, 11, 11, 11 },
+     { 10,  9,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8 },
+     {  8,  9,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  9 },
+     { 10, 10, 11, 12, 13, 11, 11, 11, 11, 11, 11, 11, 10, 10,  9, 11 },
+     { 10, 10, 11, 11, 12, 11, 11, 11, 11, 11, 11, 11, 11, 10,  9, 11 },
+     { 11, 12, 12, 12, 14, 12, 12, 13, 11, 13, 12, 12, 13, 12, 11, 12 },
+     {  8, 14, 12, 13, 12, 15, 13, 10, 14, 13, 15, 12, 12, 11, 13, 11 },
+     {  8,  9,  8,  9,  9,  9,  9,  9,  9,  9,  8,  8,  8,  8,  9,  8 },
+     {  9, 14, 13, 15, 13, 12, 13, 11, 12, 13, 12, 12, 12, 11, 11, 12 },
+     {  9, 11, 11, 12, 12, 11, 11, 13, 10, 11, 11, 13, 13, 13, 11, 12 },
+     { 10, 11, 11, 10, 10, 10, 11, 10,  9, 10,  9, 10,  9,  9,  9, 12 },
+     {  8, 10, 11, 13, 11, 11, 10, 10, 10,  9,  9,  8,  8,  8,  8,  8 },
+     { 11, 12, 11, 13, 11, 11, 10, 10,  9,  9,  9,  9,  9, 10, 10, 12 },
+     { 10, 14, 11, 15, 15, 12, 13, 12, 13, 11, 13, 11, 11, 10, 11, 11 },
+     { 10, 11, 13, 14, 14, 11, 13, 11, 12, 12, 11, 11, 11, 11, 10, 12 },
+     {  9, 11, 11, 12, 12, 12, 12, 11, 13, 13, 13, 11,  9,  9,  9,  9 },
+     { 10, 13, 11, 14, 14, 12, 15, 12, 12, 13, 11, 12, 12, 11, 11, 11 },
+     {  8, 14,  9,  9,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8,  8 },
+     {  8, 14, 14, 11, 13, 10, 13, 13, 11, 12, 12, 15, 15, 12, 12, 12 },
+     { 11, 11, 15, 11, 13, 12, 11, 11, 11, 10, 10, 11, 11, 11, 10, 11 },
+     {  8,  8,  9,  8,  8,  8, 10,  9, 10,  9,  9, 10, 10, 10,  9,  9 },
+     {  8, 11, 10, 13, 11, 11, 10, 11, 10,  9,  8,  8,  9,  8,  8,  9 },
+     { 11, 13, 13, 12, 15, 13, 11, 11, 10, 11, 10, 10,  9,  8,  9,  8 },
+     { 10, 11, 13, 11, 12, 11, 11, 11, 10,  9, 10, 14, 12,  8,  8,  8 }
+ };
+ static const uint8_t silk_lsf_pred_weights_nbmb[2][9] = {
+     {179, 138, 140, 148, 151, 149, 153, 151, 163},
+     {116,  67,  82,  59,  92,  72, 100,  89,  92}
+ };
+ static const uint8_t silk_lsf_pred_weights_wb[2][15] = {
+     {175, 148, 160, 176, 178, 173, 174, 164, 177, 174, 196, 182, 198, 192, 182},
+     { 68,  62,  66,  60,  72, 117,  85,  90, 118, 136, 151, 142, 160, 142, 155}
+ };
+ static const uint8_t silk_lsf_weight_sel_nbmb[32][9] = {
+     { 0, 1, 0, 0, 0, 0, 0, 0, 0 },
+     { 1, 0, 0, 0, 0, 0, 0, 0, 0 },
+     { 0, 0, 0, 0, 0, 0, 0, 0, 0 },
+     { 1, 1, 1, 0, 0, 0, 0, 1, 0 },
+     { 0, 1, 0, 0, 0, 0, 0, 0, 0 },
+     { 0, 1, 0, 0, 0, 0, 0, 0, 0 },
+     { 1, 0, 1, 1, 0, 0, 0, 1, 0 },
+     { 0, 1, 1, 0, 0, 1, 1, 0, 0 },
+     { 0, 0, 1, 1, 0, 1, 0, 1, 1 },
+     { 0, 0, 1, 1, 0, 0, 1, 1, 1 },
+     { 0, 0, 0, 0, 0, 0, 0, 0, 0 },
+     { 0, 1, 0, 1, 1, 1, 1, 1, 0 },
+     { 0, 1, 0, 1, 1, 1, 1, 1, 0 },
+     { 0, 1, 1, 1, 1, 1, 1, 1, 0 },
+     { 1, 0, 1, 1, 0, 1, 1, 1, 1 },
+     { 0, 1, 1, 1, 1, 1, 0, 1, 0 },
+     { 0, 0, 1, 1, 0, 1, 0, 1, 0 },
+     { 0, 0, 1, 1, 1, 0, 1, 1, 1 },
+     { 0, 1, 1, 0, 0, 1, 1, 1, 0 },
+     { 0, 0, 0, 1, 1, 1, 0, 1, 0 },
+     { 0, 1, 1, 0, 0, 1, 0, 1, 0 },
+     { 0, 1, 1, 0, 0, 0, 1, 1, 0 },
+     { 0, 0, 0, 0, 0, 1, 1, 1, 1 },
+     { 0, 0, 1, 1, 0, 0, 0, 1, 1 },
+     { 0, 0, 0, 1, 0, 1, 1, 1, 1 },
+     { 0, 1, 1, 1, 1, 1, 1, 1, 0 },
+     { 0, 0, 0, 0, 0, 0, 0, 0, 0 },
+     { 0, 0, 0, 0, 0, 0, 0, 0, 0 },
+     { 0, 0, 1, 0, 1, 1, 0, 1, 0 },
+     { 1, 0, 0, 1, 0, 0, 0, 0, 0 },
+     { 0, 0, 0, 1, 1, 0, 1, 0, 1 },
+     { 1, 0, 1, 1, 0, 1, 1, 1, 1 }
+ };
+ static const uint8_t silk_lsf_weight_sel_wb[32][15] = {
+     { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 },
+     { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
+     { 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0 },
+     { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 },
+     { 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0 },
+     { 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
+     { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0 },
+     { 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1 },
+     { 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1 },
+     { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 },
+     { 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
+     { 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0 },
+     { 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0 },
+     { 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0 },
+     { 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1 },
+     { 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0 },
+     { 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0 },
+     { 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0 },
+     { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 },
+     { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0 },
+     { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
+     { 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 0 },
+     { 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0 },
+     { 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0 },
+     { 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1 },
+     { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 },
+     { 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1 },
+     { 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1 },
+     { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 },
+     { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1 },
+     { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0 },
+     { 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0 }
+ };
+ static const uint8_t silk_lsf_codebook_nbmb[32][10] = {
+     { 12,  35,  60,  83, 108, 132, 157, 180, 206, 228 },
+     { 15,  32,  55,  77, 101, 125, 151, 175, 201, 225 },
+     { 19,  42,  66,  89, 114, 137, 162, 184, 209, 230 },
+     { 12,  25,  50,  72,  97, 120, 147, 172, 200, 223 },
+     { 26,  44,  69,  90, 114, 135, 159, 180, 205, 225 },
+     { 13,  22,  53,  80, 106, 130, 156, 180, 205, 228 },
+     { 15,  25,  44,  64,  90, 115, 142, 168, 196, 222 },
+     { 19,  24,  62,  82, 100, 120, 145, 168, 190, 214 },
+     { 22,  31,  50,  79, 103, 120, 151, 170, 203, 227 },
+     { 21,  29,  45,  65, 106, 124, 150, 171, 196, 224 },
+     { 30,  49,  75,  97, 121, 142, 165, 186, 209, 229 },
+     { 19,  25,  52,  70,  93, 116, 143, 166, 192, 219 },
+     { 26,  34,  62,  75,  97, 118, 145, 167, 194, 217 },
+     { 25,  33,  56,  70,  91, 113, 143, 165, 196, 223 },
+     { 21,  34,  51,  72,  97, 117, 145, 171, 196, 222 },
+     { 20,  29,  50,  67,  90, 117, 144, 168, 197, 221 },
+     { 22,  31,  48,  66,  95, 117, 146, 168, 196, 222 },
+     { 24,  33,  51,  77, 116, 134, 158, 180, 200, 224 },
+     { 21,  28,  70,  87, 106, 124, 149, 170, 194, 217 },
+     { 26,  33,  53,  64,  83, 117, 152, 173, 204, 225 },
+     { 27,  34,  65,  95, 108, 129, 155, 174, 210, 225 },
+     { 20,  26,  72,  99, 113, 131, 154, 176, 200, 219 },
+     { 34,  43,  61,  78,  93, 114, 155, 177, 205, 229 },
+     { 23,  29,  54,  97, 124, 138, 163, 179, 209, 229 },
+     { 30,  38,  56,  89, 118, 129, 158, 178, 200, 231 },
+     { 21,  29,  49,  63,  85, 111, 142, 163, 193, 222 },
+     { 27,  48,  77, 103, 133, 158, 179, 196, 215, 232 },
+     { 29,  47,  74,  99, 124, 151, 176, 198, 220, 237 },
+     { 33,  42,  61,  76,  93, 121, 155, 174, 207, 225 },
+     { 29,  53,  87, 112, 136, 154, 170, 188, 208, 227 },
+     { 24,  30,  52,  84, 131, 150, 166, 186, 203, 229 },
+     { 37,  48,  64,  84, 104, 118, 156, 177, 201, 230 }
+ };
+ static const uint8_t silk_lsf_codebook_wb[32][16] = {
+     {  7,  23,  38,  54,  69,  85, 100, 116, 131, 147, 162, 178, 193, 208, 223, 239 },
+     { 13,  25,  41,  55,  69,  83,  98, 112, 127, 142, 157, 171, 187, 203, 220, 236 },
+     { 15,  21,  34,  51,  61,  78,  92, 106, 126, 136, 152, 167, 185, 205, 225, 240 },
+     { 10,  21,  36,  50,  63,  79,  95, 110, 126, 141, 157, 173, 189, 205, 221, 237 },
+     { 17,  20,  37,  51,  59,  78,  89, 107, 123, 134, 150, 164, 184, 205, 224, 240 },
+     { 10,  15,  32,  51,  67,  81,  96, 112, 129, 142, 158, 173, 189, 204, 220, 236 },
+     {  8,  21,  37,  51,  65,  79,  98, 113, 126, 138, 155, 168, 179, 192, 209, 218 },
+     { 12,  15,  34,  55,  63,  78,  87, 108, 118, 131, 148, 167, 185, 203, 219, 236 },
+     { 16,  19,  32,  36,  56,  79,  91, 108, 118, 136, 154, 171, 186, 204, 220, 237 },
+     { 11,  28,  43,  58,  74,  89, 105, 120, 135, 150, 165, 180, 196, 211, 226, 241 },
+     {  6,  16,  33,  46,  60,  75,  92, 107, 123, 137, 156, 169, 185, 199, 214, 225 },
+     { 11,  19,  30,  44,  57,  74,  89, 105, 121, 135, 152, 169, 186, 202, 218, 234 },
+     { 12,  19,  29,  46,  57,  71,  88, 100, 120, 132, 148, 165, 182, 199, 216, 233 },
+     { 17,  23,  35,  46,  56,  77,  92, 106, 123, 134, 152, 167, 185, 204, 222, 237 },
+     { 14,  17,  45,  53,  63,  75,  89, 107, 115, 132, 151, 171, 188, 206, 221, 240 },
+     {  9,  16,  29,  40,  56,  71,  88, 103, 119, 137, 154, 171, 189, 205, 222, 237 },
+     { 16,  19,  36,  48,  57,  76,  87, 105, 118, 132, 150, 167, 185, 202, 218, 236 },
+     { 12,  17,  29,  54,  71,  81,  94, 104, 126, 136, 149, 164, 182, 201, 221, 237 },
+     { 15,  28,  47,  62,  79,  97, 115, 129, 142, 155, 168, 180, 194, 208, 223, 238 },
+     {  8,  14,  30,  45,  62,  78,  94, 111, 127, 143, 159, 175, 192, 207, 223, 239 },
+     { 17,  30,  49,  62,  79,  92, 107, 119, 132, 145, 160, 174, 190, 204, 220, 235 },
+     { 14,  19,  36,  45,  61,  76,  91, 108, 121, 138, 154, 172, 189, 205, 222, 238 },
+     { 12,  18,  31,  45,  60,  76,  91, 107, 123, 138, 154, 171, 187, 204, 221, 236 },
+     { 13,  17,  31,  43,  53,  70,  83, 103, 114, 131, 149, 167, 185, 203, 220, 237 },
+     { 17,  22,  35,  42,  58,  78,  93, 110, 125, 139, 155, 170, 188, 206, 224, 240 },
+     {  8,  15,  34,  50,  67,  83,  99, 115, 131, 146, 162, 178, 193, 209, 224, 239 },
+     { 13,  16,  41,  66,  73,  86,  95, 111, 128, 137, 150, 163, 183, 206, 225, 241 },
+     { 17,  25,  37,  52,  63,  75,  92, 102, 119, 132, 144, 160, 175, 191, 212, 231 },
+     { 19,  31,  49,  65,  83, 100, 117, 133, 147, 161, 174, 187, 200, 213, 227, 242 },
+     { 18,  31,  52,  68,  88, 103, 117, 126, 138, 149, 163, 177, 192, 207, 223, 239 },
+     { 16,  29,  47,  61,  76,  90, 106, 119, 133, 147, 161, 176, 193, 209, 224, 240 },
+     { 15,  21,  35,  50,  61,  73,  86,  97, 110, 119, 129, 141, 175, 198, 218, 237 }
+ };
+ static const uint16_t silk_lsf_min_spacing_nbmb[] = {
+     250, 3, 6, 3, 3, 3, 4, 3, 3, 3, 461
+ };
+ static const uint16_t silk_lsf_min_spacing_wb[] = {
+     100, 3, 40, 3, 3, 3, 5, 14, 14, 10, 11, 3, 8, 9, 7, 3, 347
+ };
+ static const uint8_t silk_lsf_ordering_nbmb[] = {
+     0, 9, 6, 3, 4, 5, 8, 1, 2, 7
+ };
+ static const uint8_t silk_lsf_ordering_wb[] = {
+     0, 15, 8, 7, 4, 11, 12, 3, 2, 13, 10, 5, 6, 9, 14, 1
+ };
+ static const int16_t silk_cosine[] = { /* (0.12) */
+      4096,  4095,  4091,  4085,
+      4076,  4065,  4052,  4036,
+      4017,  3997,  3973,  3948,
+      3920,  3889,  3857,  3822,
+      3784,  3745,  3703,  3659,
+      3613,  3564,  3513,  3461,
+      3406,  3349,  3290,  3229,
+      3166,  3102,  3035,  2967,
+      2896,  2824,  2751,  2676,
+      2599,  2520,  2440,  2359,
+      2276,  2191,  2106,  2019,
+      1931,  1842,  1751,  1660,
+      1568,  1474,  1380,  1285,
+      1189,  1093,   995,   897,
+       799,   700,   601,   501,
+       401,   301,   201,   101,
+         0,  -101,  -201,  -301,
+      -401,  -501,  -601,  -700,
+      -799,  -897,  -995, -1093,
+     -1189, -1285, -1380, -1474,
+     -1568, -1660, -1751, -1842,
+     -1931, -2019, -2106, -2191,
+     -2276, -2359, -2440, -2520,
+     -2599, -2676, -2751, -2824,
+     -2896, -2967, -3035, -3102,
+     -3166, -3229, -3290, -3349,
+     -3406, -3461, -3513, -3564,
+     -3613, -3659, -3703, -3745,
+     -3784, -3822, -3857, -3889,
+     -3920, -3948, -3973, -3997,
+     -4017, -4036, -4052, -4065,
+     -4076, -4085, -4091, -4095,
+     -4096
+ };
+ static const uint16_t silk_pitch_scale[]   = {  4,   6,   8};
+ static const uint16_t silk_pitch_min_lag[] = { 16,  24,  32};
+ static const uint16_t silk_pitch_max_lag[] = {144, 216, 288};
+ static const int8_t silk_pitch_offset_nb10ms[3][2] = {
+     { 0,  0},
+     { 1,  0},
+     { 0,  1}
+ };
+ static const int8_t silk_pitch_offset_nb20ms[11][4] = {
+     { 0,  0,  0,  0},
+     { 2,  1,  0, -1},
+     {-1,  0,  1,  2},
+     {-1,  0,  0,  1},
+     {-1,  0,  0,  0},
+     { 0,  0,  0,  1},
+     { 0,  0,  1,  1},
+     { 1,  1,  0,  0},
+     { 1,  0,  0,  0},
+     { 0,  0,  0, -1},
+     { 1,  0,  0, -1}
+ };
+ static const int8_t silk_pitch_offset_mbwb10ms[12][2] = {
+     { 0,  0},
+     { 0,  1},
+     { 1,  0},
+     {-1,  1},
+     { 1, -1},
+     {-1,  2},
+     { 2, -1},
+     {-2,  2},
+     { 2, -2},
+     {-2,  3},
+     { 3, -2},
+     {-3,  3}
+ };
+ static const int8_t silk_pitch_offset_mbwb20ms[34][4] = {
+     { 0,  0,  0,  0},
+     { 0,  0,  1,  1},
+     { 1,  1,  0,  0},
+     {-1,  0,  0,  0},
+     { 0,  0,  0,  1},
+     { 1,  0,  0,  0},
+     {-1,  0,  0,  1},
+     { 0,  0,  0, -1},
+     {-1,  0,  1,  2},
+     { 1,  0,  0, -1},
+     {-2, -1,  1,  2},
+     { 2,  1,  0, -1},
+     {-2,  0,  0,  2},
+     {-2,  0,  1,  3},
+     { 2,  1, -1, -2},
+     {-3, -1,  1,  3},
+     { 2,  0,  0, -2},
+     { 3,  1,  0, -2},
+     {-3, -1,  2,  4},
+     {-4, -1,  1,  4},
+     { 3,  1, -1, -3},
+     {-4, -1,  2,  5},
+     { 4,  2, -1, -3},
+     { 4,  1, -1, -4},
+     {-5, -1,  2,  6},
+     { 5,  2, -1, -4},
+     {-6, -2,  2,  6},
+     {-5, -2,  2,  5},
+     { 6,  2, -1, -5},
+     {-7, -2,  3,  8},
+     { 6,  2, -2, -6},
+     { 5,  2, -2, -5},
+     { 8,  3, -2, -7},
+     {-9, -3,  3,  9}
+ };
+ static const int8_t silk_ltp_filter0_taps[8][5] = {
+     {  4,   6,  24,   7,   5},
+     {  0,   0,   2,   0,   0},
+     { 12,  28,  41,  13,  -4},
+     { -9,  15,  42,  25,  14},
+     {  1,  -2,  62,  41,  -9},
+     {-10,  37,  65,  -4,   3},
+     { -6,   4,  66,   7,  -8},
+     { 16,  14,  38,  -3,  33}
+ };
+ static const int8_t silk_ltp_filter1_taps[16][5] = {
+     { 13,  22,  39,  23,  12},
+     { -1,  36,  64,  27,  -6},
+     { -7,  10,  55,  43,  17},
+     {  1,   1,   8,   1,   1},
+     {  6, -11,  74,  53,  -9},
+     {-12,  55,  76, -12,   8},
+     { -3,   3,  93,  27,  -4},
+     { 26,  39,  59,   3,  -8},
+     {  2,   0,  77,  11,   9},
+     { -8,  22,  44,  -6,   7},
+     { 40,   9,  26,   3,   9},
+     { -7,  20, 101,  -7,   4},
+     {  3,  -8,  42,  26,   0},
+     {-15,  33,  68,   2,  23},
+     { -2,  55,  46,  -2,  15},
+     {  3,  -1,  21,  16,  41}
+ };
+ static const int8_t silk_ltp_filter2_taps[32][5] = {
+     { -6,  27,  61,  39,   5},
+     {-11,  42,  88,   4,   1},
+     { -2,  60,  65,   6,  -4},
+     { -1,  -5,  73,  56,   1},
+     { -9,  19,  94,  29,  -9},
+     {  0,  12,  99,   6,   4},
+     {  8, -19, 102,  46, -13},
+     {  3,   2,  13,   3,   2},
+     {  9, -21,  84,  72, -18},
+     {-11,  46, 104, -22,   8},
+     { 18,  38,  48,  23,   0},
+     {-16,  70,  83, -21,  11},
+     {  5, -11, 117,  22,  -8},
+     { -6,  23, 117, -12,   3},
+     {  3,  -8,  95,  28,   4},
+     {-10,  15,  77,  60, -15},
+     { -1,   4, 124,   2,  -4},
+     {  3,  38,  84,  24, -25},
+     {  2,  13,  42,  13,  31},
+     { 21,  -4,  56,  46,  -1},
+     { -1,  35,  79, -13,  19},
+     { -7,  65,  88,  -9, -14},
+     { 20,   4,  81,  49, -29},
+     { 20,   0,  75,   3, -17},
+     {  5,  -9,  44,  92,  -8},
+     {  1,  -3,  22,  69,  31},
+     { -6,  95,  41, -12,   5},
+     { 39,  67,  16,  -4,   1},
+     {  0,  -6, 120,  55, -36},
+     {-13,  44, 122,   4, -24},
+     { 81,   5,  11,   3,   7},
+     {  2,   0,   9,  10,  88}
+ };
+ static const uint16_t silk_ltp_scale_factor[] = {15565, 12288, 8192};
+ static const uint8_t silk_shell_blocks[3][2] = {
+     { 5, 10}, // NB
+     { 8, 15}, // MB
+     {10, 20}  // WB
+ };
+ static const uint8_t silk_quant_offset[2][2] = { /* (0.23) */
+     {25, 60}, // Inactive or Unvoiced
+     { 8, 25}  // Voiced
+ };
+ static const int silk_stereo_interp_len[3] = {
+     64, 96, 128
+ };
+ static inline void silk_stabilize_lsf(int16_t nlsf[16], int order, const uint16_t min_delta[17])
+ {
+     int pass, i;
+     for (pass = 0; pass < 20; pass++) {
+         int k, min_diff = 0;
+         for (i = 0; i < order+1; i++) {
+             int low  = i != 0     ? nlsf[i-1] : 0;
+             int high = i != order ? nlsf[i]   : 32768;
+             int diff = (high - low) - (min_delta[i]);
+             if (diff < min_diff) {
+                 min_diff = diff;
+                 k = i;
+                 if (pass == 20)
+                     break;
+             }
+         }
+         if (min_diff == 0) /* no issues; stabilized */
+             return;
+         /* wiggle one or two LSFs */
+         if (k == 0) {
+             /* repel away from lower bound */
+             nlsf[0] = min_delta[0];
+         } else if (k == order) {
+             /* repel away from higher bound */
+             nlsf[order-1] = 32768 - min_delta[order];
+         } else {
+             /* repel away from current position */
+             int min_center = 0, max_center = 32768, center_val;
+             /* lower extent */
+             for (i = 0; i < k; i++)
+                 min_center += min_delta[i];
+             min_center += min_delta[k] >> 1;
+             /* upper extent */
+             for (i = order; i > k; i--)
+                 max_center -= min_delta[k];
+             max_center -= min_delta[k] >> 1;
+             /* move apart */
+             center_val = nlsf[k - 1] + nlsf[k];
+             center_val = (center_val >> 1) + (center_val & 1); // rounded divide by 2
+             center_val = FFMIN(max_center, FFMAX(min_center, center_val));
+             nlsf[k - 1] = center_val - (min_delta[k] >> 1);
+             nlsf[k]     = nlsf[k - 1] + min_delta[k];
+         }
+     }
+     /* resort to the fall-back method, the standard method for LSF stabilization */
+     /* sort; as the LSFs should be nearly sorted, use insertion sort */
+     for (i = 1; i < order; i++) {
+         int j, value = nlsf[i];
+         for (j = i - 1; j >= 0 && nlsf[j] > value; j--)
+             nlsf[j + 1] = nlsf[j];
+         nlsf[j + 1] = value;
+     }
+     /* push forwards to increase distance */
+     if (nlsf[0] < min_delta[0])
+         nlsf[0] = min_delta[0];
+     for (i = 1; i < order; i++)
+         if (nlsf[i] < nlsf[i - 1] + min_delta[i])
+             nlsf[i] = nlsf[i - 1] + min_delta[i];
+     /* push backwards to increase distance */
+     if (nlsf[order-1] > 32768 - min_delta[order])
+         nlsf[order-1] = 32768 - min_delta[order];
+     for (i = order-2; i >= 0; i--)
+         if (nlsf[i] > nlsf[i + 1] - min_delta[i+1])
+             nlsf[i] = nlsf[i + 1] - min_delta[i+1];
+     return;
+ }
+ static inline int silk_is_lpc_stable(const int16_t lpc[16], int order)
+ {
+     int k, j, DC_resp = 0;
+     int32_t lpc32[2][16];       // Q24
+     int totalinvgain = 1 << 30; // 1.0 in Q30
+     int32_t *row = lpc32[0], *prevrow;
+     /* initialize the first row for the Levinson recursion */
+     for (k = 0; k < order; k++) {
+         DC_resp += lpc[k];
+         row[k] = lpc[k] * 4096;
+     }
+     if (DC_resp >= 4096)
+         return 0;
+     /* check if prediction gain pushes any coefficients too far */
+     for (k = order - 1; 1; k--) {
+         int rc;      // Q31; reflection coefficient
+         int gaindiv; // Q30; inverse of the gain (the divisor)
+         int gain;    // gain for this reflection coefficient
+         int fbits;   // fractional bits used for the gain
+         int error;   // Q29; estimate of the error of our partial estimate of 1/gaindiv
+         if (FFABS(row[k]) > 16773022)
+             return 0;
+         rc      = -(row[k] * 128);
+         gaindiv = (1 << 30) - MULH(rc, rc);
+         totalinvgain = MULH(totalinvgain, gaindiv) << 2;
+         if (k == 0)
+             return (totalinvgain >= 107374);
+         /* approximate 1.0/gaindiv */
+         fbits = opus_ilog(gaindiv);
+         gain  = ((1 << 29) - 1) / (gaindiv >> (fbits + 1 - 16)); // Q<fbits-16>
+         error = (1 << 29) - MULL(gaindiv << (15 + 16 - fbits), gain, 16);
+         gain  = ((gain << 16) + (error * gain >> 13));
+         /* switch to the next row of the LPC coefficients */
+         prevrow = row;
+         row = lpc32[k & 1];
+         for (j = 0; j < k; j++) {
+             int x = prevrow[j] - ROUND_MULL(prevrow[k - j - 1], rc, 31);
+             row[j] = ROUND_MULL(x, gain, fbits);
+         }
+     }
+ }
+ static void silk_lsp2poly(const int32_t lsp[16], int32_t pol[16], int half_order)
+ {
+     int i, j;
+     pol[0] = 65536; // 1.0 in Q16
+     pol[1] = -lsp[0];
+     for (i = 1; i < half_order; i++) {
+         pol[i + 1] = pol[i - 1] * 2 - ROUND_MULL(lsp[2 * i], pol[i], 16);
+         for (j = i; j > 1; j--)
+             pol[j] += pol[j - 2] - ROUND_MULL(lsp[2 * i], pol[j - 1], 16);
+         pol[1] -= lsp[2 * i];
+     }
+ }
+ static void silk_lsf2lpc(const int16_t nlsf[16], float lpcf[16], int order)
+ {
+     int i, k;
+     int32_t lsp[16];     // Q17; 2*cos(LSF)
+     int32_t p[9], q[9];  // Q16
+     int32_t lpc32[16];   // Q17
+     int16_t lpc[16];     // Q12
+     /* convert the LSFs to LSPs, i.e. 2*cos(LSF) */
+     for (k = 0; k < order; k++) {
+         int index = nlsf[k] >> 8;
+         int offset = nlsf[k] & 255;
+         int k2 = (order == 10) ? silk_lsf_ordering_nbmb[k] : silk_lsf_ordering_wb[k];
+         /* interpolate and round */
+         lsp[k2]  = silk_cosine[index] * 256;
+         lsp[k2] += (silk_cosine[index + 1] - silk_cosine[index]) * offset;
+         lsp[k2]  = (lsp[k2] + 4) >> 3;
+     }
+     silk_lsp2poly(lsp    , p, order >> 1);
+     silk_lsp2poly(lsp + 1, q, order >> 1);
+     /* reconstruct A(z) */
+     for (k = 0; k < order>>1; k++) {
+         lpc32[k]         = -p[k + 1] - p[k] - q[k + 1] + q[k];
+         lpc32[order-k-1] = -p[k + 1] - p[k] + q[k + 1] - q[k];
+     }
+     /* limit the range of the LPC coefficients to each fit within an int16_t */
+     for (i = 0; i < 10; i++) {
+         int j;
+         unsigned int maxabs = 0;
+         for (j = 0, k = 0; j < order; j++) {
+             unsigned int x = FFABS(lpc32[k]);
+             if (x > maxabs) {
+                 maxabs = x; // Q17
+                 k      = j;
+             }
+         }
+         maxabs = (maxabs + 16) >> 5; // convert to Q12
+         if (maxabs > 32767) {
+             /* perform bandwidth expansion */
+             unsigned int chirp, chirp_base; // Q16
+             maxabs = FFMIN(maxabs, 163838); // anything above this overflows chirp's numerator
+             chirp_base = chirp = 65470 - ((maxabs - 32767) << 14) / ((maxabs * (k+1)) >> 2);
+             for (k = 0; k < order; k++) {
+                 lpc32[k] = ROUND_MULL(lpc32[k], chirp, 16);
+                 chirp    = (chirp_base * chirp + 32768) >> 16;
+             }
+         } else break;
+     }
+     if (i == 10) {
+         /* time's up: just clamp */
+         for (k = 0; k < order; k++) {
+             int x = (lpc32[k] + 16) >> 5;
+             lpc[k] = av_clip_int16(x);
+             lpc32[k] = lpc[k] << 5; // shortcut mandated by the spec; drops lower 5 bits
+         }
+     } else {
+         for (k = 0; k < order; k++)
+             lpc[k] = (lpc32[k] + 16) >> 5;
+     }
+     /* if the prediction gain causes the LPC filter to become unstable,
+        apply further bandwidth expansion on the Q17 coefficients */
+     for (i = 1; i <= 16 && !silk_is_lpc_stable(lpc, order); i++) {
+         unsigned int chirp, chirp_base;
+         chirp_base = chirp = 65536 - (1 << i);
+         for (k = 0; k < order; k++) {
+             lpc32[k] = ROUND_MULL(lpc32[k], chirp, 16);
+             lpc[k]   = (lpc32[k] + 16) >> 5;
+             chirp    = (chirp_base * chirp + 32768) >> 16;
+         }
+     }
+     for (i = 0; i < order; i++)
+         lpcf[i] = lpc[i] / 4096.0f;
+ }
+ static inline void silk_decode_lpc(SilkContext *s, SilkFrame *frame,
+                                    OpusRangeCoder *rc,
+                                    float lpc_leadin[16], float lpc[16],
+                                    int *lpc_order, int *has_lpc_leadin, int voiced)
+ {
+     int i;
+     int order;                   // order of the LP polynomial; 10 for NB/MB and 16 for WB
+     int8_t  lsf_i1, lsf_i2[16];  // stage-1 and stage-2 codebook indices
+     int16_t lsf_res[16];         // residual as a Q10 value
+     int16_t nlsf[16];            // Q15
+     *lpc_order = order = s->wb ? 16 : 10;
+     /* obtain LSF stage-1 and stage-2 indices */
+     lsf_i1 = opus_rc_getsymbol(rc, silk_model_lsf_s1[s->wb][voiced]);
+     for (i = 0; i < order; i++) {
+         int index = s->wb ? silk_lsf_s2_model_sel_wb  [lsf_i1][i] :
+                             silk_lsf_s2_model_sel_nbmb[lsf_i1][i];
+         lsf_i2[i] = opus_rc_getsymbol(rc, silk_model_lsf_s2[index]) - 4;
+         if (lsf_i2[i] == -4)
+             lsf_i2[i] -= opus_rc_getsymbol(rc, silk_model_lsf_s2_ext);
+         else if (lsf_i2[i] == 4)
+             lsf_i2[i] += opus_rc_getsymbol(rc, silk_model_lsf_s2_ext);
+     }
+     /* reverse the backwards-prediction step */
+     for (i = order - 1; i >= 0; i--) {
+         int qstep = s->wb ? 9830 : 11796;
+         lsf_res[i] = lsf_i2[i] * 1024;
+         if (lsf_i2[i] < 0)      lsf_res[i] += 102;
+         else if (lsf_i2[i] > 0) lsf_res[i] -= 102;
+         lsf_res[i] = (lsf_res[i] * qstep) >> 16;
+         if (i + 1 < order) {
+             int weight = s->wb ? silk_lsf_pred_weights_wb  [silk_lsf_weight_sel_wb  [lsf_i1][i]][i] :
+                                  silk_lsf_pred_weights_nbmb[silk_lsf_weight_sel_nbmb[lsf_i1][i]][i];
+             lsf_res[i] += (lsf_res[i+1] * weight) >> 8;
+         }
+     }
+     /* reconstruct the NLSF coefficients from the supplied indices */
+     for (i = 0; i < order; i++) {
+         const uint8_t * codebook = s->wb ? silk_lsf_codebook_wb  [lsf_i1] :
+                                            silk_lsf_codebook_nbmb[lsf_i1];
+         int cur, prev, next, weight_sq, weight, ipart, fpart, y, value;
+         /* find the weight of the residual */
+         /* TODO: precompute */
+         cur = codebook[i];
+         prev = i ? codebook[i - 1] : 0;
+         next = i + 1 < order ? codebook[i + 1] : 256;
+         weight_sq = (1024 / (cur - prev) + 1024 / (next - cur)) << 16;
+         /* approximate square-root with mandated fixed-point arithmetic */
+         ipart = opus_ilog(weight_sq);
+         fpart = (weight_sq >> (ipart-8)) & 127;
+         y = ((ipart & 1) ? 32768 : 46214) >> ((32 - ipart)>>1);
+         weight = y + ((213 * fpart * y) >> 16);
+         value = cur * 128 + (lsf_res[i] * 16384) / weight;
+         nlsf[i] = av_clip(value, 0, 32767);
+     }
+     /* stabilize the NLSF coefficients */
+     silk_stabilize_lsf(nlsf, order, s->wb ? silk_lsf_min_spacing_wb :
+                                             silk_lsf_min_spacing_nbmb);
+     /* produce an interpolation for the first 2 subframes, */
+     /* and then convert both sets of NLSFs to LPC coefficients */
+     *has_lpc_leadin = 0;
+     if (s->subframes == 4) {
+         int offset = opus_rc_getsymbol(rc, silk_model_lsf_interpolation_offset);
+         if (offset != 4 && frame->coded) {
+             *has_lpc_leadin = 1;
+             if (offset != 0) {
+                 int16_t nlsf_leadin[16];
+                 for (i = 0; i < order; i++)
+                     nlsf_leadin[i] = frame->nlsf[i] +
+                         ((nlsf[i] - frame->nlsf[i]) * offset >> 2);
+                 silk_lsf2lpc(nlsf_leadin, lpc_leadin, order);
+             } else  /* avoid re-computation for a (roughly) 1-in-4 occurrence */
+                 memcpy(lpc_leadin, frame->lpc, 16 * sizeof(float));
+         } else
+             offset = 4;
+         s->nlsf_interp_factor = offset;
+         silk_lsf2lpc(nlsf, lpc, order);
+     } else {
+         s->nlsf_interp_factor = 4;
+         silk_lsf2lpc(nlsf, lpc, order);
+     }
+     memcpy(frame->nlsf, nlsf, order * sizeof(nlsf[0]));
+     memcpy(frame->lpc,  lpc,  order * sizeof(lpc[0]));
+ }
+ static inline void silk_count_children(OpusRangeCoder *rc, int model, int32_t total,
+                                        int32_t child[2])
+ {
+     if (total != 0) {
+         child[0] = opus_rc_getsymbol(rc,
+                        silk_model_pulse_location[model] + (((total - 1 + 5) * (total - 1)) >> 1));
+         child[1] = total - child[0];
+     } else {
+         child[0] = 0;
+         child[1] = 0;
+     }
+ }
+ static inline void silk_decode_excitation(SilkContext *s, OpusRangeCoder *rc,
+                                           float* excitationf,
+                                           int qoffset_high, int active, int voiced)
+ {
+     int i;
+     uint32_t seed;
+     int shellblocks;
+     int ratelevel;
+     uint8_t pulsecount[20];     // total pulses in each shell block
+     uint8_t lsbcount[20] = {0}; // raw lsbits defined for each pulse in each shell block
+     int32_t excitation[320];    // Q23
+     /* excitation parameters */
+     seed = opus_rc_getsymbol(rc, silk_model_lcg_seed);
+     shellblocks = silk_shell_blocks[s->bandwidth][s->subframes >> 2];
+     ratelevel = opus_rc_getsymbol(rc, silk_model_exc_rate[voiced]);
+     for (i = 0; i < shellblocks; i++) {
+         pulsecount[i] = opus_rc_getsymbol(rc, silk_model_pulse_count[ratelevel]);
+         if (pulsecount[i] == 17) {
+             while (pulsecount[i] == 17 && ++lsbcount[i] != 10)
+                 pulsecount[i] = opus_rc_getsymbol(rc, silk_model_pulse_count[9]);
+             if (lsbcount[i] == 10)
+                 pulsecount[i] = opus_rc_getsymbol(rc, silk_model_pulse_count[10]);
+         }
+     }
+     /* decode pulse locations using PVQ */
+     for (i = 0; i < shellblocks; i++) {
+         if (pulsecount[i] != 0) {
+             int a, b, c, d;
+             int32_t * location = excitation + 16*i;
+             int32_t branch[4][2];
+             branch[0][0] = pulsecount[i];
+             /* unrolled tail recursion */
+             for (a = 0; a < 1; a++) {
+                 silk_count_children(rc, 0, branch[0][a], branch[1]);
+                 for (b = 0; b < 2; b++) {
+                     silk_count_children(rc, 1, branch[1][b], branch[2]);
+                     for (c = 0; c < 2; c++) {
+                         silk_count_children(rc, 2, branch[2][c], branch[3]);
+                         for (d = 0; d < 2; d++) {
+                             silk_count_children(rc, 3, branch[3][d], location);
+                             location += 2;
+                         }
+                     }
+                 }
+             }
+         } else
+             memset(excitation + 16*i, 0, 16*sizeof(int32_t));
+     }
+     /* decode least significant bits */
+     for (i = 0; i < shellblocks << 4; i++) {
+         int bit;
+         for (bit = 0; bit < lsbcount[i >> 4]; bit++)
+             excitation[i] = (excitation[i] << 1) |
+                             opus_rc_getsymbol(rc, silk_model_excitation_lsb);
+     }
+     /* decode signs */
+     for (i = 0; i < shellblocks << 4; i++) {
+         if (excitation[i] != 0) {
+             int sign = opus_rc_getsymbol(rc, silk_model_excitation_sign[active +
+                                          voiced][qoffset_high][FFMIN(pulsecount[i >> 4], 6)]);
+             if (sign == 0)
+                 excitation[i] *= -1;
+         }
+     }
+     /* assemble the excitation */
+     for (i = 0; i < shellblocks << 4; i++) {
+         int value = excitation[i];
+         excitation[i] = value * 256 | silk_quant_offset[voiced][qoffset_high];
+         if (value < 0)      excitation[i] += 20;
+         else if (value > 0) excitation[i] -= 20;
+         /* invert samples pseudorandomly */
+         seed = 196314165 * seed + 907633515;
+         if (seed & 0x80000000)
+             excitation[i] *= -1;
+         seed += value;
+         excitationf[i] = excitation[i] / 8388608.0f;
+     }
+ }
+ /** Maximum residual history according to 4.2.7.6.1 */
+ #define SILK_MAX_LAG  (288 + LTP_ORDER / 2)
+ /** Order of the LTP filter */
+ #define LTP_ORDER 5
+ static void silk_decode_frame(SilkContext *s, OpusRangeCoder *rc,
+                               int frame_num, int channel, int coded_channels, int active, int active1)
+ {
+     /* per frame */
+     int voiced;       // combines with active to indicate inactive, active, or active+voiced
+     int qoffset_high;
+     int order;                             // order of the LPC coefficients
+     float lpc_leadin[16], lpc_body[16], residual[SILK_MAX_LAG + SILK_HISTORY];
+     int has_lpc_leadin;
+     float ltpscale;
+     /* per subframe */
+     struct {
+         float gain;
+         int pitchlag;
+         float ltptaps[5];
+     } sf[4];
+     SilkFrame * const frame = s->frame + channel;
+     int i;
+     /* obtain stereo weights */
+     if (coded_channels == 2 && channel == 0) {
+         int n, wi[2], ws[2], w[2];
+         n     = opus_rc_getsymbol(rc, silk_model_stereo_s1);
+         wi[0] = opus_rc_getsymbol(rc, silk_model_stereo_s2) + 3 * (n / 5);
+         ws[0] = opus_rc_getsymbol(rc, silk_model_stereo_s3);
+         wi[1] = opus_rc_getsymbol(rc, silk_model_stereo_s2) + 3 * (n % 5);
+         ws[1] = opus_rc_getsymbol(rc, silk_model_stereo_s3);
+         for (i = 0; i < 2; i++)
+             w[i] = silk_stereo_weights[wi[i]] +
+                    (((silk_stereo_weights[wi[i] + 1] - silk_stereo_weights[wi[i]]) * 6554) >> 16)
+                     * (ws[i]*2 + 1);
+         s->stereo_weights[0] = (w[0] - w[1]) / 8192.0;
+         s->stereo_weights[1] = w[1]          / 8192.0;
+         /* and read the mid-only flag */
+         s->midonly = active1 ? 0 : opus_rc_getsymbol(rc, silk_model_mid_only);
+     }
+     /* obtain frame type */
+     if (!active) {
+         qoffset_high = opus_rc_getsymbol(rc, silk_model_frame_type_inactive);
+         voiced = 0;
+     } else {
+         int type = opus_rc_getsymbol(rc, silk_model_frame_type_active);
+         qoffset_high = type & 1;
+         voiced = type >> 1;
+     }
+     /* obtain subframe quantization gains */
+     for (i = 0; i < s->subframes; i++) {
+         int log_gain;     //Q7
+         int ipart, fpart, lingain;
+         if (i == 0 && (frame_num == 0 || !frame->coded)) {
+             /* gain is coded absolute */
+             int x = opus_rc_getsymbol(rc, silk_model_gain_highbits[active + voiced]);
+             log_gain = (x<<3) | opus_rc_getsymbol(rc, silk_model_gain_lowbits);
+             if (frame->coded)
+                 log_gain = FFMAX(log_gain, frame->log_gain - 16);
+         } else {
+             /* gain is coded relative */
+             int delta_gain = opus_rc_getsymbol(rc, silk_model_gain_delta);
+             log_gain = av_clip(FFMAX((delta_gain<<1) - 16,
+                                      frame->log_gain + delta_gain - 4), 0, 63);
+         }
+         frame->log_gain = log_gain;
+         /* approximate 2**(x/128) with a Q7 (i.e. non-integer) input */
+         log_gain = (log_gain * 0x1D1C71 >> 16) + 2090;
+         ipart = log_gain >> 7;
+         fpart = log_gain & 127;
+         lingain = (1 << ipart) + ((-174 * fpart * (128-fpart) >>16) + fpart) * ((1<<ipart) >> 7);
+         sf[i].gain = lingain / 65536.0f;
+     }
+     /* obtain LPC filter coefficients */
+     silk_decode_lpc(s, frame, rc, lpc_leadin, lpc_body, &order, &has_lpc_leadin, voiced);
+     /* obtain pitch lags, if this is a voiced frame */
+     if (voiced) {
+         int lag_absolute = (!frame_num || !frame->prev_voiced);
+         int primarylag;         // primary pitch lag for the entire SILK frame
+         int ltpfilter;
+         const int8_t * offsets;
+         if (!lag_absolute) {
+             int delta = opus_rc_getsymbol(rc, silk_model_pitch_delta);
+             if (delta)
+                 primarylag = frame->primarylag + delta - 9;
+             else
+                 lag_absolute = 1;
+         }
+         if (lag_absolute) {
+             /* primary lag is coded absolute */
+             int highbits, lowbits;
+             const uint16_t *model[] = {
+                 silk_model_pitch_lowbits_nb, silk_model_pitch_lowbits_mb,
+                 silk_model_pitch_lowbits_wb
+             };
+             highbits = opus_rc_getsymbol(rc, silk_model_pitch_highbits);
+             lowbits  = opus_rc_getsymbol(rc, model[s->bandwidth]);
+             primarylag = silk_pitch_min_lag[s->bandwidth] +
+                          highbits*silk_pitch_scale[s->bandwidth] + lowbits;
+         }
+         frame->primarylag = primarylag;
+         if (s->subframes == 2)
+             offsets = (s->bandwidth == OPUS_BANDWIDTH_NARROWBAND)
+                      ? silk_pitch_offset_nb10ms[opus_rc_getsymbol(rc,
+                                                 silk_model_pitch_contour_nb10ms)]
+                      : silk_pitch_offset_mbwb10ms[opus_rc_getsymbol(rc,
+                                                 silk_model_pitch_contour_mbwb10ms)];
+         else
+             offsets = (s->bandwidth == OPUS_BANDWIDTH_NARROWBAND)
+                      ? silk_pitch_offset_nb20ms[opus_rc_getsymbol(rc,
+                                                 silk_model_pitch_contour_nb20ms)]
+                      : silk_pitch_offset_mbwb20ms[opus_rc_getsymbol(rc,
+                                                 silk_model_pitch_contour_mbwb20ms)];
+         for (i = 0; i < s->subframes; i++)
+             sf[i].pitchlag = av_clip(primarylag + offsets[i],
+                                      silk_pitch_min_lag[s->bandwidth],
+                                      silk_pitch_max_lag[s->bandwidth]);
+         /* obtain LTP filter coefficients */
+         ltpfilter = opus_rc_getsymbol(rc, silk_model_ltp_filter);
+         for (i = 0; i < s->subframes; i++) {
+             int index, j;
+             const uint16_t *filter_sel[] = {
+                 silk_model_ltp_filter0_sel, silk_model_ltp_filter1_sel,
+                 silk_model_ltp_filter2_sel
+             };
+             const int8_t (*filter_taps[])[5] = {
+                 silk_ltp_filter0_taps, silk_ltp_filter1_taps, silk_ltp_filter2_taps
+             };
+             index = opus_rc_getsymbol(rc, filter_sel[ltpfilter]);
+             for (j = 0; j < 5; j++)
+                 sf[i].ltptaps[j] = filter_taps[ltpfilter][index][j] / 128.0f;
+         }
+     }
+     /* obtain LTP scale factor */
+     if (voiced && frame_num == 0)
+         ltpscale = silk_ltp_scale_factor[opus_rc_getsymbol(rc,
+                                          silk_model_ltp_scale_index)] / 16384.0f;
+     else ltpscale = 15565.0f/16384.0f;
+     /* generate the excitation signal for the entire frame */
+     silk_decode_excitation(s, rc, residual + SILK_MAX_LAG, qoffset_high,
+                            active, voiced);
+     /* skip synthesising the side channel if we want mono-only */
+     if (s->output_channels == channel)
+         return;
+     /* generate the output signal */
+     for (i = 0; i < s->subframes; i++) {
+         const float * lpc_coeff = (i < 2 && has_lpc_leadin) ? lpc_leadin : lpc_body;
+         float *dst    = frame->output      + SILK_HISTORY + i * s->sflength;
+         float *resptr = residual           + SILK_MAX_LAG + i * s->sflength;
+         float *lpc    = frame->lpc_history + SILK_HISTORY + i * s->sflength;
+         float sum;
+         int j, k;
+         if (voiced) {
+             int out_end;
+             float scale;
+             if (i < 2 || s->nlsf_interp_factor == 4) {
+                 out_end = -i * s->sflength;
+                 scale   = ltpscale;
+             } else {
+                 out_end = -(i - 2) * s->sflength;
+                 scale   = 1.0f;
+             }
+             /* when the LPC coefficients change, a re-whitening filter is used */
+             /* to produce a residual that accounts for the change */
+             for (j = - sf[i].pitchlag - LTP_ORDER/2; j < out_end; j++) {
+                 sum = dst[j];
+                 for (k = 0; k < order; k++)
+                     sum -= lpc_coeff[k] * dst[j - k - 1];
+                 resptr[j] = av_clipf(sum, -1.0f, 1.0f) * scale / sf[i].gain;
+             }
+             if (out_end) {
+                 float rescale = sf[i-1].gain / sf[i].gain;
+                 for (j = out_end; j < 0; j++)
+                     resptr[j] *= rescale;
+             }
+             /* LTP synthesis */
+             for (j = 0; j < s->sflength; j++) {
+                 sum = resptr[j];
+                 for (k = 0; k < LTP_ORDER; k++)
+                     sum += sf[i].ltptaps[k] * resptr[j - sf[i].pitchlag + LTP_ORDER/2 - k];
+                 resptr[j] = sum;
+             }
+         }
+         /* LPC synthesis */
+         for (j = 0; j < s->sflength; j++) {
+             sum = resptr[j] * sf[i].gain;
+             for (k = 1; k <= order; k++)
+                 sum += lpc_coeff[k - 1] * lpc[j - k];
+             lpc[j] = sum;
+             dst[j] = av_clipf(sum, -1.0f, 1.0f);
+         }
+     }
+     frame->prev_voiced = voiced;
+     memmove(frame->lpc_history, frame->lpc_history + s->flength, SILK_HISTORY * sizeof(float));
+     memmove(frame->output,      frame->output      + s->flength, SILK_HISTORY * sizeof(float));
+     frame->coded = 1;
+ }
+ static void silk_unmix_ms(SilkContext *s, float *l, float *r)
+ {
+     float *mid    = s->frame[0].output + SILK_HISTORY - s->flength;
+     float *side   = s->frame[1].output + SILK_HISTORY - s->flength;
+     float w0_prev = s->prev_stereo_weights[0];
+     float w1_prev = s->prev_stereo_weights[1];
+     float w0      = s->stereo_weights[0];
+     float w1      = s->stereo_weights[1];
+     int n1        = silk_stereo_interp_len[s->bandwidth];
+     int i;
+     for (i = 0; i < n1; i++) {
+         float interp0 = w0_prev + i * (w0 - w0_prev) / n1;
+         float interp1 = w1_prev + i * (w1 - w1_prev) / n1;
+         float p0      = 0.25 * (mid[i - 2] + 2 * mid[i - 1] + mid[i]);
+         l[i] = av_clipf((1 + interp1) * mid[i - 1] + side[i - 1] + interp0 * p0, -1.0, 1.0);
+         r[i] = av_clipf((1 - interp1) * mid[i - 1] - side[i - 1] - interp0 * p0, -1.0, 1.0);
+     }
+     for (; i < s->flength; i++) {
+         float p0 = 0.25 * (mid[i - 2] + 2 * mid[i - 1] + mid[i]);
+         l[i] = av_clipf((1 + w1) * mid[i - 1] + side[i - 1] + w0 * p0, -1.0, 1.0);
+         r[i] = av_clipf((1 - w1) * mid[i - 1] - side[i - 1] - w0 * p0, -1.0, 1.0);
+     }
+     memcpy(s->prev_stereo_weights, s->stereo_weights, sizeof(s->stereo_weights));
+ }
+ static void silk_flush_frame(SilkFrame *frame)
+ {
+     if (!frame->coded)
+         return;
+     memset(frame->output,      0, sizeof(frame->output));
+     memset(frame->lpc_history, 0, sizeof(frame->lpc_history));
+     memset(frame->lpc,  0, sizeof(frame->lpc));
+     memset(frame->nlsf, 0, sizeof(frame->nlsf));
+     frame->log_gain = 0;
+     frame->primarylag  = 0;
+     frame->prev_voiced = 0;
+     frame->coded       = 0;
+ }
+ int ff_silk_decode_superframe(SilkContext *s, OpusRangeCoder *rc,
+                               float *output[2],
+                               enum OpusBandwidth bandwidth,
+                               int coded_channels,
+                               int duration_ms)
+ {
+     int active[2][6], redundancy[2];
+     int nb_frames, i, j;
+     if (bandwidth > OPUS_BANDWIDTH_WIDEBAND ||
+         coded_channels > 2 || duration_ms > 60) {
+         av_log(s->avctx, AV_LOG_ERROR, "Invalid parameters passed "
+                "to the SILK decoder.\n");
+         return AVERROR(EINVAL);
+     }
+     nb_frames = 1 + (duration_ms > 20) + (duration_ms > 40);
+     s->subframes = duration_ms / nb_frames / 5;         // 5ms subframes
+     s->sflength  = 20 * (bandwidth + 2);
+     s->flength   = s->sflength * s->subframes;
+     s->bandwidth = bandwidth;
+     s->wb        = bandwidth == OPUS_BANDWIDTH_WIDEBAND;
+     /* make sure to flush the side channel when switching from mono to stereo */
+     if (coded_channels > s->prev_coded_channels)
+         silk_flush_frame(&s->frame[1]);
+     s->prev_coded_channels = coded_channels;
+     /* read the LP-layer header bits */
+     for (i = 0; i < coded_channels; i++) {
+         for (j = 0; j < nb_frames; j++)
+             active[i][j] = opus_rc_p2model(rc, 1);
+         redundancy[i] = opus_rc_p2model(rc, 1);
+         if (redundancy[i]) {
+             av_log(s->avctx, AV_LOG_ERROR, "LBRR frames present; this is unsupported\n");
+             return AVERROR_PATCHWELCOME;
+         }
+     }
+     for (i = 0; i < nb_frames; i++) {
+         for (j = 0; j < coded_channels && !s->midonly; j++)
+             silk_decode_frame(s, rc, i, j, coded_channels, active[j][i], active[1][i]);
+         /* reset the side channel if it is not coded */
+         if (s->midonly && s->frame[1].coded)
+             silk_flush_frame(&s->frame[1]);
+         if (coded_channels == 1 || s->output_channels == 1) {
+             for (j = 0; j < s->output_channels; j++) {
+                 memcpy(output[j] + i * s->flength,
+                        s->frame[0].output + SILK_HISTORY - s->flength - 2,
+                        s->flength * sizeof(float));
+             }
+         } else {
+             silk_unmix_ms(s, output[0] + i * s->flength, output[1] + i * s->flength);
+         }
+         s->midonly        = 0;
+     }
+     return nb_frames * s->flength;
+ }
+ void ff_silk_free(SilkContext **ps)
+ {
+     av_freep(ps);
+ }
+ void ff_silk_flush(SilkContext *s)
+ {
+     silk_flush_frame(&s->frame[0]);
+     silk_flush_frame(&s->frame[1]);
+     memset(s->prev_stereo_weights, 0, sizeof(s->prev_stereo_weights));
+ }
+ int ff_silk_init(AVCodecContext *avctx, SilkContext **ps, int output_channels)
+ {
+     SilkContext *s;
+     if (output_channels != 1 && output_channels != 2) {
+         av_log(avctx, AV_LOG_ERROR, "Invalid number of output channels: %d\n",
+                output_channels);
+         return AVERROR(EINVAL);
+     }
+     s = av_mallocz(sizeof(*s));
+     if (!s)
+         return AVERROR(ENOMEM);
+     s->avctx           = avctx;
+     s->output_channels = output_channels;
+     ff_silk_flush(s);
+     *ps = s;
+     return 0;
+ }
index 0000000,bf3a54b..2e36797
mode 000000,100644..100644
--- /dev/null
@@@ -1,0 -1,674 +1,674 @@@
 - * This file is part of Libav.
+ /*
+  * Opus decoder
+  * Copyright (c) 2012 Andrew D'Addesio
+  * Copyright (c) 2013-2014 Mozilla Corporation
+  *
 - * Libav is free software; you can redistribute it and/or
++ * This file is part of FFmpeg.
+  *
 - * Libav is distributed in the hope that it will be useful,
++ * FFmpeg is free software; you can redistribute it and/or
+  * modify it under the terms of the GNU Lesser General Public
+  * License as published by the Free Software Foundation; either
+  * version 2.1 of the License, or (at your option) any later version.
+  *
 - * License along with Libav; if not, write to the Free Software
++ * FFmpeg is distributed in the hope that it will be useful,
+  * but WITHOUT ANY WARRANTY; without even the implied warranty of
+  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+  * Lesser General Public License for more details.
+  *
+  * You should have received a copy of the GNU Lesser General Public
++ * License along with FFmpeg; if not, write to the Free Software
+  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+  */
+ /**
+  * @file
+  * Opus decoder
+  * @author Andrew D'Addesio, Anton Khirnov
+  *
+  * Codec homepage: http://opus-codec.org/
+  * Specification: http://tools.ietf.org/html/rfc6716
+  * Ogg Opus specification: https://tools.ietf.org/html/draft-ietf-codec-oggopus-03
+  *
+  * Ogg-contained .opus files can be produced with opus-tools:
+  * http://git.xiph.org/?p=opus-tools.git
+  */
+ #include <stdint.h>
+ #include "libavutil/attributes.h"
+ #include "libavutil/audio_fifo.h"
+ #include "libavutil/channel_layout.h"
+ #include "libavutil/opt.h"
+ #include "libavresample/avresample.h"
+ #include "avcodec.h"
+ #include "celp_filters.h"
+ #include "fft.h"
+ #include "get_bits.h"
+ #include "internal.h"
+ #include "mathops.h"
+ #include "opus.h"
+ static const uint16_t silk_frame_duration_ms[16] = {
+     10, 20, 40, 60,
+     10, 20, 40, 60,
+     10, 20, 40, 60,
+     10, 20,
+     10, 20,
+ };
+ /* number of samples of silence to feed to the resampler
+  * at the beginning */
+ static const int silk_resample_delay[] = {
+     4, 8, 11, 11, 11
+ };
+ static const uint8_t celt_band_end[] = { 13, 17, 17, 19, 21 };
+ static int get_silk_samplerate(int config)
+ {
+     if (config < 4)
+         return 8000;
+     else if (config < 8)
+         return 12000;
+     return 16000;
+ }
+ /**
+  * Range decoder
+  */
+ static int opus_rc_init(OpusRangeCoder *rc, const uint8_t *data, int size)
+ {
+     int ret = init_get_bits8(&rc->gb, data, size);
+     if (ret < 0)
+         return ret;
+     rc->range = 128;
+     rc->value = 127 - get_bits(&rc->gb, 7);
+     rc->total_read_bits = 9;
+     opus_rc_normalize(rc);
+     return 0;
+ }
+ static void opus_raw_init(OpusRangeCoder *rc, const uint8_t *rightend,
+                           unsigned int bytes)
+ {
+     rc->rb.position = rightend;
+     rc->rb.bytes    = bytes;
+     rc->rb.cachelen = 0;
+     rc->rb.cacheval = 0;
+ }
+ static void opus_fade(float *out,
+                       const float *in1, const float *in2,
+                       const float *window, int len)
+ {
+     int i;
+     for (i = 0; i < len; i++)
+         out[i] = in2[i] * window[i] + in1[i] * (1.0 - window[i]);
+ }
+ static int opus_flush_resample(OpusStreamContext *s, int nb_samples)
+ {
+     int celt_size = av_audio_fifo_size(s->celt_delay);
+     int ret, i;
+     ret = avresample_convert(s->avr, (uint8_t**)s->out, s->out_size, nb_samples,
+                              NULL, 0, 0);
+     if (ret < 0)
+         return ret;
+     else if (ret != nb_samples) {
+         av_log(s->avctx, AV_LOG_ERROR, "Wrong number of flushed samples: %d\n",
+                ret);
+         return AVERROR_BUG;
+     }
+     if (celt_size) {
+         if (celt_size != nb_samples) {
+             av_log(s->avctx, AV_LOG_ERROR, "Wrong number of CELT delay samples.\n");
+             return AVERROR_BUG;
+         }
+         av_audio_fifo_read(s->celt_delay, (void**)s->celt_output, nb_samples);
+         for (i = 0; i < s->output_channels; i++) {
+             s->fdsp->vector_fmac_scalar(s->out[i],
+                                         s->celt_output[i], 1.0,
+                                         nb_samples);
+         }
+     }
+     if (s->redundancy_idx) {
+         for (i = 0; i < s->output_channels; i++)
+             opus_fade(s->out[i], s->out[i],
+                       s->redundancy_output[i] + 120 + s->redundancy_idx,
+                       ff_celt_window2 + s->redundancy_idx, 120 - s->redundancy_idx);
+         s->redundancy_idx = 0;
+     }
+     s->out[0]   += nb_samples;
+     s->out[1]   += nb_samples;
+     s->out_size -= nb_samples * sizeof(float);
+     return 0;
+ }
+ static int opus_init_resample(OpusStreamContext *s)
+ {
+     float delay[16] = { 0.0 };
+     uint8_t *delayptr[2] = { (uint8_t*)delay, (uint8_t*)delay };
+     int ret;
+     av_opt_set_int(s->avr, "in_sample_rate", s->silk_samplerate, 0);
+     ret = avresample_open(s->avr);
+     if (ret < 0) {
+         av_log(s->avctx, AV_LOG_ERROR, "Error opening the resampler.\n");
+         return ret;
+     }
+     ret = avresample_convert(s->avr, NULL, 0, 0, delayptr, sizeof(delay),
+                              silk_resample_delay[s->packet.bandwidth]);
+     if (ret < 0) {
+         av_log(s->avctx, AV_LOG_ERROR,
+                "Error feeding initial silence to the resampler.\n");
+         return ret;
+     }
+     return 0;
+ }
+ static int opus_decode_redundancy(OpusStreamContext *s, const uint8_t *data, int size)
+ {
+     int ret;
+     enum OpusBandwidth bw = s->packet.bandwidth;
+     if (s->packet.mode == OPUS_MODE_SILK &&
+         bw == OPUS_BANDWIDTH_MEDIUMBAND)
+         bw = OPUS_BANDWIDTH_WIDEBAND;
+     ret = opus_rc_init(&s->redundancy_rc, data, size);
+     if (ret < 0)
+         goto fail;
+     opus_raw_init(&s->redundancy_rc, data + size, size);
+     ret = ff_celt_decode_frame(s->celt, &s->redundancy_rc,
+                                s->redundancy_output,
+                                s->packet.stereo + 1, 240,
+                                0, celt_band_end[s->packet.bandwidth]);
+     if (ret < 0)
+         goto fail;
+     return 0;
+ fail:
+     av_log(s->avctx, AV_LOG_ERROR, "Error decoding the redundancy frame.\n");
+     return ret;
+ }
+ static int opus_decode_frame(OpusStreamContext *s, const uint8_t *data, int size)
+ {
+     int samples    = s->packet.frame_duration;
+     int redundancy = 0;
+     int redundancy_size, redundancy_pos;
+     int ret, i, consumed;
+     int delayed_samples = s->delayed_samples;
+     ret = opus_rc_init(&s->rc, data, size);
+     if (ret < 0)
+         return ret;
+     /* decode the silk frame */
+     if (s->packet.mode == OPUS_MODE_SILK || s->packet.mode == OPUS_MODE_HYBRID) {
+         if (!avresample_is_open(s->avr)) {
+             ret = opus_init_resample(s);
+             if (ret < 0)
+                 return ret;
+         }
+         samples = ff_silk_decode_superframe(s->silk, &s->rc, s->silk_output,
+                                             FFMIN(s->packet.bandwidth, OPUS_BANDWIDTH_WIDEBAND),
+                                             s->packet.stereo + 1,
+                                             silk_frame_duration_ms[s->packet.config]);
+         if (samples < 0) {
+             av_log(s->avctx, AV_LOG_ERROR, "Error decoding a SILK frame.\n");
+             return samples;
+         }
+         samples = avresample_convert(s->avr, (uint8_t**)s->out, s->out_size,
+                                      s->packet.frame_duration,
+                                      (uint8_t**)s->silk_output,
+                                      sizeof(s->silk_buf[0]),
+                                      samples);
+         if (samples < 0) {
+             av_log(s->avctx, AV_LOG_ERROR, "Error resampling SILK data.\n");
+             return samples;
+         }
+         s->delayed_samples += s->packet.frame_duration - samples;
+     } else
+         ff_silk_flush(s->silk);
+     // decode redundancy information
+     consumed = opus_rc_tell(&s->rc);
+     if (s->packet.mode == OPUS_MODE_HYBRID && consumed + 37 <= size * 8)
+         redundancy = opus_rc_p2model(&s->rc, 12);
+     else if (s->packet.mode == OPUS_MODE_SILK && consumed + 17 <= size * 8)
+         redundancy = 1;
+     if (redundancy) {
+         redundancy_pos = opus_rc_p2model(&s->rc, 1);
+         if (s->packet.mode == OPUS_MODE_HYBRID)
+             redundancy_size = opus_rc_unimodel(&s->rc, 256) + 2;
+         else
+             redundancy_size = size - (consumed + 7) / 8;
+         size -= redundancy_size;
+         if (size < 0) {
+             av_log(s->avctx, AV_LOG_ERROR, "Invalid redundancy frame size.\n");
+             return AVERROR_INVALIDDATA;
+         }
+         if (redundancy_pos) {
+             ret = opus_decode_redundancy(s, data + size, redundancy_size);
+             if (ret < 0)
+                 return ret;
+             ff_celt_flush(s->celt);
+         }
+     }
+     /* decode the CELT frame */
+     if (s->packet.mode == OPUS_MODE_CELT || s->packet.mode == OPUS_MODE_HYBRID) {
+         float *out_tmp[2] = { s->out[0], s->out[1] };
+         float **dst = (s->packet.mode == OPUS_MODE_CELT) ?
+                       out_tmp : s->celt_output;
+         int celt_output_samples = samples;
+         int delay_samples = av_audio_fifo_size(s->celt_delay);
+         if (delay_samples) {
+             if (s->packet.mode == OPUS_MODE_HYBRID) {
+                 av_audio_fifo_read(s->celt_delay, (void**)s->celt_output, delay_samples);
+                 for (i = 0; i < s->output_channels; i++) {
+                     s->fdsp->vector_fmac_scalar(out_tmp[i], s->celt_output[i], 1.0,
+                                                 delay_samples);
+                     out_tmp[i] += delay_samples;
+                 }
+                 celt_output_samples -= delay_samples;
+             } else {
+                 av_log(s->avctx, AV_LOG_WARNING,
+                        "Spurious CELT delay samples present.\n");
+                 av_audio_fifo_drain(s->celt_delay, delay_samples);
+                 if (s->avctx->err_recognition & AV_EF_EXPLODE)
+                     return AVERROR_BUG;
+             }
+         }
+         opus_raw_init(&s->rc, data + size, size);
+         ret = ff_celt_decode_frame(s->celt, &s->rc, dst,
+                                    s->packet.stereo + 1,
+                                    s->packet.frame_duration,
+                                    (s->packet.mode == OPUS_MODE_HYBRID) ? 17 : 0,
+                                    celt_band_end[s->packet.bandwidth]);
+         if (ret < 0)
+             return ret;
+         if (s->packet.mode == OPUS_MODE_HYBRID) {
+             int celt_delay = s->packet.frame_duration - celt_output_samples;
+             void *delaybuf[2] = { s->celt_output[0] + celt_output_samples,
+                                   s->celt_output[1] + celt_output_samples };
+             for (i = 0; i < s->output_channels; i++) {
+                 s->fdsp->vector_fmac_scalar(out_tmp[i],
+                                             s->celt_output[i], 1.0,
+                                             celt_output_samples);
+             }
+             ret = av_audio_fifo_write(s->celt_delay, delaybuf, celt_delay);
+             if (ret < 0)
+                 return ret;
+         }
+     } else
+         ff_celt_flush(s->celt);
+     if (s->redundancy_idx) {
+         for (i = 0; i < s->output_channels; i++)
+             opus_fade(s->out[i], s->out[i],
+                       s->redundancy_output[i] + 120 + s->redundancy_idx,
+                       ff_celt_window2 + s->redundancy_idx, 120 - s->redundancy_idx);
+         s->redundancy_idx = 0;
+     }
+     if (redundancy) {
+         if (!redundancy_pos) {
+             ff_celt_flush(s->celt);
+             ret = opus_decode_redundancy(s, data + size, redundancy_size);
+             if (ret < 0)
+                 return ret;
+             for (i = 0; i < s->output_channels; i++) {
+                 opus_fade(s->out[i] + samples - 120 + delayed_samples,
+                           s->out[i] + samples - 120 + delayed_samples,
+                           s->redundancy_output[i] + 120,
+                           ff_celt_window2, 120 - delayed_samples);
+                 if (delayed_samples)
+                     s->redundancy_idx = 120 - delayed_samples;
+             }
+         } else {
+             for (i = 0; i < s->output_channels; i++) {
+                 memcpy(s->out[i] + delayed_samples, s->redundancy_output[i], 120 * sizeof(float));
+                 opus_fade(s->out[i] + 120 + delayed_samples,
+                           s->redundancy_output[i] + 120,
+                           s->out[i] + 120 + delayed_samples,
+                           ff_celt_window2, 120);
+             }
+         }
+     }
+     return samples;
+ }
+ static int opus_decode_subpacket(OpusStreamContext *s,
+                                  const uint8_t *buf, int buf_size,
+                                  int nb_samples)
+ {
+     int output_samples = 0;
+     int flush_needed   = 0;
+     int i, j, ret;
+     /* check if we need to flush the resampler */
+     if (avresample_is_open(s->avr)) {
+         if (buf) {
+             int64_t cur_samplerate;
+             av_opt_get_int(s->avr, "in_sample_rate", 0, &cur_samplerate);
+             flush_needed = (s->packet.mode == OPUS_MODE_CELT) || (cur_samplerate != s->silk_samplerate);
+         } else {
+             flush_needed = !!s->delayed_samples;
+         }
+     }
+     if (!buf && !flush_needed)
+         return 0;
+     /* use dummy output buffers if the channel is not mapped to anything */
+     if (!s->out[0] ||
+         (s->output_channels == 2 && !s->out[1])) {
+         av_fast_malloc(&s->out_dummy, &s->out_dummy_allocated_size, s->out_size);
+         if (!s->out_dummy)
+             return AVERROR(ENOMEM);
+         if (!s->out[0])
+             s->out[0] = s->out_dummy;
+         if (!s->out[1])
+             s->out[1] = s->out_dummy;
+     }
+     /* flush the resampler if necessary */
+     if (flush_needed) {
+         ret = opus_flush_resample(s, s->delayed_samples);
+         if (ret < 0) {
+             av_log(s->avctx, AV_LOG_ERROR, "Error flushing the resampler.\n");
+             return ret;
+         }
+         avresample_close(s->avr);
+         output_samples += s->delayed_samples;
+         s->delayed_samples = 0;
+         if (!buf)
+             goto finish;
+     }
+     /* decode all the frames in the packet */
+     for (i = 0; i < s->packet.frame_count; i++) {
+         int size = s->packet.frame_size[i];
+         int samples = opus_decode_frame(s, buf + s->packet.frame_offset[i], size);
+         if (samples < 0) {
+             av_log(s->avctx, AV_LOG_ERROR, "Error decoding an Opus frame.\n");
+             if (s->avctx->err_recognition & AV_EF_EXPLODE)
+                 return samples;
+             for (j = 0; j < s->output_channels; j++)
+                 memset(s->out[j], 0, s->packet.frame_duration * sizeof(float));
+             samples = s->packet.frame_duration;
+         }
+         output_samples += samples;
+         for (j = 0; j < s->output_channels; j++)
+             s->out[j] += samples;
+         s->out_size -= samples * sizeof(float);
+     }
+ finish:
+     s->out[0] = s->out[1] = NULL;
+     s->out_size = 0;
+     return output_samples;
+ }
+ static int opus_decode_packet(AVCodecContext *avctx, void *data,
+                               int *got_frame_ptr, AVPacket *avpkt)
+ {
+     OpusContext *c      = avctx->priv_data;
+     AVFrame *frame      = data;
+     const uint8_t *buf  = avpkt->data;
+     int buf_size        = avpkt->size;
+     int coded_samples   = 0;
+     int decoded_samples = 0;
+     int i, ret;
+     /* decode the header of the first sub-packet to find out the sample count */
+     if (buf) {
+         OpusPacket *pkt = &c->streams[0].packet;
+         ret = ff_opus_parse_packet(pkt, buf, buf_size, c->nb_streams > 1);
+         if (ret < 0) {
+             av_log(avctx, AV_LOG_ERROR, "Error parsing the packet header.\n");
+             return ret;
+         }
+         coded_samples += pkt->frame_count * pkt->frame_duration;
+         c->streams[0].silk_samplerate = get_silk_samplerate(pkt->config);
+     }
+     frame->nb_samples = coded_samples + c->streams[0].delayed_samples;
+     /* no input or buffered data => nothing to do */
+     if (!frame->nb_samples) {
+         *got_frame_ptr = 0;
+         return 0;
+     }
+     /* setup the data buffers */
+     ret = ff_get_buffer(avctx, frame, 0);
+     if (ret < 0) {
+         av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
+         return ret;
+     }
+     frame->nb_samples = 0;
+     for (i = 0; i < avctx->channels; i++) {
+         ChannelMap *map = &c->channel_maps[i];
+         if (!map->copy)
+             c->streams[map->stream_idx].out[map->channel_idx] = (float*)frame->extended_data[i];
+     }
+     for (i = 0; i < c->nb_streams; i++)
+         c->streams[i].out_size = frame->linesize[0];
+     /* decode each sub-packet */
+     for (i = 0; i < c->nb_streams; i++) {
+         OpusStreamContext *s = &c->streams[i];
+         if (i && buf) {
+             ret = ff_opus_parse_packet(&s->packet, buf, buf_size, i != c->nb_streams - 1);
+             if (ret < 0) {
+                 av_log(avctx, AV_LOG_ERROR, "Error parsing the packet header.\n");
+                 return ret;
+             }
+             s->silk_samplerate = get_silk_samplerate(s->packet.config);
+         }
+         ret = opus_decode_subpacket(&c->streams[i], buf,
+                                     s->packet.data_size, coded_samples);
+         if (ret < 0)
+             return ret;
+         if (decoded_samples && ret != decoded_samples) {
+             av_log(avctx, AV_LOG_ERROR, "Different numbers of decoded samples "
+                    "in a multi-channel stream\n");
+             return AVERROR_INVALIDDATA;
+         }
+         decoded_samples = ret;
+         buf      += s->packet.packet_size;
+         buf_size -= s->packet.packet_size;
+     }
+     for (i = 0; i < avctx->channels; i++) {
+         ChannelMap *map = &c->channel_maps[i];
+         /* handle copied channels */
+         if (map->copy) {
+             memcpy(frame->extended_data[i],
+                    frame->extended_data[map->copy_idx],
+                    frame->linesize[0]);
+         } else if (map->silence) {
+             memset(frame->extended_data[i], 0, frame->linesize[0]);
+         }
+         if (c->gain_i) {
+             c->fdsp.vector_fmul_scalar((float*)frame->extended_data[i],
+                                        (float*)frame->extended_data[i],
+                                        c->gain, FFALIGN(decoded_samples, 8));
+         }
+     }
+     frame->nb_samples = decoded_samples;
+     *got_frame_ptr    = !!decoded_samples;
+     return avpkt->size;
+ }
+ static av_cold void opus_decode_flush(AVCodecContext *ctx)
+ {
+     OpusContext *c = ctx->priv_data;
+     int i;
+     for (i = 0; i < c->nb_streams; i++) {
+         OpusStreamContext *s = &c->streams[i];
+         memset(&s->packet, 0, sizeof(s->packet));
+         s->delayed_samples = 0;
+         if (s->celt_delay)
+             av_audio_fifo_drain(s->celt_delay, av_audio_fifo_size(s->celt_delay));
+         avresample_close(s->avr);
+         ff_silk_flush(s->silk);
+         ff_celt_flush(s->celt);
+     }
+ }
+ static av_cold int opus_decode_close(AVCodecContext *avctx)
+ {
+     OpusContext *c = avctx->priv_data;
+     int i;
+     for (i = 0; i < c->nb_streams; i++) {
+         OpusStreamContext *s = &c->streams[i];
+         ff_silk_free(&s->silk);
+         ff_celt_free(&s->celt);
+         av_freep(&s->out_dummy);
+         s->out_dummy_allocated_size = 0;
+         av_audio_fifo_free(s->celt_delay);
+         avresample_free(&s->avr);
+     }
+     av_freep(&c->streams);
+     c->nb_streams = 0;
+     av_freep(&c->channel_maps);
+     return 0;
+ }
+ static av_cold int opus_decode_init(AVCodecContext *avctx)
+ {
+     OpusContext *c = avctx->priv_data;
+     int ret, i, j;
+     avctx->sample_fmt  = AV_SAMPLE_FMT_FLTP;
+     avctx->sample_rate = 48000;
+     avpriv_float_dsp_init(&c->fdsp, 0);
+     /* find out the channel configuration */
+     ret = ff_opus_parse_extradata(avctx, c);
+     if (ret < 0)
+         return ret;
+     /* allocate and init each independent decoder */
+     c->streams = av_mallocz_array(c->nb_streams, sizeof(*c->streams));
+     if (!c->streams) {
+         c->nb_streams = 0;
+         ret = AVERROR(ENOMEM);
+         goto fail;
+     }
+     for (i = 0; i < c->nb_streams; i++) {
+         OpusStreamContext *s = &c->streams[i];
+         uint64_t layout;
+         s->output_channels = (i < c->nb_stereo_streams) ? 2 : 1;
+         s->avctx = avctx;
+         for (j = 0; j < s->output_channels; j++) {
+             s->silk_output[j]       = s->silk_buf[j];
+             s->celt_output[j]       = s->celt_buf[j];
+             s->redundancy_output[j] = s->redundancy_buf[j];
+         }
+         s->fdsp = &c->fdsp;
+         s->avr = avresample_alloc_context();
+         if (!s->avr)
+             goto fail;
+         layout = (s->output_channels == 1) ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
+         av_opt_set_int(s->avr, "in_sample_fmt",      avctx->sample_fmt,  0);
+         av_opt_set_int(s->avr, "out_sample_fmt",     avctx->sample_fmt,  0);
+         av_opt_set_int(s->avr, "in_channel_layout",  layout,             0);
+         av_opt_set_int(s->avr, "out_channel_layout", layout,             0);
+         av_opt_set_int(s->avr, "out_sample_rate",    avctx->sample_rate, 0);
+         ret = ff_silk_init(avctx, &s->silk, s->output_channels);
+         if (ret < 0)
+             goto fail;
+         ret = ff_celt_init(avctx, &s->celt, s->output_channels);
+         if (ret < 0)
+             goto fail;
+         s->celt_delay = av_audio_fifo_alloc(avctx->sample_fmt,
+                                             s->output_channels, 1024);
+         if (!s->celt_delay) {
+             ret = AVERROR(ENOMEM);
+             goto fail;
+         }
+     }
+     return 0;
+ fail:
+     opus_decode_close(avctx);
+     return ret;
+ }
+ AVCodec ff_opus_decoder = {
+     .name            = "opus",
+     .long_name       = NULL_IF_CONFIG_SMALL("Opus"),
+     .type            = AVMEDIA_TYPE_AUDIO,
+     .id              = AV_CODEC_ID_OPUS,
+     .priv_data_size  = sizeof(OpusContext),
+     .init            = opus_decode_init,
+     .close           = opus_decode_close,
+     .decode          = opus_decode_packet,
+     .flush           = opus_decode_flush,
+     .capabilities    = CODEC_CAP_DR1 | CODEC_CAP_DELAY,
+ };
@@@ -29,8 -29,8 +29,8 @@@
  #include "libavutil/version.h"
  
  #define LIBAVCODEC_VERSION_MAJOR 55
- #define LIBAVCODEC_VERSION_MINOR  61
- #define LIBAVCODEC_VERSION_MICRO 101
 -#define LIBAVCODEC_VERSION_MINOR 51
 -#define LIBAVCODEC_VERSION_MICRO  0
++#define LIBAVCODEC_VERSION_MINOR  62
++#define LIBAVCODEC_VERSION_MICRO 100
  
  #define LIBAVCODEC_VERSION_INT  AV_VERSION_INT(LIBAVCODEC_VERSION_MAJOR, \
                                                 LIBAVCODEC_VERSION_MINOR, \
diff --cc tests/Makefile
Simple merge
index 0000000,6c8bc9b..515087b
mode 000000,100644..100644
--- /dev/null
@@@ -1,0 -1,39 +1,39 @@@
 -fate-opus-$(1): CMD = avconv -i $(TARGET_SAMPLES)/opus/$(1).mka -f f32le -
+ # The samples were produced by simply rewrapping the official test vectors from
+ # their custom format into Matroska.
+ # The reference files were created with our decoder and tested against the
+ # libopus output with the official opus_compare tool. We cannot use libopus
+ # output as reference directly, because the use of different resamplers would
+ # require too high fuzz values, which can hide bugs.
+ # Before adding new tests here, always make sure they pass opus_compare.
+ OPUS_CELT_SAMPLES   = $(addprefix testvector, 01 07 11) tron.6ch.tinypkts
+ OPUS_HYBRID_SAMPLES = $(addprefix testvector, 05 06)
+ OPUS_SILK_SAMPLES   = $(addprefix testvector, 02 03 04)
+ OPUS_SAMPLES        = $(addprefix testvector, 08 09 10 12)
+ define FATE_OPUS_TEST
+ FATE_OPUS     += fate-opus-$(1)
+ FATE_OPUS$(2) += fate-opus-$(1)
 -FATE_SAMPLES_AVCONV-$(call DEMDEC, MATROSKA, OPUS) += $(FATE_OPUS)
++fate-opus-$(1): CMD = ffmpeg -i $(TARGET_SAMPLES)/opus/$(1).mka -f f32le -
+ fate-opus-$(1): REF = $(TARGET_SAMPLES)/opus/$(1).f32
+ endef
+ $(foreach N,$(OPUS_CELT_SAMPLES),  $(eval $(call FATE_OPUS_TEST,$(N),_CELT)))
+ $(foreach N,$(OPUS_HYBRID_SAMPLES),$(eval $(call FATE_OPUS_TEST,$(N),_HYBRID)))
+ $(foreach N,$(OPUS_SILK_SAMPLES),  $(eval $(call FATE_OPUS_TEST,$(N),_SILK)))
+ $(foreach N,$(OPUS_SAMPLES),       $(eval $(call FATE_OPUS_TEST,$(N),)))
+ FATE_OPUS := $(sort $(FATE_OPUS))
+ $(FATE_OPUS): CMP = stddev
+ $(FATE_OPUS): CMP_UNIT = f32
+ $(FATE_OPUS): FUZZ = 3
+ $(FATE_OPUS_CELT): CMP = oneoff
+ $(FATE_OPUS_CELT): FUZZ = 5
++#FATE_SAMPLES_AVCONV-$(call DEMDEC, MATROSKA, OPUS) += $(FATE_OPUS)
+ fate-opus-celt: $(FATE_OPUS_CELT)
+ fate-opus-hybrid: $(FATE_OPUS_HYBRID)
+ fate-opus-silk: $(FATE_OPUS_SILK)
+ fate-opus: $(FATE_OPUS)