vp9: add mxext versions of the single-block (w=4,npx=8) h/v loopfilters.
[ffmpeg.git] / libavcodec / eac3dec.c
index d5c6198..47e5aa6 100644 (file)
@@ -6,25 +6,52 @@
  * This file is part of FFmpeg.
  *
  * FFmpeg is free software; you can redistribute it and/or
- * modify it under the terms of the GNU General Public
+ * modify it under the terms of the GNU Lesser General Public
  * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
+ * version 2.1 of the License, or (at your option) any later version.
  *
  * FFmpeg is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
- * General Public License for more details.
+ * Lesser General Public License for more details.
  *
- * You should have received a copy of the GNU General Public
+ * You should have received a copy of the GNU Lesser General Public
  * License along with FFmpeg; if not, write to the Free Software
  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
  */
 
+/*
+ * There are several features of E-AC-3 that this decoder does not yet support.
+ *
+ * Enhanced Coupling
+ *     No known samples exist.  If any ever surface, this feature should not be
+ *     too difficult to implement.
+ *
+ * Reduced Sample Rates
+ *     No known samples exist.  The spec also does not give clear information
+ *     on how this is to be implemented.
+ *
+ * Dependent Streams
+ *     Only the independent stream is currently decoded. Any dependent
+ *     streams are skipped.  We have only come across two examples of this, and
+ *     they are both just test streams, one for HD-DVD and the other for
+ *     Blu-ray.
+ *
+ * Transient Pre-noise Processing
+ *     This is side information which a decoder should use to reduce artifacts
+ *     caused by transients.  There are samples which are known to have this
+ *     information, but this decoder currently ignores it.
+ */
+
+
 #include "avcodec.h"
+#include "internal.h"
+#include "aac_ac3_parser.h"
 #include "ac3.h"
 #include "ac3_parser.h"
 #include "ac3dec.h"
 #include "ac3dec_data.h"
+#include "eac3_data.h"
 
 /** gain adaptive quantization mode */
 typedef enum {
@@ -36,6 +63,100 @@ typedef enum {
 
 #define EAC3_SR_CODE_REDUCED  3
 
+static void ff_eac3_apply_spectral_extension(AC3DecodeContext *s)
+{
+    int bin, bnd, ch, i;
+    uint8_t wrapflag[SPX_MAX_BANDS]={1,0,}, num_copy_sections, copy_sizes[SPX_MAX_BANDS];
+    float rms_energy[SPX_MAX_BANDS];
+
+    /* Set copy index mapping table. Set wrap flags to apply a notch filter at
+       wrap points later on. */
+    bin = s->spx_dst_start_freq;
+    num_copy_sections = 0;
+    for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
+        int copysize;
+        int bandsize = s->spx_band_sizes[bnd];
+        if (bin + bandsize > s->spx_src_start_freq) {
+            copy_sizes[num_copy_sections++] = bin - s->spx_dst_start_freq;
+            bin = s->spx_dst_start_freq;
+            wrapflag[bnd] = 1;
+        }
+        for (i = 0; i < bandsize; i += copysize) {
+            if (bin == s->spx_src_start_freq) {
+                copy_sizes[num_copy_sections++] = bin - s->spx_dst_start_freq;
+                bin = s->spx_dst_start_freq;
+            }
+            copysize = FFMIN(bandsize - i, s->spx_src_start_freq - bin);
+            bin += copysize;
+        }
+    }
+    copy_sizes[num_copy_sections++] = bin - s->spx_dst_start_freq;
+
+    for (ch = 1; ch <= s->fbw_channels; ch++) {
+        if (!s->channel_uses_spx[ch])
+            continue;
+
+        /* Copy coeffs from normal bands to extension bands */
+        bin = s->spx_src_start_freq;
+        for (i = 0; i < num_copy_sections; i++) {
+            memcpy(&s->transform_coeffs[ch][bin],
+                   &s->transform_coeffs[ch][s->spx_dst_start_freq],
+                   copy_sizes[i]*sizeof(INTFLOAT));
+            bin += copy_sizes[i];
+        }
+
+        /* Calculate RMS energy for each SPX band. */
+        bin = s->spx_src_start_freq;
+        for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
+            int bandsize = s->spx_band_sizes[bnd];
+            float accum = 0.0f;
+            for (i = 0; i < bandsize; i++) {
+                float coeff = s->transform_coeffs[ch][bin++];
+                accum += coeff * coeff;
+            }
+            rms_energy[bnd] = sqrtf(accum / bandsize);
+        }
+
+        /* Apply a notch filter at transitions between normal and extension
+           bands and at all wrap points. */
+        if (s->spx_atten_code[ch] >= 0) {
+            const float *atten_tab = ff_eac3_spx_atten_tab[s->spx_atten_code[ch]];
+            bin = s->spx_src_start_freq - 2;
+            for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
+                if (wrapflag[bnd]) {
+                    INTFLOAT *coeffs = &s->transform_coeffs[ch][bin];
+                    coeffs[0] *= atten_tab[0];
+                    coeffs[1] *= atten_tab[1];
+                    coeffs[2] *= atten_tab[2];
+                    coeffs[3] *= atten_tab[1];
+                    coeffs[4] *= atten_tab[0];
+                }
+                bin += s->spx_band_sizes[bnd];
+            }
+        }
+
+        /* Apply noise-blended coefficient scaling based on previously
+           calculated RMS energy, blending factors, and SPX coordinates for
+           each band. */
+        bin = s->spx_src_start_freq;
+        for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
+            float nscale = s->spx_noise_blend[ch][bnd] * rms_energy[bnd] * (1.0f / INT32_MIN);
+            float sscale = s->spx_signal_blend[ch][bnd];
+#if USE_FIXED
+            // spx_noise_blend and spx_signal_blend are both FP.23
+            nscale *= 1.0 / (1<<23);
+            sscale *= 1.0 / (1<<23);
+#endif
+            for (i = 0; i < s->spx_band_sizes[bnd]; i++) {
+                float noise  = nscale * (int32_t)av_lfg_get(&s->dith_state);
+                s->transform_coeffs[ch][bin]   *= sscale;
+                s->transform_coeffs[ch][bin++] += noise;
+            }
+        }
+    }
+}
+
+
 /** lrint(M_SQRT2*cos(2*M_PI/12)*(1<<23)) */
 #define COEFF_0 10273905LL
 
@@ -78,3 +199,420 @@ static void idct6(int pre_mant[6])
     pre_mant[4] = even1 - odd1;
     pre_mant[5] = even0 - odd0;
 }
+
+static void ff_eac3_decode_transform_coeffs_aht_ch(AC3DecodeContext *s, int ch)
+{
+    int bin, blk, gs;
+    int end_bap, gaq_mode;
+    GetBitContext *gbc = &s->gbc;
+    int gaq_gain[AC3_MAX_COEFS];
+
+    gaq_mode = get_bits(gbc, 2);
+    end_bap = (gaq_mode < 2) ? 12 : 17;
+
+    /* if GAQ gain is used, decode gain codes for bins with hebap between
+       8 and end_bap */
+    gs = 0;
+    if (gaq_mode == EAC3_GAQ_12 || gaq_mode == EAC3_GAQ_14) {
+        /* read 1-bit GAQ gain codes */
+        for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
+            if (s->bap[ch][bin] > 7 && s->bap[ch][bin] < end_bap)
+                gaq_gain[gs++] = get_bits1(gbc) << (gaq_mode-1);
+        }
+    } else if (gaq_mode == EAC3_GAQ_124) {
+        /* read 1.67-bit GAQ gain codes (3 codes in 5 bits) */
+        int gc = 2;
+        for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
+            if (s->bap[ch][bin] > 7 && s->bap[ch][bin] < 17) {
+                if (gc++ == 2) {
+                    int group_code = get_bits(gbc, 5);
+                    if (group_code > 26) {
+                        av_log(s->avctx, AV_LOG_WARNING, "GAQ gain group code out-of-range\n");
+                        group_code = 26;
+                    }
+                    gaq_gain[gs++] = ff_ac3_ungroup_3_in_5_bits_tab[group_code][0];
+                    gaq_gain[gs++] = ff_ac3_ungroup_3_in_5_bits_tab[group_code][1];
+                    gaq_gain[gs++] = ff_ac3_ungroup_3_in_5_bits_tab[group_code][2];
+                    gc = 0;
+                }
+            }
+        }
+    }
+
+    gs=0;
+    for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
+        int hebap = s->bap[ch][bin];
+        int bits = ff_eac3_bits_vs_hebap[hebap];
+        if (!hebap) {
+            /* zero-mantissa dithering */
+            for (blk = 0; blk < 6; blk++) {
+                s->pre_mantissa[ch][bin][blk] = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000;
+            }
+        } else if (hebap < 8) {
+            /* Vector Quantization */
+            int v = get_bits(gbc, bits);
+            for (blk = 0; blk < 6; blk++) {
+                s->pre_mantissa[ch][bin][blk] = ff_eac3_mantissa_vq[hebap][v][blk] << 8;
+            }
+        } else {
+            /* Gain Adaptive Quantization */
+            int gbits, log_gain;
+            if (gaq_mode != EAC3_GAQ_NO && hebap < end_bap) {
+                log_gain = gaq_gain[gs++];
+            } else {
+                log_gain = 0;
+            }
+            gbits = bits - log_gain;
+
+            for (blk = 0; blk < 6; blk++) {
+                int mant = get_sbits(gbc, gbits);
+                if (log_gain && mant == -(1 << (gbits-1))) {
+                    /* large mantissa */
+                    int b;
+                    int mbits = bits - (2 - log_gain);
+                    mant = get_sbits(gbc, mbits);
+                    mant <<= (23 - (mbits - 1));
+                    /* remap mantissa value to correct for asymmetric quantization */
+                    if (mant >= 0)
+                        b = 1 << (23 - log_gain);
+                    else
+                        b = ff_eac3_gaq_remap_2_4_b[hebap-8][log_gain-1] << 8;
+                    mant += ((ff_eac3_gaq_remap_2_4_a[hebap-8][log_gain-1] * (int64_t)mant) >> 15) + b;
+                } else {
+                    /* small mantissa, no GAQ, or Gk=1 */
+                    mant <<= 24 - bits;
+                    if (!log_gain) {
+                        /* remap mantissa value for no GAQ or Gk=1 */
+                        mant += (ff_eac3_gaq_remap_1[hebap-8] * (int64_t)mant) >> 15;
+                    }
+                }
+                s->pre_mantissa[ch][bin][blk] = mant;
+            }
+        }
+        idct6(s->pre_mantissa[ch][bin]);
+    }
+}
+
+static int ff_eac3_parse_header(AC3DecodeContext *s)
+{
+    int i, blk, ch;
+    int ac3_exponent_strategy, parse_aht_info, parse_spx_atten_data;
+    int parse_transient_proc_info;
+    int num_cpl_blocks;
+    GetBitContext *gbc = &s->gbc;
+
+    /* An E-AC-3 stream can have multiple independent streams which the
+       application can select from. each independent stream can also contain
+       dependent streams which are used to add or replace channels. */
+    if (s->frame_type == EAC3_FRAME_TYPE_DEPENDENT) {
+        if (!s->eac3_frame_dependent_found) {
+            s->eac3_frame_dependent_found = 1;
+            avpriv_request_sample(s->avctx, "Dependent substream decoding");
+        }
+        return AAC_AC3_PARSE_ERROR_FRAME_TYPE;
+    } else if (s->frame_type == EAC3_FRAME_TYPE_RESERVED) {
+        av_log(s->avctx, AV_LOG_ERROR, "Reserved frame type\n");
+        return AAC_AC3_PARSE_ERROR_FRAME_TYPE;
+    }
+
+    /* The substream id indicates which substream this frame belongs to. each
+       independent stream has its own substream id, and the dependent streams
+       associated to an independent stream have matching substream id's. */
+    if (s->substreamid) {
+        /* only decode substream with id=0. skip any additional substreams. */
+        if (!s->eac3_subsbtreamid_found) {
+            s->eac3_subsbtreamid_found = 1;
+            avpriv_request_sample(s->avctx, "Additional substreams");
+        }
+        return AAC_AC3_PARSE_ERROR_FRAME_TYPE;
+    }
+
+    if (s->bit_alloc_params.sr_code == EAC3_SR_CODE_REDUCED) {
+        /* The E-AC-3 specification does not tell how to handle reduced sample
+           rates in bit allocation.  The best assumption would be that it is
+           handled like AC-3 DolbyNet, but we cannot be sure until we have a
+           sample which utilizes this feature. */
+        avpriv_request_sample(s->avctx, "Reduced sampling rate");
+        return AVERROR_PATCHWELCOME;
+    }
+    skip_bits(gbc, 5); // skip bitstream id
+
+    /* volume control params */
+    for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
+        skip_bits(gbc, 5); // skip dialog normalization
+        if (get_bits1(gbc)) {
+            skip_bits(gbc, 8); // skip compression gain word
+        }
+    }
+
+    /* dependent stream channel map */
+    if (s->frame_type == EAC3_FRAME_TYPE_DEPENDENT) {
+        if (get_bits1(gbc)) {
+            skip_bits(gbc, 16); // skip custom channel map
+        }
+    }
+
+    /* mixing metadata */
+    if (get_bits1(gbc)) {
+        /* center and surround mix levels */
+        if (s->channel_mode > AC3_CHMODE_STEREO) {
+            s->preferred_downmix = get_bits(gbc, 2);
+            if (s->channel_mode & 1) {
+                /* if three front channels exist */
+                s->center_mix_level_ltrt = get_bits(gbc, 3);
+                s->center_mix_level      = get_bits(gbc, 3);
+            }
+            if (s->channel_mode & 4) {
+                /* if a surround channel exists */
+                s->surround_mix_level_ltrt = av_clip(get_bits(gbc, 3), 3, 7);
+                s->surround_mix_level      = av_clip(get_bits(gbc, 3), 3, 7);
+            }
+        }
+
+        /* lfe mix level */
+        if (s->lfe_on && (s->lfe_mix_level_exists = get_bits1(gbc))) {
+            s->lfe_mix_level = get_bits(gbc, 5);
+        }
+
+        /* info for mixing with other streams and substreams */
+        if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT) {
+            for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
+                // TODO: apply program scale factor
+                if (get_bits1(gbc)) {
+                    skip_bits(gbc, 6);  // skip program scale factor
+                }
+            }
+            if (get_bits1(gbc)) {
+                skip_bits(gbc, 6);  // skip external program scale factor
+            }
+            /* skip mixing parameter data */
+            switch(get_bits(gbc, 2)) {
+                case 1: skip_bits(gbc, 5);  break;
+                case 2: skip_bits(gbc, 12); break;
+                case 3: {
+                    int mix_data_size = (get_bits(gbc, 5) + 2) << 3;
+                    skip_bits_long(gbc, mix_data_size);
+                    break;
+                }
+            }
+            /* skip pan information for mono or dual mono source */
+            if (s->channel_mode < AC3_CHMODE_STEREO) {
+                for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
+                    if (get_bits1(gbc)) {
+                        /* note: this is not in the ATSC A/52B specification
+                           reference: ETSI TS 102 366 V1.1.1
+                                      section: E.1.3.1.25 */
+                        skip_bits(gbc, 8);  // skip pan mean direction index
+                        skip_bits(gbc, 6);  // skip reserved paninfo bits
+                    }
+                }
+            }
+            /* skip mixing configuration information */
+            if (get_bits1(gbc)) {
+                for (blk = 0; blk < s->num_blocks; blk++) {
+                    if (s->num_blocks == 1 || get_bits1(gbc)) {
+                        skip_bits(gbc, 5);
+                    }
+                }
+            }
+        }
+    }
+
+    /* informational metadata */
+    if (get_bits1(gbc)) {
+        s->bitstream_mode = get_bits(gbc, 3);
+        skip_bits(gbc, 2); // skip copyright bit and original bitstream bit
+        if (s->channel_mode == AC3_CHMODE_STEREO) {
+            s->dolby_surround_mode  = get_bits(gbc, 2);
+            s->dolby_headphone_mode = get_bits(gbc, 2);
+        }
+        if (s->channel_mode >= AC3_CHMODE_2F2R) {
+            s->dolby_surround_ex_mode = get_bits(gbc, 2);
+        }
+        for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
+            if (get_bits1(gbc)) {
+                skip_bits(gbc, 8); // skip mix level, room type, and A/D converter type
+            }
+        }
+        if (s->bit_alloc_params.sr_code != EAC3_SR_CODE_REDUCED) {
+            skip_bits1(gbc); // skip source sample rate code
+        }
+    }
+
+    /* converter synchronization flag
+       If frames are less than six blocks, this bit should be turned on
+       once every 6 blocks to indicate the start of a frame set.
+       reference: RFC 4598, Section 2.1.3  Frame Sets */
+    if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT && s->num_blocks != 6) {
+        skip_bits1(gbc); // skip converter synchronization flag
+    }
+
+    /* original frame size code if this stream was converted from AC-3 */
+    if (s->frame_type == EAC3_FRAME_TYPE_AC3_CONVERT &&
+            (s->num_blocks == 6 || get_bits1(gbc))) {
+        skip_bits(gbc, 6); // skip frame size code
+    }
+
+    /* additional bitstream info */
+    if (get_bits1(gbc)) {
+        int addbsil = get_bits(gbc, 6);
+        for (i = 0; i < addbsil + 1; i++) {
+            skip_bits(gbc, 8); // skip additional bit stream info
+        }
+    }
+
+    /* audio frame syntax flags, strategy data, and per-frame data */
+
+    if (s->num_blocks == 6) {
+        ac3_exponent_strategy = get_bits1(gbc);
+        parse_aht_info        = get_bits1(gbc);
+    } else {
+        /* less than 6 blocks, so use AC-3-style exponent strategy syntax, and
+           do not use AHT */
+        ac3_exponent_strategy = 1;
+        parse_aht_info = 0;
+    }
+
+    s->snr_offset_strategy    = get_bits(gbc, 2);
+    parse_transient_proc_info = get_bits1(gbc);
+
+    s->block_switch_syntax = get_bits1(gbc);
+    if (!s->block_switch_syntax)
+        memset(s->block_switch, 0, sizeof(s->block_switch));
+
+    s->dither_flag_syntax = get_bits1(gbc);
+    if (!s->dither_flag_syntax) {
+        for (ch = 1; ch <= s->fbw_channels; ch++)
+            s->dither_flag[ch] = 1;
+    }
+    s->dither_flag[CPL_CH] = s->dither_flag[s->lfe_ch] = 0;
+
+    s->bit_allocation_syntax = get_bits1(gbc);
+    if (!s->bit_allocation_syntax) {
+        /* set default bit allocation parameters */
+        s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[2];
+        s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[1];
+        s->bit_alloc_params.slow_gain  = ff_ac3_slow_gain_tab [1];
+        s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[2];
+        s->bit_alloc_params.floor      = ff_ac3_floor_tab     [7];
+    }
+
+    s->fast_gain_syntax  = get_bits1(gbc);
+    s->dba_syntax        = get_bits1(gbc);
+    s->skip_syntax       = get_bits1(gbc);
+    parse_spx_atten_data = get_bits1(gbc);
+
+    /* coupling strategy occurrence and coupling use per block */
+    num_cpl_blocks = 0;
+    if (s->channel_mode > 1) {
+        for (blk = 0; blk < s->num_blocks; blk++) {
+            s->cpl_strategy_exists[blk] = (!blk || get_bits1(gbc));
+            if (s->cpl_strategy_exists[blk]) {
+                s->cpl_in_use[blk] = get_bits1(gbc);
+            } else {
+                s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
+            }
+            num_cpl_blocks += s->cpl_in_use[blk];
+        }
+    } else {
+        memset(s->cpl_in_use, 0, sizeof(s->cpl_in_use));
+    }
+
+    /* exponent strategy data */
+    if (ac3_exponent_strategy) {
+        /* AC-3-style exponent strategy syntax */
+        for (blk = 0; blk < s->num_blocks; blk++) {
+            for (ch = !s->cpl_in_use[blk]; ch <= s->fbw_channels; ch++) {
+                s->exp_strategy[blk][ch] = get_bits(gbc, 2);
+            }
+        }
+    } else {
+        /* LUT-based exponent strategy syntax */
+        for (ch = !((s->channel_mode > 1) && num_cpl_blocks); ch <= s->fbw_channels; ch++) {
+            int frmchexpstr = get_bits(gbc, 5);
+            for (blk = 0; blk < 6; blk++) {
+                s->exp_strategy[blk][ch] = ff_eac3_frm_expstr[frmchexpstr][blk];
+            }
+        }
+    }
+    /* LFE exponent strategy */
+    if (s->lfe_on) {
+        for (blk = 0; blk < s->num_blocks; blk++) {
+            s->exp_strategy[blk][s->lfe_ch] = get_bits1(gbc);
+        }
+    }
+    /* original exponent strategies if this stream was converted from AC-3 */
+    if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT &&
+            (s->num_blocks == 6 || get_bits1(gbc))) {
+        skip_bits(gbc, 5 * s->fbw_channels); // skip converter channel exponent strategy
+    }
+
+    /* determine which channels use AHT */
+    if (parse_aht_info) {
+        /* For AHT to be used, all non-zero blocks must reuse exponents from
+           the first block.  Furthermore, for AHT to be used in the coupling
+           channel, all blocks must use coupling and use the same coupling
+           strategy. */
+        s->channel_uses_aht[CPL_CH]=0;
+        for (ch = (num_cpl_blocks != 6); ch <= s->channels; ch++) {
+            int use_aht = 1;
+            for (blk = 1; blk < 6; blk++) {
+                if ((s->exp_strategy[blk][ch] != EXP_REUSE) ||
+                        (!ch && s->cpl_strategy_exists[blk])) {
+                    use_aht = 0;
+                    break;
+                }
+            }
+            s->channel_uses_aht[ch] = use_aht && get_bits1(gbc);
+        }
+    } else {
+        memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht));
+    }
+
+    /* per-frame SNR offset */
+    if (!s->snr_offset_strategy) {
+        int csnroffst = (get_bits(gbc, 6) - 15) << 4;
+        int snroffst = (csnroffst + get_bits(gbc, 4)) << 2;
+        for (ch = 0; ch <= s->channels; ch++)
+            s->snr_offset[ch] = snroffst;
+    }
+
+    /* transient pre-noise processing data */
+    if (parse_transient_proc_info) {
+        for (ch = 1; ch <= s->fbw_channels; ch++) {
+            if (get_bits1(gbc)) { // channel in transient processing
+                skip_bits(gbc, 10); // skip transient processing location
+                skip_bits(gbc, 8);  // skip transient processing length
+            }
+        }
+    }
+
+    /* spectral extension attenuation data */
+    for (ch = 1; ch <= s->fbw_channels; ch++) {
+        if (parse_spx_atten_data && get_bits1(gbc)) {
+            s->spx_atten_code[ch] = get_bits(gbc, 5);
+        } else {
+            s->spx_atten_code[ch] = -1;
+        }
+    }
+
+    /* block start information */
+    if (s->num_blocks > 1 && get_bits1(gbc)) {
+        /* reference: Section E2.3.2.27
+           nblkstrtbits = (numblks - 1) * (4 + ceiling(log2(words_per_frame)))
+           The spec does not say what this data is or what it's used for.
+           It is likely the offset of each block within the frame. */
+        int block_start_bits = (s->num_blocks-1) * (4 + av_log2(s->frame_size-2));
+        skip_bits_long(gbc, block_start_bits);
+        avpriv_request_sample(s->avctx, "Block start info");
+    }
+
+    /* syntax state initialization */
+    for (ch = 1; ch <= s->fbw_channels; ch++) {
+        s->first_spx_coords[ch] = 1;
+        s->first_cpl_coords[ch] = 1;
+    }
+    s->first_cpl_leak = 1;
+
+    return 0;
+}