tiny_psnr: fix undefined shift
[ffmpeg.git] / tests / audiogen.c
1 /*
2  * Generate a synthetic stereo sound.
3  * NOTE: No floats are used to guarantee bitexact output.
4  *
5  * Copyright (c) 2002 Fabrice Bellard
6  *
7  * This file is part of FFmpeg.
8  *
9  * FFmpeg is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * FFmpeg is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with FFmpeg; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23
24 #include <stdlib.h>
25 #include <stdint.h>
26 #include <stdio.h>
27 #include <string.h>
28
29 #define MAX_CHANNELS 8
30
31 static unsigned int myrnd(unsigned int *seed_ptr, int n)
32 {
33     unsigned int seed, val;
34
35     seed = *seed_ptr;
36     seed = (seed * 314159) + 1;
37     if (n == 256) {
38         val = seed >> 24;
39     } else {
40         val = seed % n;
41     }
42     *seed_ptr = seed;
43     return val;
44 }
45
46 #define FRAC_BITS 16
47 #define FRAC_ONE (1 << FRAC_BITS)
48
49 #define COS_TABLE_BITS 7
50
51 /* integer cosinus */
52 static const unsigned short cos_table[(1 << COS_TABLE_BITS) + 2] = {
53     0x8000, 0x7ffe, 0x7ff6, 0x7fea, 0x7fd9, 0x7fc2, 0x7fa7, 0x7f87,
54     0x7f62, 0x7f38, 0x7f0a, 0x7ed6, 0x7e9d, 0x7e60, 0x7e1e, 0x7dd6,
55     0x7d8a, 0x7d3a, 0x7ce4, 0x7c89, 0x7c2a, 0x7bc6, 0x7b5d, 0x7aef,
56     0x7a7d, 0x7a06, 0x798a, 0x790a, 0x7885, 0x77fb, 0x776c, 0x76d9,
57     0x7642, 0x75a6, 0x7505, 0x7460, 0x73b6, 0x7308, 0x7255, 0x719e,
58     0x70e3, 0x7023, 0x6f5f, 0x6e97, 0x6dca, 0x6cf9, 0x6c24, 0x6b4b,
59     0x6a6e, 0x698c, 0x68a7, 0x67bd, 0x66d0, 0x65de, 0x64e9, 0x63ef,
60     0x62f2, 0x61f1, 0x60ec, 0x5fe4, 0x5ed7, 0x5dc8, 0x5cb4, 0x5b9d,
61     0x5a82, 0x5964, 0x5843, 0x571e, 0x55f6, 0x54ca, 0x539b, 0x5269,
62     0x5134, 0x4ffb, 0x4ec0, 0x4d81, 0x4c40, 0x4afb, 0x49b4, 0x486a,
63     0x471d, 0x45cd, 0x447b, 0x4326, 0x41ce, 0x4074, 0x3f17, 0x3db8,
64     0x3c57, 0x3af3, 0x398d, 0x3825, 0x36ba, 0x354e, 0x33df, 0x326e,
65     0x30fc, 0x2f87, 0x2e11, 0x2c99, 0x2b1f, 0x29a4, 0x2827, 0x26a8,
66     0x2528, 0x23a7, 0x2224, 0x209f, 0x1f1a, 0x1d93, 0x1c0c, 0x1a83,
67     0x18f9, 0x176e, 0x15e2, 0x1455, 0x12c8, 0x113a, 0x0fab, 0x0e1c,
68     0x0c8c, 0x0afb, 0x096b, 0x07d9, 0x0648, 0x04b6, 0x0324, 0x0192,
69     0x0000, 0x0000,
70 };
71
72 #define CSHIFT (FRAC_BITS - COS_TABLE_BITS - 2)
73
74 static int int_cos(int a)
75 {
76     int neg, v, f;
77     const unsigned short *p;
78
79     a = a & (FRAC_ONE - 1); /* modulo 2 * pi */
80     if (a >= (FRAC_ONE / 2))
81         a = FRAC_ONE - a;
82     neg = 0;
83     if (a > (FRAC_ONE / 4)) {
84         neg = -1;
85         a   = (FRAC_ONE / 2) - a;
86     }
87     p = cos_table + (a >> CSHIFT);
88     /* linear interpolation */
89     f = a & ((1 << CSHIFT) - 1);
90     v = p[0] + (((p[1] - p[0]) * f + (1 << (CSHIFT - 1))) >> CSHIFT);
91     v = (v ^ neg) - neg;
92     v = v << (FRAC_BITS - 15);
93     return v;
94 }
95
96 FILE *outfile;
97
98 static void put16(int16_t v)
99 {
100     fputc( v       & 0xff, outfile);
101     fputc((v >> 8) & 0xff, outfile);
102 }
103
104 static void put32(uint32_t v)
105 {
106     fputc( v        & 0xff, outfile);
107     fputc((v >>  8) & 0xff, outfile);
108     fputc((v >> 16) & 0xff, outfile);
109     fputc((v >> 24) & 0xff, outfile);
110 }
111
112 #define HEADER_SIZE      46
113 #define FMT_SIZE         18
114 #define SAMPLE_SIZE       2
115 #define WFORMAT_PCM  0x0001
116
117 static void put_wav_header(int sample_rate, int channels, int nb_samples)
118 {
119     int block_align = SAMPLE_SIZE * channels;
120     int data_size   = block_align * nb_samples;
121
122     fputs("RIFF", outfile);
123     put32(HEADER_SIZE + data_size);
124     fputs("WAVEfmt ", outfile);
125     put32(FMT_SIZE);
126     put16(WFORMAT_PCM);
127     put16(channels);
128     put32(sample_rate);
129     put32(block_align * sample_rate);
130     put16(block_align);
131     put16(SAMPLE_SIZE * 8);
132     put16(0);
133     fputs("data", outfile);
134     put32(data_size);
135 }
136
137 int main(int argc, char **argv)
138 {
139     int i, a, v, j, f, amp, ampa;
140     unsigned int seed = 1;
141     int tabf1[MAX_CHANNELS], tabf2[MAX_CHANNELS];
142     int taba[MAX_CHANNELS];
143     int sample_rate = 44100;
144     int nb_channels = 2;
145     char *ext;
146
147     if (argc < 2 || argc > 5) {
148         printf("usage: %s file [<sample rate> [<channels>] [<random seed>]]\n"
149                "generate a test raw 16 bit audio stream\n"
150                "If the file extension is .wav a WAVE header will be added.\n"
151                "default: 44100 Hz stereo\n", argv[0]);
152         exit(1);
153     }
154
155     if (argc > 2) {
156         sample_rate = atoi(argv[2]);
157         if (sample_rate <= 0) {
158             fprintf(stderr, "invalid sample rate: %d\n", sample_rate);
159             return 1;
160         }
161     }
162
163     if (argc > 3) {
164         nb_channels = atoi(argv[3]);
165         if (nb_channels < 1 || nb_channels > MAX_CHANNELS) {
166             fprintf(stderr, "invalid number of channels: %d\n", nb_channels);
167             return 1;
168         }
169     }
170
171     if (argc > 4)
172         seed = atoi(argv[4]);
173
174     outfile = fopen(argv[1], "wb");
175     if (!outfile) {
176         perror(argv[1]);
177         return 1;
178     }
179
180     if ((ext = strrchr(argv[1], '.')) != NULL && !strcmp(ext, ".wav"))
181         put_wav_header(sample_rate, nb_channels, 6 * sample_rate);
182
183     /* 1 second of single freq sinus at 1000 Hz */
184     a = 0;
185     for (i = 0; i < 1 * sample_rate; i++) {
186         v = (int_cos(a) * 10000) >> FRAC_BITS;
187         for (j = 0; j < nb_channels; j++)
188             put16(v);
189         a += (1000 * FRAC_ONE) / sample_rate;
190     }
191
192     /* 1 second of varing frequency between 100 and 10000 Hz */
193     a = 0;
194     for (i = 0; i < 1 * sample_rate; i++) {
195         v = (int_cos(a) * 10000) >> FRAC_BITS;
196         for (j = 0; j < nb_channels; j++)
197             put16(v);
198         f  = 100 + (((10000 - 100) * i) / sample_rate);
199         a += (f * FRAC_ONE) / sample_rate;
200     }
201
202     /* 0.5 second of low amplitude white noise */
203     for (i = 0; i < sample_rate / 2; i++) {
204         v = myrnd(&seed, 20000) - 10000;
205         for (j = 0; j < nb_channels; j++)
206             put16(v);
207     }
208
209     /* 0.5 second of high amplitude white noise */
210     for (i = 0; i < sample_rate / 2; i++) {
211         v = myrnd(&seed, 65535) - 32768;
212         for (j = 0; j < nb_channels; j++)
213             put16(v);
214     }
215
216     /* 1 second of unrelated ramps for each channel */
217     for (j = 0; j < nb_channels; j++) {
218         taba[j]  = 0;
219         tabf1[j] = 100 + myrnd(&seed, 5000);
220         tabf2[j] = 100 + myrnd(&seed, 5000);
221     }
222     for (i = 0; i < 1 * sample_rate; i++) {
223         for (j = 0; j < nb_channels; j++) {
224             v = (int_cos(taba[j]) * 10000) >> FRAC_BITS;
225             put16(v);
226             f        = tabf1[j] + (((tabf2[j] - tabf1[j]) * i) / sample_rate);
227             taba[j] += (f * FRAC_ONE) / sample_rate;
228         }
229     }
230
231     /* 2 seconds of 500 Hz with varying volume */
232     a    = 0;
233     ampa = 0;
234     for (i = 0; i < 2 * sample_rate; i++) {
235         for (j = 0; j < nb_channels; j++) {
236             amp = ((FRAC_ONE + int_cos(ampa)) * 5000) >> FRAC_BITS;
237             if (j & 1)
238                 amp = 10000 - amp;
239             v = (int_cos(a) * amp) >> FRAC_BITS;
240             put16(v);
241             a    += (500 * FRAC_ONE) / sample_rate;
242             ampa += (2 * FRAC_ONE) / sample_rate;
243         }
244     }
245
246     fclose(outfile);
247     return 0;
248 }