update
[ffmpeg.git] / postproc / swscale.c
1 /*
2     Copyright (C) 2001-2002 Michael Niedermayer <michaelni@gmx.at>
3
4     This program is free software; you can redistribute it and/or modify
5     it under the terms of the GNU General Public License as published by
6     the Free Software Foundation; either version 2 of the License, or
7     (at your option) any later version.
8
9     This program is distributed in the hope that it will be useful,
10     but WITHOUT ANY WARRANTY; without even the implied warranty of
11     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12     GNU General Public License for more details.
13
14     You should have received a copy of the GNU General Public License
15     along with this program; if not, write to the Free Software
16     Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
17 */
18
19 /*
20   supported Input formats: YV12, I420/IYUV, YUY2, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09
21   supported output formats: YV12, I420/IYUV, YUY2, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
22   {BGR,RGB}{1,4,8,15,16} support dithering
23   
24   unscaled special converters (YV12=I420=IYUV, Y800=Y8)
25   YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
26   x -> x
27   YUV9 -> YV12
28   YUV9/YV12 -> Y800
29   Y800 -> YUV9/YV12
30   BGR24 -> BGR32 & RGB24 -> RGB32
31   BGR32 -> BGR24 & RGB32 -> RGB24
32   BGR15 -> BGR16
33 */
34
35 /* 
36 tested special converters (most are tested actually but i didnt write it down ...)
37  YV12 -> BGR16
38  YV12 -> YV12
39  BGR15 -> BGR16
40  BGR16 -> BGR16
41  YVU9 -> YV12
42
43 untested special converters
44   YV12/I420 -> BGR15/BGR24/BGR32 (its the yuv2rgb stuff, so it should be ok)
45   YV12/I420 -> YV12/I420
46   YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
47   BGR24 -> BGR32 & RGB24 -> RGB32
48   BGR32 -> BGR24 & RGB32 -> RGB24
49   BGR24 -> YV12
50 */
51
52 #include <inttypes.h>
53 #include <string.h>
54 #include <math.h>
55 #include <stdio.h>
56 #include "../config.h"
57 #include "../mangle.h"
58 #include <assert.h>
59 #ifdef HAVE_MALLOC_H
60 #include <malloc.h>
61 #else
62 #include <stdlib.h>
63 #endif
64 #include "swscale.h"
65 #include "../cpudetect.h"
66 #include "../bswap.h"
67 #include "../libvo/img_format.h"
68 #include "rgb2rgb.h"
69 #include "../libvo/fastmemcpy.h"
70 #include "../mp_msg.h"
71
72 #define MSG_WARN(args...) mp_msg(MSGT_SWS,MSGL_WARN, ##args )
73 #define MSG_FATAL(args...) mp_msg(MSGT_SWS,MSGL_FATAL, ##args )
74 #define MSG_ERR(args...) mp_msg(MSGT_SWS,MSGL_ERR, ##args )
75 #define MSG_V(args...) mp_msg(MSGT_SWS,MSGL_V, ##args )
76 #define MSG_DBG2(args...) mp_msg(MSGT_SWS,MSGL_DBG2, ##args )
77 #define MSG_INFO(args...) mp_msg(MSGT_SWS,MSGL_INFO, ##args )
78
79 #undef MOVNTQ
80 #undef PAVGB
81
82 //#undef HAVE_MMX2
83 //#define HAVE_3DNOW
84 //#undef HAVE_MMX
85 //#undef ARCH_X86
86 //#define WORDS_BIGENDIAN
87 #define DITHER1XBPP
88
89 #define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
90
91 #define RET 0xC3 //near return opcode for X86
92
93 #ifdef MP_DEBUG
94 #define ASSERT(x) assert(x);
95 #else
96 #define ASSERT(x) ;
97 #endif
98
99 #ifdef M_PI
100 #define PI M_PI
101 #else
102 #define PI 3.14159265358979323846
103 #endif
104
105 //FIXME replace this with something faster
106 #define isPlanarYUV(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_I420 || (x)==IMGFMT_YVU9 \
107                         || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P)
108 #define isYUV(x)       ((x)==IMGFMT_YUY2 || isPlanarYUV(x))
109 #define isGray(x)      ((x)==IMGFMT_Y800)
110 #define isRGB(x)       (((x)&IMGFMT_RGB_MASK)==IMGFMT_RGB)
111 #define isBGR(x)       (((x)&IMGFMT_BGR_MASK)==IMGFMT_BGR)
112 #define isSupportedIn(x)  ((x)==IMGFMT_YV12 || (x)==IMGFMT_I420 || (x)==IMGFMT_YUY2 \
113                         || (x)==IMGFMT_BGR32|| (x)==IMGFMT_BGR24|| (x)==IMGFMT_BGR16|| (x)==IMGFMT_BGR15\
114                         || (x)==IMGFMT_RGB32|| (x)==IMGFMT_RGB24\
115                         || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9\
116                         || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P)
117 #define isSupportedOut(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_I420 || (x)==IMGFMT_YUY2\
118                         || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P\
119                         || isRGB(x) || isBGR(x)\
120                         || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9)
121 #define isPacked(x)    ((x)==IMGFMT_YUY2 || isRGB(x) || isBGR(x))
122
123 #define RGB2YUV_SHIFT 16
124 #define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
125 #define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
126 #define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
127 #define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
128 #define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
129 #define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
130 #define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
131 #define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
132 #define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
133
134 extern int verbose; // defined in mplayer.c
135 /*
136 NOTES
137 Special versions: fast Y 1:1 scaling (no interpolation in y direction)
138
139 TODO
140 more intelligent missalignment avoidance for the horizontal scaler
141 write special vertical cubic upscale version
142 Optimize C code (yv12 / minmax)
143 add support for packed pixel yuv input & output
144 add support for Y8 output
145 optimize bgr24 & bgr32
146 add BGR4 output support
147 write special BGR->BGR scaler
148 deglobalize yuv2rgb*.c
149 */
150
151 #define ABS(a) ((a) > 0 ? (a) : (-(a)))
152 #define MIN(a,b) ((a) > (b) ? (b) : (a))
153 #define MAX(a,b) ((a) < (b) ? (b) : (a))
154
155 #ifdef ARCH_X86
156 #define CAN_COMPILE_X86_ASM
157 #endif
158
159 #ifdef CAN_COMPILE_X86_ASM
160 static uint64_t __attribute__((aligned(8))) yCoeff=    0x2568256825682568LL;
161 static uint64_t __attribute__((aligned(8))) vrCoeff=   0x3343334333433343LL;
162 static uint64_t __attribute__((aligned(8))) ubCoeff=   0x40cf40cf40cf40cfLL;
163 static uint64_t __attribute__((aligned(8))) vgCoeff=   0xE5E2E5E2E5E2E5E2LL;
164 static uint64_t __attribute__((aligned(8))) ugCoeff=   0xF36EF36EF36EF36ELL;
165 static uint64_t __attribute__((aligned(8))) bF8=       0xF8F8F8F8F8F8F8F8LL;
166 static uint64_t __attribute__((aligned(8))) bFC=       0xFCFCFCFCFCFCFCFCLL;
167 static uint64_t __attribute__((aligned(8))) w400=      0x0400040004000400LL;
168 static uint64_t __attribute__((aligned(8))) w80=       0x0080008000800080LL;
169 static uint64_t __attribute__((aligned(8))) w10=       0x0010001000100010LL;
170 static uint64_t __attribute__((aligned(8))) w02=       0x0002000200020002LL;
171 static uint64_t __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL;
172 static uint64_t __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL;
173 static uint64_t __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL;
174 static uint64_t __attribute__((aligned(8))) bm01010101=0x00FF00FF00FF00FFLL;
175
176 static volatile uint64_t __attribute__((aligned(8))) b5Dither;
177 static volatile uint64_t __attribute__((aligned(8))) g5Dither;
178 static volatile uint64_t __attribute__((aligned(8))) g6Dither;
179 static volatile uint64_t __attribute__((aligned(8))) r5Dither;
180
181 static uint64_t __attribute__((aligned(8))) dither4[2]={
182         0x0103010301030103LL,
183         0x0200020002000200LL,};
184
185 static uint64_t __attribute__((aligned(8))) dither8[2]={
186         0x0602060206020602LL,
187         0x0004000400040004LL,};
188
189 static uint64_t __attribute__((aligned(8))) b16Mask=   0x001F001F001F001FLL;
190 static uint64_t __attribute__((aligned(8))) g16Mask=   0x07E007E007E007E0LL;
191 static uint64_t __attribute__((aligned(8))) r16Mask=   0xF800F800F800F800LL;
192 static uint64_t __attribute__((aligned(8))) b15Mask=   0x001F001F001F001FLL;
193 static uint64_t __attribute__((aligned(8))) g15Mask=   0x03E003E003E003E0LL;
194 static uint64_t __attribute__((aligned(8))) r15Mask=   0x7C007C007C007C00LL;
195
196 static uint64_t __attribute__((aligned(8))) M24A=   0x00FF0000FF0000FFLL;
197 static uint64_t __attribute__((aligned(8))) M24B=   0xFF0000FF0000FF00LL;
198 static uint64_t __attribute__((aligned(8))) M24C=   0x0000FF0000FF0000LL;
199
200 #ifdef FAST_BGR2YV12
201 static const uint64_t bgr2YCoeff  __attribute__((aligned(8))) = 0x000000210041000DULL;
202 static const uint64_t bgr2UCoeff  __attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL;
203 static const uint64_t bgr2VCoeff  __attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL;
204 #else
205 static const uint64_t bgr2YCoeff  __attribute__((aligned(8))) = 0x000020E540830C8BULL;
206 static const uint64_t bgr2UCoeff  __attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL;
207 static const uint64_t bgr2VCoeff  __attribute__((aligned(8))) = 0x00003831D0E6F6EAULL;
208 #endif
209 static const uint64_t bgr2YOffset __attribute__((aligned(8))) = 0x1010101010101010ULL;
210 static const uint64_t bgr2UVOffset __attribute__((aligned(8)))= 0x8080808080808080ULL;
211 static const uint64_t w1111       __attribute__((aligned(8))) = 0x0001000100010001ULL;
212 #endif
213
214 // clipping helper table for C implementations:
215 static unsigned char clip_table[768];
216
217 //global sws_flags from the command line
218 int sws_flags=2;
219
220 //global srcFilter
221 SwsFilter src_filter= {NULL, NULL, NULL, NULL};
222
223 float sws_lum_gblur= 0.0;
224 float sws_chr_gblur= 0.0;
225 int sws_chr_vshift= 0;
226 int sws_chr_hshift= 0;
227 float sws_chr_sharpen= 0.0;
228 float sws_lum_sharpen= 0.0;
229
230 /* cpuCaps combined from cpudetect and whats actually compiled in
231    (if there is no support for something compiled in it wont appear here) */
232 static CpuCaps cpuCaps;
233
234 void (*swScale)(SwsContext *context, uint8_t* src[], int srcStride[], int srcSliceY,
235              int srcSliceH, uint8_t* dst[], int dstStride[])=NULL;
236
237 static SwsVector *getConvVec(SwsVector *a, SwsVector *b);
238 static inline void orderYUV(int format, uint8_t * sortedP[], int sortedStride[], uint8_t * p[], int stride[]);
239 void *yuv2rgb_c_init (unsigned bpp, int mode, void *table_rV[256], void *table_gU[256], int table_gV[256], void *table_bU[256]);
240
241 extern const uint8_t dither_2x2_4[2][8];
242 extern const uint8_t dither_2x2_8[2][8];
243 extern const uint8_t dither_8x8_32[8][8];
244 extern const uint8_t dither_8x8_73[8][8];
245 extern const uint8_t dither_8x8_220[8][8];
246
247 #ifdef CAN_COMPILE_X86_ASM
248 void in_asm_used_var_warning_killer()
249 {
250  volatile int i= yCoeff+vrCoeff+ubCoeff+vgCoeff+ugCoeff+bF8+bFC+w400+w80+w10+
251  bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+
252  M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0]+bm01010101;
253  if(i) i=0;
254 }
255 #endif
256
257 static int testFormat[]={
258 IMGFMT_YVU9,
259 IMGFMT_YV12,
260 //IMGFMT_IYUV,
261 IMGFMT_I420,
262 IMGFMT_BGR15,
263 IMGFMT_BGR16,
264 IMGFMT_BGR24,
265 IMGFMT_BGR32,
266 IMGFMT_RGB24,
267 IMGFMT_RGB32,
268 //IMGFMT_Y8,
269 IMGFMT_Y800,
270 //IMGFMT_YUY2,
271 0
272 };
273
274 static uint64_t getSSD(uint8_t *src1, uint8_t *src2, int stride1, int stride2, int w, int h){
275         int x,y;
276         uint64_t ssd=0;
277
278         for(y=0; y<h; y++){
279                 for(x=0; x<w; x++){
280                         int d= src1[x + y*stride1] - src2[x + y*stride2];
281                         ssd+= d*d;
282                 }
283         }
284         return ssd;
285 }
286
287 // test by ref -> src -> dst -> out & compare out against ref
288 // ref & out are YV12
289 static void doTest(uint8_t *ref[3], int refStride[3], int w, int h, int srcFormat, int dstFormat, 
290                    int srcW, int srcH, int dstW, int dstH, int flags){
291         uint8_t *src[3];
292         uint8_t *dst[3];
293         uint8_t *out[3];
294         int srcStride[3], dstStride[3];
295         int i;
296         uint64_t ssdY, ssdU, ssdV;
297         SwsContext *srcContext, *dstContext, *outContext;
298         
299         for(i=0; i<3; i++){
300                 // avoid stride % bpp != 0
301                 if(srcFormat==IMGFMT_RGB24 || srcFormat==IMGFMT_BGR24)
302                         srcStride[i]= srcW*3;
303                 else
304                         srcStride[i]= srcW*4;
305                 
306                 if(dstFormat==IMGFMT_RGB24 || dstFormat==IMGFMT_BGR24)
307                         dstStride[i]= dstW*3;
308                 else
309                         dstStride[i]= dstW*4;
310         
311                 src[i]= malloc(srcStride[i]*srcH);
312                 dst[i]= malloc(dstStride[i]*dstH);
313                 out[i]= malloc(refStride[i]*h);
314         }
315
316         srcContext= getSwsContext(w, h, IMGFMT_YV12, srcW, srcH, srcFormat, flags, NULL, NULL);
317         dstContext= getSwsContext(srcW, srcH, srcFormat, dstW, dstH, dstFormat, flags, NULL, NULL);
318         outContext= getSwsContext(dstW, dstH, dstFormat, w, h, IMGFMT_YV12, flags, NULL, NULL);
319         if(srcContext==NULL ||dstContext==NULL ||outContext==NULL){
320                 printf("Failed allocating swsContext\n");
321                 goto end;
322         }
323 //      printf("test %X %X %X -> %X %X %X\n", (int)ref[0], (int)ref[1], (int)ref[2],
324 //              (int)src[0], (int)src[1], (int)src[2]);
325
326         srcContext->swScale(srcContext, ref, refStride, 0, h   , src, srcStride);
327         dstContext->swScale(dstContext, src, srcStride, 0, srcH, dst, dstStride);
328         outContext->swScale(outContext, dst, dstStride, 0, dstH, out, refStride);
329              
330         ssdY= getSSD(ref[0], out[0], refStride[0], refStride[0], w, h);
331         ssdU= getSSD(ref[1], out[1], refStride[1], refStride[1], (w+1)>>1, (h+1)>>1);
332         ssdV= getSSD(ref[2], out[2], refStride[2], refStride[2], (w+1)>>1, (h+1)>>1);
333         
334         if(isGray(srcFormat) || isGray(dstFormat)) ssdU=ssdV=0; //FIXME check that output is really gray
335         
336         ssdY/= w*h;
337         ssdU/= w*h/4;
338         ssdV/= w*h/4;
339         
340         if(ssdY>100 || ssdU>50 || ssdV>50){
341                 printf(" %s %dx%d -> %s %4dx%4d flags=%2d SSD=%5lld,%5lld,%5lld\n", 
342                         vo_format_name(srcFormat), srcW, srcH, 
343                         vo_format_name(dstFormat), dstW, dstH,
344                         flags,
345                         ssdY, ssdU, ssdV);
346         }
347
348         end:
349         
350         freeSwsContext(srcContext);
351         freeSwsContext(dstContext);
352         freeSwsContext(outContext);
353
354         for(i=0; i<3; i++){
355                 free(src[i]);
356                 free(dst[i]);
357                 free(out[i]);
358         }
359 }
360
361 static void selfTest(uint8_t *src[3], int stride[3], int w, int h){
362         int srcFormat, dstFormat, srcFormatIndex, dstFormatIndex;
363         int srcW, srcH, dstW, dstH;
364         int flags;
365
366         for(srcFormatIndex=0; ;srcFormatIndex++){
367                 srcFormat= testFormat[srcFormatIndex];
368                 if(!srcFormat) break;
369                 for(dstFormatIndex=0; ;dstFormatIndex++){
370                         dstFormat= testFormat[dstFormatIndex];
371                         if(!dstFormat) break;
372                         if(!isSupportedOut(dstFormat)) continue;
373 printf("%s -> %s\n", 
374         vo_format_name(srcFormat),
375         vo_format_name(dstFormat));
376
377                         srcW= w+w/3;
378                         srcH= h+h/3;
379                         for(dstW=w; dstW<w*2; dstW+= dstW/3){
380                                 for(dstH=h; dstH<h*2; dstH+= dstH/3){
381                                         for(flags=1; flags<33; flags*=2)
382                                                 doTest(src, stride, w, h, srcFormat, dstFormat,
383                                                         srcW, srcH, dstW, dstH, flags);
384                                 }
385                         }
386                 }
387         }
388 }
389
390 static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
391                                     int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
392                                     uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
393 {
394         //FIXME Optimize (just quickly writen not opti..)
395         int i;
396         for(i=0; i<dstW; i++)
397         {
398                 int val=0;
399                 int j;
400                 for(j=0; j<lumFilterSize; j++)
401                         val += lumSrc[j][i] * lumFilter[j];
402
403                 dest[i]= MIN(MAX(val>>19, 0), 255);
404         }
405
406         if(uDest != NULL)
407                 for(i=0; i<chrDstW; i++)
408                 {
409                         int u=0;
410                         int v=0;
411                         int j;
412                         for(j=0; j<chrFilterSize; j++)
413                         {
414                                 u += chrSrc[j][i] * chrFilter[j];
415                                 v += chrSrc[j][i + 2048] * chrFilter[j];
416                         }
417
418                         uDest[i]= MIN(MAX(u>>19, 0), 255);
419                         vDest[i]= MIN(MAX(v>>19, 0), 255);
420                 }
421 }
422
423
424 #define YSCALE_YUV_2_PACKEDX_C(type) \
425                 for(i=0; i<(dstW>>1); i++){\
426                         int j;\
427                         int Y1=0;\
428                         int Y2=0;\
429                         int U=0;\
430                         int V=0;\
431                         type *r, *b, *g;\
432                         const int i2= 2*i;\
433                         \
434                         for(j=0; j<lumFilterSize; j++)\
435                         {\
436                                 Y1 += lumSrc[j][i2] * lumFilter[j];\
437                                 Y2 += lumSrc[j][i2+1] * lumFilter[j];\
438                         }\
439                         for(j=0; j<chrFilterSize; j++)\
440                         {\
441                                 U += chrSrc[j][i] * chrFilter[j];\
442                                 V += chrSrc[j][i+2048] * chrFilter[j];\
443                         }\
444                         Y1>>=19;\
445                         Y2>>=19;\
446                         U >>=19;\
447                         V >>=19;\
448                         if((Y1|Y2|U|V)&256)\
449                         {\
450                                 if(Y1>255)   Y1=255;\
451                                 else if(Y1<0)Y1=0;\
452                                 if(Y2>255)   Y2=255;\
453                                 else if(Y2<0)Y2=0;\
454                                 if(U>255)    U=255;\
455                                 else if(U<0) U=0;\
456                                 if(V>255)    V=255;\
457                                 else if(V<0) V=0;\
458                         }
459                         
460 #define YSCALE_YUV_2_RGBX_C(type) \
461                         YSCALE_YUV_2_PACKEDX_C(type)\
462                         r = c->table_rV[V];\
463                         g = c->table_gU[U] + c->table_gV[V];\
464                         b = c->table_bU[U];\
465
466 #define YSCALE_YUV_2_PACKED2_C \
467                 for(i=0; i<(dstW>>1); i++){\
468                         const int i2= 2*i;\
469                         int Y1= (buf0[i2  ]*yalpha1+buf1[i2  ]*yalpha)>>19;\
470                         int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19;\
471                         int U= (uvbuf0[i     ]*uvalpha1+uvbuf1[i     ]*uvalpha)>>19;\
472                         int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19;\
473
474 #define YSCALE_YUV_2_RGB2_C(type) \
475                         YSCALE_YUV_2_PACKED2_C\
476                         type *r, *b, *g;\
477                         r = c->table_rV[V];\
478                         g = c->table_gU[U] + c->table_gV[V];\
479                         b = c->table_bU[U];\
480
481 #define YSCALE_YUV_2_PACKED1_C \
482                 for(i=0; i<(dstW>>1); i++){\
483                         const int i2= 2*i;\
484                         int Y1= buf0[i2  ]>>7;\
485                         int Y2= buf0[i2+1]>>7;\
486                         int U= (uvbuf1[i     ])>>7;\
487                         int V= (uvbuf1[i+2048])>>7;\
488
489 #define YSCALE_YUV_2_RGB1_C(type) \
490                         YSCALE_YUV_2_PACKED1_C\
491                         type *r, *b, *g;\
492                         r = c->table_rV[V];\
493                         g = c->table_gU[U] + c->table_gV[V];\
494                         b = c->table_bU[U];\
495
496 #define YSCALE_YUV_2_PACKED1B_C \
497                 for(i=0; i<(dstW>>1); i++){\
498                         const int i2= 2*i;\
499                         int Y1= buf0[i2  ]>>7;\
500                         int Y2= buf0[i2+1]>>7;\
501                         int U= (uvbuf0[i     ] + uvbuf1[i     ])>>8;\
502                         int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\
503
504 #define YSCALE_YUV_2_RGB1B_C(type) \
505                         YSCALE_YUV_2_PACKED1B_C\
506                         type *r, *b, *g;\
507                         r = c->table_rV[V];\
508                         g = c->table_gU[U] + c->table_gV[V];\
509                         b = c->table_bU[U];\
510
511 #define YSCALE_YUV_2_ANYRGB_C(func, func2)\
512         switch(c->dstFormat)\
513         {\
514         case IMGFMT_BGR32:\
515         case IMGFMT_RGB32:\
516                 func(uint32_t)\
517                         ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
518                         ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
519                 }               \
520                 break;\
521         case IMGFMT_RGB24:\
522                 func(uint8_t)\
523                         ((uint8_t*)dest)[0]= r[Y1];\
524                         ((uint8_t*)dest)[1]= g[Y1];\
525                         ((uint8_t*)dest)[2]= b[Y1];\
526                         ((uint8_t*)dest)[3]= r[Y2];\
527                         ((uint8_t*)dest)[4]= g[Y2];\
528                         ((uint8_t*)dest)[5]= b[Y2];\
529                         ((uint8_t*)dest)+=6;\
530                 }\
531                 break;\
532         case IMGFMT_BGR24:\
533                 func(uint8_t)\
534                         ((uint8_t*)dest)[0]= b[Y1];\
535                         ((uint8_t*)dest)[1]= g[Y1];\
536                         ((uint8_t*)dest)[2]= r[Y1];\
537                         ((uint8_t*)dest)[3]= b[Y2];\
538                         ((uint8_t*)dest)[4]= g[Y2];\
539                         ((uint8_t*)dest)[5]= r[Y2];\
540                         ((uint8_t*)dest)+=6;\
541                 }\
542                 break;\
543         case IMGFMT_RGB16:\
544         case IMGFMT_BGR16:\
545                 {\
546                         const int dr1= dither_2x2_8[y&1    ][0];\
547                         const int dg1= dither_2x2_4[y&1    ][0];\
548                         const int db1= dither_2x2_8[(y&1)^1][0];\
549                         const int dr2= dither_2x2_8[y&1    ][1];\
550                         const int dg2= dither_2x2_4[y&1    ][1];\
551                         const int db2= dither_2x2_8[(y&1)^1][1];\
552                         func(uint16_t)\
553                                 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
554                                 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
555                         }\
556                 }\
557                 break;\
558         case IMGFMT_RGB15:\
559         case IMGFMT_BGR15:\
560                 {\
561                         const int dr1= dither_2x2_8[y&1    ][0];\
562                         const int dg1= dither_2x2_8[y&1    ][1];\
563                         const int db1= dither_2x2_8[(y&1)^1][0];\
564                         const int dr2= dither_2x2_8[y&1    ][1];\
565                         const int dg2= dither_2x2_8[y&1    ][0];\
566                         const int db2= dither_2x2_8[(y&1)^1][1];\
567                         func(uint16_t)\
568                                 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
569                                 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
570                         }\
571                 }\
572                 break;\
573         case IMGFMT_RGB8:\
574         case IMGFMT_BGR8:\
575                 {\
576                         const uint8_t * const d64= dither_8x8_73[y&7];\
577                         const uint8_t * const d32= dither_8x8_32[y&7];\
578                         func(uint8_t)\
579                                 ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
580                                 ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
581                         }\
582                 }\
583                 break;\
584         case IMGFMT_RGB4:\
585         case IMGFMT_BGR4:\
586                 {\
587                         const uint8_t * const d64= dither_8x8_73 [y&7];\
588                         const uint8_t * const d128=dither_8x8_220[y&7];\
589                         func(uint8_t)\
590                                 ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
591                                 ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
592                         }\
593                 }\
594                 break;\
595         case IMGFMT_RGB1:\
596         case IMGFMT_BGR1:\
597                 {\
598                         const uint8_t * const d128=dither_8x8_220[y&7];\
599                         uint8_t *g= c->table_gU[128] + c->table_gV[128];\
600                         for(i=0; i<dstW-7; i+=8){\
601                                 int acc;\
602                                 acc =       g[((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19) + d128[0]];\
603                                 acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
604                                 acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
605                                 acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
606                                 acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
607                                 acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
608                                 acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
609                                 acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
610                                 ((uint8_t*)dest)[0]= acc;\
611                                 ((uint8_t*)dest)++;\
612                         }\
613 \
614 /*\
615 ((uint8_t*)dest)-= dstW>>4;\
616 {\
617                         int acc=0;\
618                         int left=0;\
619                         static int top[1024];\
620                         static int last_new[1024][1024];\
621                         static int last_in3[1024][1024];\
622                         static int drift[1024][1024];\
623                         int topLeft=0;\
624                         int shift=0;\
625                         int count=0;\
626                         const uint8_t * const d128=dither_8x8_220[y&7];\
627                         int error_new=0;\
628                         int error_in3=0;\
629                         int f=0;\
630                         \
631                         for(i=dstW>>1; i<dstW; i++){\
632                                 int in= ((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19);\
633                                 int in2 = (76309 * (in - 16) + 32768) >> 16;\
634                                 int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
635                                 int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
636                                         + (last_new[y][i] - in3)*f/256;\
637                                 int new= old> 128 ? 255 : 0;\
638 \
639                                 error_new+= ABS(last_new[y][i] - new);\
640                                 error_in3+= ABS(last_in3[y][i] - in3);\
641                                 f= error_new - error_in3*4;\
642                                 if(f<0) f=0;\
643                                 if(f>256) f=256;\
644 \
645                                 topLeft= top[i];\
646                                 left= top[i]= old - new;\
647                                 last_new[y][i]= new;\
648                                 last_in3[y][i]= in3;\
649 \
650                                 acc+= acc + (new&1);\
651                                 if((i&7)==6){\
652                                         ((uint8_t*)dest)[0]= acc;\
653                                         ((uint8_t*)dest)++;\
654                                 }\
655                         }\
656 }\
657 */\
658                 }\
659                 break;\
660         case IMGFMT_YUY2:\
661                 func2\
662                         ((uint8_t*)dest)[2*i2+0]= Y1;\
663                         ((uint8_t*)dest)[2*i2+1]= U;\
664                         ((uint8_t*)dest)[2*i2+2]= Y2;\
665                         ((uint8_t*)dest)[2*i2+3]= V;\
666                 }               \
667                 break;\
668         }\
669
670
671 static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
672                                     int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
673                                     uint8_t *dest, int dstW, int y)
674 {
675         int i;
676         switch(c->dstFormat)
677         {
678         case IMGFMT_RGB32:
679         case IMGFMT_BGR32:
680                 YSCALE_YUV_2_RGBX_C(uint32_t)
681                         ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];
682                         ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];
683                 }
684                 break;
685         case IMGFMT_RGB24:
686                 YSCALE_YUV_2_RGBX_C(uint8_t)
687                         ((uint8_t*)dest)[0]= r[Y1];
688                         ((uint8_t*)dest)[1]= g[Y1];
689                         ((uint8_t*)dest)[2]= b[Y1];
690                         ((uint8_t*)dest)[3]= r[Y2];
691                         ((uint8_t*)dest)[4]= g[Y2];
692                         ((uint8_t*)dest)[5]= b[Y2];
693                         ((uint8_t*)dest)+=6;
694                 }
695                 break;
696         case IMGFMT_BGR24:
697                 YSCALE_YUV_2_RGBX_C(uint8_t)
698                         ((uint8_t*)dest)[0]= b[Y1];
699                         ((uint8_t*)dest)[1]= g[Y1];
700                         ((uint8_t*)dest)[2]= r[Y1];
701                         ((uint8_t*)dest)[3]= b[Y2];
702                         ((uint8_t*)dest)[4]= g[Y2];
703                         ((uint8_t*)dest)[5]= r[Y2];
704                         ((uint8_t*)dest)+=6;
705                 }
706                 break;
707         case IMGFMT_RGB16:
708         case IMGFMT_BGR16:
709                 {
710                         const int dr1= dither_2x2_8[y&1    ][0];
711                         const int dg1= dither_2x2_4[y&1    ][0];
712                         const int db1= dither_2x2_8[(y&1)^1][0];
713                         const int dr2= dither_2x2_8[y&1    ][1];
714                         const int dg2= dither_2x2_4[y&1    ][1];
715                         const int db2= dither_2x2_8[(y&1)^1][1];
716                         YSCALE_YUV_2_RGBX_C(uint16_t)
717                                 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
718                                 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
719                         }
720                 }
721                 break;
722         case IMGFMT_RGB15:
723         case IMGFMT_BGR15:
724                 {
725                         const int dr1= dither_2x2_8[y&1    ][0];
726                         const int dg1= dither_2x2_8[y&1    ][1];
727                         const int db1= dither_2x2_8[(y&1)^1][0];
728                         const int dr2= dither_2x2_8[y&1    ][1];
729                         const int dg2= dither_2x2_8[y&1    ][0];
730                         const int db2= dither_2x2_8[(y&1)^1][1];
731                         YSCALE_YUV_2_RGBX_C(uint16_t)
732                                 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
733                                 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
734                         }
735                 }
736                 break;
737         case IMGFMT_RGB8:
738         case IMGFMT_BGR8:
739                 {
740                         const uint8_t * const d64= dither_8x8_73[y&7];
741                         const uint8_t * const d32= dither_8x8_32[y&7];
742                         YSCALE_YUV_2_RGBX_C(uint8_t)
743                                 ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];
744                                 ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];
745                         }
746                 }
747                 break;
748         case IMGFMT_RGB4:
749         case IMGFMT_BGR4:
750                 {
751                         const uint8_t * const d64= dither_8x8_73 [y&7];
752                         const uint8_t * const d128=dither_8x8_220[y&7];
753                         YSCALE_YUV_2_RGBX_C(uint8_t)
754                                 ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];
755                                 ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];
756                         }
757                 }
758                 break;
759         case IMGFMT_RGB1:
760         case IMGFMT_BGR1:
761                 {
762                         const uint8_t * const d128=dither_8x8_220[y&7];
763                         uint8_t *g= c->table_gU[128] + c->table_gV[128];
764                         int acc=0;
765                         for(i=0; i<dstW-1; i+=2){
766                                 int j;
767                                 int Y1=0;
768                                 int Y2=0;
769
770                                 for(j=0; j<lumFilterSize; j++)
771                                 {
772                                         Y1 += lumSrc[j][i] * lumFilter[j];
773                                         Y2 += lumSrc[j][i+1] * lumFilter[j];
774                                 }
775                                 Y1>>=19;
776                                 Y2>>=19;
777                                 if((Y1|Y2)&256)
778                                 {
779                                         if(Y1>255)   Y1=255;
780                                         else if(Y1<0)Y1=0;
781                                         if(Y2>255)   Y2=255;
782                                         else if(Y2<0)Y2=0;
783                                 }
784                                 acc+= acc + g[Y1+d128[(i+0)&7]];
785                                 acc+= acc + g[Y2+d128[(i+1)&7]];
786                                 if((i&7)==6){
787                                         ((uint8_t*)dest)[0]= acc;
788                                         ((uint8_t*)dest)++;
789                                 }
790                         }
791                 }
792                 break;
793         case IMGFMT_YUY2:
794                 YSCALE_YUV_2_PACKEDX_C(void)
795                         ((uint8_t*)dest)[2*i2+0]= Y1;
796                         ((uint8_t*)dest)[2*i2+1]= U;
797                         ((uint8_t*)dest)[2*i2+2]= Y2;
798                         ((uint8_t*)dest)[2*i2+3]= V;
799                 }
800                 break;
801         }
802 }
803
804
805 //Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
806 //Plain C versions
807 #if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT)
808 #define COMPILE_C
809 #endif
810
811 #ifdef CAN_COMPILE_X86_ASM
812
813 #if (defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
814 #define COMPILE_MMX
815 #endif
816
817 #if defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)
818 #define COMPILE_MMX2
819 #endif
820
821 #if (defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
822 #define COMPILE_3DNOW
823 #endif
824 #endif //CAN_COMPILE_X86_ASM
825
826 #undef HAVE_MMX
827 #undef HAVE_MMX2
828 #undef HAVE_3DNOW
829
830 #ifdef COMPILE_C
831 #undef HAVE_MMX
832 #undef HAVE_MMX2
833 #undef HAVE_3DNOW
834 #define RENAME(a) a ## _C
835 #include "swscale_template.c"
836 #endif
837
838 #ifdef CAN_COMPILE_X86_ASM
839
840 //X86 versions
841 /*
842 #undef RENAME
843 #undef HAVE_MMX
844 #undef HAVE_MMX2
845 #undef HAVE_3DNOW
846 #define ARCH_X86
847 #define RENAME(a) a ## _X86
848 #include "swscale_template.c"
849 */
850 //MMX versions
851 #ifdef COMPILE_MMX
852 #undef RENAME
853 #define HAVE_MMX
854 #undef HAVE_MMX2
855 #undef HAVE_3DNOW
856 #define RENAME(a) a ## _MMX
857 #include "swscale_template.c"
858 #endif
859
860 //MMX2 versions
861 #ifdef COMPILE_MMX2
862 #undef RENAME
863 #define HAVE_MMX
864 #define HAVE_MMX2
865 #undef HAVE_3DNOW
866 #define RENAME(a) a ## _MMX2
867 #include "swscale_template.c"
868 #endif
869
870 //3DNOW versions
871 #ifdef COMPILE_3DNOW
872 #undef RENAME
873 #define HAVE_MMX
874 #undef HAVE_MMX2
875 #define HAVE_3DNOW
876 #define RENAME(a) a ## _3DNow
877 #include "swscale_template.c"
878 #endif
879
880 #endif //CAN_COMPILE_X86_ASM
881
882 // minor note: the HAVE_xyz is messed up after that line so dont use it
883
884
885 // old global scaler, dont use for new code
886 // will use sws_flags from the command line
887 void SwScale_YV12slice(unsigned char* src[], int srcStride[], int srcSliceY ,
888                              int srcSliceH, uint8_t* dst[], int dstStride, int dstbpp,
889                              int srcW, int srcH, int dstW, int dstH){
890
891         static SwsContext *context=NULL;
892         int dstFormat;
893         int dstStride3[3]= {dstStride, dstStride>>1, dstStride>>1};
894
895         switch(dstbpp)
896         {
897                 case 8 : dstFormat= IMGFMT_Y8;          break;
898                 case 12: dstFormat= IMGFMT_YV12;        break;
899                 case 15: dstFormat= IMGFMT_BGR15;       break;
900                 case 16: dstFormat= IMGFMT_BGR16;       break;
901                 case 24: dstFormat= IMGFMT_BGR24;       break;
902                 case 32: dstFormat= IMGFMT_BGR32;       break;
903                 default: return;
904         }
905
906         if(!context) context=getSwsContextFromCmdLine(srcW, srcH, IMGFMT_YV12, dstW, dstH, dstFormat);
907
908         context->swScale(context, src, srcStride, srcSliceY, srcSliceH, dst, dstStride3);
909 }
910
911 void swsGetFlagsAndFilterFromCmdLine(int *flags, SwsFilter **srcFilterParam, SwsFilter **dstFilterParam)
912 {
913         static int firstTime=1;
914         *flags=0;
915
916 #ifdef ARCH_X86
917         if(gCpuCaps.hasMMX)
918                 asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
919 #endif
920         if(firstTime)
921         {
922                 firstTime=0;
923                 *flags= SWS_PRINT_INFO;
924         }
925         else if(verbose>1) *flags= SWS_PRINT_INFO;
926
927         if(src_filter.lumH) freeVec(src_filter.lumH);
928         if(src_filter.lumV) freeVec(src_filter.lumV);
929         if(src_filter.chrH) freeVec(src_filter.chrH);
930         if(src_filter.chrV) freeVec(src_filter.chrV);
931
932         if(sws_lum_gblur!=0.0){
933                 src_filter.lumH= getGaussianVec(sws_lum_gblur, 3.0);
934                 src_filter.lumV= getGaussianVec(sws_lum_gblur, 3.0);
935         }else{
936                 src_filter.lumH= getIdentityVec();
937                 src_filter.lumV= getIdentityVec();
938         }
939
940         if(sws_chr_gblur!=0.0){
941                 src_filter.chrH= getGaussianVec(sws_chr_gblur, 3.0);
942                 src_filter.chrV= getGaussianVec(sws_chr_gblur, 3.0);
943         }else{
944                 src_filter.chrH= getIdentityVec();
945                 src_filter.chrV= getIdentityVec();
946         }
947
948         if(sws_chr_sharpen!=0.0){
949                 SwsVector *g= getConstVec(-1.0, 3);
950                 SwsVector *id= getConstVec(10.0/sws_chr_sharpen, 1);
951                 g->coeff[1]=2.0;
952                 addVec(id, g);
953                 convVec(src_filter.chrH, id);
954                 convVec(src_filter.chrV, id);
955                 freeVec(g);
956                 freeVec(id);
957         }
958
959         if(sws_lum_sharpen!=0.0){
960                 SwsVector *g= getConstVec(-1.0, 3);
961                 SwsVector *id= getConstVec(10.0/sws_lum_sharpen, 1);
962                 g->coeff[1]=2.0;
963                 addVec(id, g);
964                 convVec(src_filter.lumH, id);
965                 convVec(src_filter.lumV, id);
966                 freeVec(g);
967                 freeVec(id);
968         }
969
970         if(sws_chr_hshift)
971                 shiftVec(src_filter.chrH, sws_chr_hshift);
972
973         if(sws_chr_vshift)
974                 shiftVec(src_filter.chrV, sws_chr_vshift);
975
976         normalizeVec(src_filter.chrH, 1.0);
977         normalizeVec(src_filter.chrV, 1.0);
978         normalizeVec(src_filter.lumH, 1.0);
979         normalizeVec(src_filter.lumV, 1.0);
980
981         if(verbose > 1) printVec(src_filter.chrH);
982         if(verbose > 1) printVec(src_filter.lumH);
983
984         switch(sws_flags)
985         {
986                 case 0: *flags|= SWS_FAST_BILINEAR; break;
987                 case 1: *flags|= SWS_BILINEAR; break;
988                 case 2: *flags|= SWS_BICUBIC; break;
989                 case 3: *flags|= SWS_X; break;
990                 case 4: *flags|= SWS_POINT; break;
991                 case 5: *flags|= SWS_AREA; break;
992                 case 6: *flags|= SWS_BICUBLIN; break;
993                 case 7: *flags|= SWS_GAUSS; break;
994                 case 8: *flags|= SWS_SINC; break;
995                 case 9: *flags|= SWS_LANCZOS; break;
996                 case 10:*flags|= SWS_SPLINE; break;
997                 default:*flags|= SWS_BILINEAR; break;
998         }
999         
1000         *srcFilterParam= &src_filter;
1001         *dstFilterParam= NULL;
1002 }
1003
1004 // will use sws_flags & src_filter (from cmd line)
1005 SwsContext *getSwsContextFromCmdLine(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat)
1006 {
1007         int flags;
1008         SwsFilter *dstFilterParam, *srcFilterParam;
1009         swsGetFlagsAndFilterFromCmdLine(&flags, &srcFilterParam, &dstFilterParam);
1010
1011         return getSwsContext(srcW, srcH, srcFormat, dstW, dstH, dstFormat, flags, srcFilterParam, dstFilterParam);
1012 }
1013
1014 static double getSplineCoeff(double a, double b, double c, double d, double dist)
1015 {
1016 //      printf("%f %f %f %f %f\n", a,b,c,d,dist);
1017         if(dist<=1.0)   return ((d*dist + c)*dist + b)*dist +a;
1018         else            return getSplineCoeff(  0.0, 
1019                                                  b+ 2.0*c + 3.0*d,
1020                                                         c + 3.0*d,
1021                                                 -b- 3.0*c - 6.0*d,
1022                                                 dist-1.0);
1023 }
1024
1025 static inline void initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
1026                               int srcW, int dstW, int filterAlign, int one, int flags,
1027                               SwsVector *srcFilter, SwsVector *dstFilter)
1028 {
1029         int i;
1030         int filterSize;
1031         int filter2Size;
1032         int minFilterSize;
1033         double *filter=NULL;
1034         double *filter2=NULL;
1035 #ifdef ARCH_X86
1036         if(gCpuCaps.hasMMX)
1037                 asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
1038 #endif
1039
1040         // Note the +1 is for the MMXscaler which reads over the end
1041         *filterPos = (int16_t*)memalign(8, (dstW+1)*sizeof(int16_t));
1042
1043         if(ABS(xInc - 0x10000) <10) // unscaled
1044         {
1045                 int i;
1046                 filterSize= 1;
1047                 filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
1048                 for(i=0; i<dstW*filterSize; i++) filter[i]=0;
1049
1050                 for(i=0; i<dstW; i++)
1051                 {
1052                         filter[i*filterSize]=1;
1053                         (*filterPos)[i]=i;
1054                 }
1055
1056         }
1057         else if(flags&SWS_POINT) // lame looking point sampling mode
1058         {
1059                 int i;
1060                 int xDstInSrc;
1061                 filterSize= 1;
1062                 filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
1063                 
1064                 xDstInSrc= xInc/2 - 0x8000;
1065                 for(i=0; i<dstW; i++)
1066                 {
1067                         int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
1068
1069                         (*filterPos)[i]= xx;
1070                         filter[i]= 1.0;
1071                         xDstInSrc+= xInc;
1072                 }
1073         }
1074         else if((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
1075         {
1076                 int i;
1077                 int xDstInSrc;
1078                 if     (flags&SWS_BICUBIC) filterSize= 4;
1079                 else if(flags&SWS_X      ) filterSize= 4;
1080                 else                       filterSize= 2; // SWS_BILINEAR / SWS_AREA 
1081                 filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
1082
1083                 xDstInSrc= xInc/2 - 0x8000;
1084                 for(i=0; i<dstW; i++)
1085                 {
1086                         int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
1087                         int j;
1088
1089                         (*filterPos)[i]= xx;
1090                                 //Bilinear upscale / linear interpolate / Area averaging
1091                                 for(j=0; j<filterSize; j++)
1092                                 {
1093                                         double d= ABS((xx<<16) - xDstInSrc)/(double)(1<<16);
1094                                         double coeff= 1.0 - d;
1095                                         if(coeff<0) coeff=0;
1096                                         filter[i*filterSize + j]= coeff;
1097                                         xx++;
1098                                 }
1099                         xDstInSrc+= xInc;
1100                 }
1101         }
1102         else
1103         {
1104                 double xDstInSrc;
1105                 double sizeFactor, filterSizeInSrc;
1106                 const double xInc1= (double)xInc / (double)(1<<16);
1107                 int param= (flags&SWS_PARAM_MASK)>>SWS_PARAM_SHIFT;
1108
1109                 if     (flags&SWS_BICUBIC)      sizeFactor= 4.0;
1110                 else if(flags&SWS_X)            sizeFactor= 8.0;
1111                 else if(flags&SWS_AREA)         sizeFactor= 1.0; //downscale only, for upscale it is bilinear
1112                 else if(flags&SWS_GAUSS)        sizeFactor= 8.0;   // infinite ;)
1113                 else if(flags&SWS_LANCZOS)      sizeFactor= param ? 2.0*param : 6.0;
1114                 else if(flags&SWS_SINC)         sizeFactor= 20.0; // infinite ;)
1115                 else if(flags&SWS_SPLINE)       sizeFactor= 20.0;  // infinite ;)
1116                 else if(flags&SWS_BILINEAR)     sizeFactor= 2.0;
1117                 else {
1118                         sizeFactor= 0.0; //GCC warning killer
1119                         ASSERT(0)
1120                 }
1121                 
1122                 if(xInc1 <= 1.0)        filterSizeInSrc= sizeFactor; // upscale
1123                 else                    filterSizeInSrc= sizeFactor*srcW / (double)dstW;
1124
1125                 filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
1126                 if(filterSize > srcW-2) filterSize=srcW-2;
1127
1128                 filter= (double*)memalign(16, dstW*sizeof(double)*filterSize);
1129
1130                 xDstInSrc= xInc1 / 2.0 - 0.5;
1131                 for(i=0; i<dstW; i++)
1132                 {
1133                         int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
1134                         int j;
1135                         (*filterPos)[i]= xx;
1136                         for(j=0; j<filterSize; j++)
1137                         {
1138                                 double d= ABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
1139                                 double coeff;
1140                                 if(flags & SWS_BICUBIC)
1141                                 {
1142                                         double A= param ? -param*0.01 : -0.60;
1143                                         
1144                                         // Equation is from VirtualDub
1145                                         if(d<1.0)
1146                                                 coeff = (1.0 - (A+3.0)*d*d + (A+2.0)*d*d*d);
1147                                         else if(d<2.0)
1148                                                 coeff = (-4.0*A + 8.0*A*d - 5.0*A*d*d + A*d*d*d);
1149                                         else
1150                                                 coeff=0.0;
1151                                 }
1152 /*                              else if(flags & SWS_X)
1153                                 {
1154                                         double p= param ? param*0.01 : 0.3;
1155                                         coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1156                                         coeff*= pow(2.0, - p*d*d);
1157                                 }*/
1158                                 else if(flags & SWS_X)
1159                                 {
1160                                         double A= param ? param*0.1 : 1.0;
1161                                         
1162                                         if(d<1.0)
1163                                                 coeff = cos(d*PI);
1164                                         else
1165                                                 coeff=-1.0;
1166                                         if(coeff<0.0)   coeff= -pow(-coeff, A);
1167                                         else            coeff=  pow( coeff, A);
1168                                         coeff= coeff*0.5 + 0.5;
1169                                 }
1170                                 else if(flags & SWS_AREA)
1171                                 {
1172                                         double srcPixelSize= 1.0/xInc1;
1173                                         if(d + srcPixelSize/2 < 0.5) coeff= 1.0;
1174                                         else if(d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
1175                                         else coeff=0.0;
1176                                 }
1177                                 else if(flags & SWS_GAUSS)
1178                                 {
1179                                         double p= param ? param*0.1 : 3.0;
1180                                         coeff = pow(2.0, - p*d*d);
1181                                 }
1182                                 else if(flags & SWS_SINC)
1183                                 {
1184                                         coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1185                                 }
1186                                 else if(flags & SWS_LANCZOS)
1187                                 {
1188                                         double p= param ? param : 3.0; 
1189                                         coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
1190                                         if(d>p) coeff=0;
1191                                 }
1192                                 else if(flags & SWS_BILINEAR)
1193                                 {
1194                                         coeff= 1.0 - d;
1195                                         if(coeff<0) coeff=0;
1196                                 }
1197                                 else if(flags & SWS_SPLINE)
1198                                 {
1199                                         double p=-2.196152422706632;
1200                                         coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
1201                                 }
1202                                 else {
1203                                         coeff= 0.0; //GCC warning killer
1204                                         ASSERT(0)
1205                                 }
1206
1207                                 filter[i*filterSize + j]= coeff;
1208                                 xx++;
1209                         }
1210                         xDstInSrc+= xInc1;
1211                 }
1212         }
1213
1214         /* apply src & dst Filter to filter -> filter2
1215            free(filter);
1216         */
1217         ASSERT(filterSize>0)
1218         filter2Size= filterSize;
1219         if(srcFilter) filter2Size+= srcFilter->length - 1;
1220         if(dstFilter) filter2Size+= dstFilter->length - 1;
1221         ASSERT(filter2Size>0)
1222         filter2= (double*)memalign(8, filter2Size*dstW*sizeof(double));
1223
1224         for(i=0; i<dstW; i++)
1225         {
1226                 int j;
1227                 SwsVector scaleFilter;
1228                 SwsVector *outVec;
1229
1230                 scaleFilter.coeff= filter + i*filterSize;
1231                 scaleFilter.length= filterSize;
1232
1233                 if(srcFilter) outVec= getConvVec(srcFilter, &scaleFilter);
1234                 else          outVec= &scaleFilter;
1235
1236                 ASSERT(outVec->length == filter2Size)
1237                 //FIXME dstFilter
1238
1239                 for(j=0; j<outVec->length; j++)
1240                 {
1241                         filter2[i*filter2Size + j]= outVec->coeff[j];
1242                 }
1243
1244                 (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
1245
1246                 if(outVec != &scaleFilter) freeVec(outVec);
1247         }
1248         free(filter); filter=NULL;
1249
1250         /* try to reduce the filter-size (step1 find size and shift left) */
1251         // Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not)
1252         minFilterSize= 0;
1253         for(i=dstW-1; i>=0; i--)
1254         {
1255                 int min= filter2Size;
1256                 int j;
1257                 double cutOff=0.0;
1258
1259                 /* get rid off near zero elements on the left by shifting left */
1260                 for(j=0; j<filter2Size; j++)
1261                 {
1262                         int k;
1263                         cutOff += ABS(filter2[i*filter2Size]);
1264
1265                         if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1266
1267                         /* preserve Monotonicity because the core cant handle the filter otherwise */
1268                         if(i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
1269
1270                         // Move filter coeffs left
1271                         for(k=1; k<filter2Size; k++)
1272                                 filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
1273                         filter2[i*filter2Size + k - 1]= 0.0;
1274                         (*filterPos)[i]++;
1275                 }
1276
1277                 cutOff=0.0;
1278                 /* count near zeros on the right */
1279                 for(j=filter2Size-1; j>0; j--)
1280                 {
1281                         cutOff += ABS(filter2[i*filter2Size + j]);
1282
1283                         if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1284                         min--;
1285                 }
1286
1287                 if(min>minFilterSize) minFilterSize= min;
1288         }
1289
1290         ASSERT(minFilterSize > 0)
1291         filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
1292         ASSERT(filterSize > 0)
1293         filter= (double*)memalign(8, filterSize*dstW*sizeof(double));
1294         *outFilterSize= filterSize;
1295
1296         if(flags&SWS_PRINT_INFO)
1297                 MSG_INFO("SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
1298         /* try to reduce the filter-size (step2 reduce it) */
1299         for(i=0; i<dstW; i++)
1300         {
1301                 int j;
1302
1303                 for(j=0; j<filterSize; j++)
1304                 {
1305                         if(j>=filter2Size) filter[i*filterSize + j]= 0.0;
1306                         else               filter[i*filterSize + j]= filter2[i*filter2Size + j];
1307                 }
1308         }
1309         free(filter2); filter2=NULL;
1310         
1311
1312         //FIXME try to align filterpos if possible
1313
1314         //fix borders
1315         for(i=0; i<dstW; i++)
1316         {
1317                 int j;
1318                 if((*filterPos)[i] < 0)
1319                 {
1320                         // Move filter coeffs left to compensate for filterPos
1321                         for(j=1; j<filterSize; j++)
1322                         {
1323                                 int left= MAX(j + (*filterPos)[i], 0);
1324                                 filter[i*filterSize + left] += filter[i*filterSize + j];
1325                                 filter[i*filterSize + j]=0;
1326                         }
1327                         (*filterPos)[i]= 0;
1328                 }
1329
1330                 if((*filterPos)[i] + filterSize > srcW)
1331                 {
1332                         int shift= (*filterPos)[i] + filterSize - srcW;
1333                         // Move filter coeffs right to compensate for filterPos
1334                         for(j=filterSize-2; j>=0; j--)
1335                         {
1336                                 int right= MIN(j + shift, filterSize-1);
1337                                 filter[i*filterSize +right] += filter[i*filterSize +j];
1338                                 filter[i*filterSize +j]=0;
1339                         }
1340                         (*filterPos)[i]= srcW - filterSize;
1341                 }
1342         }
1343
1344         // Note the +1 is for the MMXscaler which reads over the end
1345         *outFilter= (int16_t*)memalign(8, *outFilterSize*(dstW+1)*sizeof(int16_t));
1346         memset(*outFilter, 0, *outFilterSize*(dstW+1)*sizeof(int16_t));
1347
1348         /* Normalize & Store in outFilter */
1349         for(i=0; i<dstW; i++)
1350         {
1351                 int j;
1352                 double sum=0;
1353                 double scale= one;
1354                 for(j=0; j<filterSize; j++)
1355                 {
1356                         sum+= filter[i*filterSize + j];
1357                 }
1358                 scale/= sum;
1359                 for(j=0; j<*outFilterSize; j++)
1360                 {
1361                         (*outFilter)[i*(*outFilterSize) + j]= (int)(filter[i*filterSize + j]*scale);
1362                 }
1363         }
1364         
1365         (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
1366         for(i=0; i<*outFilterSize; i++)
1367         {
1368                 int j= dstW*(*outFilterSize);
1369                 (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
1370         }
1371
1372         free(filter);
1373 }
1374
1375 #ifdef ARCH_X86
1376 static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
1377 {
1378         uint8_t *fragmentA;
1379         int imm8OfPShufW1A;
1380         int imm8OfPShufW2A;
1381         int fragmentLengthA;
1382         uint8_t *fragmentB;
1383         int imm8OfPShufW1B;
1384         int imm8OfPShufW2B;
1385         int fragmentLengthB;
1386         int fragmentPos;
1387
1388         int xpos, i;
1389
1390         // create an optimized horizontal scaling routine
1391
1392         //code fragment
1393
1394         asm volatile(
1395                 "jmp 9f                         \n\t"
1396         // Begin
1397                 "0:                             \n\t"
1398                 "movq (%%edx, %%eax), %%mm3     \n\t" 
1399                 "movd (%%ecx, %%esi), %%mm0     \n\t" 
1400                 "movd 1(%%ecx, %%esi), %%mm1    \n\t"
1401                 "punpcklbw %%mm7, %%mm1         \n\t"
1402                 "punpcklbw %%mm7, %%mm0         \n\t"
1403                 "pshufw $0xFF, %%mm1, %%mm1     \n\t"
1404                 "1:                             \n\t"
1405                 "pshufw $0xFF, %%mm0, %%mm0     \n\t"
1406                 "2:                             \n\t"
1407                 "psubw %%mm1, %%mm0             \n\t"
1408                 "movl 8(%%ebx, %%eax), %%esi    \n\t"
1409                 "pmullw %%mm3, %%mm0            \n\t"
1410                 "psllw $7, %%mm1                \n\t"
1411                 "paddw %%mm1, %%mm0             \n\t"
1412
1413                 "movq %%mm0, (%%edi, %%eax)     \n\t"
1414
1415                 "addl $8, %%eax                 \n\t"
1416         // End
1417                 "9:                             \n\t"
1418 //              "int $3\n\t"
1419                 "leal 0b, %0                    \n\t"
1420                 "leal 1b, %1                    \n\t"
1421                 "leal 2b, %2                    \n\t"
1422                 "decl %1                        \n\t"
1423                 "decl %2                        \n\t"
1424                 "subl %0, %1                    \n\t"
1425                 "subl %0, %2                    \n\t"
1426                 "leal 9b, %3                    \n\t"
1427                 "subl %0, %3                    \n\t"
1428
1429
1430                 :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
1431                 "=r" (fragmentLengthA)
1432         );
1433
1434         asm volatile(
1435                 "jmp 9f                         \n\t"
1436         // Begin
1437                 "0:                             \n\t"
1438                 "movq (%%edx, %%eax), %%mm3     \n\t" 
1439                 "movd (%%ecx, %%esi), %%mm0     \n\t" 
1440                 "punpcklbw %%mm7, %%mm0         \n\t"
1441                 "pshufw $0xFF, %%mm0, %%mm1     \n\t"
1442                 "1:                             \n\t"
1443                 "pshufw $0xFF, %%mm0, %%mm0     \n\t"
1444                 "2:                             \n\t"
1445                 "psubw %%mm1, %%mm0             \n\t"
1446                 "movl 8(%%ebx, %%eax), %%esi    \n\t"
1447                 "pmullw %%mm3, %%mm0            \n\t"
1448                 "psllw $7, %%mm1                \n\t"
1449                 "paddw %%mm1, %%mm0             \n\t"
1450
1451                 "movq %%mm0, (%%edi, %%eax)     \n\t"
1452
1453                 "addl $8, %%eax                 \n\t"
1454         // End
1455                 "9:                             \n\t"
1456 //              "int $3\n\t"
1457                 "leal 0b, %0                    \n\t"
1458                 "leal 1b, %1                    \n\t"
1459                 "leal 2b, %2                    \n\t"
1460                 "decl %1                        \n\t"
1461                 "decl %2                        \n\t"
1462                 "subl %0, %1                    \n\t"
1463                 "subl %0, %2                    \n\t"
1464                 "leal 9b, %3                    \n\t"
1465                 "subl %0, %3                    \n\t"
1466
1467
1468                 :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
1469                 "=r" (fragmentLengthB)
1470         );
1471
1472         xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
1473         fragmentPos=0;
1474         
1475         for(i=0; i<dstW/numSplits; i++)
1476         {
1477                 int xx=xpos>>16;
1478
1479                 if((i&3) == 0)
1480                 {
1481                         int a=0;
1482                         int b=((xpos+xInc)>>16) - xx;
1483                         int c=((xpos+xInc*2)>>16) - xx;
1484                         int d=((xpos+xInc*3)>>16) - xx;
1485
1486                         filter[i  ] = (( xpos         & 0xFFFF) ^ 0xFFFF)>>9;
1487                         filter[i+1] = (((xpos+xInc  ) & 0xFFFF) ^ 0xFFFF)>>9;
1488                         filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
1489                         filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
1490                         filterPos[i/2]= xx;
1491
1492                         if(d+1<4)
1493                         {
1494                                 int maxShift= 3-(d+1);
1495                                 int shift=0;
1496
1497                                 memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
1498
1499                                 funnyCode[fragmentPos + imm8OfPShufW1B]=
1500                                         (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
1501                                 funnyCode[fragmentPos + imm8OfPShufW2B]=
1502                                         a | (b<<2) | (c<<4) | (d<<6);
1503
1504                                 if(i+3>=dstW) shift=maxShift; //avoid overread
1505                                 else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
1506
1507                                 if(shift && i>=shift)
1508                                 {
1509                                         funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
1510                                         funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
1511                                         filterPos[i/2]-=shift;
1512                                 }
1513
1514                                 fragmentPos+= fragmentLengthB;
1515                         }
1516                         else
1517                         {
1518                                 int maxShift= 3-d;
1519                                 int shift=0;
1520
1521                                 memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
1522
1523                                 funnyCode[fragmentPos + imm8OfPShufW1A]=
1524                                 funnyCode[fragmentPos + imm8OfPShufW2A]=
1525                                         a | (b<<2) | (c<<4) | (d<<6);
1526
1527                                 if(i+4>=dstW) shift=maxShift; //avoid overread
1528                                 else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
1529
1530                                 if(shift && i>=shift)
1531                                 {
1532                                         funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
1533                                         funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
1534                                         filterPos[i/2]-=shift;
1535                                 }
1536
1537                                 fragmentPos+= fragmentLengthA;
1538                         }
1539
1540                         funnyCode[fragmentPos]= RET;
1541                 }
1542                 xpos+=xInc;
1543         }
1544         filterPos[i/2]= xpos>>16; // needed to jump to the next part
1545 }
1546 #endif // ARCH_X86
1547
1548 //FIXME remove
1549 void SwScale_Init(){
1550 }
1551
1552 static void globalInit(){
1553     // generating tables:
1554     int i;
1555     for(i=0; i<768; i++){
1556         int c= MIN(MAX(i-256, 0), 255);
1557         clip_table[i]=c;
1558     }
1559
1560 cpuCaps= gCpuCaps;
1561
1562 #ifdef RUNTIME_CPUDETECT
1563 #ifdef CAN_COMPILE_X86_ASM
1564         // ordered per speed fasterst first
1565         if(gCpuCaps.hasMMX2)
1566                 swScale= swScale_MMX2;
1567         else if(gCpuCaps.has3DNow)
1568                 swScale= swScale_3DNow;
1569         else if(gCpuCaps.hasMMX)
1570                 swScale= swScale_MMX;
1571         else
1572                 swScale= swScale_C;
1573
1574 #else
1575         swScale= swScale_C;
1576         cpuCaps.hasMMX2 = cpuCaps.hasMMX = cpuCaps.has3DNow = 0;
1577 #endif
1578 #else //RUNTIME_CPUDETECT
1579 #ifdef HAVE_MMX2
1580         swScale= swScale_MMX2;
1581         cpuCaps.has3DNow = 0;
1582 #elif defined (HAVE_3DNOW)
1583         swScale= swScale_3DNow;
1584         cpuCaps.hasMMX2 = 0;
1585 #elif defined (HAVE_MMX)
1586         swScale= swScale_MMX;
1587         cpuCaps.hasMMX2 = cpuCaps.has3DNow = 0;
1588 #else
1589         swScale= swScale_C;
1590         cpuCaps.hasMMX2 = cpuCaps.hasMMX = cpuCaps.has3DNow = 0;
1591 #endif
1592 #endif //!RUNTIME_CPUDETECT
1593 }
1594
1595 static void PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1596              int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1597         uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1598         /* Copy Y plane */
1599         if(dstStride[0]==srcStride[0])
1600                 memcpy(dst, src[0], srcSliceH*dstStride[0]);
1601         else
1602         {
1603                 int i;
1604                 uint8_t *srcPtr= src[0];
1605                 uint8_t *dstPtr= dst;
1606                 for(i=0; i<srcSliceH; i++)
1607                 {
1608                         memcpy(dstPtr, srcPtr, srcStride[0]);
1609                         srcPtr+= srcStride[0];
1610                         dstPtr+= dstStride[0];
1611                 }
1612         }
1613         dst = dstParam[1] + dstStride[1]*srcSliceY;
1614         if(c->srcFormat==IMGFMT_YV12)
1615                 interleaveBytes( src[1],src[2],dst,c->srcW,srcSliceH,srcStride[1],srcStride[2],dstStride[0] );
1616         else /* I420 & IYUV */
1617                 interleaveBytes( src[2],src[1],dst,c->srcW,srcSliceH,srcStride[2],srcStride[1],dstStride[0] );
1618 }
1619
1620
1621 /* Warper functions for yuv2bgr */
1622 static void planarYuvToBgr(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1623              int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1624         uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1625
1626         if(c->srcFormat==IMGFMT_YV12)
1627                 yuv2rgb( dst,src[0],src[1],src[2],c->srcW,srcSliceH,dstStride[0],srcStride[0],srcStride[1] );
1628         else /* I420 & IYUV */
1629                 yuv2rgb( dst,src[0],src[2],src[1],c->srcW,srcSliceH,dstStride[0],srcStride[0],srcStride[1] );
1630 }
1631
1632 static void PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1633              int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1634         uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1635
1636         if(c->srcFormat==IMGFMT_YV12)
1637                 yv12toyuy2( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1638         else /* I420 & IYUV */
1639                 yv12toyuy2( src[0],src[2],src[1],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1640 }
1641
1642 /* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
1643 static void rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1644                            int srcSliceH, uint8_t* dst[], int dstStride[]){
1645         const int srcFormat= c->srcFormat;
1646         const int dstFormat= c->dstFormat;
1647         const int srcBpp= ((srcFormat&0xFF) + 7)>>3;
1648         const int dstBpp= ((dstFormat&0xFF) + 7)>>3;
1649         const int srcId= (srcFormat&0xFF)>>2; // 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 
1650         const int dstId= (dstFormat&0xFF)>>2;
1651         void (*conv)(const uint8_t *src, uint8_t *dst, unsigned src_size)=NULL;
1652
1653         /* BGR -> BGR */
1654         if(isBGR(srcFormat) && isBGR(dstFormat)){
1655                 switch(srcId | (dstId<<4)){
1656                 case 0x34: conv= rgb16to15; break;
1657                 case 0x36: conv= rgb24to15; break;
1658                 case 0x38: conv= rgb32to15; break;
1659                 case 0x43: conv= rgb15to16; break;
1660                 case 0x46: conv= rgb24to16; break;
1661                 case 0x48: conv= rgb32to16; break;
1662                 case 0x63: conv= rgb15to24; break;
1663                 case 0x64: conv= rgb16to24; break;
1664                 case 0x68: conv= rgb32to24; break;
1665                 case 0x83: conv= rgb15to32; break;
1666                 case 0x84: conv= rgb16to32; break;
1667                 case 0x86: conv= rgb24to32; break;
1668                 default: MSG_ERR("swScaler: internal error %s -> %s converter\n", 
1669                                  vo_format_name(srcFormat), vo_format_name(dstFormat)); break;
1670                 }
1671         }else if(isBGR(srcFormat) && isRGB(dstFormat)){
1672                 switch(srcId | (dstId<<4)){
1673                 case 0x33: conv= rgb15tobgr15; break;
1674                 case 0x34: conv= rgb16tobgr15; break;
1675                 case 0x36: conv= rgb24tobgr15; break;
1676                 case 0x38: conv= rgb32tobgr15; break;
1677                 case 0x43: conv= rgb15tobgr16; break;
1678                 case 0x44: conv= rgb16tobgr16; break;
1679                 case 0x46: conv= rgb24tobgr16; break;
1680                 case 0x48: conv= rgb32tobgr16; break;
1681                 case 0x63: conv= rgb15tobgr24; break;
1682                 case 0x64: conv= rgb16tobgr24; break;
1683                 case 0x66: conv= rgb24tobgr24; break;
1684                 case 0x68: conv= rgb32tobgr24; break;
1685                 case 0x83: conv= rgb15tobgr32; break;
1686                 case 0x84: conv= rgb16tobgr32; break;
1687                 case 0x86: conv= rgb24tobgr32; break;
1688                 case 0x88: conv= rgb32tobgr32; break;
1689                 default: MSG_ERR("swScaler: internal error %s -> %s converter\n", 
1690                                  vo_format_name(srcFormat), vo_format_name(dstFormat)); break;
1691                 }
1692         }else if(isRGB(srcFormat) && isRGB(dstFormat)){
1693                 switch(srcId | (dstId<<4)){
1694                 case 0x34: conv= rgb16to15; break;
1695                 case 0x36: conv= rgb24to15; break;
1696                 case 0x38: conv= rgb32to15; break;
1697                 case 0x43: conv= rgb15to16; break;
1698                 case 0x46: conv= rgb24to16; break;
1699                 case 0x48: conv= rgb32to16; break;
1700                 case 0x63: conv= rgb15to24; break;
1701                 case 0x64: conv= rgb16to24; break;
1702                 case 0x68: conv= rgb32to24; break;
1703                 case 0x83: conv= rgb15to32; break;
1704                 case 0x84: conv= rgb16to32; break;
1705                 case 0x86: conv= rgb24to32; break;
1706                 default: MSG_ERR("swScaler: internal error %s -> %s converter\n", 
1707                                  vo_format_name(srcFormat), vo_format_name(dstFormat)); break;
1708                 }
1709         }else if(isRGB(srcFormat) && isBGR(dstFormat)){
1710                 switch(srcId | (dstId<<4)){
1711                 case 0x33: conv= rgb15tobgr15; break;
1712                 case 0x34: conv= rgb16tobgr15; break;
1713                 case 0x36: conv= rgb24tobgr15; break;
1714                 case 0x38: conv= rgb32tobgr15; break;
1715                 case 0x43: conv= rgb15tobgr16; break;
1716                 case 0x44: conv= rgb16tobgr16; break;
1717                 case 0x46: conv= rgb24tobgr16; break;
1718                 case 0x48: conv= rgb32tobgr16; break;
1719                 case 0x63: conv= rgb15tobgr24; break;
1720                 case 0x64: conv= rgb16tobgr24; break;
1721                 case 0x66: conv= rgb24tobgr24; break;
1722                 case 0x68: conv= rgb32tobgr24; break;
1723                 case 0x83: conv= rgb15tobgr32; break;
1724                 case 0x84: conv= rgb16tobgr32; break;
1725                 case 0x86: conv= rgb24tobgr32; break;
1726                 case 0x88: conv= rgb32tobgr32; break;
1727                 default: MSG_ERR("swScaler: internal error %s -> %s converter\n", 
1728                                  vo_format_name(srcFormat), vo_format_name(dstFormat)); break;
1729                 }
1730         }
1731         if(dstStride[0]*srcBpp == srcStride[0]*dstBpp)
1732                 conv(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
1733         else
1734         {
1735                 int i;
1736                 uint8_t *srcPtr= src[0];
1737                 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1738
1739                 for(i=0; i<srcSliceH; i++)
1740                 {
1741                         conv(srcPtr, dstPtr, c->srcW*srcBpp);
1742                         srcPtr+= srcStride[0];
1743                         dstPtr+= dstStride[0];
1744                 }
1745         }     
1746 }
1747
1748 static void bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1749              int srcSliceH, uint8_t* dst[], int dstStride[]){
1750
1751         rgb24toyv12(
1752                 src[0], 
1753                 dst[0]+ srcSliceY    *dstStride[0], 
1754                 dst[1]+(srcSliceY>>1)*dstStride[1], 
1755                 dst[2]+(srcSliceY>>1)*dstStride[2],
1756                 c->srcW, srcSliceH, 
1757                 dstStride[0], dstStride[1], srcStride[0]);
1758 }
1759
1760 static void yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1761              int srcSliceH, uint8_t* dst[], int dstStride[]){
1762         int i;
1763
1764         /* copy Y */
1765         if(srcStride[0]==dstStride[0]) 
1766                 memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
1767         else{
1768                 uint8_t *srcPtr= src[0];
1769                 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1770
1771                 for(i=0; i<srcSliceH; i++)
1772                 {
1773                         memcpy(dstPtr, srcPtr, c->srcW);
1774                         srcPtr+= srcStride[0];
1775                         dstPtr+= dstStride[0];
1776                 }
1777         }
1778
1779         if(c->dstFormat==IMGFMT_YV12){
1780                 planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
1781                 planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
1782         }else{
1783                 planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
1784                 planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
1785         }
1786 }
1787
1788 /**
1789  * bring pointers in YUV order instead of YVU
1790  */
1791 static inline void orderYUV(int format, uint8_t * sortedP[], int sortedStride[], uint8_t * p[], int stride[]){
1792         if(format == IMGFMT_YV12 || format == IMGFMT_YVU9 
1793            || format == IMGFMT_444P || format == IMGFMT_422P || format == IMGFMT_411P){
1794                 sortedP[0]= p[0];
1795                 sortedP[1]= p[1];
1796                 sortedP[2]= p[2];
1797                 sortedStride[0]= stride[0];
1798                 sortedStride[1]= stride[1];
1799                 sortedStride[2]= stride[2];
1800         }
1801         else if(isPacked(format) || isGray(format))
1802         {
1803                 sortedP[0]= p[0];
1804                 sortedP[1]= 
1805                 sortedP[2]= NULL;
1806                 sortedStride[0]= stride[0];
1807                 sortedStride[1]= 
1808                 sortedStride[2]= 0;
1809         }
1810         else if(format == IMGFMT_I420)
1811         {
1812                 sortedP[0]= p[0];
1813                 sortedP[1]= p[2];
1814                 sortedP[2]= p[1];
1815                 sortedStride[0]= stride[0];
1816                 sortedStride[1]= stride[2];
1817                 sortedStride[2]= stride[1];
1818         }else{
1819                 MSG_ERR("internal error in orderYUV\n");
1820         }
1821 }
1822
1823 /* unscaled copy like stuff (assumes nearly identical formats) */
1824 static void simpleCopy(SwsContext *c, uint8_t* srcParam[], int srcStrideParam[], int srcSliceY,
1825              int srcSliceH, uint8_t* dstParam[], int dstStrideParam[]){
1826
1827         int srcStride[3];
1828         int dstStride[3];
1829         uint8_t *src[3];
1830         uint8_t *dst[3];
1831
1832         orderYUV(c->srcFormat, src, srcStride, srcParam, srcStrideParam);
1833         orderYUV(c->dstFormat, dst, dstStride, dstParam, dstStrideParam);
1834
1835         if(isPacked(c->srcFormat))
1836         {
1837                 if(dstStride[0]==srcStride[0])
1838                         memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
1839                 else
1840                 {
1841                         int i;
1842                         uint8_t *srcPtr= src[0];
1843                         uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1844                         int length=0;
1845
1846                         /* universal length finder */
1847                         while(length+c->srcW <= ABS(dstStride[0]) 
1848                            && length+c->srcW <= ABS(srcStride[0])) length+= c->srcW;
1849                         ASSERT(length!=0);
1850
1851                         for(i=0; i<srcSliceH; i++)
1852                         {
1853                                 memcpy(dstPtr, srcPtr, length);
1854                                 srcPtr+= srcStride[0];
1855                                 dstPtr+= dstStride[0];
1856                         }
1857                 }
1858         }
1859         else 
1860         { /* Planar YUV or gray */
1861                 int plane;
1862                 for(plane=0; plane<3; plane++)
1863                 {
1864                         int length= plane==0 ? c->srcW  : -((-c->srcW  )>>c->chrDstHSubSample);
1865                         int y=      plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
1866                         int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
1867
1868                         if((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
1869                         {
1870                                 if(!isGray(c->dstFormat))
1871                                         memset(dst[plane], 128, dstStride[plane]*height);
1872                         }
1873                         else
1874                         {
1875                                 if(dstStride[plane]==srcStride[plane])
1876                                         memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
1877                                 else
1878                                 {
1879                                         int i;
1880                                         uint8_t *srcPtr= src[plane];
1881                                         uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
1882                                         for(i=0; i<height; i++)
1883                                         {
1884                                                 memcpy(dstPtr, srcPtr, length);
1885                                                 srcPtr+= srcStride[plane];
1886                                                 dstPtr+= dstStride[plane];
1887                                         }
1888                                 }
1889                         }
1890                 }
1891         }
1892 }
1893
1894 static int remove_dup_fourcc(int fourcc)
1895 {
1896         switch(fourcc)
1897         {
1898             case IMGFMT_IYUV: return IMGFMT_I420;
1899             case IMGFMT_Y8  : return IMGFMT_Y800;
1900             case IMGFMT_IF09: return IMGFMT_YVU9;
1901             default: return fourcc;
1902         }
1903 }
1904
1905 static void getSubSampleFactors(int *h, int *v, int format){
1906         switch(format){
1907         case IMGFMT_YUY2:
1908                 *h=1;
1909                 *v=0;
1910                 break;
1911         case IMGFMT_YV12:
1912         case IMGFMT_I420:
1913         case IMGFMT_Y800: //FIXME remove after different subsamplings are fully implemented
1914                 *h=1;
1915                 *v=1;
1916                 break;
1917         case IMGFMT_YVU9:
1918                 *h=2;
1919                 *v=2;
1920                 break;
1921         case IMGFMT_444P:
1922                 *h=0;
1923                 *v=0;
1924                 break;
1925         case IMGFMT_422P:
1926                 *h=1;
1927                 *v=0;
1928                 break;
1929         case IMGFMT_411P:
1930                 *h=2;
1931                 *v=0;
1932                 break;
1933         default:
1934                 *h=0;
1935                 *v=0;
1936                 break;
1937         }
1938 }
1939
1940 SwsContext *getSwsContext(int srcW, int srcH, int srcFormat, int dstW, int dstH, int dstFormat, int flags,
1941                          SwsFilter *srcFilter, SwsFilter *dstFilter){
1942
1943         SwsContext *c;
1944         int i;
1945         int usesFilter;
1946         int unscaled, needsDither;
1947         SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
1948 #ifdef ARCH_X86
1949         if(gCpuCaps.hasMMX)
1950                 asm volatile("emms\n\t"::: "memory");
1951 #endif
1952         if(swScale==NULL) globalInit();
1953 //srcFormat= IMGFMT_Y800;
1954 //dstFormat= IMGFMT_Y800;
1955         /* avoid dupplicate Formats, so we dont need to check to much */
1956         srcFormat = remove_dup_fourcc(srcFormat);
1957         dstFormat = remove_dup_fourcc(dstFormat);
1958
1959         unscaled = (srcW == dstW && srcH == dstH);
1960         needsDither= (isBGR(dstFormat) || isRGB(dstFormat)) 
1961                      && (dstFormat&0xFF)<24
1962                      && ((dstFormat&0xFF)<(srcFormat&0xFF) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
1963
1964         if(!isSupportedIn(srcFormat)) 
1965         {
1966                 MSG_ERR("swScaler: %s is not supported as input format\n", vo_format_name(srcFormat));
1967                 return NULL;
1968         }
1969         if(!isSupportedOut(dstFormat))
1970         {
1971                 MSG_ERR("swScaler: %s is not supported as output format\n", vo_format_name(dstFormat));
1972                 return NULL;
1973         }
1974
1975         /* sanity check */
1976         if(srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
1977         {
1978                  MSG_ERR("swScaler: %dx%d -> %dx%d is invalid scaling dimension\n", 
1979                         srcW, srcH, dstW, dstH);
1980                 return NULL;
1981         }
1982
1983         if(!dstFilter) dstFilter= &dummyFilter;
1984         if(!srcFilter) srcFilter= &dummyFilter;
1985
1986         c= memalign(64, sizeof(SwsContext));
1987         memset(c, 0, sizeof(SwsContext));
1988
1989         c->srcW= srcW;
1990         c->srcH= srcH;
1991         c->dstW= dstW;
1992         c->dstH= dstH;
1993         c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
1994         c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
1995         c->flags= flags;
1996         c->dstFormat= dstFormat;
1997         c->srcFormat= srcFormat;
1998
1999         usesFilter=0;
2000         if(dstFilter->lumV!=NULL && dstFilter->lumV->length>1) usesFilter=1;
2001         if(dstFilter->lumH!=NULL && dstFilter->lumH->length>1) usesFilter=1;
2002         if(dstFilter->chrV!=NULL && dstFilter->chrV->length>1) usesFilter=1;
2003         if(dstFilter->chrH!=NULL && dstFilter->chrH->length>1) usesFilter=1;
2004         if(srcFilter->lumV!=NULL && srcFilter->lumV->length>1) usesFilter=1;
2005         if(srcFilter->lumH!=NULL && srcFilter->lumH->length>1) usesFilter=1;
2006         if(srcFilter->chrV!=NULL && srcFilter->chrV->length>1) usesFilter=1;
2007         if(srcFilter->chrH!=NULL && srcFilter->chrH->length>1) usesFilter=1;
2008
2009         getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
2010         getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
2011
2012         // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
2013         if((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
2014
2015         // drop some chroma lines if the user wants it
2016         c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
2017         c->chrSrcVSubSample+= c->vChrDrop;
2018
2019         // drop every 2. pixel for chroma calculation unless user wants full chroma
2020         if((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)) 
2021                 c->chrSrcHSubSample=1;
2022
2023         c->chrIntHSubSample= c->chrDstHSubSample;
2024         c->chrIntVSubSample= c->chrSrcVSubSample;
2025         
2026         // note the -((-x)>>y) is so that we allways round toward +inf
2027         c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
2028         c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
2029         c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
2030         c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
2031         
2032         if(isBGR(dstFormat))
2033                 c->yuvTable= yuv2rgb_c_init(dstFormat & 0xFF, MODE_RGB, c->table_rV, c->table_gU, c->table_gV, c->table_bU);
2034         if(isRGB(dstFormat))
2035                 c->yuvTable= yuv2rgb_c_init(dstFormat & 0xFF, MODE_BGR, c->table_rV, c->table_gU, c->table_gV, c->table_bU);
2036
2037         /* unscaled special Cases */
2038         if(unscaled && !usesFilter)
2039         {
2040                 /* yv12_to_nv12 */
2041                 if((srcFormat == IMGFMT_YV12||srcFormat==IMGFMT_I420)&&dstFormat == IMGFMT_NV12)
2042                 {
2043                         c->swScale= PlanarToNV12Wrapper;
2044
2045                         if(flags&SWS_PRINT_INFO)
2046                                 MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", 
2047                                         vo_format_name(srcFormat), vo_format_name(dstFormat));
2048                         return c;
2049                 }
2050                 /* yuv2bgr */
2051                 if((srcFormat==IMGFMT_YV12 || srcFormat==IMGFMT_I420) && isBGR(dstFormat))
2052                 {
2053                         // FIXME multiple yuv2rgb converters wont work that way cuz that thing is full of globals&statics
2054                         //FIXME rgb vs. bgr ? 
2055 #ifdef WORDS_BIGENDIAN
2056                         if(dstFormat==IMGFMT_BGR32)
2057                                 yuv2rgb_init( dstFormat&0xFF /* =bpp */, MODE_BGR);
2058                         else
2059                                 yuv2rgb_init( dstFormat&0xFF /* =bpp */, MODE_RGB);
2060 #else
2061                         yuv2rgb_init( dstFormat&0xFF /* =bpp */, MODE_RGB);
2062 #endif
2063                         c->swScale= planarYuvToBgr;
2064
2065                         if(flags&SWS_PRINT_INFO)
2066                                 MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", 
2067                                         vo_format_name(srcFormat), vo_format_name(dstFormat));
2068                         return c;
2069                 }
2070                 
2071                 /* simple copy */
2072                 if(   srcFormat == dstFormat
2073                    || (srcFormat==IMGFMT_YV12 && dstFormat==IMGFMT_I420)
2074                    || (srcFormat==IMGFMT_I420 && dstFormat==IMGFMT_YV12)
2075                    || (isPlanarYUV(srcFormat) && isGray(dstFormat))
2076                    || (isPlanarYUV(dstFormat) && isGray(srcFormat))
2077                   )
2078                 {
2079                         c->swScale= simpleCopy;
2080
2081                         if(flags&SWS_PRINT_INFO)
2082                                 MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", 
2083                                         vo_format_name(srcFormat), vo_format_name(dstFormat));
2084                         return c;
2085                 }
2086                 
2087                 if( srcFormat==IMGFMT_YVU9 && (dstFormat==IMGFMT_YV12 || dstFormat==IMGFMT_I420) )
2088                 {
2089                         c->swScale= yvu9toyv12Wrapper;
2090
2091                         if(flags&SWS_PRINT_INFO)
2092                                 MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", 
2093                                         vo_format_name(srcFormat), vo_format_name(dstFormat));
2094                         return c;
2095                 }
2096
2097                 /* bgr24toYV12 */
2098                 if(srcFormat==IMGFMT_BGR24 && dstFormat==IMGFMT_YV12)
2099                         c->swScale= bgr24toyv12Wrapper;
2100                 
2101                 /* rgb/bgr -> rgb/bgr (no dither needed forms) */
2102                 if(   (isBGR(srcFormat) || isRGB(srcFormat))
2103                    && (isBGR(dstFormat) || isRGB(dstFormat)) 
2104                    && !needsDither)
2105                         c->swScale= rgb2rgbWrapper;
2106
2107                 /* LQ converters if -sws 0 or -sws 4*/
2108                 if(c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
2109                         /* rgb/bgr -> rgb/bgr (dither needed forms) */
2110                         if(  (isBGR(srcFormat) || isRGB(srcFormat))
2111                           && (isBGR(dstFormat) || isRGB(dstFormat)) 
2112                           && needsDither)
2113                                 c->swScale= rgb2rgbWrapper;
2114
2115                         /* yv12_to_yuy2 */
2116                         if((srcFormat == IMGFMT_YV12||srcFormat==IMGFMT_I420)&&dstFormat == IMGFMT_YUY2)
2117                         {
2118                                 c->swScale= PlanarToYuy2Wrapper;
2119
2120                                 if(flags&SWS_PRINT_INFO)
2121                                         MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", 
2122                                                 vo_format_name(srcFormat), vo_format_name(dstFormat));
2123                                 return c;
2124                         }
2125                 }
2126
2127                 if(c->swScale){
2128                         if(flags&SWS_PRINT_INFO)
2129                                 MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", 
2130                                         vo_format_name(srcFormat), vo_format_name(dstFormat));
2131                         return c;
2132                 }
2133         }
2134
2135         if(cpuCaps.hasMMX2)
2136         {
2137                 c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
2138                 if(!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
2139                 {
2140                         if(flags&SWS_PRINT_INFO)
2141                                 MSG_INFO("SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
2142                 }
2143         }
2144         else
2145                 c->canMMX2BeUsed=0;
2146
2147         c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
2148         c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
2149
2150         // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
2151         // but only for the FAST_BILINEAR mode otherwise do correct scaling
2152         // n-2 is the last chrominance sample available
2153         // this is not perfect, but noone shuld notice the difference, the more correct variant
2154         // would be like the vertical one, but that would require some special code for the
2155         // first and last pixel
2156         if(flags&SWS_FAST_BILINEAR)
2157         {
2158                 if(c->canMMX2BeUsed)
2159                 {
2160                         c->lumXInc+= 20;
2161                         c->chrXInc+= 20;
2162                 }
2163                 //we dont use the x86asm scaler if mmx is available
2164                 else if(cpuCaps.hasMMX)
2165                 {
2166                         c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
2167                         c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
2168                 }
2169         }
2170
2171         /* precalculate horizontal scaler filter coefficients */
2172         {
2173                 const int filterAlign= cpuCaps.hasMMX ? 4 : 1;
2174
2175                 initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
2176                                  srcW      ,       dstW, filterAlign, 1<<14,
2177                                  (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
2178                                  srcFilter->lumH, dstFilter->lumH);
2179                 initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
2180                                  c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
2181                                  (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2182                                  srcFilter->chrH, dstFilter->chrH);
2183
2184 #ifdef ARCH_X86
2185 // cant downscale !!!
2186                 if(c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
2187                 {
2188                         c->lumMmx2Filter   = (int16_t*)memalign(8, (dstW        /8+8)*sizeof(int16_t));
2189                         c->chrMmx2Filter   = (int16_t*)memalign(8, (c->chrDstW  /4+8)*sizeof(int16_t));
2190                         c->lumMmx2FilterPos= (int32_t*)memalign(8, (dstW      /2/8+8)*sizeof(int32_t));
2191                         c->chrMmx2FilterPos= (int32_t*)memalign(8, (c->chrDstW/2/4+8)*sizeof(int32_t));
2192
2193                         initMMX2HScaler(      dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
2194                         initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
2195                 }
2196 #endif
2197         } // Init Horizontal stuff
2198
2199
2200
2201         /* precalculate vertical scaler filter coefficients */
2202         initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
2203                         srcH      ,        dstH, 1, (1<<12)-4,
2204                         (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
2205                         srcFilter->lumV, dstFilter->lumV);
2206         initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
2207                         c->chrSrcH, c->chrDstH, 1, (1<<12)-4,
2208                         (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2209                         srcFilter->chrV, dstFilter->chrV);
2210
2211         // Calculate Buffer Sizes so that they wont run out while handling these damn slices
2212         c->vLumBufSize= c->vLumFilterSize;
2213         c->vChrBufSize= c->vChrFilterSize;
2214         for(i=0; i<dstH; i++)
2215         {
2216                 int chrI= i*c->chrDstH / dstH;
2217                 int nextSlice= MAX(c->vLumFilterPos[i   ] + c->vLumFilterSize - 1,
2218                                  ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
2219                 nextSlice&= ~3; // Slices start at boundaries which are divisable through 4
2220                 if(c->vLumFilterPos[i   ] + c->vLumBufSize < nextSlice)
2221                         c->vLumBufSize= nextSlice - c->vLumFilterPos[i   ];
2222                 if(c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
2223                         c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
2224         }
2225
2226         // allocate pixbufs (we use dynamic allocation because otherwise we would need to
2227         c->lumPixBuf= (int16_t**)memalign(4, c->vLumBufSize*2*sizeof(int16_t*));
2228         c->chrPixBuf= (int16_t**)memalign(4, c->vChrBufSize*2*sizeof(int16_t*));
2229         //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
2230         for(i=0; i<c->vLumBufSize; i++)
2231                 c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= (uint16_t*)memalign(8, 4000);
2232         for(i=0; i<c->vChrBufSize; i++)
2233                 c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= (uint16_t*)memalign(8, 8000);
2234
2235         //try to avoid drawing green stuff between the right end and the stride end
2236         for(i=0; i<c->vLumBufSize; i++) memset(c->lumPixBuf[i], 0, 4000);
2237         for(i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000);
2238
2239         ASSERT(c->chrDstH <= dstH)
2240
2241         // pack filter data for mmx code
2242         if(cpuCaps.hasMMX)
2243         {
2244                 c->lumMmxFilter= (int16_t*)memalign(8, c->vLumFilterSize*      dstH*4*sizeof(int16_t));
2245                 c->chrMmxFilter= (int16_t*)memalign(8, c->vChrFilterSize*c->chrDstH*4*sizeof(int16_t));
2246                 for(i=0; i<c->vLumFilterSize*dstH; i++)
2247                         c->lumMmxFilter[4*i]=c->lumMmxFilter[4*i+1]=c->lumMmxFilter[4*i+2]=c->lumMmxFilter[4*i+3]=
2248                                 c->vLumFilter[i];
2249                 for(i=0; i<c->vChrFilterSize*c->chrDstH; i++)
2250                         c->chrMmxFilter[4*i]=c->chrMmxFilter[4*i+1]=c->chrMmxFilter[4*i+2]=c->chrMmxFilter[4*i+3]=
2251                                 c->vChrFilter[i];
2252         }
2253
2254         if(flags&SWS_PRINT_INFO)
2255         {
2256 #ifdef DITHER1XBPP
2257                 char *dither= " dithered";
2258 #else
2259                 char *dither= "";
2260 #endif
2261                 if(flags&SWS_FAST_BILINEAR)
2262                         MSG_INFO("\nSwScaler: FAST_BILINEAR scaler, ");
2263                 else if(flags&SWS_BILINEAR)
2264                         MSG_INFO("\nSwScaler: BILINEAR scaler, ");
2265                 else if(flags&SWS_BICUBIC)
2266                         MSG_INFO("\nSwScaler: BICUBIC scaler, ");
2267                 else if(flags&SWS_X)
2268                         MSG_INFO("\nSwScaler: Experimental scaler, ");
2269                 else if(flags&SWS_POINT)
2270                         MSG_INFO("\nSwScaler: Nearest Neighbor / POINT scaler, ");
2271                 else if(flags&SWS_AREA)
2272                         MSG_INFO("\nSwScaler: Area Averageing scaler, ");
2273                 else if(flags&SWS_BICUBLIN)
2274                         MSG_INFO("\nSwScaler: luma BICUBIC / chroma BILINEAR scaler, ");
2275                 else if(flags&SWS_GAUSS)
2276                         MSG_INFO("\nSwScaler: Gaussian scaler, ");
2277                 else if(flags&SWS_SINC)
2278                         MSG_INFO("\nSwScaler: Sinc scaler, ");
2279                 else if(flags&SWS_LANCZOS)
2280                         MSG_INFO("\nSwScaler: Lanczos scaler, ");
2281                 else if(flags&SWS_SPLINE)
2282                         MSG_INFO("\nSwScaler: Bicubic spline scaler, ");
2283                 else
2284                         MSG_INFO("\nSwScaler: ehh flags invalid?! ");
2285
2286                 if(dstFormat==IMGFMT_BGR15 || dstFormat==IMGFMT_BGR16)
2287                         MSG_INFO("from %s to%s %s ", 
2288                                 vo_format_name(srcFormat), dither, vo_format_name(dstFormat));
2289                 else
2290                         MSG_INFO("from %s to %s ", 
2291                                 vo_format_name(srcFormat), vo_format_name(dstFormat));
2292
2293                 if(cpuCaps.hasMMX2)
2294                         MSG_INFO("using MMX2\n");
2295                 else if(cpuCaps.has3DNow)
2296                         MSG_INFO("using 3DNOW\n");
2297                 else if(cpuCaps.hasMMX)
2298                         MSG_INFO("using MMX\n");
2299                 else
2300                         MSG_INFO("using C\n");
2301         }
2302
2303         if((flags & SWS_PRINT_INFO) && verbose>0)
2304         {
2305                 if(cpuCaps.hasMMX)
2306                 {
2307                         if(c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
2308                                 MSG_V("SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
2309                         else
2310                         {
2311                                 if(c->hLumFilterSize==4)
2312                                         MSG_V("SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
2313                                 else if(c->hLumFilterSize==8)
2314                                         MSG_V("SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
2315                                 else
2316                                         MSG_V("SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
2317
2318                                 if(c->hChrFilterSize==4)
2319                                         MSG_V("SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
2320                                 else if(c->hChrFilterSize==8)
2321                                         MSG_V("SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
2322                                 else
2323                                         MSG_V("SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
2324                         }
2325                 }
2326                 else
2327                 {
2328 #ifdef ARCH_X86
2329                         MSG_V("SwScaler: using X86-Asm scaler for horizontal scaling\n");
2330 #else
2331                         if(flags & SWS_FAST_BILINEAR)
2332                                 MSG_V("SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
2333                         else
2334                                 MSG_V("SwScaler: using C scaler for horizontal scaling\n");
2335 #endif
2336                 }
2337                 if(isPlanarYUV(dstFormat))
2338                 {
2339                         if(c->vLumFilterSize==1)
2340                                 MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", cpuCaps.hasMMX ? "MMX" : "C");
2341                         else
2342                                 MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", cpuCaps.hasMMX ? "MMX" : "C");
2343                 }
2344                 else
2345                 {
2346                         if(c->vLumFilterSize==1 && c->vChrFilterSize==2)
2347                                 MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
2348                                        "SwScaler:       2-tap scaler for vertical chrominance scaling (BGR)\n",cpuCaps.hasMMX ? "MMX" : "C");
2349                         else if(c->vLumFilterSize==2 && c->vChrFilterSize==2)
2350                                 MSG_V("SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", cpuCaps.hasMMX ? "MMX" : "C");
2351                         else
2352                                 MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", cpuCaps.hasMMX ? "MMX" : "C");
2353                 }
2354
2355                 if(dstFormat==IMGFMT_BGR24)
2356                         MSG_V("SwScaler: using %s YV12->BGR24 Converter\n",
2357                                 cpuCaps.hasMMX2 ? "MMX2" : (cpuCaps.hasMMX ? "MMX" : "C"));
2358                 else if(dstFormat==IMGFMT_BGR32)
2359                         MSG_V("SwScaler: using %s YV12->BGR32 Converter\n", cpuCaps.hasMMX ? "MMX" : "C");
2360                 else if(dstFormat==IMGFMT_BGR16)
2361                         MSG_V("SwScaler: using %s YV12->BGR16 Converter\n", cpuCaps.hasMMX ? "MMX" : "C");
2362                 else if(dstFormat==IMGFMT_BGR15)
2363                         MSG_V("SwScaler: using %s YV12->BGR15 Converter\n", cpuCaps.hasMMX ? "MMX" : "C");
2364
2365                 MSG_V("SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
2366         }
2367         if((flags & SWS_PRINT_INFO) && verbose>1)
2368         {
2369                 MSG_DBG2("SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2370                         c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
2371                 MSG_DBG2("SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2372                         c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
2373         }
2374
2375         c->swScale= swScale;
2376         return c;
2377 }
2378
2379 /**
2380  * returns a normalized gaussian curve used to filter stuff
2381  * quality=3 is high quality, lowwer is lowwer quality
2382  */
2383
2384 SwsVector *getGaussianVec(double variance, double quality){
2385         const int length= (int)(variance*quality + 0.5) | 1;
2386         int i;
2387         double *coeff= memalign(sizeof(double), length*sizeof(double));
2388         double middle= (length-1)*0.5;
2389         SwsVector *vec= malloc(sizeof(SwsVector));
2390
2391         vec->coeff= coeff;
2392         vec->length= length;
2393
2394         for(i=0; i<length; i++)
2395         {
2396                 double dist= i-middle;
2397                 coeff[i]= exp( -dist*dist/(2*variance*variance) ) / sqrt(2*variance*PI);
2398         }
2399
2400         normalizeVec(vec, 1.0);
2401
2402         return vec;
2403 }
2404
2405 SwsVector *getConstVec(double c, int length){
2406         int i;
2407         double *coeff= memalign(sizeof(double), length*sizeof(double));
2408         SwsVector *vec= malloc(sizeof(SwsVector));
2409
2410         vec->coeff= coeff;
2411         vec->length= length;
2412
2413         for(i=0; i<length; i++)
2414                 coeff[i]= c;
2415
2416         return vec;
2417 }
2418
2419
2420 SwsVector *getIdentityVec(void){
2421         double *coeff= memalign(sizeof(double), sizeof(double));
2422         SwsVector *vec= malloc(sizeof(SwsVector));
2423         coeff[0]= 1.0;
2424
2425         vec->coeff= coeff;
2426         vec->length= 1;
2427
2428         return vec;
2429 }
2430
2431 void normalizeVec(SwsVector *a, double height){
2432         int i;
2433         double sum=0;
2434         double inv;
2435
2436         for(i=0; i<a->length; i++)
2437                 sum+= a->coeff[i];
2438
2439         inv= height/sum;
2440
2441         for(i=0; i<a->length; i++)
2442                 a->coeff[i]*= inv;
2443 }
2444
2445 void scaleVec(SwsVector *a, double scalar){
2446         int i;
2447
2448         for(i=0; i<a->length; i++)
2449                 a->coeff[i]*= scalar;
2450 }
2451
2452 static SwsVector *getConvVec(SwsVector *a, SwsVector *b){
2453         int length= a->length + b->length - 1;
2454         double *coeff= memalign(sizeof(double), length*sizeof(double));
2455         int i, j;
2456         SwsVector *vec= malloc(sizeof(SwsVector));
2457
2458         vec->coeff= coeff;
2459         vec->length= length;
2460
2461         for(i=0; i<length; i++) coeff[i]= 0.0;
2462
2463         for(i=0; i<a->length; i++)
2464         {
2465                 for(j=0; j<b->length; j++)
2466                 {
2467                         coeff[i+j]+= a->coeff[i]*b->coeff[j];
2468                 }
2469         }
2470
2471         return vec;
2472 }
2473
2474 static SwsVector *sumVec(SwsVector *a, SwsVector *b){
2475         int length= MAX(a->length, b->length);
2476         double *coeff= memalign(sizeof(double), length*sizeof(double));
2477         int i;
2478         SwsVector *vec= malloc(sizeof(SwsVector));
2479
2480         vec->coeff= coeff;
2481         vec->length= length;
2482
2483         for(i=0; i<length; i++) coeff[i]= 0.0;
2484
2485         for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2486         for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
2487
2488         return vec;
2489 }
2490
2491 static SwsVector *diffVec(SwsVector *a, SwsVector *b){
2492         int length= MAX(a->length, b->length);
2493         double *coeff= memalign(sizeof(double), length*sizeof(double));
2494         int i;
2495         SwsVector *vec= malloc(sizeof(SwsVector));
2496
2497         vec->coeff= coeff;
2498         vec->length= length;
2499
2500         for(i=0; i<length; i++) coeff[i]= 0.0;
2501
2502         for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2503         for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
2504
2505         return vec;
2506 }
2507
2508 /* shift left / or right if "shift" is negative */
2509 static SwsVector *getShiftedVec(SwsVector *a, int shift){
2510         int length= a->length + ABS(shift)*2;
2511         double *coeff= memalign(sizeof(double), length*sizeof(double));
2512         int i;
2513         SwsVector *vec= malloc(sizeof(SwsVector));
2514
2515         vec->coeff= coeff;
2516         vec->length= length;
2517
2518         for(i=0; i<length; i++) coeff[i]= 0.0;
2519
2520         for(i=0; i<a->length; i++)
2521         {
2522                 coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
2523         }
2524
2525         return vec;
2526 }
2527
2528 void shiftVec(SwsVector *a, int shift){
2529         SwsVector *shifted= getShiftedVec(a, shift);
2530         free(a->coeff);
2531         a->coeff= shifted->coeff;
2532         a->length= shifted->length;
2533         free(shifted);
2534 }
2535
2536 void addVec(SwsVector *a, SwsVector *b){
2537         SwsVector *sum= sumVec(a, b);
2538         free(a->coeff);
2539         a->coeff= sum->coeff;
2540         a->length= sum->length;
2541         free(sum);
2542 }
2543
2544 void subVec(SwsVector *a, SwsVector *b){
2545         SwsVector *diff= diffVec(a, b);
2546         free(a->coeff);
2547         a->coeff= diff->coeff;
2548         a->length= diff->length;
2549         free(diff);
2550 }
2551
2552 void convVec(SwsVector *a, SwsVector *b){
2553         SwsVector *conv= getConvVec(a, b);
2554         free(a->coeff);
2555         a->coeff= conv->coeff;
2556         a->length= conv->length;
2557         free(conv);
2558 }
2559
2560 SwsVector *cloneVec(SwsVector *a){
2561         double *coeff= memalign(sizeof(double), a->length*sizeof(double));
2562         int i;
2563         SwsVector *vec= malloc(sizeof(SwsVector));
2564
2565         vec->coeff= coeff;
2566         vec->length= a->length;
2567
2568         for(i=0; i<a->length; i++) coeff[i]= a->coeff[i];
2569
2570         return vec;
2571 }
2572
2573 void printVec(SwsVector *a){
2574         int i;
2575         double max=0;
2576         double min=0;
2577         double range;
2578
2579         for(i=0; i<a->length; i++)
2580                 if(a->coeff[i]>max) max= a->coeff[i];
2581
2582         for(i=0; i<a->length; i++)
2583                 if(a->coeff[i]<min) min= a->coeff[i];
2584
2585         range= max - min;
2586
2587         for(i=0; i<a->length; i++)
2588         {
2589                 int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
2590                 MSG_DBG2("%1.3f ", a->coeff[i]);
2591                 for(;x>0; x--) MSG_DBG2(" ");
2592                 MSG_DBG2("|\n");
2593         }
2594 }
2595
2596 void freeVec(SwsVector *a){
2597         if(!a) return;
2598         if(a->coeff) free(a->coeff);
2599         a->coeff=NULL;
2600         a->length=0;
2601         free(a);
2602 }
2603
2604 void freeSwsContext(SwsContext *c){
2605         int i;
2606         if(!c) return;
2607
2608         if(c->lumPixBuf)
2609         {
2610                 for(i=0; i<c->vLumBufSize; i++)
2611                 {
2612                         if(c->lumPixBuf[i]) free(c->lumPixBuf[i]);
2613                         c->lumPixBuf[i]=NULL;
2614                 }
2615                 free(c->lumPixBuf);
2616                 c->lumPixBuf=NULL;
2617         }
2618
2619         if(c->chrPixBuf)
2620         {
2621                 for(i=0; i<c->vChrBufSize; i++)
2622                 {
2623                         if(c->chrPixBuf[i]) free(c->chrPixBuf[i]);
2624                         c->chrPixBuf[i]=NULL;
2625                 }
2626                 free(c->chrPixBuf);
2627                 c->chrPixBuf=NULL;
2628         }
2629
2630         if(c->vLumFilter) free(c->vLumFilter);
2631         c->vLumFilter = NULL;
2632         if(c->vChrFilter) free(c->vChrFilter);
2633         c->vChrFilter = NULL;
2634         if(c->hLumFilter) free(c->hLumFilter);
2635         c->hLumFilter = NULL;
2636         if(c->hChrFilter) free(c->hChrFilter);
2637         c->hChrFilter = NULL;
2638
2639         if(c->vLumFilterPos) free(c->vLumFilterPos);
2640         c->vLumFilterPos = NULL;
2641         if(c->vChrFilterPos) free(c->vChrFilterPos);
2642         c->vChrFilterPos = NULL;
2643         if(c->hLumFilterPos) free(c->hLumFilterPos);
2644         c->hLumFilterPos = NULL;
2645         if(c->hChrFilterPos) free(c->hChrFilterPos);
2646         c->hChrFilterPos = NULL;
2647
2648         if(c->lumMmxFilter) free(c->lumMmxFilter);
2649         c->lumMmxFilter = NULL;
2650         if(c->chrMmxFilter) free(c->chrMmxFilter);
2651         c->chrMmxFilter = NULL;
2652
2653         if(c->lumMmx2Filter) free(c->lumMmx2Filter);
2654         c->lumMmx2Filter=NULL;
2655         if(c->chrMmx2Filter) free(c->chrMmx2Filter);
2656         c->chrMmx2Filter=NULL;
2657         if(c->lumMmx2FilterPos) free(c->lumMmx2FilterPos);
2658         c->lumMmx2FilterPos=NULL;
2659         if(c->chrMmx2FilterPos) free(c->chrMmx2FilterPos);
2660         c->chrMmx2FilterPos=NULL;
2661         if(c->yuvTable) free(c->yuvTable);
2662         c->yuvTable=NULL;
2663
2664         free(c);
2665 }
2666
2667