AltiVec operations need to have memory aligned on 16-byte boundaries.
[ffmpeg.git] / postproc / swscale.c
1 /*
2     Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
3
4     This program is free software; you can redistribute it and/or modify
5     it under the terms of the GNU General Public License as published by
6     the Free Software Foundation; either version 2 of the License, or
7     (at your option) any later version.
8
9     This program is distributed in the hope that it will be useful,
10     but WITHOUT ANY WARRANTY; without even the implied warranty of
11     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12     GNU General Public License for more details.
13
14     You should have received a copy of the GNU General Public License
15     along with this program; if not, write to the Free Software
16     Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18
19 /*
20   supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09
21   supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
22   {BGR,RGB}{1,4,8,15,16} support dithering
23   
24   unscaled special converters (YV12=I420=IYUV, Y800=Y8)
25   YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
26   x -> x
27   YUV9 -> YV12
28   YUV9/YV12 -> Y800
29   Y800 -> YUV9/YV12
30   BGR24 -> BGR32 & RGB24 -> RGB32
31   BGR32 -> BGR24 & RGB32 -> RGB24
32   BGR15 -> BGR16
33 */
34
35 /* 
36 tested special converters (most are tested actually but i didnt write it down ...)
37  YV12 -> BGR16
38  YV12 -> YV12
39  BGR15 -> BGR16
40  BGR16 -> BGR16
41  YVU9 -> YV12
42
43 untested special converters
44   YV12/I420 -> BGR15/BGR24/BGR32 (its the yuv2rgb stuff, so it should be ok)
45   YV12/I420 -> YV12/I420
46   YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
47   BGR24 -> BGR32 & RGB24 -> RGB32
48   BGR32 -> BGR24 & RGB32 -> RGB24
49   BGR24 -> YV12
50 */
51
52 #include <inttypes.h>
53 #include <string.h>
54 #include <math.h>
55 #include <stdio.h>
56 #include <unistd.h>
57 #include "config.h"
58 #include "mangle.h"
59 #include <assert.h>
60 #ifdef HAVE_MALLOC_H
61 #include <malloc.h>
62 #else
63 #include <stdlib.h>
64 #endif
65 #ifdef HAVE_SYS_MMAN_H
66 #include <sys/mman.h>
67 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
68 #define MAP_ANONYMOUS MAP_ANON
69 #endif
70 #endif
71 #include "swscale.h"
72 #include "swscale_internal.h"
73 #include "cpudetect.h"
74 #include "bswap.h"
75 #include "libvo/img_format.h"
76 #include "rgb2rgb.h"
77 #include "libvo/fastmemcpy.h"
78
79 #undef MOVNTQ
80 #undef PAVGB
81
82 //#undef HAVE_MMX2
83 //#define HAVE_3DNOW
84 //#undef HAVE_MMX
85 //#undef ARCH_X86
86 //#define WORDS_BIGENDIAN
87 #define DITHER1XBPP
88
89 #define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
90
91 #define RET 0xC3 //near return opcode for X86
92
93 #ifdef MP_DEBUG
94 #define ASSERT(x) assert(x);
95 #else
96 #define ASSERT(x) ;
97 #endif
98
99 #ifdef M_PI
100 #define PI M_PI
101 #else
102 #define PI 3.14159265358979323846
103 #endif
104
105 //FIXME replace this with something faster
106 #define isPlanarYUV(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YVU9 \
107                         || (x)==IMGFMT_NV12 || (x)==IMGFMT_NV21 \
108                         || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P)
109 #define isYUV(x)       ((x)==IMGFMT_UYVY || (x)==IMGFMT_YUY2 || isPlanarYUV(x))
110 #define isGray(x)      ((x)==IMGFMT_Y800)
111 #define isRGB(x)       (((x)&IMGFMT_RGB_MASK)==IMGFMT_RGB)
112 #define isBGR(x)       (((x)&IMGFMT_BGR_MASK)==IMGFMT_BGR)
113 #define isSupportedIn(x)  ((x)==IMGFMT_YV12 || (x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY\
114                         || (x)==IMGFMT_BGR32|| (x)==IMGFMT_BGR24|| (x)==IMGFMT_BGR16|| (x)==IMGFMT_BGR15\
115                         || (x)==IMGFMT_RGB32|| (x)==IMGFMT_RGB24\
116                         || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9\
117                         || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P)
118 #define isSupportedOut(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY\
119                         || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P\
120                         || isRGB(x) || isBGR(x)\
121                         || (x)==IMGFMT_NV12 || (x)==IMGFMT_NV21\
122                         || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9)
123 #define isPacked(x)    ((x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY ||isRGB(x) || isBGR(x))
124
125 #define RGB2YUV_SHIFT 16
126 #define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
127 #define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
128 #define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
129 #define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
130 #define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
131 #define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
132 #define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
133 #define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
134 #define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
135
136 extern const int32_t Inverse_Table_6_9[8][4];
137
138 /*
139 NOTES
140 Special versions: fast Y 1:1 scaling (no interpolation in y direction)
141
142 TODO
143 more intelligent missalignment avoidance for the horizontal scaler
144 write special vertical cubic upscale version
145 Optimize C code (yv12 / minmax)
146 add support for packed pixel yuv input & output
147 add support for Y8 output
148 optimize bgr24 & bgr32
149 add BGR4 output support
150 write special BGR->BGR scaler
151 */
152
153 #define ABS(a) ((a) > 0 ? (a) : (-(a)))
154 #define MIN(a,b) ((a) > (b) ? (b) : (a))
155 #define MAX(a,b) ((a) < (b) ? (b) : (a))
156
157 #if defined(ARCH_X86) || defined(ARCH_X86_64)
158 static uint64_t attribute_used __attribute__((aligned(8))) bF8=       0xF8F8F8F8F8F8F8F8LL;
159 static uint64_t attribute_used __attribute__((aligned(8))) bFC=       0xFCFCFCFCFCFCFCFCLL;
160 static uint64_t __attribute__((aligned(8))) w10=       0x0010001000100010LL;
161 static uint64_t attribute_used __attribute__((aligned(8))) w02=       0x0002000200020002LL;
162 static uint64_t attribute_used __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL;
163 static uint64_t attribute_used __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL;
164 static uint64_t attribute_used __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL;
165 static uint64_t attribute_used __attribute__((aligned(8))) bm01010101=0x00FF00FF00FF00FFLL;
166
167 static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
168 static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
169 static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
170 static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
171
172 static uint64_t __attribute__((aligned(8))) dither4[2]={
173         0x0103010301030103LL,
174         0x0200020002000200LL,};
175
176 static uint64_t __attribute__((aligned(8))) dither8[2]={
177         0x0602060206020602LL,
178         0x0004000400040004LL,};
179
180 static uint64_t __attribute__((aligned(8))) b16Mask=   0x001F001F001F001FLL;
181 static uint64_t attribute_used __attribute__((aligned(8))) g16Mask=   0x07E007E007E007E0LL;
182 static uint64_t attribute_used __attribute__((aligned(8))) r16Mask=   0xF800F800F800F800LL;
183 static uint64_t __attribute__((aligned(8))) b15Mask=   0x001F001F001F001FLL;
184 static uint64_t attribute_used __attribute__((aligned(8))) g15Mask=   0x03E003E003E003E0LL;
185 static uint64_t attribute_used __attribute__((aligned(8))) r15Mask=   0x7C007C007C007C00LL;
186
187 static uint64_t attribute_used __attribute__((aligned(8))) M24A=   0x00FF0000FF0000FFLL;
188 static uint64_t attribute_used __attribute__((aligned(8))) M24B=   0xFF0000FF0000FF00LL;
189 static uint64_t attribute_used __attribute__((aligned(8))) M24C=   0x0000FF0000FF0000LL;
190
191 #ifdef FAST_BGR2YV12
192 static const uint64_t bgr2YCoeff  attribute_used __attribute__((aligned(8))) = 0x000000210041000DULL;
193 static const uint64_t bgr2UCoeff  attribute_used __attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL;
194 static const uint64_t bgr2VCoeff  attribute_used __attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL;
195 #else
196 static const uint64_t bgr2YCoeff  attribute_used __attribute__((aligned(8))) = 0x000020E540830C8BULL;
197 static const uint64_t bgr2UCoeff  attribute_used __attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL;
198 static const uint64_t bgr2VCoeff  attribute_used __attribute__((aligned(8))) = 0x00003831D0E6F6EAULL;
199 #endif
200 static const uint64_t bgr2YOffset attribute_used __attribute__((aligned(8))) = 0x1010101010101010ULL;
201 static const uint64_t bgr2UVOffset attribute_used __attribute__((aligned(8)))= 0x8080808080808080ULL;
202 static const uint64_t w1111       attribute_used __attribute__((aligned(8))) = 0x0001000100010001ULL;
203 #endif
204
205 // clipping helper table for C implementations:
206 static unsigned char clip_table[768];
207
208 static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
209                   
210 extern const uint8_t dither_2x2_4[2][8];
211 extern const uint8_t dither_2x2_8[2][8];
212 extern const uint8_t dither_8x8_32[8][8];
213 extern const uint8_t dither_8x8_73[8][8];
214 extern const uint8_t dither_8x8_220[8][8];
215
216 #if defined(ARCH_X86) || defined(ARCH_X86_64)
217 void in_asm_used_var_warning_killer()
218 {
219  volatile int i= bF8+bFC+w10+
220  bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+
221  M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0]+bm01010101;
222  if(i) i=0;
223 }
224 #endif
225
226 static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
227                                     int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
228                                     uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
229 {
230         //FIXME Optimize (just quickly writen not opti..)
231         int i;
232         for(i=0; i<dstW; i++)
233         {
234                 int val=1<<18;
235                 int j;
236                 for(j=0; j<lumFilterSize; j++)
237                         val += lumSrc[j][i] * lumFilter[j];
238
239                 dest[i]= MIN(MAX(val>>19, 0), 255);
240         }
241
242         if(uDest != NULL)
243                 for(i=0; i<chrDstW; i++)
244                 {
245                         int u=1<<18;
246                         int v=1<<18;
247                         int j;
248                         for(j=0; j<chrFilterSize; j++)
249                         {
250                                 u += chrSrc[j][i] * chrFilter[j];
251                                 v += chrSrc[j][i + 2048] * chrFilter[j];
252                         }
253
254                         uDest[i]= MIN(MAX(u>>19, 0), 255);
255                         vDest[i]= MIN(MAX(v>>19, 0), 255);
256                 }
257 }
258
259 static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
260                                 int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
261                                 uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
262 {
263         //FIXME Optimize (just quickly writen not opti..)
264         int i;
265         for(i=0; i<dstW; i++)
266         {
267                 int val=1<<18;
268                 int j;
269                 for(j=0; j<lumFilterSize; j++)
270                         val += lumSrc[j][i] * lumFilter[j];
271
272                 dest[i]= MIN(MAX(val>>19, 0), 255);
273         }
274
275         if(uDest == NULL)
276                 return;
277
278         if(dstFormat == IMGFMT_NV12)
279                 for(i=0; i<chrDstW; i++)
280                 {
281                         int u=1<<18;
282                         int v=1<<18;
283                         int j;
284                         for(j=0; j<chrFilterSize; j++)
285                         {
286                                 u += chrSrc[j][i] * chrFilter[j];
287                                 v += chrSrc[j][i + 2048] * chrFilter[j];
288                         }
289
290                         uDest[2*i]= MIN(MAX(u>>19, 0), 255);
291                         uDest[2*i+1]= MIN(MAX(v>>19, 0), 255);
292                 }
293         else
294                 for(i=0; i<chrDstW; i++)
295                 {
296                         int u=1<<18;
297                         int v=1<<18;
298                         int j;
299                         for(j=0; j<chrFilterSize; j++)
300                         {
301                                 u += chrSrc[j][i] * chrFilter[j];
302                                 v += chrSrc[j][i + 2048] * chrFilter[j];
303                         }
304
305                         uDest[2*i]= MIN(MAX(v>>19, 0), 255);
306                         uDest[2*i+1]= MIN(MAX(u>>19, 0), 255);
307                 }
308 }
309
310 #define YSCALE_YUV_2_PACKEDX_C(type) \
311                 for(i=0; i<(dstW>>1); i++){\
312                         int j;\
313                         int Y1=1<<18;\
314                         int Y2=1<<18;\
315                         int U=1<<18;\
316                         int V=1<<18;\
317                         type *r, *b, *g;\
318                         const int i2= 2*i;\
319                         \
320                         for(j=0; j<lumFilterSize; j++)\
321                         {\
322                                 Y1 += lumSrc[j][i2] * lumFilter[j];\
323                                 Y2 += lumSrc[j][i2+1] * lumFilter[j];\
324                         }\
325                         for(j=0; j<chrFilterSize; j++)\
326                         {\
327                                 U += chrSrc[j][i] * chrFilter[j];\
328                                 V += chrSrc[j][i+2048] * chrFilter[j];\
329                         }\
330                         Y1>>=19;\
331                         Y2>>=19;\
332                         U >>=19;\
333                         V >>=19;\
334                         if((Y1|Y2|U|V)&256)\
335                         {\
336                                 if(Y1>255)   Y1=255;\
337                                 else if(Y1<0)Y1=0;\
338                                 if(Y2>255)   Y2=255;\
339                                 else if(Y2<0)Y2=0;\
340                                 if(U>255)    U=255;\
341                                 else if(U<0) U=0;\
342                                 if(V>255)    V=255;\
343                                 else if(V<0) V=0;\
344                         }
345                         
346 #define YSCALE_YUV_2_RGBX_C(type) \
347                         YSCALE_YUV_2_PACKEDX_C(type)\
348                         r = c->table_rV[V];\
349                         g = c->table_gU[U] + c->table_gV[V];\
350                         b = c->table_bU[U];\
351
352 #define YSCALE_YUV_2_PACKED2_C \
353                 for(i=0; i<(dstW>>1); i++){\
354                         const int i2= 2*i;\
355                         int Y1= (buf0[i2  ]*yalpha1+buf1[i2  ]*yalpha)>>19;\
356                         int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19;\
357                         int U= (uvbuf0[i     ]*uvalpha1+uvbuf1[i     ]*uvalpha)>>19;\
358                         int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19;\
359
360 #define YSCALE_YUV_2_RGB2_C(type) \
361                         YSCALE_YUV_2_PACKED2_C\
362                         type *r, *b, *g;\
363                         r = c->table_rV[V];\
364                         g = c->table_gU[U] + c->table_gV[V];\
365                         b = c->table_bU[U];\
366
367 #define YSCALE_YUV_2_PACKED1_C \
368                 for(i=0; i<(dstW>>1); i++){\
369                         const int i2= 2*i;\
370                         int Y1= buf0[i2  ]>>7;\
371                         int Y2= buf0[i2+1]>>7;\
372                         int U= (uvbuf1[i     ])>>7;\
373                         int V= (uvbuf1[i+2048])>>7;\
374
375 #define YSCALE_YUV_2_RGB1_C(type) \
376                         YSCALE_YUV_2_PACKED1_C\
377                         type *r, *b, *g;\
378                         r = c->table_rV[V];\
379                         g = c->table_gU[U] + c->table_gV[V];\
380                         b = c->table_bU[U];\
381
382 #define YSCALE_YUV_2_PACKED1B_C \
383                 for(i=0; i<(dstW>>1); i++){\
384                         const int i2= 2*i;\
385                         int Y1= buf0[i2  ]>>7;\
386                         int Y2= buf0[i2+1]>>7;\
387                         int U= (uvbuf0[i     ] + uvbuf1[i     ])>>8;\
388                         int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\
389
390 #define YSCALE_YUV_2_RGB1B_C(type) \
391                         YSCALE_YUV_2_PACKED1B_C\
392                         type *r, *b, *g;\
393                         r = c->table_rV[V];\
394                         g = c->table_gU[U] + c->table_gV[V];\
395                         b = c->table_bU[U];\
396
397 #define YSCALE_YUV_2_ANYRGB_C(func, func2)\
398         switch(c->dstFormat)\
399         {\
400         case IMGFMT_BGR32:\
401         case IMGFMT_RGB32:\
402                 func(uint32_t)\
403                         ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
404                         ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
405                 }               \
406                 break;\
407         case IMGFMT_RGB24:\
408                 func(uint8_t)\
409                         ((uint8_t*)dest)[0]= r[Y1];\
410                         ((uint8_t*)dest)[1]= g[Y1];\
411                         ((uint8_t*)dest)[2]= b[Y1];\
412                         ((uint8_t*)dest)[3]= r[Y2];\
413                         ((uint8_t*)dest)[4]= g[Y2];\
414                         ((uint8_t*)dest)[5]= b[Y2];\
415                         dest+=6;\
416                 }\
417                 break;\
418         case IMGFMT_BGR24:\
419                 func(uint8_t)\
420                         ((uint8_t*)dest)[0]= b[Y1];\
421                         ((uint8_t*)dest)[1]= g[Y1];\
422                         ((uint8_t*)dest)[2]= r[Y1];\
423                         ((uint8_t*)dest)[3]= b[Y2];\
424                         ((uint8_t*)dest)[4]= g[Y2];\
425                         ((uint8_t*)dest)[5]= r[Y2];\
426                         dest+=6;\
427                 }\
428                 break;\
429         case IMGFMT_RGB16:\
430         case IMGFMT_BGR16:\
431                 {\
432                         const int dr1= dither_2x2_8[y&1    ][0];\
433                         const int dg1= dither_2x2_4[y&1    ][0];\
434                         const int db1= dither_2x2_8[(y&1)^1][0];\
435                         const int dr2= dither_2x2_8[y&1    ][1];\
436                         const int dg2= dither_2x2_4[y&1    ][1];\
437                         const int db2= dither_2x2_8[(y&1)^1][1];\
438                         func(uint16_t)\
439                                 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
440                                 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
441                         }\
442                 }\
443                 break;\
444         case IMGFMT_RGB15:\
445         case IMGFMT_BGR15:\
446                 {\
447                         const int dr1= dither_2x2_8[y&1    ][0];\
448                         const int dg1= dither_2x2_8[y&1    ][1];\
449                         const int db1= dither_2x2_8[(y&1)^1][0];\
450                         const int dr2= dither_2x2_8[y&1    ][1];\
451                         const int dg2= dither_2x2_8[y&1    ][0];\
452                         const int db2= dither_2x2_8[(y&1)^1][1];\
453                         func(uint16_t)\
454                                 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
455                                 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
456                         }\
457                 }\
458                 break;\
459         case IMGFMT_RGB8:\
460         case IMGFMT_BGR8:\
461                 {\
462                         const uint8_t * const d64= dither_8x8_73[y&7];\
463                         const uint8_t * const d32= dither_8x8_32[y&7];\
464                         func(uint8_t)\
465                                 ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
466                                 ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
467                         }\
468                 }\
469                 break;\
470         case IMGFMT_RGB4:\
471         case IMGFMT_BGR4:\
472                 {\
473                         const uint8_t * const d64= dither_8x8_73 [y&7];\
474                         const uint8_t * const d128=dither_8x8_220[y&7];\
475                         func(uint8_t)\
476                                 ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
477                                                  + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
478                         }\
479                 }\
480                 break;\
481         case IMGFMT_RG4B:\
482         case IMGFMT_BG4B:\
483                 {\
484                         const uint8_t * const d64= dither_8x8_73 [y&7];\
485                         const uint8_t * const d128=dither_8x8_220[y&7];\
486                         func(uint8_t)\
487                                 ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
488                                 ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
489                         }\
490                 }\
491                 break;\
492         case IMGFMT_RGB1:\
493         case IMGFMT_BGR1:\
494                 {\
495                         const uint8_t * const d128=dither_8x8_220[y&7];\
496                         uint8_t *g= c->table_gU[128] + c->table_gV[128];\
497                         for(i=0; i<dstW-7; i+=8){\
498                                 int acc;\
499                                 acc =       g[((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19) + d128[0]];\
500                                 acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
501                                 acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
502                                 acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
503                                 acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
504                                 acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
505                                 acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
506                                 acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
507                                 ((uint8_t*)dest)[0]= acc;\
508                                 dest++;\
509                         }\
510 \
511 /*\
512 ((uint8_t*)dest)-= dstW>>4;\
513 {\
514                         int acc=0;\
515                         int left=0;\
516                         static int top[1024];\
517                         static int last_new[1024][1024];\
518                         static int last_in3[1024][1024];\
519                         static int drift[1024][1024];\
520                         int topLeft=0;\
521                         int shift=0;\
522                         int count=0;\
523                         const uint8_t * const d128=dither_8x8_220[y&7];\
524                         int error_new=0;\
525                         int error_in3=0;\
526                         int f=0;\
527                         \
528                         for(i=dstW>>1; i<dstW; i++){\
529                                 int in= ((buf0[i  ]*yalpha1+buf1[i  ]*yalpha)>>19);\
530                                 int in2 = (76309 * (in - 16) + 32768) >> 16;\
531                                 int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
532                                 int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
533                                         + (last_new[y][i] - in3)*f/256;\
534                                 int new= old> 128 ? 255 : 0;\
535 \
536                                 error_new+= ABS(last_new[y][i] - new);\
537                                 error_in3+= ABS(last_in3[y][i] - in3);\
538                                 f= error_new - error_in3*4;\
539                                 if(f<0) f=0;\
540                                 if(f>256) f=256;\
541 \
542                                 topLeft= top[i];\
543                                 left= top[i]= old - new;\
544                                 last_new[y][i]= new;\
545                                 last_in3[y][i]= in3;\
546 \
547                                 acc+= acc + (new&1);\
548                                 if((i&7)==6){\
549                                         ((uint8_t*)dest)[0]= acc;\
550                                         ((uint8_t*)dest)++;\
551                                 }\
552                         }\
553 }\
554 */\
555                 }\
556                 break;\
557         case IMGFMT_YUY2:\
558                 func2\
559                         ((uint8_t*)dest)[2*i2+0]= Y1;\
560                         ((uint8_t*)dest)[2*i2+1]= U;\
561                         ((uint8_t*)dest)[2*i2+2]= Y2;\
562                         ((uint8_t*)dest)[2*i2+3]= V;\
563                 }               \
564                 break;\
565         case IMGFMT_UYVY:\
566                 func2\
567                         ((uint8_t*)dest)[2*i2+0]= U;\
568                         ((uint8_t*)dest)[2*i2+1]= Y1;\
569                         ((uint8_t*)dest)[2*i2+2]= V;\
570                         ((uint8_t*)dest)[2*i2+3]= Y2;\
571                 }               \
572                 break;\
573         }\
574
575
576 static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
577                                     int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
578                                     uint8_t *dest, int dstW, int y)
579 {
580         int i;
581         switch(c->dstFormat)
582         {
583         case IMGFMT_RGB32:
584         case IMGFMT_BGR32:
585                 YSCALE_YUV_2_RGBX_C(uint32_t)
586                         ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];
587                         ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];
588                 }
589                 break;
590         case IMGFMT_RGB24:
591                 YSCALE_YUV_2_RGBX_C(uint8_t)
592                         ((uint8_t*)dest)[0]= r[Y1];
593                         ((uint8_t*)dest)[1]= g[Y1];
594                         ((uint8_t*)dest)[2]= b[Y1];
595                         ((uint8_t*)dest)[3]= r[Y2];
596                         ((uint8_t*)dest)[4]= g[Y2];
597                         ((uint8_t*)dest)[5]= b[Y2];
598                         dest+=6;
599                 }
600                 break;
601         case IMGFMT_BGR24:
602                 YSCALE_YUV_2_RGBX_C(uint8_t)
603                         ((uint8_t*)dest)[0]= b[Y1];
604                         ((uint8_t*)dest)[1]= g[Y1];
605                         ((uint8_t*)dest)[2]= r[Y1];
606                         ((uint8_t*)dest)[3]= b[Y2];
607                         ((uint8_t*)dest)[4]= g[Y2];
608                         ((uint8_t*)dest)[5]= r[Y2];
609                         dest+=6;
610                 }
611                 break;
612         case IMGFMT_RGB16:
613         case IMGFMT_BGR16:
614                 {
615                         const int dr1= dither_2x2_8[y&1    ][0];
616                         const int dg1= dither_2x2_4[y&1    ][0];
617                         const int db1= dither_2x2_8[(y&1)^1][0];
618                         const int dr2= dither_2x2_8[y&1    ][1];
619                         const int dg2= dither_2x2_4[y&1    ][1];
620                         const int db2= dither_2x2_8[(y&1)^1][1];
621                         YSCALE_YUV_2_RGBX_C(uint16_t)
622                                 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
623                                 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
624                         }
625                 }
626                 break;
627         case IMGFMT_RGB15:
628         case IMGFMT_BGR15:
629                 {
630                         const int dr1= dither_2x2_8[y&1    ][0];
631                         const int dg1= dither_2x2_8[y&1    ][1];
632                         const int db1= dither_2x2_8[(y&1)^1][0];
633                         const int dr2= dither_2x2_8[y&1    ][1];
634                         const int dg2= dither_2x2_8[y&1    ][0];
635                         const int db2= dither_2x2_8[(y&1)^1][1];
636                         YSCALE_YUV_2_RGBX_C(uint16_t)
637                                 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
638                                 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
639                         }
640                 }
641                 break;
642         case IMGFMT_RGB8:
643         case IMGFMT_BGR8:
644                 {
645                         const uint8_t * const d64= dither_8x8_73[y&7];
646                         const uint8_t * const d32= dither_8x8_32[y&7];
647                         YSCALE_YUV_2_RGBX_C(uint8_t)
648                                 ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];
649                                 ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];
650                         }
651                 }
652                 break;
653         case IMGFMT_RGB4:
654         case IMGFMT_BGR4:
655                 {
656                         const uint8_t * const d64= dither_8x8_73 [y&7];
657                         const uint8_t * const d128=dither_8x8_220[y&7];
658                         YSCALE_YUV_2_RGBX_C(uint8_t)
659                                 ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]
660                                                   +((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);
661                         }
662                 }
663                 break;
664         case IMGFMT_RG4B:
665         case IMGFMT_BG4B:
666                 {
667                         const uint8_t * const d64= dither_8x8_73 [y&7];
668                         const uint8_t * const d128=dither_8x8_220[y&7];
669                         YSCALE_YUV_2_RGBX_C(uint8_t)
670                                 ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];
671                                 ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];
672                         }
673                 }
674                 break;
675         case IMGFMT_RGB1:
676         case IMGFMT_BGR1:
677                 {
678                         const uint8_t * const d128=dither_8x8_220[y&7];
679                         uint8_t *g= c->table_gU[128] + c->table_gV[128];
680                         int acc=0;
681                         for(i=0; i<dstW-1; i+=2){
682                                 int j;
683                                 int Y1=1<<18;
684                                 int Y2=1<<18;
685
686                                 for(j=0; j<lumFilterSize; j++)
687                                 {
688                                         Y1 += lumSrc[j][i] * lumFilter[j];
689                                         Y2 += lumSrc[j][i+1] * lumFilter[j];
690                                 }
691                                 Y1>>=19;
692                                 Y2>>=19;
693                                 if((Y1|Y2)&256)
694                                 {
695                                         if(Y1>255)   Y1=255;
696                                         else if(Y1<0)Y1=0;
697                                         if(Y2>255)   Y2=255;
698                                         else if(Y2<0)Y2=0;
699                                 }
700                                 acc+= acc + g[Y1+d128[(i+0)&7]];
701                                 acc+= acc + g[Y2+d128[(i+1)&7]];
702                                 if((i&7)==6){
703                                         ((uint8_t*)dest)[0]= acc;
704                                         dest++;
705                                 }
706                         }
707                 }
708                 break;
709         case IMGFMT_YUY2:
710                 YSCALE_YUV_2_PACKEDX_C(void)
711                         ((uint8_t*)dest)[2*i2+0]= Y1;
712                         ((uint8_t*)dest)[2*i2+1]= U;
713                         ((uint8_t*)dest)[2*i2+2]= Y2;
714                         ((uint8_t*)dest)[2*i2+3]= V;
715                 }
716                 break;
717         case IMGFMT_UYVY:
718                 YSCALE_YUV_2_PACKEDX_C(void)
719                         ((uint8_t*)dest)[2*i2+0]= U;
720                         ((uint8_t*)dest)[2*i2+1]= Y1;
721                         ((uint8_t*)dest)[2*i2+2]= V;
722                         ((uint8_t*)dest)[2*i2+3]= Y2;
723                 }
724                 break;
725         }
726 }
727
728
729 //Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
730 //Plain C versions
731 #if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT)
732 #define COMPILE_C
733 #endif
734
735 #ifdef ARCH_POWERPC
736 #if defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)
737 #define COMPILE_ALTIVEC
738 #endif //HAVE_ALTIVEC
739 #endif //ARCH_POWERPC
740
741 #if defined(ARCH_X86) || defined(ARCH_X86_64)
742
743 #if (defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
744 #define COMPILE_MMX
745 #endif
746
747 #if defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)
748 #define COMPILE_MMX2
749 #endif
750
751 #if (defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
752 #define COMPILE_3DNOW
753 #endif
754 #endif //ARCH_X86 || ARCH_X86_64
755
756 #undef HAVE_MMX
757 #undef HAVE_MMX2
758 #undef HAVE_3DNOW
759
760 #ifdef COMPILE_C
761 #undef HAVE_MMX
762 #undef HAVE_MMX2
763 #undef HAVE_3DNOW
764 #undef HAVE_ALTIVEC
765 #define RENAME(a) a ## _C
766 #include "swscale_template.c"
767 #endif
768
769 #ifdef ARCH_POWERPC
770 #ifdef COMPILE_ALTIVEC
771 #undef RENAME
772 #define HAVE_ALTIVEC
773 #define RENAME(a) a ## _altivec
774 #include "swscale_template.c"
775 #endif
776 #endif //ARCH_POWERPC
777
778 #if defined(ARCH_X86) || defined(ARCH_X86_64)
779
780 //X86 versions
781 /*
782 #undef RENAME
783 #undef HAVE_MMX
784 #undef HAVE_MMX2
785 #undef HAVE_3DNOW
786 #define ARCH_X86
787 #define RENAME(a) a ## _X86
788 #include "swscale_template.c"
789 */
790 //MMX versions
791 #ifdef COMPILE_MMX
792 #undef RENAME
793 #define HAVE_MMX
794 #undef HAVE_MMX2
795 #undef HAVE_3DNOW
796 #define RENAME(a) a ## _MMX
797 #include "swscale_template.c"
798 #endif
799
800 //MMX2 versions
801 #ifdef COMPILE_MMX2
802 #undef RENAME
803 #define HAVE_MMX
804 #define HAVE_MMX2
805 #undef HAVE_3DNOW
806 #define RENAME(a) a ## _MMX2
807 #include "swscale_template.c"
808 #endif
809
810 //3DNOW versions
811 #ifdef COMPILE_3DNOW
812 #undef RENAME
813 #define HAVE_MMX
814 #undef HAVE_MMX2
815 #define HAVE_3DNOW
816 #define RENAME(a) a ## _3DNow
817 #include "swscale_template.c"
818 #endif
819
820 #endif //ARCH_X86 || ARCH_X86_64
821
822 // minor note: the HAVE_xyz is messed up after that line so don't use it
823
824 static double getSplineCoeff(double a, double b, double c, double d, double dist)
825 {
826 //      printf("%f %f %f %f %f\n", a,b,c,d,dist);
827         if(dist<=1.0)   return ((d*dist + c)*dist + b)*dist +a;
828         else            return getSplineCoeff(  0.0, 
829                                                  b+ 2.0*c + 3.0*d,
830                                                         c + 3.0*d,
831                                                 -b- 3.0*c - 6.0*d,
832                                                 dist-1.0);
833 }
834
835 static inline void initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
836                               int srcW, int dstW, int filterAlign, int one, int flags,
837                               SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
838 {
839         int i;
840         int filterSize;
841         int filter2Size;
842         int minFilterSize;
843         double *filter=NULL;
844         double *filter2=NULL;
845 #if defined(ARCH_X86) || defined(ARCH_X86_64)
846         if(flags & SWS_CPU_CAPS_MMX)
847                 asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
848 #endif
849
850         // Note the +1 is for the MMXscaler which reads over the end
851         *filterPos = (int16_t*)memalign(8, (dstW+1)*sizeof(int16_t));
852
853         if(ABS(xInc - 0x10000) <10) // unscaled
854         {
855                 int i;
856                 filterSize= 1;
857                 filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
858                 for(i=0; i<dstW*filterSize; i++) filter[i]=0;
859
860                 for(i=0; i<dstW; i++)
861                 {
862                         filter[i*filterSize]=1;
863                         (*filterPos)[i]=i;
864                 }
865
866         }
867         else if(flags&SWS_POINT) // lame looking point sampling mode
868         {
869                 int i;
870                 int xDstInSrc;
871                 filterSize= 1;
872                 filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
873                 
874                 xDstInSrc= xInc/2 - 0x8000;
875                 for(i=0; i<dstW; i++)
876                 {
877                         int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
878
879                         (*filterPos)[i]= xx;
880                         filter[i]= 1.0;
881                         xDstInSrc+= xInc;
882                 }
883         }
884         else if((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
885         {
886                 int i;
887                 int xDstInSrc;
888                 if     (flags&SWS_BICUBIC) filterSize= 4;
889                 else if(flags&SWS_X      ) filterSize= 4;
890                 else                       filterSize= 2; // SWS_BILINEAR / SWS_AREA 
891                 filter= (double*)memalign(8, dstW*sizeof(double)*filterSize);
892
893                 xDstInSrc= xInc/2 - 0x8000;
894                 for(i=0; i<dstW; i++)
895                 {
896                         int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
897                         int j;
898
899                         (*filterPos)[i]= xx;
900                                 //Bilinear upscale / linear interpolate / Area averaging
901                                 for(j=0; j<filterSize; j++)
902                                 {
903                                         double d= ABS((xx<<16) - xDstInSrc)/(double)(1<<16);
904                                         double coeff= 1.0 - d;
905                                         if(coeff<0) coeff=0;
906                                         filter[i*filterSize + j]= coeff;
907                                         xx++;
908                                 }
909                         xDstInSrc+= xInc;
910                 }
911         }
912         else
913         {
914                 double xDstInSrc;
915                 double sizeFactor, filterSizeInSrc;
916                 const double xInc1= (double)xInc / (double)(1<<16);
917
918                 if     (flags&SWS_BICUBIC)      sizeFactor= 4.0;
919                 else if(flags&SWS_X)            sizeFactor= 8.0;
920                 else if(flags&SWS_AREA)         sizeFactor= 1.0; //downscale only, for upscale it is bilinear
921                 else if(flags&SWS_GAUSS)        sizeFactor= 8.0;   // infinite ;)
922                 else if(flags&SWS_LANCZOS)      sizeFactor= param[0] != SWS_PARAM_DEFAULT ? 2.0*param[0] : 6.0;
923                 else if(flags&SWS_SINC)         sizeFactor= 20.0; // infinite ;)
924                 else if(flags&SWS_SPLINE)       sizeFactor= 20.0;  // infinite ;)
925                 else if(flags&SWS_BILINEAR)     sizeFactor= 2.0;
926                 else {
927                         sizeFactor= 0.0; //GCC warning killer
928                         ASSERT(0)
929                 }
930                 
931                 if(xInc1 <= 1.0)        filterSizeInSrc= sizeFactor; // upscale
932                 else                    filterSizeInSrc= sizeFactor*srcW / (double)dstW;
933
934                 filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
935                 if(filterSize > srcW-2) filterSize=srcW-2;
936
937                 filter= (double*)memalign(16, dstW*sizeof(double)*filterSize);
938
939                 xDstInSrc= xInc1 / 2.0 - 0.5;
940                 for(i=0; i<dstW; i++)
941                 {
942                         int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
943                         int j;
944                         (*filterPos)[i]= xx;
945                         for(j=0; j<filterSize; j++)
946                         {
947                                 double d= ABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
948                                 double coeff;
949                                 if(flags & SWS_BICUBIC)
950                                 {
951                                         double B= param[0] != SWS_PARAM_DEFAULT ? param[0] : 0.0;
952                                         double C= param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6;
953
954                                         if(d<1.0) 
955                                                 coeff = (12-9*B-6*C)*d*d*d + (-18+12*B+6*C)*d*d + 6-2*B;
956                                         else if(d<2.0)
957                                                 coeff = (-B-6*C)*d*d*d + (6*B+30*C)*d*d + (-12*B-48*C)*d +8*B+24*C;
958                                         else
959                                                 coeff=0.0;
960                                 }
961 /*                              else if(flags & SWS_X)
962                                 {
963                                         double p= param ? param*0.01 : 0.3;
964                                         coeff = d ? sin(d*PI)/(d*PI) : 1.0;
965                                         coeff*= pow(2.0, - p*d*d);
966                                 }*/
967                                 else if(flags & SWS_X)
968                                 {
969                                         double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
970                                         
971                                         if(d<1.0)
972                                                 coeff = cos(d*PI);
973                                         else
974                                                 coeff=-1.0;
975                                         if(coeff<0.0)   coeff= -pow(-coeff, A);
976                                         else            coeff=  pow( coeff, A);
977                                         coeff= coeff*0.5 + 0.5;
978                                 }
979                                 else if(flags & SWS_AREA)
980                                 {
981                                         double srcPixelSize= 1.0/xInc1;
982                                         if(d + srcPixelSize/2 < 0.5) coeff= 1.0;
983                                         else if(d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
984                                         else coeff=0.0;
985                                 }
986                                 else if(flags & SWS_GAUSS)
987                                 {
988                                         double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
989                                         coeff = pow(2.0, - p*d*d);
990                                 }
991                                 else if(flags & SWS_SINC)
992                                 {
993                                         coeff = d ? sin(d*PI)/(d*PI) : 1.0;
994                                 }
995                                 else if(flags & SWS_LANCZOS)
996                                 {
997                                         double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0; 
998                                         coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
999                                         if(d>p) coeff=0;
1000                                 }
1001                                 else if(flags & SWS_BILINEAR)
1002                                 {
1003                                         coeff= 1.0 - d;
1004                                         if(coeff<0) coeff=0;
1005                                 }
1006                                 else if(flags & SWS_SPLINE)
1007                                 {
1008                                         double p=-2.196152422706632;
1009                                         coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
1010                                 }
1011                                 else {
1012                                         coeff= 0.0; //GCC warning killer
1013                                         ASSERT(0)
1014                                 }
1015
1016                                 filter[i*filterSize + j]= coeff;
1017                                 xx++;
1018                         }
1019                         xDstInSrc+= xInc1;
1020                 }
1021         }
1022
1023         /* apply src & dst Filter to filter -> filter2
1024            free(filter);
1025         */
1026         ASSERT(filterSize>0)
1027         filter2Size= filterSize;
1028         if(srcFilter) filter2Size+= srcFilter->length - 1;
1029         if(dstFilter) filter2Size+= dstFilter->length - 1;
1030         ASSERT(filter2Size>0)
1031         filter2= (double*)memalign(8, filter2Size*dstW*sizeof(double));
1032
1033         for(i=0; i<dstW; i++)
1034         {
1035                 int j;
1036                 SwsVector scaleFilter;
1037                 SwsVector *outVec;
1038
1039                 scaleFilter.coeff= filter + i*filterSize;
1040                 scaleFilter.length= filterSize;
1041
1042                 if(srcFilter) outVec= sws_getConvVec(srcFilter, &scaleFilter);
1043                 else          outVec= &scaleFilter;
1044
1045                 ASSERT(outVec->length == filter2Size)
1046                 //FIXME dstFilter
1047
1048                 for(j=0; j<outVec->length; j++)
1049                 {
1050                         filter2[i*filter2Size + j]= outVec->coeff[j];
1051                 }
1052
1053                 (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
1054
1055                 if(outVec != &scaleFilter) sws_freeVec(outVec);
1056         }
1057         free(filter); filter=NULL;
1058
1059         /* try to reduce the filter-size (step1 find size and shift left) */
1060         // Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not)
1061         minFilterSize= 0;
1062         for(i=dstW-1; i>=0; i--)
1063         {
1064                 int min= filter2Size;
1065                 int j;
1066                 double cutOff=0.0;
1067
1068                 /* get rid off near zero elements on the left by shifting left */
1069                 for(j=0; j<filter2Size; j++)
1070                 {
1071                         int k;
1072                         cutOff += ABS(filter2[i*filter2Size]);
1073
1074                         if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1075
1076                         /* preserve Monotonicity because the core can't handle the filter otherwise */
1077                         if(i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
1078
1079                         // Move filter coeffs left
1080                         for(k=1; k<filter2Size; k++)
1081                                 filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
1082                         filter2[i*filter2Size + k - 1]= 0.0;
1083                         (*filterPos)[i]++;
1084                 }
1085
1086                 cutOff=0.0;
1087                 /* count near zeros on the right */
1088                 for(j=filter2Size-1; j>0; j--)
1089                 {
1090                         cutOff += ABS(filter2[i*filter2Size + j]);
1091
1092                         if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1093                         min--;
1094                 }
1095
1096                 if(min>minFilterSize) minFilterSize= min;
1097         }
1098
1099         if (flags & SWS_CPU_CAPS_ALTIVEC) {
1100           // we can handle the special case 4,
1101           // so we don't want to go to the full 8
1102           if (minFilterSize < 5)
1103             filterAlign = 4;
1104
1105           // we really don't want to waste our time
1106           // doing useless computation, so fall-back on
1107           // the scalar C code for very small filter.
1108           // vectorizing is worth it only if you have
1109           // decent-sized vector.
1110           if (minFilterSize < 3)
1111             filterAlign = 1;
1112         }
1113
1114         ASSERT(minFilterSize > 0)
1115         filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
1116         ASSERT(filterSize > 0)
1117         filter= (double*)memalign(8, filterSize*dstW*sizeof(double));
1118         *outFilterSize= filterSize;
1119
1120         if(flags&SWS_PRINT_INFO)
1121                 MSG_V("SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
1122         /* try to reduce the filter-size (step2 reduce it) */
1123         for(i=0; i<dstW; i++)
1124         {
1125                 int j;
1126
1127                 for(j=0; j<filterSize; j++)
1128                 {
1129                         if(j>=filter2Size) filter[i*filterSize + j]= 0.0;
1130                         else               filter[i*filterSize + j]= filter2[i*filter2Size + j];
1131                 }
1132         }
1133         free(filter2); filter2=NULL;
1134         
1135
1136         //FIXME try to align filterpos if possible
1137
1138         //fix borders
1139         for(i=0; i<dstW; i++)
1140         {
1141                 int j;
1142                 if((*filterPos)[i] < 0)
1143                 {
1144                         // Move filter coeffs left to compensate for filterPos
1145                         for(j=1; j<filterSize; j++)
1146                         {
1147                                 int left= MAX(j + (*filterPos)[i], 0);
1148                                 filter[i*filterSize + left] += filter[i*filterSize + j];
1149                                 filter[i*filterSize + j]=0;
1150                         }
1151                         (*filterPos)[i]= 0;
1152                 }
1153
1154                 if((*filterPos)[i] + filterSize > srcW)
1155                 {
1156                         int shift= (*filterPos)[i] + filterSize - srcW;
1157                         // Move filter coeffs right to compensate for filterPos
1158                         for(j=filterSize-2; j>=0; j--)
1159                         {
1160                                 int right= MIN(j + shift, filterSize-1);
1161                                 filter[i*filterSize +right] += filter[i*filterSize +j];
1162                                 filter[i*filterSize +j]=0;
1163                         }
1164                         (*filterPos)[i]= srcW - filterSize;
1165                 }
1166         }
1167
1168         // Note the +1 is for the MMXscaler which reads over the end
1169         /* align at 16 for AltiVec (needed by hScale_altivec_real) */
1170         *outFilter= (int16_t*)memalign(16, *outFilterSize*(dstW+1)*sizeof(int16_t));
1171         memset(*outFilter, 0, *outFilterSize*(dstW+1)*sizeof(int16_t));
1172
1173         /* Normalize & Store in outFilter */
1174         for(i=0; i<dstW; i++)
1175         {
1176                 int j;
1177                 double error=0;
1178                 double sum=0;
1179                 double scale= one;
1180
1181                 for(j=0; j<filterSize; j++)
1182                 {
1183                         sum+= filter[i*filterSize + j];
1184                 }
1185                 scale/= sum;
1186                 for(j=0; j<*outFilterSize; j++)
1187                 {
1188                         double v= filter[i*filterSize + j]*scale + error;
1189                         int intV= floor(v + 0.5);
1190                         (*outFilter)[i*(*outFilterSize) + j]= intV;
1191                         error = v - intV;
1192                 }
1193         }
1194         
1195         (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
1196         for(i=0; i<*outFilterSize; i++)
1197         {
1198                 int j= dstW*(*outFilterSize);
1199                 (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
1200         }
1201
1202         free(filter);
1203 }
1204
1205 #if defined(ARCH_X86) || defined(ARCH_X86_64)
1206 static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
1207 {
1208         uint8_t *fragmentA;
1209         long imm8OfPShufW1A;
1210         long imm8OfPShufW2A;
1211         long fragmentLengthA;
1212         uint8_t *fragmentB;
1213         long imm8OfPShufW1B;
1214         long imm8OfPShufW2B;
1215         long fragmentLengthB;
1216         int fragmentPos;
1217
1218         int xpos, i;
1219
1220         // create an optimized horizontal scaling routine
1221
1222         //code fragment
1223
1224         asm volatile(
1225                 "jmp 9f                         \n\t"
1226         // Begin
1227                 "0:                             \n\t"
1228                 "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t" 
1229                 "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t" 
1230                 "movd 1(%%"REG_c", %%"REG_S"), %%mm1\n\t"
1231                 "punpcklbw %%mm7, %%mm1         \n\t"
1232                 "punpcklbw %%mm7, %%mm0         \n\t"
1233                 "pshufw $0xFF, %%mm1, %%mm1     \n\t"
1234                 "1:                             \n\t"
1235                 "pshufw $0xFF, %%mm0, %%mm0     \n\t"
1236                 "2:                             \n\t"
1237                 "psubw %%mm1, %%mm0             \n\t"
1238                 "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
1239                 "pmullw %%mm3, %%mm0            \n\t"
1240                 "psllw $7, %%mm1                \n\t"
1241                 "paddw %%mm1, %%mm0             \n\t"
1242
1243                 "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
1244
1245                 "add $8, %%"REG_a"              \n\t"
1246         // End
1247                 "9:                             \n\t"
1248 //              "int $3\n\t"
1249                 "lea 0b, %0                     \n\t"
1250                 "lea 1b, %1                     \n\t"
1251                 "lea 2b, %2                     \n\t"
1252                 "dec %1                         \n\t"
1253                 "dec %2                         \n\t"
1254                 "sub %0, %1                     \n\t"
1255                 "sub %0, %2                     \n\t"
1256                 "lea 9b, %3                     \n\t"
1257                 "sub %0, %3                     \n\t"
1258
1259
1260                 :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
1261                 "=r" (fragmentLengthA)
1262         );
1263
1264         asm volatile(
1265                 "jmp 9f                         \n\t"
1266         // Begin
1267                 "0:                             \n\t"
1268                 "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t" 
1269                 "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t" 
1270                 "punpcklbw %%mm7, %%mm0         \n\t"
1271                 "pshufw $0xFF, %%mm0, %%mm1     \n\t"
1272                 "1:                             \n\t"
1273                 "pshufw $0xFF, %%mm0, %%mm0     \n\t"
1274                 "2:                             \n\t"
1275                 "psubw %%mm1, %%mm0             \n\t"
1276                 "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
1277                 "pmullw %%mm3, %%mm0            \n\t"
1278                 "psllw $7, %%mm1                \n\t"
1279                 "paddw %%mm1, %%mm0             \n\t"
1280
1281                 "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
1282
1283                 "add $8, %%"REG_a"              \n\t"
1284         // End
1285                 "9:                             \n\t"
1286 //              "int $3\n\t"
1287                 "lea 0b, %0                     \n\t"
1288                 "lea 1b, %1                     \n\t"
1289                 "lea 2b, %2                     \n\t"
1290                 "dec %1                         \n\t"
1291                 "dec %2                         \n\t"
1292                 "sub %0, %1                     \n\t"
1293                 "sub %0, %2                     \n\t"
1294                 "lea 9b, %3                     \n\t"
1295                 "sub %0, %3                     \n\t"
1296
1297
1298                 :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
1299                 "=r" (fragmentLengthB)
1300         );
1301
1302         xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
1303         fragmentPos=0;
1304         
1305         for(i=0; i<dstW/numSplits; i++)
1306         {
1307                 int xx=xpos>>16;
1308
1309                 if((i&3) == 0)
1310                 {
1311                         int a=0;
1312                         int b=((xpos+xInc)>>16) - xx;
1313                         int c=((xpos+xInc*2)>>16) - xx;
1314                         int d=((xpos+xInc*3)>>16) - xx;
1315
1316                         filter[i  ] = (( xpos         & 0xFFFF) ^ 0xFFFF)>>9;
1317                         filter[i+1] = (((xpos+xInc  ) & 0xFFFF) ^ 0xFFFF)>>9;
1318                         filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
1319                         filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
1320                         filterPos[i/2]= xx;
1321
1322                         if(d+1<4)
1323                         {
1324                                 int maxShift= 3-(d+1);
1325                                 int shift=0;
1326
1327                                 memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
1328
1329                                 funnyCode[fragmentPos + imm8OfPShufW1B]=
1330                                         (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
1331                                 funnyCode[fragmentPos + imm8OfPShufW2B]=
1332                                         a | (b<<2) | (c<<4) | (d<<6);
1333
1334                                 if(i+3>=dstW) shift=maxShift; //avoid overread
1335                                 else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
1336
1337                                 if(shift && i>=shift)
1338                                 {
1339                                         funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
1340                                         funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
1341                                         filterPos[i/2]-=shift;
1342                                 }
1343
1344                                 fragmentPos+= fragmentLengthB;
1345                         }
1346                         else
1347                         {
1348                                 int maxShift= 3-d;
1349                                 int shift=0;
1350
1351                                 memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
1352
1353                                 funnyCode[fragmentPos + imm8OfPShufW1A]=
1354                                 funnyCode[fragmentPos + imm8OfPShufW2A]=
1355                                         a | (b<<2) | (c<<4) | (d<<6);
1356
1357                                 if(i+4>=dstW) shift=maxShift; //avoid overread
1358                                 else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
1359
1360                                 if(shift && i>=shift)
1361                                 {
1362                                         funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
1363                                         funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
1364                                         filterPos[i/2]-=shift;
1365                                 }
1366
1367                                 fragmentPos+= fragmentLengthA;
1368                         }
1369
1370                         funnyCode[fragmentPos]= RET;
1371                 }
1372                 xpos+=xInc;
1373         }
1374         filterPos[i/2]= xpos>>16; // needed to jump to the next part
1375 }
1376 #endif // ARCH_X86 || ARCH_X86_64
1377
1378 static void globalInit(){
1379     // generating tables:
1380     int i;
1381     for(i=0; i<768; i++){
1382         int c= MIN(MAX(i-256, 0), 255);
1383         clip_table[i]=c;
1384     }
1385 }
1386
1387 static SwsFunc getSwsFunc(int flags){
1388     
1389 #ifdef RUNTIME_CPUDETECT
1390 #if defined(ARCH_X86) || defined(ARCH_X86_64)
1391         // ordered per speed fasterst first
1392         if(flags & SWS_CPU_CAPS_MMX2)
1393                 return swScale_MMX2;
1394         else if(flags & SWS_CPU_CAPS_3DNOW)
1395                 return swScale_3DNow;
1396         else if(flags & SWS_CPU_CAPS_MMX)
1397                 return swScale_MMX;
1398         else
1399                 return swScale_C;
1400
1401 #else
1402 #ifdef ARCH_POWERPC
1403         if(flags & SWS_CPU_CAPS_ALTIVEC)
1404           return swScale_altivec;
1405         else
1406           return swScale_C;
1407 #endif
1408         return swScale_C;
1409 #endif
1410 #else //RUNTIME_CPUDETECT
1411 #ifdef HAVE_MMX2
1412         return swScale_MMX2;
1413 #elif defined (HAVE_3DNOW)
1414         return swScale_3DNow;
1415 #elif defined (HAVE_MMX)
1416         return swScale_MMX;
1417 #elif defined (HAVE_ALTIVEC)
1418         return swScale_altivec;
1419 #else
1420         return swScale_C;
1421 #endif
1422 #endif //!RUNTIME_CPUDETECT
1423 }
1424
1425 static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1426              int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1427         uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1428         /* Copy Y plane */
1429         if(dstStride[0]==srcStride[0] && srcStride[0] > 0)
1430                 memcpy(dst, src[0], srcSliceH*dstStride[0]);
1431         else
1432         {
1433                 int i;
1434                 uint8_t *srcPtr= src[0];
1435                 uint8_t *dstPtr= dst;
1436                 for(i=0; i<srcSliceH; i++)
1437                 {
1438                         memcpy(dstPtr, srcPtr, c->srcW);
1439                         srcPtr+= srcStride[0];
1440                         dstPtr+= dstStride[0];
1441                 }
1442         }
1443         dst = dstParam[1] + dstStride[1]*srcSliceY/2;
1444         if (c->dstFormat == IMGFMT_NV12)
1445                 interleaveBytes( src[1],src[2],dst,c->srcW/2,srcSliceH/2,srcStride[1],srcStride[2],dstStride[0] );
1446         else
1447                 interleaveBytes( src[2],src[1],dst,c->srcW/2,srcSliceH/2,srcStride[2],srcStride[1],dstStride[0] );
1448
1449         return srcSliceH;
1450 }
1451
1452 static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1453              int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1454         uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1455
1456         yv12toyuy2( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1457
1458         return srcSliceH;
1459 }
1460
1461 static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1462              int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1463         uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1464
1465         yv12touyvy( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1466
1467         return srcSliceH;
1468 }
1469
1470 /* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
1471 static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1472                            int srcSliceH, uint8_t* dst[], int dstStride[]){
1473         const int srcFormat= c->srcFormat;
1474         const int dstFormat= c->dstFormat;
1475         const int srcBpp= ((srcFormat&0xFF) + 7)>>3;
1476         const int dstBpp= ((dstFormat&0xFF) + 7)>>3;
1477         const int srcId= (srcFormat&0xFF)>>2; // 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8 
1478         const int dstId= (dstFormat&0xFF)>>2;
1479         void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
1480
1481         /* BGR -> BGR */
1482         if(   (isBGR(srcFormat) && isBGR(dstFormat))
1483            || (isRGB(srcFormat) && isRGB(dstFormat))){
1484                 switch(srcId | (dstId<<4)){
1485                 case 0x34: conv= rgb16to15; break;
1486                 case 0x36: conv= rgb24to15; break;
1487                 case 0x38: conv= rgb32to15; break;
1488                 case 0x43: conv= rgb15to16; break;
1489                 case 0x46: conv= rgb24to16; break;
1490                 case 0x48: conv= rgb32to16; break;
1491                 case 0x63: conv= rgb15to24; break;
1492                 case 0x64: conv= rgb16to24; break;
1493                 case 0x68: conv= rgb32to24; break;
1494                 case 0x83: conv= rgb15to32; break;
1495                 case 0x84: conv= rgb16to32; break;
1496                 case 0x86: conv= rgb24to32; break;
1497                 default: MSG_ERR("swScaler: internal error %s -> %s converter\n", 
1498                                  vo_format_name(srcFormat), vo_format_name(dstFormat)); break;
1499                 }
1500         }else if(   (isBGR(srcFormat) && isRGB(dstFormat))
1501                  || (isRGB(srcFormat) && isBGR(dstFormat))){
1502                 switch(srcId | (dstId<<4)){
1503                 case 0x33: conv= rgb15tobgr15; break;
1504                 case 0x34: conv= rgb16tobgr15; break;
1505                 case 0x36: conv= rgb24tobgr15; break;
1506                 case 0x38: conv= rgb32tobgr15; break;
1507                 case 0x43: conv= rgb15tobgr16; break;
1508                 case 0x44: conv= rgb16tobgr16; break;
1509                 case 0x46: conv= rgb24tobgr16; break;
1510                 case 0x48: conv= rgb32tobgr16; break;
1511                 case 0x63: conv= rgb15tobgr24; break;
1512                 case 0x64: conv= rgb16tobgr24; break;
1513                 case 0x66: conv= rgb24tobgr24; break;
1514                 case 0x68: conv= rgb32tobgr24; break;
1515                 case 0x83: conv= rgb15tobgr32; break;
1516                 case 0x84: conv= rgb16tobgr32; break;
1517                 case 0x86: conv= rgb24tobgr32; break;
1518                 case 0x88: conv= rgb32tobgr32; break;
1519                 default: MSG_ERR("swScaler: internal error %s -> %s converter\n", 
1520                                  vo_format_name(srcFormat), vo_format_name(dstFormat)); break;
1521                 }
1522         }else{
1523                 MSG_ERR("swScaler: internal error %s -> %s converter\n", 
1524                          vo_format_name(srcFormat), vo_format_name(dstFormat));
1525         }
1526
1527         if(dstStride[0]*srcBpp == srcStride[0]*dstBpp)
1528                 conv(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
1529         else
1530         {
1531                 int i;
1532                 uint8_t *srcPtr= src[0];
1533                 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1534
1535                 for(i=0; i<srcSliceH; i++)
1536                 {
1537                         conv(srcPtr, dstPtr, c->srcW*srcBpp);
1538                         srcPtr+= srcStride[0];
1539                         dstPtr+= dstStride[0];
1540                 }
1541         }     
1542         return srcSliceH;
1543 }
1544
1545 static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1546              int srcSliceH, uint8_t* dst[], int dstStride[]){
1547
1548         rgb24toyv12(
1549                 src[0], 
1550                 dst[0]+ srcSliceY    *dstStride[0], 
1551                 dst[1]+(srcSliceY>>1)*dstStride[1], 
1552                 dst[2]+(srcSliceY>>1)*dstStride[2],
1553                 c->srcW, srcSliceH, 
1554                 dstStride[0], dstStride[1], srcStride[0]);
1555         return srcSliceH;
1556 }
1557
1558 static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1559              int srcSliceH, uint8_t* dst[], int dstStride[]){
1560         int i;
1561
1562         /* copy Y */
1563         if(srcStride[0]==dstStride[0] && srcStride[0] > 0) 
1564                 memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
1565         else{
1566                 uint8_t *srcPtr= src[0];
1567                 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1568
1569                 for(i=0; i<srcSliceH; i++)
1570                 {
1571                         memcpy(dstPtr, srcPtr, c->srcW);
1572                         srcPtr+= srcStride[0];
1573                         dstPtr+= dstStride[0];
1574                 }
1575         }
1576
1577         if(c->dstFormat==IMGFMT_YV12){
1578                 planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
1579                 planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
1580         }else{
1581                 planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
1582                 planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
1583         }
1584         return srcSliceH;
1585 }
1586
1587 /**
1588  * bring pointers in YUV order instead of YVU
1589  */
1590 static inline void sws_orderYUV(int format, uint8_t * sortedP[], int sortedStride[], uint8_t * p[], int stride[]){
1591         if(format == IMGFMT_YV12 || format == IMGFMT_YVU9
1592            || format == IMGFMT_444P || format == IMGFMT_422P || format == IMGFMT_411P){
1593                 sortedP[0]= p[0];
1594                 sortedP[1]= p[2];
1595                 sortedP[2]= p[1];
1596                 sortedStride[0]= stride[0];
1597                 sortedStride[1]= stride[2];
1598                 sortedStride[2]= stride[1];
1599         }
1600         else if(isPacked(format) || isGray(format) || format == IMGFMT_Y8)
1601         {
1602                 sortedP[0]= p[0];
1603                 sortedP[1]= 
1604                 sortedP[2]= NULL;
1605                 sortedStride[0]= stride[0];
1606                 sortedStride[1]= 
1607                 sortedStride[2]= 0;
1608         }
1609         else if(format == IMGFMT_I420 || format == IMGFMT_IYUV)
1610         {
1611                 sortedP[0]= p[0];
1612                 sortedP[1]= p[1];
1613                 sortedP[2]= p[2];
1614                 sortedStride[0]= stride[0];
1615                 sortedStride[1]= stride[1];
1616                 sortedStride[2]= stride[2];
1617         }
1618         else if(format == IMGFMT_NV12 || format == IMGFMT_NV21)
1619         {
1620                 sortedP[0]= p[0];
1621                 sortedP[1]= p[1];
1622                 sortedP[2]= NULL;
1623                 sortedStride[0]= stride[0];
1624                 sortedStride[1]= stride[1];
1625                 sortedStride[2]= 0;
1626         }else{
1627                 MSG_ERR("internal error in orderYUV\n");
1628         }
1629 }
1630
1631 /* unscaled copy like stuff (assumes nearly identical formats) */
1632 static int simpleCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1633              int srcSliceH, uint8_t* dst[], int dstStride[]){
1634
1635         if(isPacked(c->srcFormat))
1636         {
1637                 if(dstStride[0]==srcStride[0] && srcStride[0] > 0)
1638                         memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
1639                 else
1640                 {
1641                         int i;
1642                         uint8_t *srcPtr= src[0];
1643                         uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1644                         int length=0;
1645
1646                         /* universal length finder */
1647                         while(length+c->srcW <= ABS(dstStride[0]) 
1648                            && length+c->srcW <= ABS(srcStride[0])) length+= c->srcW;
1649                         ASSERT(length!=0);
1650
1651                         for(i=0; i<srcSliceH; i++)
1652                         {
1653                                 memcpy(dstPtr, srcPtr, length);
1654                                 srcPtr+= srcStride[0];
1655                                 dstPtr+= dstStride[0];
1656                         }
1657                 }
1658         }
1659         else 
1660         { /* Planar YUV or gray */
1661                 int plane;
1662                 for(plane=0; plane<3; plane++)
1663                 {
1664                         int length= plane==0 ? c->srcW  : -((-c->srcW  )>>c->chrDstHSubSample);
1665                         int y=      plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
1666                         int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
1667
1668                         if((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
1669                         {
1670                                 if(!isGray(c->dstFormat))
1671                                         memset(dst[plane], 128, dstStride[plane]*height);
1672                         }
1673                         else
1674                         {
1675                                 if(dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
1676                                         memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
1677                                 else
1678                                 {
1679                                         int i;
1680                                         uint8_t *srcPtr= src[plane];
1681                                         uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
1682                                         for(i=0; i<height; i++)
1683                                         {
1684                                                 memcpy(dstPtr, srcPtr, length);
1685                                                 srcPtr+= srcStride[plane];
1686                                                 dstPtr+= dstStride[plane];
1687                                         }
1688                                 }
1689                         }
1690                 }
1691         }
1692         return srcSliceH;
1693 }
1694
1695 static int remove_dup_fourcc(int fourcc)
1696 {
1697         switch(fourcc)
1698         {
1699             case IMGFMT_I420:
1700             case IMGFMT_IYUV: return IMGFMT_YV12;
1701             case IMGFMT_Y8  : return IMGFMT_Y800;
1702             case IMGFMT_IF09: return IMGFMT_YVU9;
1703             default: return fourcc;
1704         }
1705 }
1706
1707 static void getSubSampleFactors(int *h, int *v, int format){
1708         switch(format){
1709         case IMGFMT_UYVY:
1710         case IMGFMT_YUY2:
1711                 *h=1;
1712                 *v=0;
1713                 break;
1714         case IMGFMT_YV12:
1715         case IMGFMT_Y800: //FIXME remove after different subsamplings are fully implemented
1716         case IMGFMT_NV12:
1717         case IMGFMT_NV21:
1718                 *h=1;
1719                 *v=1;
1720                 break;
1721         case IMGFMT_YVU9:
1722                 *h=2;
1723                 *v=2;
1724                 break;
1725         case IMGFMT_444P:
1726                 *h=0;
1727                 *v=0;
1728                 break;
1729         case IMGFMT_422P:
1730                 *h=1;
1731                 *v=0;
1732                 break;
1733         case IMGFMT_411P:
1734                 *h=2;
1735                 *v=0;
1736                 break;
1737         default:
1738                 *h=0;
1739                 *v=0;
1740                 break;
1741         }
1742 }
1743
1744 static uint16_t roundToInt16(int64_t f){
1745         int r= (f + (1<<15))>>16;
1746              if(r<-0x7FFF) return 0x8000;
1747         else if(r> 0x7FFF) return 0x7FFF;
1748         else               return r;
1749 }
1750
1751 /**
1752  * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
1753  * @param fullRange if 1 then the luma range is 0..255 if 0 its 16..235
1754  * @return -1 if not supported
1755  */
1756 int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
1757         int64_t crv =  inv_table[0];
1758         int64_t cbu =  inv_table[1];
1759         int64_t cgu = -inv_table[2];
1760         int64_t cgv = -inv_table[3];
1761         int64_t cy  = 1<<16;
1762         int64_t oy  = 0;
1763
1764         if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1765         memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
1766         memcpy(c->dstColorspaceTable,     table, sizeof(int)*4);
1767
1768         c->brightness= brightness;
1769         c->contrast  = contrast;
1770         c->saturation= saturation;
1771         c->srcRange  = srcRange;
1772         c->dstRange  = dstRange;
1773
1774         c->uOffset=   0x0400040004000400LL;
1775         c->vOffset=   0x0400040004000400LL;
1776
1777         if(!srcRange){
1778                 cy= (cy*255) / 219;
1779                 oy= 16<<16;
1780         }
1781
1782         cy = (cy *contrast             )>>16;
1783         crv= (crv*contrast * saturation)>>32;
1784         cbu= (cbu*contrast * saturation)>>32;
1785         cgu= (cgu*contrast * saturation)>>32;
1786         cgv= (cgv*contrast * saturation)>>32;
1787
1788         oy -= 256*brightness;
1789
1790         c->yCoeff=    roundToInt16(cy *8192) * 0x0001000100010001ULL;
1791         c->vrCoeff=   roundToInt16(crv*8192) * 0x0001000100010001ULL;
1792         c->ubCoeff=   roundToInt16(cbu*8192) * 0x0001000100010001ULL;
1793         c->vgCoeff=   roundToInt16(cgv*8192) * 0x0001000100010001ULL;
1794         c->ugCoeff=   roundToInt16(cgu*8192) * 0x0001000100010001ULL;
1795         c->yOffset=   roundToInt16(oy *   8) * 0x0001000100010001ULL;
1796
1797         yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
1798         //FIXME factorize
1799
1800 #ifdef COMPILE_ALTIVEC
1801         if (c->flags & SWS_CPU_CAPS_ALTIVEC)
1802             yuv2rgb_altivec_init_tables (c, inv_table, brightness, contrast, saturation);
1803 #endif  
1804         return 0;
1805 }
1806
1807 /**
1808  * @return -1 if not supported
1809  */
1810 int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
1811         if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1812
1813         *inv_table = c->srcColorspaceTable;
1814         *table     = c->dstColorspaceTable;
1815         *srcRange  = c->srcRange;
1816         *dstRange  = c->dstRange;
1817         *brightness= c->brightness;
1818         *contrast  = c->contrast;
1819         *saturation= c->saturation;
1820         
1821         return 0;       
1822 }
1823
1824 SwsContext *sws_getContext(int srcW, int srcH, int origSrcFormat, int dstW, int dstH, int origDstFormat, int flags,
1825                          SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
1826
1827         SwsContext *c;
1828         int i;
1829         int usesVFilter, usesHFilter;
1830         int unscaled, needsDither;
1831         int srcFormat, dstFormat;
1832         SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
1833 #if defined(ARCH_X86) || defined(ARCH_X86_64)
1834         if(flags & SWS_CPU_CAPS_MMX)
1835                 asm volatile("emms\n\t"::: "memory");
1836 #endif
1837
1838 #ifndef RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
1839         flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC);
1840 #ifdef HAVE_MMX2
1841         flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
1842 #elif defined (HAVE_3DNOW)
1843         flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
1844 #elif defined (HAVE_MMX)
1845         flags |= SWS_CPU_CAPS_MMX;
1846 #elif defined (HAVE_ALTIVEC)
1847         flags |= SWS_CPU_CAPS_ALTIVEC;
1848 #endif
1849 #endif
1850         if(clip_table[512] != 255) globalInit();
1851         if(rgb15to16 == NULL) sws_rgb2rgb_init(flags);
1852
1853         /* avoid duplicate Formats, so we don't need to check to much */
1854         srcFormat = remove_dup_fourcc(origSrcFormat);
1855         dstFormat = remove_dup_fourcc(origDstFormat);
1856
1857         unscaled = (srcW == dstW && srcH == dstH);
1858         needsDither= (isBGR(dstFormat) || isRGB(dstFormat)) 
1859                      && (dstFormat&0xFF)<24
1860                      && ((dstFormat&0xFF)<(srcFormat&0xFF) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
1861
1862         if(!isSupportedIn(srcFormat)) 
1863         {
1864                 MSG_ERR("swScaler: %s is not supported as input format\n", vo_format_name(srcFormat));
1865                 return NULL;
1866         }
1867         if(!isSupportedOut(dstFormat))
1868         {
1869                 MSG_ERR("swScaler: %s is not supported as output format\n", vo_format_name(dstFormat));
1870                 return NULL;
1871         }
1872
1873         /* sanity check */
1874         if(srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
1875         {
1876                  MSG_ERR("swScaler: %dx%d -> %dx%d is invalid scaling dimension\n", 
1877                         srcW, srcH, dstW, dstH);
1878                 return NULL;
1879         }
1880
1881         if(!dstFilter) dstFilter= &dummyFilter;
1882         if(!srcFilter) srcFilter= &dummyFilter;
1883
1884         c= memalign(64, sizeof(SwsContext));
1885         memset(c, 0, sizeof(SwsContext));
1886
1887         c->srcW= srcW;
1888         c->srcH= srcH;
1889         c->dstW= dstW;
1890         c->dstH= dstH;
1891         c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
1892         c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
1893         c->flags= flags;
1894         c->dstFormat= dstFormat;
1895         c->srcFormat= srcFormat;
1896         c->origDstFormat= origDstFormat;
1897         c->origSrcFormat= origSrcFormat;
1898         c->vRounder= 4* 0x0001000100010001ULL;
1899
1900         usesHFilter= usesVFilter= 0;
1901         if(dstFilter->lumV!=NULL && dstFilter->lumV->length>1) usesVFilter=1;
1902         if(dstFilter->lumH!=NULL && dstFilter->lumH->length>1) usesHFilter=1;
1903         if(dstFilter->chrV!=NULL && dstFilter->chrV->length>1) usesVFilter=1;
1904         if(dstFilter->chrH!=NULL && dstFilter->chrH->length>1) usesHFilter=1;
1905         if(srcFilter->lumV!=NULL && srcFilter->lumV->length>1) usesVFilter=1;
1906         if(srcFilter->lumH!=NULL && srcFilter->lumH->length>1) usesHFilter=1;
1907         if(srcFilter->chrV!=NULL && srcFilter->chrV->length>1) usesVFilter=1;
1908         if(srcFilter->chrH!=NULL && srcFilter->chrH->length>1) usesHFilter=1;
1909
1910         getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
1911         getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
1912
1913         // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
1914         if((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
1915
1916         // drop some chroma lines if the user wants it
1917         c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
1918         c->chrSrcVSubSample+= c->vChrDrop;
1919
1920         // drop every 2. pixel for chroma calculation unless user wants full chroma
1921         if((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP)) 
1922                 c->chrSrcHSubSample=1;
1923
1924         if(param){
1925                 c->param[0] = param[0];
1926                 c->param[1] = param[1];
1927         }else{
1928                 c->param[0] =
1929                 c->param[1] = SWS_PARAM_DEFAULT;
1930         }
1931
1932         c->chrIntHSubSample= c->chrDstHSubSample;
1933         c->chrIntVSubSample= c->chrSrcVSubSample;
1934
1935         // note the -((-x)>>y) is so that we allways round toward +inf
1936         c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
1937         c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
1938         c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
1939         c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
1940
1941         sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], 0, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, 0, 0, 1<<16, 1<<16); 
1942
1943         /* unscaled special Cases */
1944         if(unscaled && !usesHFilter && !usesVFilter)
1945         {
1946                 /* yv12_to_nv12 */
1947                 if(srcFormat == IMGFMT_YV12 && (dstFormat == IMGFMT_NV12 || dstFormat == IMGFMT_NV21))
1948                 {
1949                         c->swScale= PlanarToNV12Wrapper;
1950                 }
1951                 /* yuv2bgr */
1952                 if((srcFormat==IMGFMT_YV12 || srcFormat==IMGFMT_422P) && (isBGR(dstFormat) || isRGB(dstFormat)))
1953                 {
1954                         c->swScale= yuv2rgb_get_func_ptr(c);
1955                 }
1956                 
1957                 if( srcFormat==IMGFMT_YVU9 && dstFormat==IMGFMT_YV12 )
1958                 {
1959                         c->swScale= yvu9toyv12Wrapper;
1960                 }
1961
1962                 /* bgr24toYV12 */
1963                 if(srcFormat==IMGFMT_BGR24 && dstFormat==IMGFMT_YV12)
1964                         c->swScale= bgr24toyv12Wrapper;
1965                 
1966                 /* rgb/bgr -> rgb/bgr (no dither needed forms) */
1967                 if(   (isBGR(srcFormat) || isRGB(srcFormat))
1968                    && (isBGR(dstFormat) || isRGB(dstFormat)) 
1969                    && !needsDither)
1970                         c->swScale= rgb2rgbWrapper;
1971
1972                 /* LQ converters if -sws 0 or -sws 4*/
1973                 if(c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
1974                         /* rgb/bgr -> rgb/bgr (dither needed forms) */
1975                         if(  (isBGR(srcFormat) || isRGB(srcFormat))
1976                           && (isBGR(dstFormat) || isRGB(dstFormat)) 
1977                           && needsDither)
1978                                 c->swScale= rgb2rgbWrapper;
1979
1980                         /* yv12_to_yuy2 */
1981                         if(srcFormat == IMGFMT_YV12 && 
1982                             (dstFormat == IMGFMT_YUY2 || dstFormat == IMGFMT_UYVY))
1983                         {
1984                                 if (dstFormat == IMGFMT_YUY2)
1985                                     c->swScale= PlanarToYuy2Wrapper;
1986                                 else
1987                                     c->swScale= PlanarToUyvyWrapper;
1988                         }
1989                 }
1990
1991 #ifdef COMPILE_ALTIVEC
1992                 if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
1993                     ((srcFormat == IMGFMT_YV12 && 
1994                       (dstFormat == IMGFMT_YUY2 || dstFormat == IMGFMT_UYVY)))) {
1995                   // unscaled YV12 -> packed YUV, we want speed
1996                   if (dstFormat == IMGFMT_YUY2)
1997                     c->swScale= yv12toyuy2_unscaled_altivec;
1998                   else
1999                     c->swScale= yv12touyvy_unscaled_altivec;
2000                 }
2001 #endif
2002
2003                 /* simple copy */
2004                 if(   srcFormat == dstFormat
2005                    || (isPlanarYUV(srcFormat) && isGray(dstFormat))
2006                    || (isPlanarYUV(dstFormat) && isGray(srcFormat))
2007                   )
2008                 {
2009                         c->swScale= simpleCopy;
2010                 }
2011
2012                 if(c->swScale){
2013                         if(flags&SWS_PRINT_INFO)
2014                                 MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n", 
2015                                         vo_format_name(srcFormat), vo_format_name(dstFormat));
2016                         return c;
2017                 }
2018         }
2019
2020         if(flags & SWS_CPU_CAPS_MMX2)
2021         {
2022                 c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
2023                 if(!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
2024                 {
2025                         if(flags&SWS_PRINT_INFO)
2026                                 MSG_INFO("SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
2027                 }
2028                 if(usesHFilter) c->canMMX2BeUsed=0;
2029         }
2030         else
2031                 c->canMMX2BeUsed=0;
2032
2033         c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
2034         c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
2035
2036         // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
2037         // but only for the FAST_BILINEAR mode otherwise do correct scaling
2038         // n-2 is the last chrominance sample available
2039         // this is not perfect, but noone shuld notice the difference, the more correct variant
2040         // would be like the vertical one, but that would require some special code for the
2041         // first and last pixel
2042         if(flags&SWS_FAST_BILINEAR)
2043         {
2044                 if(c->canMMX2BeUsed)
2045                 {
2046                         c->lumXInc+= 20;
2047                         c->chrXInc+= 20;
2048                 }
2049                 //we don't use the x86asm scaler if mmx is available
2050                 else if(flags & SWS_CPU_CAPS_MMX)
2051                 {
2052                         c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
2053                         c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
2054                 }
2055         }
2056
2057         /* precalculate horizontal scaler filter coefficients */
2058         {
2059                 const int filterAlign=
2060                   (flags & SWS_CPU_CAPS_MMX) ? 4 :
2061                   (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2062                   1;
2063
2064                 initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
2065                                  srcW      ,       dstW, filterAlign, 1<<14,
2066                                  (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
2067                                  srcFilter->lumH, dstFilter->lumH, c->param);
2068                 initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
2069                                  c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
2070                                  (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2071                                  srcFilter->chrH, dstFilter->chrH, c->param);
2072
2073 #if defined(ARCH_X86) || defined(ARCH_X86_64)
2074 // can't downscale !!!
2075                 if(c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
2076                 {
2077 #define MAX_FUNNY_CODE_SIZE 10000
2078 #ifdef MAP_ANONYMOUS
2079                         c->funnyYCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2080                         c->funnyUVCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2081 #else
2082                         c->funnyYCode = (uint8_t*)memalign(32, MAX_FUNNY_CODE_SIZE);
2083                         c->funnyUVCode = (uint8_t*)memalign(32, MAX_FUNNY_CODE_SIZE);
2084 #endif
2085
2086                         c->lumMmx2Filter   = (int16_t*)memalign(8, (dstW        /8+8)*sizeof(int16_t));
2087                         c->chrMmx2Filter   = (int16_t*)memalign(8, (c->chrDstW  /4+8)*sizeof(int16_t));
2088                         c->lumMmx2FilterPos= (int32_t*)memalign(8, (dstW      /2/8+8)*sizeof(int32_t));
2089                         c->chrMmx2FilterPos= (int32_t*)memalign(8, (c->chrDstW/2/4+8)*sizeof(int32_t));
2090
2091                         initMMX2HScaler(      dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
2092                         initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
2093                 }
2094 #endif
2095         } // Init Horizontal stuff
2096
2097
2098
2099         /* precalculate vertical scaler filter coefficients */
2100         {
2101                 const int filterAlign=
2102                   (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2103                   1;
2104
2105                 initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
2106                                 srcH      ,        dstH, filterAlign, (1<<12)-4,
2107                                 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags,
2108                                 srcFilter->lumV, dstFilter->lumV, c->param);
2109                 initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
2110                                 c->chrSrcH, c->chrDstH, filterAlign, (1<<12)-4,
2111                                 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2112                                 srcFilter->chrV, dstFilter->chrV, c->param);
2113         }
2114
2115         // Calculate Buffer Sizes so that they won't run out while handling these damn slices
2116         c->vLumBufSize= c->vLumFilterSize;
2117         c->vChrBufSize= c->vChrFilterSize;
2118         for(i=0; i<dstH; i++)
2119         {
2120                 int chrI= i*c->chrDstH / dstH;
2121                 int nextSlice= MAX(c->vLumFilterPos[i   ] + c->vLumFilterSize - 1,
2122                                  ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
2123
2124                 nextSlice>>= c->chrSrcVSubSample;
2125                 nextSlice<<= c->chrSrcVSubSample;
2126                 if(c->vLumFilterPos[i   ] + c->vLumBufSize < nextSlice)
2127                         c->vLumBufSize= nextSlice - c->vLumFilterPos[i   ];
2128                 if(c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
2129                         c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
2130         }
2131
2132         // allocate pixbufs (we use dynamic allocation because otherwise we would need to
2133         c->lumPixBuf= (int16_t**)memalign(4, c->vLumBufSize*2*sizeof(int16_t*));
2134         c->chrPixBuf= (int16_t**)memalign(4, c->vChrBufSize*2*sizeof(int16_t*));
2135         //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
2136         /* align at 16 bytes for AltiVec */
2137         for(i=0; i<c->vLumBufSize; i++)
2138                 c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= (uint16_t*)memalign(16, 4000);
2139         for(i=0; i<c->vChrBufSize; i++)
2140                 c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= (uint16_t*)memalign(16, 8000);
2141
2142         //try to avoid drawing green stuff between the right end and the stride end
2143         for(i=0; i<c->vLumBufSize; i++) memset(c->lumPixBuf[i], 0, 4000);
2144         for(i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000);
2145
2146         ASSERT(c->chrDstH <= dstH)
2147
2148         if(flags&SWS_PRINT_INFO)
2149         {
2150 #ifdef DITHER1XBPP
2151                 char *dither= " dithered";
2152 #else
2153                 char *dither= "";
2154 #endif
2155                 if(flags&SWS_FAST_BILINEAR)
2156                         MSG_INFO("\nSwScaler: FAST_BILINEAR scaler, ");
2157                 else if(flags&SWS_BILINEAR)
2158                         MSG_INFO("\nSwScaler: BILINEAR scaler, ");
2159                 else if(flags&SWS_BICUBIC)
2160                         MSG_INFO("\nSwScaler: BICUBIC scaler, ");
2161                 else if(flags&SWS_X)
2162                         MSG_INFO("\nSwScaler: Experimental scaler, ");
2163                 else if(flags&SWS_POINT)
2164                         MSG_INFO("\nSwScaler: Nearest Neighbor / POINT scaler, ");
2165                 else if(flags&SWS_AREA)
2166                         MSG_INFO("\nSwScaler: Area Averageing scaler, ");
2167                 else if(flags&SWS_BICUBLIN)
2168                         MSG_INFO("\nSwScaler: luma BICUBIC / chroma BILINEAR scaler, ");
2169                 else if(flags&SWS_GAUSS)
2170                         MSG_INFO("\nSwScaler: Gaussian scaler, ");
2171                 else if(flags&SWS_SINC)
2172                         MSG_INFO("\nSwScaler: Sinc scaler, ");
2173                 else if(flags&SWS_LANCZOS)
2174                         MSG_INFO("\nSwScaler: Lanczos scaler, ");
2175                 else if(flags&SWS_SPLINE)
2176                         MSG_INFO("\nSwScaler: Bicubic spline scaler, ");
2177                 else
2178                         MSG_INFO("\nSwScaler: ehh flags invalid?! ");
2179
2180                 if(dstFormat==IMGFMT_BGR15 || dstFormat==IMGFMT_BGR16)
2181                         MSG_INFO("from %s to%s %s ", 
2182                                 vo_format_name(srcFormat), dither, vo_format_name(dstFormat));
2183                 else
2184                         MSG_INFO("from %s to %s ", 
2185                                 vo_format_name(srcFormat), vo_format_name(dstFormat));
2186
2187                 if(flags & SWS_CPU_CAPS_MMX2)
2188                         MSG_INFO("using MMX2\n");
2189                 else if(flags & SWS_CPU_CAPS_3DNOW)
2190                         MSG_INFO("using 3DNOW\n");
2191                 else if(flags & SWS_CPU_CAPS_MMX)
2192                         MSG_INFO("using MMX\n");
2193                 else if(flags & SWS_CPU_CAPS_ALTIVEC)
2194                         MSG_INFO("using AltiVec\n");
2195                 else 
2196                         MSG_INFO("using C\n");
2197         }
2198
2199         if(flags & SWS_PRINT_INFO)
2200         {
2201                 if(flags & SWS_CPU_CAPS_MMX)
2202                 {
2203                         if(c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
2204                                 MSG_V("SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
2205                         else
2206                         {
2207                                 if(c->hLumFilterSize==4)
2208                                         MSG_V("SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
2209                                 else if(c->hLumFilterSize==8)
2210                                         MSG_V("SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
2211                                 else
2212                                         MSG_V("SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
2213
2214                                 if(c->hChrFilterSize==4)
2215                                         MSG_V("SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
2216                                 else if(c->hChrFilterSize==8)
2217                                         MSG_V("SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
2218                                 else
2219                                         MSG_V("SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
2220                         }
2221                 }
2222                 else
2223                 {
2224 #if defined(ARCH_X86) || defined(ARCH_X86_64)
2225                         MSG_V("SwScaler: using X86-Asm scaler for horizontal scaling\n");
2226 #else
2227                         if(flags & SWS_FAST_BILINEAR)
2228                                 MSG_V("SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
2229                         else
2230                                 MSG_V("SwScaler: using C scaler for horizontal scaling\n");
2231 #endif
2232                 }
2233                 if(isPlanarYUV(dstFormat))
2234                 {
2235                         if(c->vLumFilterSize==1)
2236                                 MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2237                         else
2238                                 MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2239                 }
2240                 else
2241                 {
2242                         if(c->vLumFilterSize==1 && c->vChrFilterSize==2)
2243                                 MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
2244                                        "SwScaler:       2-tap scaler for vertical chrominance scaling (BGR)\n",(flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2245                         else if(c->vLumFilterSize==2 && c->vChrFilterSize==2)
2246                                 MSG_V("SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2247                         else
2248                                 MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2249                 }
2250
2251                 if(dstFormat==IMGFMT_BGR24)
2252                         MSG_V("SwScaler: using %s YV12->BGR24 Converter\n",
2253                                 (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
2254                 else if(dstFormat==IMGFMT_BGR32)
2255                         MSG_V("SwScaler: using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2256                 else if(dstFormat==IMGFMT_BGR16)
2257                         MSG_V("SwScaler: using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2258                 else if(dstFormat==IMGFMT_BGR15)
2259                         MSG_V("SwScaler: using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2260
2261                 MSG_V("SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
2262         }
2263         if(flags & SWS_PRINT_INFO)
2264         {
2265                 MSG_DBG2("SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2266                         c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
2267                 MSG_DBG2("SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2268                         c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
2269         }
2270
2271         c->swScale= getSwsFunc(flags);
2272         return c;
2273 }
2274
2275 /**
2276  * swscale warper, so we don't need to export the SwsContext.
2277  * assumes planar YUV to be in YUV order instead of YVU
2278  */
2279 int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2280                            int srcSliceH, uint8_t* dst[], int dstStride[]){
2281         if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
2282             MSG_ERR("swScaler: slices start in the middle!\n");
2283             return 0;
2284         }
2285         if (c->sliceDir == 0) {
2286             if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
2287         }
2288
2289         // copy strides, so they can safely be modified
2290         if (c->sliceDir == 1) {
2291             // slices go from top to bottom
2292             int srcStride2[3]= {srcStride[0], srcStride[1], srcStride[2]};
2293             int dstStride2[3]= {dstStride[0], dstStride[1], dstStride[2]};
2294             return c->swScale(c, src, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
2295         } else {
2296             // slices go from bottom to top => we flip the image internally
2297             uint8_t* src2[3]= {src[0] + (srcSliceH-1)*srcStride[0],
2298                                src[1] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1],
2299                                src[2] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2]
2300             };
2301             uint8_t* dst2[3]= {dst[0] + (c->dstH-1)*dstStride[0],
2302                                dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
2303                                dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2]};
2304             int srcStride2[3]= {-srcStride[0], -srcStride[1], -srcStride[2]};
2305             int dstStride2[3]= {-dstStride[0], -dstStride[1], -dstStride[2]};
2306             
2307             return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
2308         }
2309 }
2310
2311 /**
2312  * swscale warper, so we don't need to export the SwsContext
2313  */
2314 int sws_scale(SwsContext *c, uint8_t* srcParam[], int srcStrideParam[], int srcSliceY,
2315                            int srcSliceH, uint8_t* dstParam[], int dstStrideParam[]){
2316         int srcStride[3];
2317         int dstStride[3];
2318         uint8_t *src[3];
2319         uint8_t *dst[3];
2320         sws_orderYUV(c->origSrcFormat, src, srcStride, srcParam, srcStrideParam);
2321         sws_orderYUV(c->origDstFormat, dst, dstStride, dstParam, dstStrideParam);
2322 //printf("sws: slice %d %d\n", srcSliceY, srcSliceH);
2323
2324         return c->swScale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
2325 }
2326
2327 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur, 
2328                                 float lumaSharpen, float chromaSharpen,
2329                                 float chromaHShift, float chromaVShift,
2330                                 int verbose)
2331 {
2332         SwsFilter *filter= malloc(sizeof(SwsFilter));
2333
2334         if(lumaGBlur!=0.0){
2335                 filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
2336                 filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
2337         }else{
2338                 filter->lumH= sws_getIdentityVec();
2339                 filter->lumV= sws_getIdentityVec();
2340         }
2341
2342         if(chromaGBlur!=0.0){
2343                 filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
2344                 filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
2345         }else{
2346                 filter->chrH= sws_getIdentityVec();
2347                 filter->chrV= sws_getIdentityVec();
2348         }
2349
2350         if(chromaSharpen!=0.0){
2351                 SwsVector *id= sws_getIdentityVec();
2352                 sws_scaleVec(filter->chrH, -chromaSharpen);
2353                 sws_scaleVec(filter->chrV, -chromaSharpen);
2354                 sws_addVec(filter->chrH, id);
2355                 sws_addVec(filter->chrV, id);
2356                 sws_freeVec(id);
2357         }
2358
2359         if(lumaSharpen!=0.0){
2360                 SwsVector *id= sws_getIdentityVec();
2361                 sws_scaleVec(filter->lumH, -lumaSharpen);
2362                 sws_scaleVec(filter->lumV, -lumaSharpen);
2363                 sws_addVec(filter->lumH, id);
2364                 sws_addVec(filter->lumV, id);
2365                 sws_freeVec(id);
2366         }
2367
2368         if(chromaHShift != 0.0)
2369                 sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
2370
2371         if(chromaVShift != 0.0)
2372                 sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
2373
2374         sws_normalizeVec(filter->chrH, 1.0);
2375         sws_normalizeVec(filter->chrV, 1.0);
2376         sws_normalizeVec(filter->lumH, 1.0);
2377         sws_normalizeVec(filter->lumV, 1.0);
2378
2379         if(verbose) sws_printVec(filter->chrH);
2380         if(verbose) sws_printVec(filter->lumH);
2381
2382         return filter;
2383 }
2384
2385 /**
2386  * returns a normalized gaussian curve used to filter stuff
2387  * quality=3 is high quality, lowwer is lowwer quality
2388  */
2389 SwsVector *sws_getGaussianVec(double variance, double quality){
2390         const int length= (int)(variance*quality + 0.5) | 1;
2391         int i;
2392         double *coeff= memalign(sizeof(double), length*sizeof(double));
2393         double middle= (length-1)*0.5;
2394         SwsVector *vec= malloc(sizeof(SwsVector));
2395
2396         vec->coeff= coeff;
2397         vec->length= length;
2398
2399         for(i=0; i<length; i++)
2400         {
2401                 double dist= i-middle;
2402                 coeff[i]= exp( -dist*dist/(2*variance*variance) ) / sqrt(2*variance*PI);
2403         }
2404
2405         sws_normalizeVec(vec, 1.0);
2406
2407         return vec;
2408 }
2409
2410 SwsVector *sws_getConstVec(double c, int length){
2411         int i;
2412         double *coeff= memalign(sizeof(double), length*sizeof(double));
2413         SwsVector *vec= malloc(sizeof(SwsVector));
2414
2415         vec->coeff= coeff;
2416         vec->length= length;
2417
2418         for(i=0; i<length; i++)
2419                 coeff[i]= c;
2420
2421         return vec;
2422 }
2423
2424
2425 SwsVector *sws_getIdentityVec(void){
2426         return sws_getConstVec(1.0, 1);
2427 }
2428
2429 double sws_dcVec(SwsVector *a){
2430         int i;
2431         double sum=0;
2432
2433         for(i=0; i<a->length; i++)
2434                 sum+= a->coeff[i];
2435
2436         return sum;
2437 }
2438
2439 void sws_scaleVec(SwsVector *a, double scalar){
2440         int i;
2441
2442         for(i=0; i<a->length; i++)
2443                 a->coeff[i]*= scalar;
2444 }
2445
2446 void sws_normalizeVec(SwsVector *a, double height){
2447         sws_scaleVec(a, height/sws_dcVec(a));
2448 }
2449
2450 static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
2451         int length= a->length + b->length - 1;
2452         double *coeff= memalign(sizeof(double), length*sizeof(double));
2453         int i, j;
2454         SwsVector *vec= malloc(sizeof(SwsVector));
2455
2456         vec->coeff= coeff;
2457         vec->length= length;
2458
2459         for(i=0; i<length; i++) coeff[i]= 0.0;
2460
2461         for(i=0; i<a->length; i++)
2462         {
2463                 for(j=0; j<b->length; j++)
2464                 {
2465                         coeff[i+j]+= a->coeff[i]*b->coeff[j];
2466                 }
2467         }
2468
2469         return vec;
2470 }
2471
2472 static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
2473         int length= MAX(a->length, b->length);
2474         double *coeff= memalign(sizeof(double), length*sizeof(double));
2475         int i;
2476         SwsVector *vec= malloc(sizeof(SwsVector));
2477
2478         vec->coeff= coeff;
2479         vec->length= length;
2480
2481         for(i=0; i<length; i++) coeff[i]= 0.0;
2482
2483         for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2484         for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
2485
2486         return vec;
2487 }
2488
2489 static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
2490         int length= MAX(a->length, b->length);
2491         double *coeff= memalign(sizeof(double), length*sizeof(double));
2492         int i;
2493         SwsVector *vec= malloc(sizeof(SwsVector));
2494
2495         vec->coeff= coeff;
2496         vec->length= length;
2497
2498         for(i=0; i<length; i++) coeff[i]= 0.0;
2499
2500         for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2501         for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
2502
2503         return vec;
2504 }
2505
2506 /* shift left / or right if "shift" is negative */
2507 static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
2508         int length= a->length + ABS(shift)*2;
2509         double *coeff= memalign(sizeof(double), length*sizeof(double));
2510         int i;
2511         SwsVector *vec= malloc(sizeof(SwsVector));
2512
2513         vec->coeff= coeff;
2514         vec->length= length;
2515
2516         for(i=0; i<length; i++) coeff[i]= 0.0;
2517
2518         for(i=0; i<a->length; i++)
2519         {
2520                 coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
2521         }
2522
2523         return vec;
2524 }
2525
2526 void sws_shiftVec(SwsVector *a, int shift){
2527         SwsVector *shifted= sws_getShiftedVec(a, shift);
2528         free(a->coeff);
2529         a->coeff= shifted->coeff;
2530         a->length= shifted->length;
2531         free(shifted);
2532 }
2533
2534 void sws_addVec(SwsVector *a, SwsVector *b){
2535         SwsVector *sum= sws_sumVec(a, b);
2536         free(a->coeff);
2537         a->coeff= sum->coeff;
2538         a->length= sum->length;
2539         free(sum);
2540 }
2541
2542 void sws_subVec(SwsVector *a, SwsVector *b){
2543         SwsVector *diff= sws_diffVec(a, b);
2544         free(a->coeff);
2545         a->coeff= diff->coeff;
2546         a->length= diff->length;
2547         free(diff);
2548 }
2549
2550 void sws_convVec(SwsVector *a, SwsVector *b){
2551         SwsVector *conv= sws_getConvVec(a, b);
2552         free(a->coeff);  
2553         a->coeff= conv->coeff;
2554         a->length= conv->length;
2555         free(conv);
2556 }
2557
2558 SwsVector *sws_cloneVec(SwsVector *a){
2559         double *coeff= memalign(sizeof(double), a->length*sizeof(double));
2560         int i;
2561         SwsVector *vec= malloc(sizeof(SwsVector));
2562
2563         vec->coeff= coeff;
2564         vec->length= a->length;
2565
2566         for(i=0; i<a->length; i++) coeff[i]= a->coeff[i];
2567
2568         return vec;
2569 }
2570
2571 void sws_printVec(SwsVector *a){
2572         int i;
2573         double max=0;
2574         double min=0;
2575         double range;
2576
2577         for(i=0; i<a->length; i++)
2578                 if(a->coeff[i]>max) max= a->coeff[i];
2579
2580         for(i=0; i<a->length; i++)
2581                 if(a->coeff[i]<min) min= a->coeff[i];
2582
2583         range= max - min;
2584
2585         for(i=0; i<a->length; i++)
2586         {
2587                 int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
2588                 MSG_DBG2("%1.3f ", a->coeff[i]);
2589                 for(;x>0; x--) MSG_DBG2(" ");
2590                 MSG_DBG2("|\n");
2591         }
2592 }
2593
2594 void sws_freeVec(SwsVector *a){
2595         if(!a) return;
2596         if(a->coeff) free(a->coeff);
2597         a->coeff=NULL;
2598         a->length=0;
2599         free(a);
2600 }
2601
2602 void sws_freeFilter(SwsFilter *filter){
2603         if(!filter) return;
2604
2605         if(filter->lumH) sws_freeVec(filter->lumH);
2606         if(filter->lumV) sws_freeVec(filter->lumV);
2607         if(filter->chrH) sws_freeVec(filter->chrH);
2608         if(filter->chrV) sws_freeVec(filter->chrV);
2609         free(filter);
2610 }
2611
2612
2613 void sws_freeContext(SwsContext *c){
2614         int i;
2615         if(!c) return;
2616
2617         if(c->lumPixBuf)
2618         {
2619                 for(i=0; i<c->vLumBufSize; i++)
2620                 {
2621                         if(c->lumPixBuf[i]) free(c->lumPixBuf[i]);
2622                         c->lumPixBuf[i]=NULL;
2623                 }
2624                 free(c->lumPixBuf);
2625                 c->lumPixBuf=NULL;
2626         }
2627
2628         if(c->chrPixBuf)
2629         {
2630                 for(i=0; i<c->vChrBufSize; i++)
2631                 {
2632                         if(c->chrPixBuf[i]) free(c->chrPixBuf[i]);
2633                         c->chrPixBuf[i]=NULL;
2634                 }
2635                 free(c->chrPixBuf);
2636                 c->chrPixBuf=NULL;
2637         }
2638
2639         if(c->vLumFilter) free(c->vLumFilter);
2640         c->vLumFilter = NULL;
2641         if(c->vChrFilter) free(c->vChrFilter);
2642         c->vChrFilter = NULL;
2643         if(c->hLumFilter) free(c->hLumFilter);
2644         c->hLumFilter = NULL;
2645         if(c->hChrFilter) free(c->hChrFilter);
2646         c->hChrFilter = NULL;
2647
2648         if(c->vLumFilterPos) free(c->vLumFilterPos);
2649         c->vLumFilterPos = NULL;
2650         if(c->vChrFilterPos) free(c->vChrFilterPos);
2651         c->vChrFilterPos = NULL;
2652         if(c->hLumFilterPos) free(c->hLumFilterPos);
2653         c->hLumFilterPos = NULL;
2654         if(c->hChrFilterPos) free(c->hChrFilterPos);
2655         c->hChrFilterPos = NULL;
2656
2657 #if defined(ARCH_X86) || defined(ARCH_X86_64)
2658 #ifdef MAP_ANONYMOUS
2659         if(c->funnyYCode) munmap(c->funnyYCode, MAX_FUNNY_CODE_SIZE);
2660         if(c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
2661 #else
2662         if(c->funnyYCode) free(c->funnyYCode);
2663         if(c->funnyUVCode) free(c->funnyUVCode);
2664 #endif
2665         c->funnyYCode=NULL;
2666         c->funnyUVCode=NULL;
2667 #endif
2668
2669         if(c->lumMmx2Filter) free(c->lumMmx2Filter);
2670         c->lumMmx2Filter=NULL;
2671         if(c->chrMmx2Filter) free(c->chrMmx2Filter);
2672         c->chrMmx2Filter=NULL;
2673         if(c->lumMmx2FilterPos) free(c->lumMmx2FilterPos);
2674         c->lumMmx2FilterPos=NULL;
2675         if(c->chrMmx2FilterPos) free(c->chrMmx2FilterPos);
2676         c->chrMmx2FilterPos=NULL;
2677         if(c->yuvTable) free(c->yuvTable);
2678         c->yuvTable=NULL;
2679
2680         free(c);
2681 }
2682