2 Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 2 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, write to the Free Software
16 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09
21 supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
22 {BGR,RGB}{1,4,8,15,16} support dithering
24 unscaled special converters (YV12=I420=IYUV, Y800=Y8)
25 YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
30 BGR24 -> BGR32 & RGB24 -> RGB32
31 BGR32 -> BGR24 & RGB32 -> RGB24
36 tested special converters (most are tested actually but i didnt write it down ...)
43 untested special converters
44 YV12/I420 -> BGR15/BGR24/BGR32 (its the yuv2rgb stuff, so it should be ok)
45 YV12/I420 -> YV12/I420
46 YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
47 BGR24 -> BGR32 & RGB24 -> RGB32
48 BGR32 -> BGR24 & RGB32 -> RGB24
64 #ifdef HAVE_SYS_MMAN_H
66 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
67 #define MAP_ANONYMOUS MAP_ANON
71 #include "swscale_internal.h"
74 #include "img_format.h"
77 #include "libvo/fastmemcpy.h"
87 //#define WORDS_BIGENDIAN
90 #define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
92 #define RET 0xC3 //near return opcode for X86
95 #define ASSERT(x) assert(x);
103 #define PI 3.14159265358979323846
106 //FIXME replace this with something faster
107 #define isPlanarYUV(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YVU9 \
108 || (x)==IMGFMT_NV12 || (x)==IMGFMT_NV21 \
109 || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P)
110 #define isYUV(x) ((x)==IMGFMT_UYVY || (x)==IMGFMT_YUY2 || isPlanarYUV(x))
111 #define isGray(x) ((x)==IMGFMT_Y800)
112 #define isRGB(x) (((x)&IMGFMT_RGB_MASK)==IMGFMT_RGB)
113 #define isBGR(x) (((x)&IMGFMT_BGR_MASK)==IMGFMT_BGR)
114 #define isSupportedIn(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY\
115 || (x)==IMGFMT_BGR32|| (x)==IMGFMT_BGR24|| (x)==IMGFMT_BGR16|| (x)==IMGFMT_BGR15\
116 || (x)==IMGFMT_RGB32|| (x)==IMGFMT_RGB24\
117 || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9\
118 || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P)
119 #define isSupportedOut(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY\
120 || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P\
121 || isRGB(x) || isBGR(x)\
122 || (x)==IMGFMT_NV12 || (x)==IMGFMT_NV21\
123 || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9)
124 #define isPacked(x) ((x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY ||isRGB(x) || isBGR(x))
126 #define RGB2YUV_SHIFT 16
127 #define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
128 #define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
129 #define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
130 #define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
131 #define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
132 #define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
133 #define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
134 #define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
135 #define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
137 extern const int32_t Inverse_Table_6_9[8][4];
141 Special versions: fast Y 1:1 scaling (no interpolation in y direction)
144 more intelligent missalignment avoidance for the horizontal scaler
145 write special vertical cubic upscale version
146 Optimize C code (yv12 / minmax)
147 add support for packed pixel yuv input & output
148 add support for Y8 output
149 optimize bgr24 & bgr32
150 add BGR4 output support
151 write special BGR->BGR scaler
154 #define MIN(a,b) ((a) > (b) ? (b) : (a))
155 #define MAX(a,b) ((a) < (b) ? (b) : (a))
157 #if defined(ARCH_X86) || defined(ARCH_X86_64)
158 static uint64_t attribute_used __attribute__((aligned(8))) bF8= 0xF8F8F8F8F8F8F8F8LL;
159 static uint64_t attribute_used __attribute__((aligned(8))) bFC= 0xFCFCFCFCFCFCFCFCLL;
160 static uint64_t __attribute__((aligned(8))) w10= 0x0010001000100010LL;
161 static uint64_t attribute_used __attribute__((aligned(8))) w02= 0x0002000200020002LL;
162 static uint64_t attribute_used __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL;
163 static uint64_t attribute_used __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL;
164 static uint64_t attribute_used __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL;
165 static uint64_t attribute_used __attribute__((aligned(8))) bm01010101=0x00FF00FF00FF00FFLL;
167 static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
168 static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
169 static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
170 static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
172 static uint64_t __attribute__((aligned(8))) dither4[2]={
173 0x0103010301030103LL,
174 0x0200020002000200LL,};
176 static uint64_t __attribute__((aligned(8))) dither8[2]={
177 0x0602060206020602LL,
178 0x0004000400040004LL,};
180 static uint64_t __attribute__((aligned(8))) b16Mask= 0x001F001F001F001FLL;
181 static uint64_t attribute_used __attribute__((aligned(8))) g16Mask= 0x07E007E007E007E0LL;
182 static uint64_t attribute_used __attribute__((aligned(8))) r16Mask= 0xF800F800F800F800LL;
183 static uint64_t __attribute__((aligned(8))) b15Mask= 0x001F001F001F001FLL;
184 static uint64_t attribute_used __attribute__((aligned(8))) g15Mask= 0x03E003E003E003E0LL;
185 static uint64_t attribute_used __attribute__((aligned(8))) r15Mask= 0x7C007C007C007C00LL;
187 static uint64_t attribute_used __attribute__((aligned(8))) M24A= 0x00FF0000FF0000FFLL;
188 static uint64_t attribute_used __attribute__((aligned(8))) M24B= 0xFF0000FF0000FF00LL;
189 static uint64_t attribute_used __attribute__((aligned(8))) M24C= 0x0000FF0000FF0000LL;
192 static const uint64_t bgr2YCoeff attribute_used __attribute__((aligned(8))) = 0x000000210041000DULL;
193 static const uint64_t bgr2UCoeff attribute_used __attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL;
194 static const uint64_t bgr2VCoeff attribute_used __attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL;
196 static const uint64_t bgr2YCoeff attribute_used __attribute__((aligned(8))) = 0x000020E540830C8BULL;
197 static const uint64_t bgr2UCoeff attribute_used __attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL;
198 static const uint64_t bgr2VCoeff attribute_used __attribute__((aligned(8))) = 0x00003831D0E6F6EAULL;
200 static const uint64_t bgr2YOffset attribute_used __attribute__((aligned(8))) = 0x1010101010101010ULL;
201 static const uint64_t bgr2UVOffset attribute_used __attribute__((aligned(8)))= 0x8080808080808080ULL;
202 static const uint64_t w1111 attribute_used __attribute__((aligned(8))) = 0x0001000100010001ULL;
205 // clipping helper table for C implementations:
206 static unsigned char clip_table[768];
208 static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
210 extern const uint8_t dither_2x2_4[2][8];
211 extern const uint8_t dither_2x2_8[2][8];
212 extern const uint8_t dither_8x8_32[8][8];
213 extern const uint8_t dither_8x8_73[8][8];
214 extern const uint8_t dither_8x8_220[8][8];
216 char *sws_format_name(int format)
218 static char fmt_name[64];
222 res = fmt_name + buffer * 32;
224 snprintf(res, 32, "0x%x (%c%c%c%c)", format,
225 format >> 24, (format >> 16) & 0xFF,
226 (format >> 8) & 0xFF,
232 #if defined(ARCH_X86) || defined(ARCH_X86_64)
233 void in_asm_used_var_warning_killer()
235 volatile int i= bF8+bFC+w10+
236 bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+
237 M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0]+bm01010101;
242 static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
243 int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
244 uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
246 //FIXME Optimize (just quickly writen not opti..)
248 for(i=0; i<dstW; i++)
252 for(j=0; j<lumFilterSize; j++)
253 val += lumSrc[j][i] * lumFilter[j];
255 dest[i]= MIN(MAX(val>>19, 0), 255);
259 for(i=0; i<chrDstW; i++)
264 for(j=0; j<chrFilterSize; j++)
266 u += chrSrc[j][i] * chrFilter[j];
267 v += chrSrc[j][i + 2048] * chrFilter[j];
270 uDest[i]= MIN(MAX(u>>19, 0), 255);
271 vDest[i]= MIN(MAX(v>>19, 0), 255);
275 static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
276 int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
277 uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
279 //FIXME Optimize (just quickly writen not opti..)
281 for(i=0; i<dstW; i++)
285 for(j=0; j<lumFilterSize; j++)
286 val += lumSrc[j][i] * lumFilter[j];
288 dest[i]= MIN(MAX(val>>19, 0), 255);
294 if(dstFormat == IMGFMT_NV12)
295 for(i=0; i<chrDstW; i++)
300 for(j=0; j<chrFilterSize; j++)
302 u += chrSrc[j][i] * chrFilter[j];
303 v += chrSrc[j][i + 2048] * chrFilter[j];
306 uDest[2*i]= MIN(MAX(u>>19, 0), 255);
307 uDest[2*i+1]= MIN(MAX(v>>19, 0), 255);
310 for(i=0; i<chrDstW; i++)
315 for(j=0; j<chrFilterSize; j++)
317 u += chrSrc[j][i] * chrFilter[j];
318 v += chrSrc[j][i + 2048] * chrFilter[j];
321 uDest[2*i]= MIN(MAX(v>>19, 0), 255);
322 uDest[2*i+1]= MIN(MAX(u>>19, 0), 255);
326 #define YSCALE_YUV_2_PACKEDX_C(type) \
327 for(i=0; i<(dstW>>1); i++){\
336 for(j=0; j<lumFilterSize; j++)\
338 Y1 += lumSrc[j][i2] * lumFilter[j];\
339 Y2 += lumSrc[j][i2+1] * lumFilter[j];\
341 for(j=0; j<chrFilterSize; j++)\
343 U += chrSrc[j][i] * chrFilter[j];\
344 V += chrSrc[j][i+2048] * chrFilter[j];\
362 #define YSCALE_YUV_2_RGBX_C(type) \
363 YSCALE_YUV_2_PACKEDX_C(type)\
365 g = c->table_gU[U] + c->table_gV[V];\
368 #define YSCALE_YUV_2_PACKED2_C \
369 for(i=0; i<(dstW>>1); i++){\
371 int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19;\
372 int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19;\
373 int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19;\
374 int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19;\
376 #define YSCALE_YUV_2_RGB2_C(type) \
377 YSCALE_YUV_2_PACKED2_C\
380 g = c->table_gU[U] + c->table_gV[V];\
383 #define YSCALE_YUV_2_PACKED1_C \
384 for(i=0; i<(dstW>>1); i++){\
386 int Y1= buf0[i2 ]>>7;\
387 int Y2= buf0[i2+1]>>7;\
388 int U= (uvbuf1[i ])>>7;\
389 int V= (uvbuf1[i+2048])>>7;\
391 #define YSCALE_YUV_2_RGB1_C(type) \
392 YSCALE_YUV_2_PACKED1_C\
395 g = c->table_gU[U] + c->table_gV[V];\
398 #define YSCALE_YUV_2_PACKED1B_C \
399 for(i=0; i<(dstW>>1); i++){\
401 int Y1= buf0[i2 ]>>7;\
402 int Y2= buf0[i2+1]>>7;\
403 int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
404 int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\
406 #define YSCALE_YUV_2_RGB1B_C(type) \
407 YSCALE_YUV_2_PACKED1B_C\
410 g = c->table_gU[U] + c->table_gV[V];\
413 #define YSCALE_YUV_2_ANYRGB_C(func, func2)\
414 switch(c->dstFormat)\
419 ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
420 ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
425 ((uint8_t*)dest)[0]= r[Y1];\
426 ((uint8_t*)dest)[1]= g[Y1];\
427 ((uint8_t*)dest)[2]= b[Y1];\
428 ((uint8_t*)dest)[3]= r[Y2];\
429 ((uint8_t*)dest)[4]= g[Y2];\
430 ((uint8_t*)dest)[5]= b[Y2];\
436 ((uint8_t*)dest)[0]= b[Y1];\
437 ((uint8_t*)dest)[1]= g[Y1];\
438 ((uint8_t*)dest)[2]= r[Y1];\
439 ((uint8_t*)dest)[3]= b[Y2];\
440 ((uint8_t*)dest)[4]= g[Y2];\
441 ((uint8_t*)dest)[5]= r[Y2];\
448 const int dr1= dither_2x2_8[y&1 ][0];\
449 const int dg1= dither_2x2_4[y&1 ][0];\
450 const int db1= dither_2x2_8[(y&1)^1][0];\
451 const int dr2= dither_2x2_8[y&1 ][1];\
452 const int dg2= dither_2x2_4[y&1 ][1];\
453 const int db2= dither_2x2_8[(y&1)^1][1];\
455 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
456 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
463 const int dr1= dither_2x2_8[y&1 ][0];\
464 const int dg1= dither_2x2_8[y&1 ][1];\
465 const int db1= dither_2x2_8[(y&1)^1][0];\
466 const int dr2= dither_2x2_8[y&1 ][1];\
467 const int dg2= dither_2x2_8[y&1 ][0];\
468 const int db2= dither_2x2_8[(y&1)^1][1];\
470 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
471 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
478 const uint8_t * const d64= dither_8x8_73[y&7];\
479 const uint8_t * const d32= dither_8x8_32[y&7];\
481 ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
482 ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
489 const uint8_t * const d64= dither_8x8_73 [y&7];\
490 const uint8_t * const d128=dither_8x8_220[y&7];\
492 ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
493 + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
500 const uint8_t * const d64= dither_8x8_73 [y&7];\
501 const uint8_t * const d128=dither_8x8_220[y&7];\
503 ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
504 ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
511 const uint8_t * const d128=dither_8x8_220[y&7];\
512 uint8_t *g= c->table_gU[128] + c->table_gV[128];\
513 for(i=0; i<dstW-7; i+=8){\
515 acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
516 acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
517 acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
518 acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
519 acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
520 acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
521 acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
522 acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
523 ((uint8_t*)dest)[0]= acc;\
528 ((uint8_t*)dest)-= dstW>>4;\
532 static int top[1024];\
533 static int last_new[1024][1024];\
534 static int last_in3[1024][1024];\
535 static int drift[1024][1024];\
539 const uint8_t * const d128=dither_8x8_220[y&7];\
544 for(i=dstW>>1; i<dstW; i++){\
545 int in= ((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19);\
546 int in2 = (76309 * (in - 16) + 32768) >> 16;\
547 int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
548 int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
549 + (last_new[y][i] - in3)*f/256;\
550 int new= old> 128 ? 255 : 0;\
552 error_new+= ABS(last_new[y][i] - new);\
553 error_in3+= ABS(last_in3[y][i] - in3);\
554 f= error_new - error_in3*4;\
559 left= top[i]= old - new;\
560 last_new[y][i]= new;\
561 last_in3[y][i]= in3;\
563 acc+= acc + (new&1);\
565 ((uint8_t*)dest)[0]= acc;\
575 ((uint8_t*)dest)[2*i2+0]= Y1;\
576 ((uint8_t*)dest)[2*i2+1]= U;\
577 ((uint8_t*)dest)[2*i2+2]= Y2;\
578 ((uint8_t*)dest)[2*i2+3]= V;\
583 ((uint8_t*)dest)[2*i2+0]= U;\
584 ((uint8_t*)dest)[2*i2+1]= Y1;\
585 ((uint8_t*)dest)[2*i2+2]= V;\
586 ((uint8_t*)dest)[2*i2+3]= Y2;\
592 static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
593 int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
594 uint8_t *dest, int dstW, int y)
601 YSCALE_YUV_2_RGBX_C(uint32_t)
602 ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];
603 ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];
607 YSCALE_YUV_2_RGBX_C(uint8_t)
608 ((uint8_t*)dest)[0]= r[Y1];
609 ((uint8_t*)dest)[1]= g[Y1];
610 ((uint8_t*)dest)[2]= b[Y1];
611 ((uint8_t*)dest)[3]= r[Y2];
612 ((uint8_t*)dest)[4]= g[Y2];
613 ((uint8_t*)dest)[5]= b[Y2];
618 YSCALE_YUV_2_RGBX_C(uint8_t)
619 ((uint8_t*)dest)[0]= b[Y1];
620 ((uint8_t*)dest)[1]= g[Y1];
621 ((uint8_t*)dest)[2]= r[Y1];
622 ((uint8_t*)dest)[3]= b[Y2];
623 ((uint8_t*)dest)[4]= g[Y2];
624 ((uint8_t*)dest)[5]= r[Y2];
631 const int dr1= dither_2x2_8[y&1 ][0];
632 const int dg1= dither_2x2_4[y&1 ][0];
633 const int db1= dither_2x2_8[(y&1)^1][0];
634 const int dr2= dither_2x2_8[y&1 ][1];
635 const int dg2= dither_2x2_4[y&1 ][1];
636 const int db2= dither_2x2_8[(y&1)^1][1];
637 YSCALE_YUV_2_RGBX_C(uint16_t)
638 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
639 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
646 const int dr1= dither_2x2_8[y&1 ][0];
647 const int dg1= dither_2x2_8[y&1 ][1];
648 const int db1= dither_2x2_8[(y&1)^1][0];
649 const int dr2= dither_2x2_8[y&1 ][1];
650 const int dg2= dither_2x2_8[y&1 ][0];
651 const int db2= dither_2x2_8[(y&1)^1][1];
652 YSCALE_YUV_2_RGBX_C(uint16_t)
653 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
654 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
661 const uint8_t * const d64= dither_8x8_73[y&7];
662 const uint8_t * const d32= dither_8x8_32[y&7];
663 YSCALE_YUV_2_RGBX_C(uint8_t)
664 ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];
665 ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];
672 const uint8_t * const d64= dither_8x8_73 [y&7];
673 const uint8_t * const d128=dither_8x8_220[y&7];
674 YSCALE_YUV_2_RGBX_C(uint8_t)
675 ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]
676 +((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);
683 const uint8_t * const d64= dither_8x8_73 [y&7];
684 const uint8_t * const d128=dither_8x8_220[y&7];
685 YSCALE_YUV_2_RGBX_C(uint8_t)
686 ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];
687 ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];
694 const uint8_t * const d128=dither_8x8_220[y&7];
695 uint8_t *g= c->table_gU[128] + c->table_gV[128];
697 for(i=0; i<dstW-1; i+=2){
702 for(j=0; j<lumFilterSize; j++)
704 Y1 += lumSrc[j][i] * lumFilter[j];
705 Y2 += lumSrc[j][i+1] * lumFilter[j];
716 acc+= acc + g[Y1+d128[(i+0)&7]];
717 acc+= acc + g[Y2+d128[(i+1)&7]];
719 ((uint8_t*)dest)[0]= acc;
726 YSCALE_YUV_2_PACKEDX_C(void)
727 ((uint8_t*)dest)[2*i2+0]= Y1;
728 ((uint8_t*)dest)[2*i2+1]= U;
729 ((uint8_t*)dest)[2*i2+2]= Y2;
730 ((uint8_t*)dest)[2*i2+3]= V;
734 YSCALE_YUV_2_PACKEDX_C(void)
735 ((uint8_t*)dest)[2*i2+0]= U;
736 ((uint8_t*)dest)[2*i2+1]= Y1;
737 ((uint8_t*)dest)[2*i2+2]= V;
738 ((uint8_t*)dest)[2*i2+3]= Y2;
745 //Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
747 #if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT)
752 #if defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)
753 #define COMPILE_ALTIVEC
754 #endif //HAVE_ALTIVEC
755 #endif //ARCH_POWERPC
757 #if defined(ARCH_X86) || defined(ARCH_X86_64)
759 #if (defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
763 #if defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)
767 #if (defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
768 #define COMPILE_3DNOW
770 #endif //ARCH_X86 || ARCH_X86_64
781 #define RENAME(a) a ## _C
782 #include "swscale_template.c"
786 #ifdef COMPILE_ALTIVEC
789 #define RENAME(a) a ## _altivec
790 #include "swscale_template.c"
792 #endif //ARCH_POWERPC
794 #if defined(ARCH_X86) || defined(ARCH_X86_64)
803 #define RENAME(a) a ## _X86
804 #include "swscale_template.c"
812 #define RENAME(a) a ## _MMX
813 #include "swscale_template.c"
822 #define RENAME(a) a ## _MMX2
823 #include "swscale_template.c"
832 #define RENAME(a) a ## _3DNow
833 #include "swscale_template.c"
836 #endif //ARCH_X86 || ARCH_X86_64
838 // minor note: the HAVE_xyz is messed up after that line so don't use it
840 static double getSplineCoeff(double a, double b, double c, double d, double dist)
842 // printf("%f %f %f %f %f\n", a,b,c,d,dist);
843 if(dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
844 else return getSplineCoeff( 0.0,
851 static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
852 int srcW, int dstW, int filterAlign, int one, int flags,
853 SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
860 double *filter2=NULL;
861 #if defined(ARCH_X86) || defined(ARCH_X86_64)
862 if(flags & SWS_CPU_CAPS_MMX)
863 asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
866 // Note the +1 is for the MMXscaler which reads over the end
867 *filterPos = av_malloc((dstW+1)*sizeof(int16_t));
869 if(ABS(xInc - 0x10000) <10) // unscaled
873 filter= av_malloc(dstW*sizeof(double)*filterSize);
874 for(i=0; i<dstW*filterSize; i++) filter[i]=0;
876 for(i=0; i<dstW; i++)
878 filter[i*filterSize]=1;
883 else if(flags&SWS_POINT) // lame looking point sampling mode
888 filter= av_malloc(dstW*sizeof(double)*filterSize);
890 xDstInSrc= xInc/2 - 0x8000;
891 for(i=0; i<dstW; i++)
893 int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
900 else if((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
904 if (flags&SWS_BICUBIC) filterSize= 4;
905 else if(flags&SWS_X ) filterSize= 4;
906 else filterSize= 2; // SWS_BILINEAR / SWS_AREA
907 filter= av_malloc(dstW*sizeof(double)*filterSize);
909 xDstInSrc= xInc/2 - 0x8000;
910 for(i=0; i<dstW; i++)
912 int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
916 //Bilinear upscale / linear interpolate / Area averaging
917 for(j=0; j<filterSize; j++)
919 double d= ABS((xx<<16) - xDstInSrc)/(double)(1<<16);
920 double coeff= 1.0 - d;
922 filter[i*filterSize + j]= coeff;
931 double sizeFactor, filterSizeInSrc;
932 const double xInc1= (double)xInc / (double)(1<<16);
934 if (flags&SWS_BICUBIC) sizeFactor= 4.0;
935 else if(flags&SWS_X) sizeFactor= 8.0;
936 else if(flags&SWS_AREA) sizeFactor= 1.0; //downscale only, for upscale it is bilinear
937 else if(flags&SWS_GAUSS) sizeFactor= 8.0; // infinite ;)
938 else if(flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? 2.0*param[0] : 6.0;
939 else if(flags&SWS_SINC) sizeFactor= 20.0; // infinite ;)
940 else if(flags&SWS_SPLINE) sizeFactor= 20.0; // infinite ;)
941 else if(flags&SWS_BILINEAR) sizeFactor= 2.0;
943 sizeFactor= 0.0; //GCC warning killer
947 if(xInc1 <= 1.0) filterSizeInSrc= sizeFactor; // upscale
948 else filterSizeInSrc= sizeFactor*srcW / (double)dstW;
950 filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
951 if(filterSize > srcW-2) filterSize=srcW-2;
953 filter= av_malloc(dstW*sizeof(double)*filterSize);
955 xDstInSrc= xInc1 / 2.0 - 0.5;
956 for(i=0; i<dstW; i++)
958 int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
961 for(j=0; j<filterSize; j++)
963 double d= ABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
965 if(flags & SWS_BICUBIC)
967 double B= param[0] != SWS_PARAM_DEFAULT ? param[0] : 0.0;
968 double C= param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6;
971 coeff = (12-9*B-6*C)*d*d*d + (-18+12*B+6*C)*d*d + 6-2*B;
973 coeff = (-B-6*C)*d*d*d + (6*B+30*C)*d*d + (-12*B-48*C)*d +8*B+24*C;
977 /* else if(flags & SWS_X)
979 double p= param ? param*0.01 : 0.3;
980 coeff = d ? sin(d*PI)/(d*PI) : 1.0;
981 coeff*= pow(2.0, - p*d*d);
983 else if(flags & SWS_X)
985 double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
991 if(coeff<0.0) coeff= -pow(-coeff, A);
992 else coeff= pow( coeff, A);
993 coeff= coeff*0.5 + 0.5;
995 else if(flags & SWS_AREA)
997 double srcPixelSize= 1.0/xInc1;
998 if(d + srcPixelSize/2 < 0.5) coeff= 1.0;
999 else if(d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
1002 else if(flags & SWS_GAUSS)
1004 double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
1005 coeff = pow(2.0, - p*d*d);
1007 else if(flags & SWS_SINC)
1009 coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1011 else if(flags & SWS_LANCZOS)
1013 double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
1014 coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
1017 else if(flags & SWS_BILINEAR)
1020 if(coeff<0) coeff=0;
1022 else if(flags & SWS_SPLINE)
1024 double p=-2.196152422706632;
1025 coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
1028 coeff= 0.0; //GCC warning killer
1032 filter[i*filterSize + j]= coeff;
1039 /* apply src & dst Filter to filter -> filter2
1042 ASSERT(filterSize>0)
1043 filter2Size= filterSize;
1044 if(srcFilter) filter2Size+= srcFilter->length - 1;
1045 if(dstFilter) filter2Size+= dstFilter->length - 1;
1046 ASSERT(filter2Size>0)
1047 filter2= av_malloc(filter2Size*dstW*sizeof(double));
1049 for(i=0; i<dstW; i++)
1052 SwsVector scaleFilter;
1055 scaleFilter.coeff= filter + i*filterSize;
1056 scaleFilter.length= filterSize;
1058 if(srcFilter) outVec= sws_getConvVec(srcFilter, &scaleFilter);
1059 else outVec= &scaleFilter;
1061 ASSERT(outVec->length == filter2Size)
1064 for(j=0; j<outVec->length; j++)
1066 filter2[i*filter2Size + j]= outVec->coeff[j];
1069 (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
1071 if(outVec != &scaleFilter) sws_freeVec(outVec);
1073 av_free(filter); filter=NULL;
1075 /* try to reduce the filter-size (step1 find size and shift left) */
1076 // Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not)
1078 for(i=dstW-1; i>=0; i--)
1080 int min= filter2Size;
1084 /* get rid off near zero elements on the left by shifting left */
1085 for(j=0; j<filter2Size; j++)
1088 cutOff += ABS(filter2[i*filter2Size]);
1090 if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1092 /* preserve Monotonicity because the core can't handle the filter otherwise */
1093 if(i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
1095 // Move filter coeffs left
1096 for(k=1; k<filter2Size; k++)
1097 filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
1098 filter2[i*filter2Size + k - 1]= 0.0;
1103 /* count near zeros on the right */
1104 for(j=filter2Size-1; j>0; j--)
1106 cutOff += ABS(filter2[i*filter2Size + j]);
1108 if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1112 if(min>minFilterSize) minFilterSize= min;
1115 if (flags & SWS_CPU_CAPS_ALTIVEC) {
1116 // we can handle the special case 4,
1117 // so we don't want to go to the full 8
1118 if (minFilterSize < 5)
1121 // we really don't want to waste our time
1122 // doing useless computation, so fall-back on
1123 // the scalar C code for very small filter.
1124 // vectorizing is worth it only if you have
1125 // decent-sized vector.
1126 if (minFilterSize < 3)
1130 if (flags & SWS_CPU_CAPS_MMX) {
1131 // special case for unscaled vertical filtering
1132 if(minFilterSize == 1 && filterAlign == 2)
1136 ASSERT(minFilterSize > 0)
1137 filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
1138 ASSERT(filterSize > 0)
1139 filter= av_malloc(filterSize*dstW*sizeof(double));
1140 if(filterSize >= MAX_FILTER_SIZE)
1142 *outFilterSize= filterSize;
1144 if(flags&SWS_PRINT_INFO)
1145 MSG_V("SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
1146 /* try to reduce the filter-size (step2 reduce it) */
1147 for(i=0; i<dstW; i++)
1151 for(j=0; j<filterSize; j++)
1153 if(j>=filter2Size) filter[i*filterSize + j]= 0.0;
1154 else filter[i*filterSize + j]= filter2[i*filter2Size + j];
1157 av_free(filter2); filter2=NULL;
1160 //FIXME try to align filterpos if possible
1163 for(i=0; i<dstW; i++)
1166 if((*filterPos)[i] < 0)
1168 // Move filter coeffs left to compensate for filterPos
1169 for(j=1; j<filterSize; j++)
1171 int left= MAX(j + (*filterPos)[i], 0);
1172 filter[i*filterSize + left] += filter[i*filterSize + j];
1173 filter[i*filterSize + j]=0;
1178 if((*filterPos)[i] + filterSize > srcW)
1180 int shift= (*filterPos)[i] + filterSize - srcW;
1181 // Move filter coeffs right to compensate for filterPos
1182 for(j=filterSize-2; j>=0; j--)
1184 int right= MIN(j + shift, filterSize-1);
1185 filter[i*filterSize +right] += filter[i*filterSize +j];
1186 filter[i*filterSize +j]=0;
1188 (*filterPos)[i]= srcW - filterSize;
1192 // Note the +1 is for the MMXscaler which reads over the end
1193 /* align at 16 for AltiVec (needed by hScale_altivec_real) */
1194 *outFilter= av_malloc(*outFilterSize*(dstW+1)*sizeof(int16_t));
1195 memset(*outFilter, 0, *outFilterSize*(dstW+1)*sizeof(int16_t));
1197 /* Normalize & Store in outFilter */
1198 for(i=0; i<dstW; i++)
1205 for(j=0; j<filterSize; j++)
1207 sum+= filter[i*filterSize + j];
1210 for(j=0; j<*outFilterSize; j++)
1212 double v= filter[i*filterSize + j]*scale + error;
1213 int intV= floor(v + 0.5);
1214 (*outFilter)[i*(*outFilterSize) + j]= intV;
1219 (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
1220 for(i=0; i<*outFilterSize; i++)
1222 int j= dstW*(*outFilterSize);
1223 (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
1230 #if defined(ARCH_X86) || defined(ARCH_X86_64)
1231 static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
1234 long imm8OfPShufW1A;
1235 long imm8OfPShufW2A;
1236 long fragmentLengthA;
1238 long imm8OfPShufW1B;
1239 long imm8OfPShufW2B;
1240 long fragmentLengthB;
1245 // create an optimized horizontal scaling routine
1253 "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t"
1254 "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t"
1255 "movd 1(%%"REG_c", %%"REG_S"), %%mm1\n\t"
1256 "punpcklbw %%mm7, %%mm1 \n\t"
1257 "punpcklbw %%mm7, %%mm0 \n\t"
1258 "pshufw $0xFF, %%mm1, %%mm1 \n\t"
1260 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
1262 "psubw %%mm1, %%mm0 \n\t"
1263 "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
1264 "pmullw %%mm3, %%mm0 \n\t"
1265 "psllw $7, %%mm1 \n\t"
1266 "paddw %%mm1, %%mm0 \n\t"
1268 "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
1270 "add $8, %%"REG_a" \n\t"
1285 :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
1286 "=r" (fragmentLengthA)
1293 "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t"
1294 "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t"
1295 "punpcklbw %%mm7, %%mm0 \n\t"
1296 "pshufw $0xFF, %%mm0, %%mm1 \n\t"
1298 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
1300 "psubw %%mm1, %%mm0 \n\t"
1301 "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
1302 "pmullw %%mm3, %%mm0 \n\t"
1303 "psllw $7, %%mm1 \n\t"
1304 "paddw %%mm1, %%mm0 \n\t"
1306 "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
1308 "add $8, %%"REG_a" \n\t"
1323 :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
1324 "=r" (fragmentLengthB)
1327 xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
1330 for(i=0; i<dstW/numSplits; i++)
1337 int b=((xpos+xInc)>>16) - xx;
1338 int c=((xpos+xInc*2)>>16) - xx;
1339 int d=((xpos+xInc*3)>>16) - xx;
1341 filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
1342 filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
1343 filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
1344 filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
1349 int maxShift= 3-(d+1);
1352 memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
1354 funnyCode[fragmentPos + imm8OfPShufW1B]=
1355 (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
1356 funnyCode[fragmentPos + imm8OfPShufW2B]=
1357 a | (b<<2) | (c<<4) | (d<<6);
1359 if(i+3>=dstW) shift=maxShift; //avoid overread
1360 else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
1362 if(shift && i>=shift)
1364 funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
1365 funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
1366 filterPos[i/2]-=shift;
1369 fragmentPos+= fragmentLengthB;
1376 memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
1378 funnyCode[fragmentPos + imm8OfPShufW1A]=
1379 funnyCode[fragmentPos + imm8OfPShufW2A]=
1380 a | (b<<2) | (c<<4) | (d<<6);
1382 if(i+4>=dstW) shift=maxShift; //avoid overread
1383 else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
1385 if(shift && i>=shift)
1387 funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
1388 funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
1389 filterPos[i/2]-=shift;
1392 fragmentPos+= fragmentLengthA;
1395 funnyCode[fragmentPos]= RET;
1399 filterPos[i/2]= xpos>>16; // needed to jump to the next part
1401 #endif // ARCH_X86 || ARCH_X86_64
1403 static void globalInit(void){
1404 // generating tables:
1406 for(i=0; i<768; i++){
1407 int c= MIN(MAX(i-256, 0), 255);
1412 static SwsFunc getSwsFunc(int flags){
1414 #ifdef RUNTIME_CPUDETECT
1415 #if defined(ARCH_X86) || defined(ARCH_X86_64)
1416 // ordered per speed fasterst first
1417 if(flags & SWS_CPU_CAPS_MMX2)
1418 return swScale_MMX2;
1419 else if(flags & SWS_CPU_CAPS_3DNOW)
1420 return swScale_3DNow;
1421 else if(flags & SWS_CPU_CAPS_MMX)
1428 if(flags & SWS_CPU_CAPS_ALTIVEC)
1429 return swScale_altivec;
1435 #else //RUNTIME_CPUDETECT
1437 return swScale_MMX2;
1438 #elif defined (HAVE_3DNOW)
1439 return swScale_3DNow;
1440 #elif defined (HAVE_MMX)
1442 #elif defined (HAVE_ALTIVEC)
1443 return swScale_altivec;
1447 #endif //!RUNTIME_CPUDETECT
1450 static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1451 int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1452 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1454 if(dstStride[0]==srcStride[0] && srcStride[0] > 0)
1455 memcpy(dst, src[0], srcSliceH*dstStride[0]);
1459 uint8_t *srcPtr= src[0];
1460 uint8_t *dstPtr= dst;
1461 for(i=0; i<srcSliceH; i++)
1463 memcpy(dstPtr, srcPtr, c->srcW);
1464 srcPtr+= srcStride[0];
1465 dstPtr+= dstStride[0];
1468 dst = dstParam[1] + dstStride[1]*srcSliceY/2;
1469 if (c->dstFormat == IMGFMT_NV12)
1470 interleaveBytes( src[1],src[2],dst,c->srcW/2,srcSliceH/2,srcStride[1],srcStride[2],dstStride[0] );
1472 interleaveBytes( src[2],src[1],dst,c->srcW/2,srcSliceH/2,srcStride[2],srcStride[1],dstStride[0] );
1477 static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1478 int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1479 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1481 yv12toyuy2( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1486 static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1487 int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1488 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1490 yv12touyvy( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1495 /* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
1496 static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1497 int srcSliceH, uint8_t* dst[], int dstStride[]){
1498 const int srcFormat= c->srcFormat;
1499 const int dstFormat= c->dstFormat;
1500 const int srcBpp= ((srcFormat&0xFF) + 7)>>3;
1501 const int dstBpp= ((dstFormat&0xFF) + 7)>>3;
1502 const int srcId= (srcFormat&0xFF)>>2; // 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8
1503 const int dstId= (dstFormat&0xFF)>>2;
1504 void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
1507 if( (isBGR(srcFormat) && isBGR(dstFormat))
1508 || (isRGB(srcFormat) && isRGB(dstFormat))){
1509 switch(srcId | (dstId<<4)){
1510 case 0x34: conv= rgb16to15; break;
1511 case 0x36: conv= rgb24to15; break;
1512 case 0x38: conv= rgb32to15; break;
1513 case 0x43: conv= rgb15to16; break;
1514 case 0x46: conv= rgb24to16; break;
1515 case 0x48: conv= rgb32to16; break;
1516 case 0x63: conv= rgb15to24; break;
1517 case 0x64: conv= rgb16to24; break;
1518 case 0x68: conv= rgb32to24; break;
1519 case 0x83: conv= rgb15to32; break;
1520 case 0x84: conv= rgb16to32; break;
1521 case 0x86: conv= rgb24to32; break;
1522 default: MSG_ERR("swScaler: internal error %s -> %s converter\n",
1523 sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
1525 }else if( (isBGR(srcFormat) && isRGB(dstFormat))
1526 || (isRGB(srcFormat) && isBGR(dstFormat))){
1527 switch(srcId | (dstId<<4)){
1528 case 0x33: conv= rgb15tobgr15; break;
1529 case 0x34: conv= rgb16tobgr15; break;
1530 case 0x36: conv= rgb24tobgr15; break;
1531 case 0x38: conv= rgb32tobgr15; break;
1532 case 0x43: conv= rgb15tobgr16; break;
1533 case 0x44: conv= rgb16tobgr16; break;
1534 case 0x46: conv= rgb24tobgr16; break;
1535 case 0x48: conv= rgb32tobgr16; break;
1536 case 0x63: conv= rgb15tobgr24; break;
1537 case 0x64: conv= rgb16tobgr24; break;
1538 case 0x66: conv= rgb24tobgr24; break;
1539 case 0x68: conv= rgb32tobgr24; break;
1540 case 0x83: conv= rgb15tobgr32; break;
1541 case 0x84: conv= rgb16tobgr32; break;
1542 case 0x86: conv= rgb24tobgr32; break;
1543 case 0x88: conv= rgb32tobgr32; break;
1544 default: MSG_ERR("swScaler: internal error %s -> %s converter\n",
1545 sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
1548 MSG_ERR("swScaler: internal error %s -> %s converter\n",
1549 sws_format_name(srcFormat), sws_format_name(dstFormat));
1552 if(dstStride[0]*srcBpp == srcStride[0]*dstBpp)
1553 conv(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
1557 uint8_t *srcPtr= src[0];
1558 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1560 for(i=0; i<srcSliceH; i++)
1562 conv(srcPtr, dstPtr, c->srcW*srcBpp);
1563 srcPtr+= srcStride[0];
1564 dstPtr+= dstStride[0];
1570 static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1571 int srcSliceH, uint8_t* dst[], int dstStride[]){
1575 dst[0]+ srcSliceY *dstStride[0],
1576 dst[1]+(srcSliceY>>1)*dstStride[1],
1577 dst[2]+(srcSliceY>>1)*dstStride[2],
1579 dstStride[0], dstStride[1], srcStride[0]);
1583 static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1584 int srcSliceH, uint8_t* dst[], int dstStride[]){
1588 if(srcStride[0]==dstStride[0] && srcStride[0] > 0)
1589 memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
1591 uint8_t *srcPtr= src[0];
1592 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1594 for(i=0; i<srcSliceH; i++)
1596 memcpy(dstPtr, srcPtr, c->srcW);
1597 srcPtr+= srcStride[0];
1598 dstPtr+= dstStride[0];
1602 if(c->dstFormat==IMGFMT_YV12){
1603 planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
1604 planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
1606 planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
1607 planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
1613 * bring pointers in YUV order instead of YVU
1615 static inline void sws_orderYUV(int format, uint8_t * sortedP[], int sortedStride[], uint8_t * p[], int stride[]){
1616 if(format == IMGFMT_YV12 || format == IMGFMT_YVU9
1617 || format == IMGFMT_444P || format == IMGFMT_422P || format == IMGFMT_411P){
1621 sortedStride[0]= stride[0];
1622 sortedStride[1]= stride[2];
1623 sortedStride[2]= stride[1];
1625 else if(isPacked(format) || isGray(format) || format == IMGFMT_Y8)
1630 sortedStride[0]= stride[0];
1634 else if(format == IMGFMT_I420 || format == IMGFMT_IYUV)
1639 sortedStride[0]= stride[0];
1640 sortedStride[1]= stride[1];
1641 sortedStride[2]= stride[2];
1643 else if(format == IMGFMT_NV12 || format == IMGFMT_NV21)
1648 sortedStride[0]= stride[0];
1649 sortedStride[1]= stride[1];
1652 MSG_ERR("internal error in orderYUV\n");
1656 /* unscaled copy like stuff (assumes nearly identical formats) */
1657 static int simpleCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1658 int srcSliceH, uint8_t* dst[], int dstStride[]){
1660 if(isPacked(c->srcFormat))
1662 if(dstStride[0]==srcStride[0] && srcStride[0] > 0)
1663 memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
1667 uint8_t *srcPtr= src[0];
1668 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1671 /* universal length finder */
1672 while(length+c->srcW <= ABS(dstStride[0])
1673 && length+c->srcW <= ABS(srcStride[0])) length+= c->srcW;
1676 for(i=0; i<srcSliceH; i++)
1678 memcpy(dstPtr, srcPtr, length);
1679 srcPtr+= srcStride[0];
1680 dstPtr+= dstStride[0];
1685 { /* Planar YUV or gray */
1687 for(plane=0; plane<3; plane++)
1689 int length= plane==0 ? c->srcW : -((-c->srcW )>>c->chrDstHSubSample);
1690 int y= plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
1691 int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
1693 if((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
1695 if(!isGray(c->dstFormat))
1696 memset(dst[plane], 128, dstStride[plane]*height);
1700 if(dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
1701 memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
1705 uint8_t *srcPtr= src[plane];
1706 uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
1707 for(i=0; i<height; i++)
1709 memcpy(dstPtr, srcPtr, length);
1710 srcPtr+= srcStride[plane];
1711 dstPtr+= dstStride[plane];
1720 static int remove_dup_fourcc(int fourcc)
1725 case IMGFMT_IYUV: return IMGFMT_YV12;
1726 case IMGFMT_Y8 : return IMGFMT_Y800;
1727 case IMGFMT_IF09: return IMGFMT_YVU9;
1728 default: return fourcc;
1732 static void getSubSampleFactors(int *h, int *v, int format){
1740 case IMGFMT_Y800: //FIXME remove after different subsamplings are fully implemented
1769 static uint16_t roundToInt16(int64_t f){
1770 int r= (f + (1<<15))>>16;
1771 if(r<-0x7FFF) return 0x8000;
1772 else if(r> 0x7FFF) return 0x7FFF;
1777 * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
1778 * @param fullRange if 1 then the luma range is 0..255 if 0 its 16..235
1779 * @return -1 if not supported
1781 int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
1782 int64_t crv = inv_table[0];
1783 int64_t cbu = inv_table[1];
1784 int64_t cgu = -inv_table[2];
1785 int64_t cgv = -inv_table[3];
1789 if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1790 memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
1791 memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
1793 c->brightness= brightness;
1794 c->contrast = contrast;
1795 c->saturation= saturation;
1796 c->srcRange = srcRange;
1797 c->dstRange = dstRange;
1799 c->uOffset= 0x0400040004000400LL;
1800 c->vOffset= 0x0400040004000400LL;
1807 cy = (cy *contrast )>>16;
1808 crv= (crv*contrast * saturation)>>32;
1809 cbu= (cbu*contrast * saturation)>>32;
1810 cgu= (cgu*contrast * saturation)>>32;
1811 cgv= (cgv*contrast * saturation)>>32;
1813 oy -= 256*brightness;
1815 c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
1816 c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
1817 c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
1818 c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
1819 c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
1820 c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
1822 yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
1825 #ifdef COMPILE_ALTIVEC
1826 if (c->flags & SWS_CPU_CAPS_ALTIVEC)
1827 yuv2rgb_altivec_init_tables (c, inv_table, brightness, contrast, saturation);
1833 * @return -1 if not supported
1835 int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
1836 if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1838 *inv_table = c->srcColorspaceTable;
1839 *table = c->dstColorspaceTable;
1840 *srcRange = c->srcRange;
1841 *dstRange = c->dstRange;
1842 *brightness= c->brightness;
1843 *contrast = c->contrast;
1844 *saturation= c->saturation;
1849 SwsContext *sws_getContext(int srcW, int srcH, int origSrcFormat, int dstW, int dstH, int origDstFormat, int flags,
1850 SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
1854 int usesVFilter, usesHFilter;
1855 int unscaled, needsDither;
1856 int srcFormat, dstFormat;
1857 SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
1858 #if defined(ARCH_X86) || defined(ARCH_X86_64)
1859 if(flags & SWS_CPU_CAPS_MMX)
1860 asm volatile("emms\n\t"::: "memory");
1863 #ifndef RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
1864 flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC);
1866 flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
1867 #elif defined (HAVE_3DNOW)
1868 flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
1869 #elif defined (HAVE_MMX)
1870 flags |= SWS_CPU_CAPS_MMX;
1871 #elif defined (HAVE_ALTIVEC)
1872 flags |= SWS_CPU_CAPS_ALTIVEC;
1875 if(clip_table[512] != 255) globalInit();
1876 if(rgb15to16 == NULL) sws_rgb2rgb_init(flags);
1878 /* avoid duplicate Formats, so we don't need to check to much */
1879 srcFormat = remove_dup_fourcc(origSrcFormat);
1880 dstFormat = remove_dup_fourcc(origDstFormat);
1882 unscaled = (srcW == dstW && srcH == dstH);
1883 needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
1884 && (dstFormat&0xFF)<24
1885 && ((dstFormat&0xFF)<(srcFormat&0xFF) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
1887 if(!isSupportedIn(srcFormat))
1889 MSG_ERR("swScaler: %s is not supported as input format\n", sws_format_name(srcFormat));
1892 if(!isSupportedOut(dstFormat))
1894 MSG_ERR("swScaler: %s is not supported as output format\n", sws_format_name(dstFormat));
1899 if(srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
1901 MSG_ERR("swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
1902 srcW, srcH, dstW, dstH);
1906 if(!dstFilter) dstFilter= &dummyFilter;
1907 if(!srcFilter) srcFilter= &dummyFilter;
1909 c= av_malloc(sizeof(SwsContext));
1910 memset(c, 0, sizeof(SwsContext));
1916 c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
1917 c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
1919 c->dstFormat= dstFormat;
1920 c->srcFormat= srcFormat;
1921 c->origDstFormat= origDstFormat;
1922 c->origSrcFormat= origSrcFormat;
1923 c->vRounder= 4* 0x0001000100010001ULL;
1925 usesHFilter= usesVFilter= 0;
1926 if(dstFilter->lumV!=NULL && dstFilter->lumV->length>1) usesVFilter=1;
1927 if(dstFilter->lumH!=NULL && dstFilter->lumH->length>1) usesHFilter=1;
1928 if(dstFilter->chrV!=NULL && dstFilter->chrV->length>1) usesVFilter=1;
1929 if(dstFilter->chrH!=NULL && dstFilter->chrH->length>1) usesHFilter=1;
1930 if(srcFilter->lumV!=NULL && srcFilter->lumV->length>1) usesVFilter=1;
1931 if(srcFilter->lumH!=NULL && srcFilter->lumH->length>1) usesHFilter=1;
1932 if(srcFilter->chrV!=NULL && srcFilter->chrV->length>1) usesVFilter=1;
1933 if(srcFilter->chrH!=NULL && srcFilter->chrH->length>1) usesHFilter=1;
1935 getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
1936 getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
1938 // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
1939 if((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
1941 // drop some chroma lines if the user wants it
1942 c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
1943 c->chrSrcVSubSample+= c->vChrDrop;
1945 // drop every 2. pixel for chroma calculation unless user wants full chroma
1946 if((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP))
1947 c->chrSrcHSubSample=1;
1950 c->param[0] = param[0];
1951 c->param[1] = param[1];
1954 c->param[1] = SWS_PARAM_DEFAULT;
1957 c->chrIntHSubSample= c->chrDstHSubSample;
1958 c->chrIntVSubSample= c->chrSrcVSubSample;
1960 // note the -((-x)>>y) is so that we allways round toward +inf
1961 c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
1962 c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
1963 c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
1964 c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
1966 sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], 0, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, 0, 0, 1<<16, 1<<16);
1968 /* unscaled special Cases */
1969 if(unscaled && !usesHFilter && !usesVFilter)
1972 if(srcFormat == IMGFMT_YV12 && (dstFormat == IMGFMT_NV12 || dstFormat == IMGFMT_NV21))
1974 c->swScale= PlanarToNV12Wrapper;
1977 if((srcFormat==IMGFMT_YV12 || srcFormat==IMGFMT_422P) && (isBGR(dstFormat) || isRGB(dstFormat)))
1979 c->swScale= yuv2rgb_get_func_ptr(c);
1982 if( srcFormat==IMGFMT_YVU9 && dstFormat==IMGFMT_YV12 )
1984 c->swScale= yvu9toyv12Wrapper;
1988 if(srcFormat==IMGFMT_BGR24 && dstFormat==IMGFMT_YV12)
1989 c->swScale= bgr24toyv12Wrapper;
1991 /* rgb/bgr -> rgb/bgr (no dither needed forms) */
1992 if( (isBGR(srcFormat) || isRGB(srcFormat))
1993 && (isBGR(dstFormat) || isRGB(dstFormat))
1995 c->swScale= rgb2rgbWrapper;
1997 /* LQ converters if -sws 0 or -sws 4*/
1998 if(c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
1999 /* rgb/bgr -> rgb/bgr (dither needed forms) */
2000 if( (isBGR(srcFormat) || isRGB(srcFormat))
2001 && (isBGR(dstFormat) || isRGB(dstFormat))
2003 c->swScale= rgb2rgbWrapper;
2006 if(srcFormat == IMGFMT_YV12 &&
2007 (dstFormat == IMGFMT_YUY2 || dstFormat == IMGFMT_UYVY))
2009 if (dstFormat == IMGFMT_YUY2)
2010 c->swScale= PlanarToYuy2Wrapper;
2012 c->swScale= PlanarToUyvyWrapper;
2016 #ifdef COMPILE_ALTIVEC
2017 if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
2018 ((srcFormat == IMGFMT_YV12 &&
2019 (dstFormat == IMGFMT_YUY2 || dstFormat == IMGFMT_UYVY)))) {
2020 // unscaled YV12 -> packed YUV, we want speed
2021 if (dstFormat == IMGFMT_YUY2)
2022 c->swScale= yv12toyuy2_unscaled_altivec;
2024 c->swScale= yv12touyvy_unscaled_altivec;
2029 if( srcFormat == dstFormat
2030 || (isPlanarYUV(srcFormat) && isGray(dstFormat))
2031 || (isPlanarYUV(dstFormat) && isGray(srcFormat))
2034 c->swScale= simpleCopy;
2038 if(flags&SWS_PRINT_INFO)
2039 MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n",
2040 sws_format_name(srcFormat), sws_format_name(dstFormat));
2045 if(flags & SWS_CPU_CAPS_MMX2)
2047 c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
2048 if(!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
2050 if(flags&SWS_PRINT_INFO)
2051 MSG_INFO("SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
2053 if(usesHFilter) c->canMMX2BeUsed=0;
2058 c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
2059 c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
2061 // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
2062 // but only for the FAST_BILINEAR mode otherwise do correct scaling
2063 // n-2 is the last chrominance sample available
2064 // this is not perfect, but noone shuld notice the difference, the more correct variant
2065 // would be like the vertical one, but that would require some special code for the
2066 // first and last pixel
2067 if(flags&SWS_FAST_BILINEAR)
2069 if(c->canMMX2BeUsed)
2074 //we don't use the x86asm scaler if mmx is available
2075 else if(flags & SWS_CPU_CAPS_MMX)
2077 c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
2078 c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
2082 /* precalculate horizontal scaler filter coefficients */
2084 const int filterAlign=
2085 (flags & SWS_CPU_CAPS_MMX) ? 4 :
2086 (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2089 initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
2090 srcW , dstW, filterAlign, 1<<14,
2091 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
2092 srcFilter->lumH, dstFilter->lumH, c->param);
2093 initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
2094 c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
2095 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2096 srcFilter->chrH, dstFilter->chrH, c->param);
2098 #if defined(ARCH_X86) || defined(ARCH_X86_64)
2099 // can't downscale !!!
2100 if(c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
2102 #define MAX_FUNNY_CODE_SIZE 10000
2103 #ifdef MAP_ANONYMOUS
2104 c->funnyYCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2105 c->funnyUVCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2107 c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
2108 c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
2111 c->lumMmx2Filter = av_malloc((dstW /8+8)*sizeof(int16_t));
2112 c->chrMmx2Filter = av_malloc((c->chrDstW /4+8)*sizeof(int16_t));
2113 c->lumMmx2FilterPos= av_malloc((dstW /2/8+8)*sizeof(int32_t));
2114 c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
2116 initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
2117 initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
2120 } // Init Horizontal stuff
2124 /* precalculate vertical scaler filter coefficients */
2126 const int filterAlign=
2127 (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
2128 (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2131 initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
2132 srcH , dstH, filterAlign, (1<<12)-4,
2133 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
2134 srcFilter->lumV, dstFilter->lumV, c->param);
2135 initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
2136 c->chrSrcH, c->chrDstH, filterAlign, (1<<12)-4,
2137 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2138 srcFilter->chrV, dstFilter->chrV, c->param);
2141 c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
2142 c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
2144 for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
2146 short *p = (short *)&c->vYCoeffsBank[i];
2148 p[j] = c->vLumFilter[i];
2151 for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
2153 short *p = (short *)&c->vCCoeffsBank[i];
2155 p[j] = c->vChrFilter[i];
2160 // Calculate Buffer Sizes so that they won't run out while handling these damn slices
2161 c->vLumBufSize= c->vLumFilterSize;
2162 c->vChrBufSize= c->vChrFilterSize;
2163 for(i=0; i<dstH; i++)
2165 int chrI= i*c->chrDstH / dstH;
2166 int nextSlice= MAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
2167 ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
2169 nextSlice>>= c->chrSrcVSubSample;
2170 nextSlice<<= c->chrSrcVSubSample;
2171 if(c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
2172 c->vLumBufSize= nextSlice - c->vLumFilterPos[i ];
2173 if(c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
2174 c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
2177 // allocate pixbufs (we use dynamic allocation because otherwise we would need to
2178 c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
2179 c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
2180 //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
2181 /* align at 16 bytes for AltiVec */
2182 for(i=0; i<c->vLumBufSize; i++)
2183 c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_malloc(4000);
2184 for(i=0; i<c->vChrBufSize; i++)
2185 c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc(8000);
2187 //try to avoid drawing green stuff between the right end and the stride end
2188 for(i=0; i<c->vLumBufSize; i++) memset(c->lumPixBuf[i], 0, 4000);
2189 for(i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000);
2191 ASSERT(c->chrDstH <= dstH)
2193 if(flags&SWS_PRINT_INFO)
2196 char *dither= " dithered";
2200 if(flags&SWS_FAST_BILINEAR)
2201 MSG_INFO("\nSwScaler: FAST_BILINEAR scaler, ");
2202 else if(flags&SWS_BILINEAR)
2203 MSG_INFO("\nSwScaler: BILINEAR scaler, ");
2204 else if(flags&SWS_BICUBIC)
2205 MSG_INFO("\nSwScaler: BICUBIC scaler, ");
2206 else if(flags&SWS_X)
2207 MSG_INFO("\nSwScaler: Experimental scaler, ");
2208 else if(flags&SWS_POINT)
2209 MSG_INFO("\nSwScaler: Nearest Neighbor / POINT scaler, ");
2210 else if(flags&SWS_AREA)
2211 MSG_INFO("\nSwScaler: Area Averageing scaler, ");
2212 else if(flags&SWS_BICUBLIN)
2213 MSG_INFO("\nSwScaler: luma BICUBIC / chroma BILINEAR scaler, ");
2214 else if(flags&SWS_GAUSS)
2215 MSG_INFO("\nSwScaler: Gaussian scaler, ");
2216 else if(flags&SWS_SINC)
2217 MSG_INFO("\nSwScaler: Sinc scaler, ");
2218 else if(flags&SWS_LANCZOS)
2219 MSG_INFO("\nSwScaler: Lanczos scaler, ");
2220 else if(flags&SWS_SPLINE)
2221 MSG_INFO("\nSwScaler: Bicubic spline scaler, ");
2223 MSG_INFO("\nSwScaler: ehh flags invalid?! ");
2225 if(dstFormat==IMGFMT_BGR15 || dstFormat==IMGFMT_BGR16)
2226 MSG_INFO("from %s to%s %s ",
2227 sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
2229 MSG_INFO("from %s to %s ",
2230 sws_format_name(srcFormat), sws_format_name(dstFormat));
2232 if(flags & SWS_CPU_CAPS_MMX2)
2233 MSG_INFO("using MMX2\n");
2234 else if(flags & SWS_CPU_CAPS_3DNOW)
2235 MSG_INFO("using 3DNOW\n");
2236 else if(flags & SWS_CPU_CAPS_MMX)
2237 MSG_INFO("using MMX\n");
2238 else if(flags & SWS_CPU_CAPS_ALTIVEC)
2239 MSG_INFO("using AltiVec\n");
2241 MSG_INFO("using C\n");
2244 if(flags & SWS_PRINT_INFO)
2246 if(flags & SWS_CPU_CAPS_MMX)
2248 if(c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
2249 MSG_V("SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
2252 if(c->hLumFilterSize==4)
2253 MSG_V("SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
2254 else if(c->hLumFilterSize==8)
2255 MSG_V("SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
2257 MSG_V("SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
2259 if(c->hChrFilterSize==4)
2260 MSG_V("SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
2261 else if(c->hChrFilterSize==8)
2262 MSG_V("SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
2264 MSG_V("SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
2269 #if defined(ARCH_X86) || defined(ARCH_X86_64)
2270 MSG_V("SwScaler: using X86-Asm scaler for horizontal scaling\n");
2272 if(flags & SWS_FAST_BILINEAR)
2273 MSG_V("SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
2275 MSG_V("SwScaler: using C scaler for horizontal scaling\n");
2278 if(isPlanarYUV(dstFormat))
2280 if(c->vLumFilterSize==1)
2281 MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2283 MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2287 if(c->vLumFilterSize==1 && c->vChrFilterSize==2)
2288 MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
2289 "SwScaler: 2-tap scaler for vertical chrominance scaling (BGR)\n",(flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2290 else if(c->vLumFilterSize==2 && c->vChrFilterSize==2)
2291 MSG_V("SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2293 MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2296 if(dstFormat==IMGFMT_BGR24)
2297 MSG_V("SwScaler: using %s YV12->BGR24 Converter\n",
2298 (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
2299 else if(dstFormat==IMGFMT_BGR32)
2300 MSG_V("SwScaler: using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2301 else if(dstFormat==IMGFMT_BGR16)
2302 MSG_V("SwScaler: using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2303 else if(dstFormat==IMGFMT_BGR15)
2304 MSG_V("SwScaler: using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2306 MSG_V("SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
2308 if(flags & SWS_PRINT_INFO)
2310 MSG_DBG2("SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2311 c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
2312 MSG_DBG2("SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2313 c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
2316 c->swScale= getSwsFunc(flags);
2321 * swscale warper, so we don't need to export the SwsContext.
2322 * assumes planar YUV to be in YUV order instead of YVU
2324 int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2325 int srcSliceH, uint8_t* dst[], int dstStride[]){
2326 if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
2327 MSG_ERR("swScaler: slices start in the middle!\n");
2330 if (c->sliceDir == 0) {
2331 if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
2334 // copy strides, so they can safely be modified
2335 if (c->sliceDir == 1) {
2336 // slices go from top to bottom
2337 int srcStride2[3]= {srcStride[0], srcStride[1], srcStride[2]};
2338 int dstStride2[3]= {dstStride[0], dstStride[1], dstStride[2]};
2339 return c->swScale(c, src, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
2341 // slices go from bottom to top => we flip the image internally
2342 uint8_t* src2[3]= {src[0] + (srcSliceH-1)*srcStride[0],
2343 src[1] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1],
2344 src[2] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2]
2346 uint8_t* dst2[3]= {dst[0] + (c->dstH-1)*dstStride[0],
2347 dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
2348 dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2]};
2349 int srcStride2[3]= {-srcStride[0], -srcStride[1], -srcStride[2]};
2350 int dstStride2[3]= {-dstStride[0], -dstStride[1], -dstStride[2]};
2352 return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
2357 * swscale warper, so we don't need to export the SwsContext
2359 int sws_scale(SwsContext *c, uint8_t* srcParam[], int srcStrideParam[], int srcSliceY,
2360 int srcSliceH, uint8_t* dstParam[], int dstStrideParam[]){
2365 sws_orderYUV(c->origSrcFormat, src, srcStride, srcParam, srcStrideParam);
2366 sws_orderYUV(c->origDstFormat, dst, dstStride, dstParam, dstStrideParam);
2367 //printf("sws: slice %d %d\n", srcSliceY, srcSliceH);
2369 return c->swScale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
2372 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
2373 float lumaSharpen, float chromaSharpen,
2374 float chromaHShift, float chromaVShift,
2377 SwsFilter *filter= av_malloc(sizeof(SwsFilter));
2380 filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
2381 filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
2383 filter->lumH= sws_getIdentityVec();
2384 filter->lumV= sws_getIdentityVec();
2387 if(chromaGBlur!=0.0){
2388 filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
2389 filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
2391 filter->chrH= sws_getIdentityVec();
2392 filter->chrV= sws_getIdentityVec();
2395 if(chromaSharpen!=0.0){
2396 SwsVector *id= sws_getIdentityVec();
2397 sws_scaleVec(filter->chrH, -chromaSharpen);
2398 sws_scaleVec(filter->chrV, -chromaSharpen);
2399 sws_addVec(filter->chrH, id);
2400 sws_addVec(filter->chrV, id);
2404 if(lumaSharpen!=0.0){
2405 SwsVector *id= sws_getIdentityVec();
2406 sws_scaleVec(filter->lumH, -lumaSharpen);
2407 sws_scaleVec(filter->lumV, -lumaSharpen);
2408 sws_addVec(filter->lumH, id);
2409 sws_addVec(filter->lumV, id);
2413 if(chromaHShift != 0.0)
2414 sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
2416 if(chromaVShift != 0.0)
2417 sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
2419 sws_normalizeVec(filter->chrH, 1.0);
2420 sws_normalizeVec(filter->chrV, 1.0);
2421 sws_normalizeVec(filter->lumH, 1.0);
2422 sws_normalizeVec(filter->lumV, 1.0);
2424 if(verbose) sws_printVec(filter->chrH);
2425 if(verbose) sws_printVec(filter->lumH);
2431 * returns a normalized gaussian curve used to filter stuff
2432 * quality=3 is high quality, lowwer is lowwer quality
2434 SwsVector *sws_getGaussianVec(double variance, double quality){
2435 const int length= (int)(variance*quality + 0.5) | 1;
2437 double *coeff= av_malloc(length*sizeof(double));
2438 double middle= (length-1)*0.5;
2439 SwsVector *vec= av_malloc(sizeof(SwsVector));
2442 vec->length= length;
2444 for(i=0; i<length; i++)
2446 double dist= i-middle;
2447 coeff[i]= exp( -dist*dist/(2*variance*variance) ) / sqrt(2*variance*PI);
2450 sws_normalizeVec(vec, 1.0);
2455 SwsVector *sws_getConstVec(double c, int length){
2457 double *coeff= av_malloc(length*sizeof(double));
2458 SwsVector *vec= av_malloc(sizeof(SwsVector));
2461 vec->length= length;
2463 for(i=0; i<length; i++)
2470 SwsVector *sws_getIdentityVec(void){
2471 return sws_getConstVec(1.0, 1);
2474 double sws_dcVec(SwsVector *a){
2478 for(i=0; i<a->length; i++)
2484 void sws_scaleVec(SwsVector *a, double scalar){
2487 for(i=0; i<a->length; i++)
2488 a->coeff[i]*= scalar;
2491 void sws_normalizeVec(SwsVector *a, double height){
2492 sws_scaleVec(a, height/sws_dcVec(a));
2495 static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
2496 int length= a->length + b->length - 1;
2497 double *coeff= av_malloc(length*sizeof(double));
2499 SwsVector *vec= av_malloc(sizeof(SwsVector));
2502 vec->length= length;
2504 for(i=0; i<length; i++) coeff[i]= 0.0;
2506 for(i=0; i<a->length; i++)
2508 for(j=0; j<b->length; j++)
2510 coeff[i+j]+= a->coeff[i]*b->coeff[j];
2517 static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
2518 int length= MAX(a->length, b->length);
2519 double *coeff= av_malloc(length*sizeof(double));
2521 SwsVector *vec= av_malloc(sizeof(SwsVector));
2524 vec->length= length;
2526 for(i=0; i<length; i++) coeff[i]= 0.0;
2528 for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2529 for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
2534 static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
2535 int length= MAX(a->length, b->length);
2536 double *coeff= av_malloc(length*sizeof(double));
2538 SwsVector *vec= av_malloc(sizeof(SwsVector));
2541 vec->length= length;
2543 for(i=0; i<length; i++) coeff[i]= 0.0;
2545 for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2546 for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
2551 /* shift left / or right if "shift" is negative */
2552 static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
2553 int length= a->length + ABS(shift)*2;
2554 double *coeff= av_malloc(length*sizeof(double));
2556 SwsVector *vec= av_malloc(sizeof(SwsVector));
2559 vec->length= length;
2561 for(i=0; i<length; i++) coeff[i]= 0.0;
2563 for(i=0; i<a->length; i++)
2565 coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
2571 void sws_shiftVec(SwsVector *a, int shift){
2572 SwsVector *shifted= sws_getShiftedVec(a, shift);
2574 a->coeff= shifted->coeff;
2575 a->length= shifted->length;
2579 void sws_addVec(SwsVector *a, SwsVector *b){
2580 SwsVector *sum= sws_sumVec(a, b);
2582 a->coeff= sum->coeff;
2583 a->length= sum->length;
2587 void sws_subVec(SwsVector *a, SwsVector *b){
2588 SwsVector *diff= sws_diffVec(a, b);
2590 a->coeff= diff->coeff;
2591 a->length= diff->length;
2595 void sws_convVec(SwsVector *a, SwsVector *b){
2596 SwsVector *conv= sws_getConvVec(a, b);
2598 a->coeff= conv->coeff;
2599 a->length= conv->length;
2603 SwsVector *sws_cloneVec(SwsVector *a){
2604 double *coeff= av_malloc(a->length*sizeof(double));
2606 SwsVector *vec= av_malloc(sizeof(SwsVector));
2609 vec->length= a->length;
2611 for(i=0; i<a->length; i++) coeff[i]= a->coeff[i];
2616 void sws_printVec(SwsVector *a){
2622 for(i=0; i<a->length; i++)
2623 if(a->coeff[i]>max) max= a->coeff[i];
2625 for(i=0; i<a->length; i++)
2626 if(a->coeff[i]<min) min= a->coeff[i];
2630 for(i=0; i<a->length; i++)
2632 int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
2633 MSG_DBG2("%1.3f ", a->coeff[i]);
2634 for(;x>0; x--) MSG_DBG2(" ");
2639 void sws_freeVec(SwsVector *a){
2647 void sws_freeFilter(SwsFilter *filter){
2650 if(filter->lumH) sws_freeVec(filter->lumH);
2651 if(filter->lumV) sws_freeVec(filter->lumV);
2652 if(filter->chrH) sws_freeVec(filter->chrH);
2653 if(filter->chrV) sws_freeVec(filter->chrV);
2658 void sws_freeContext(SwsContext *c){
2664 for(i=0; i<c->vLumBufSize; i++)
2666 av_free(c->lumPixBuf[i]);
2667 c->lumPixBuf[i]=NULL;
2669 av_free(c->lumPixBuf);
2675 for(i=0; i<c->vChrBufSize; i++)
2677 av_free(c->chrPixBuf[i]);
2678 c->chrPixBuf[i]=NULL;
2680 av_free(c->chrPixBuf);
2684 av_free(c->vLumFilter);
2685 c->vLumFilter = NULL;
2686 av_free(c->vChrFilter);
2687 c->vChrFilter = NULL;
2688 av_free(c->hLumFilter);
2689 c->hLumFilter = NULL;
2690 av_free(c->hChrFilter);
2691 c->hChrFilter = NULL;
2693 av_free(c->vYCoeffsBank);
2694 c->vYCoeffsBank = NULL;
2695 av_free(c->vCCoeffsBank);
2696 c->vCCoeffsBank = NULL;
2699 av_free(c->vLumFilterPos);
2700 c->vLumFilterPos = NULL;
2701 av_free(c->vChrFilterPos);
2702 c->vChrFilterPos = NULL;
2703 av_free(c->hLumFilterPos);
2704 c->hLumFilterPos = NULL;
2705 av_free(c->hChrFilterPos);
2706 c->hChrFilterPos = NULL;
2708 #if defined(ARCH_X86) || defined(ARCH_X86_64)
2709 #ifdef MAP_ANONYMOUS
2710 if(c->funnyYCode) munmap(c->funnyYCode, MAX_FUNNY_CODE_SIZE);
2711 if(c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
2713 av_free(c->funnyYCode);
2714 av_free(c->funnyUVCode);
2717 c->funnyUVCode=NULL;
2720 av_free(c->lumMmx2Filter);
2721 c->lumMmx2Filter=NULL;
2722 av_free(c->chrMmx2Filter);
2723 c->chrMmx2Filter=NULL;
2724 av_free(c->lumMmx2FilterPos);
2725 c->lumMmx2FilterPos=NULL;
2726 av_free(c->chrMmx2FilterPos);
2727 c->chrMmx2FilterPos=NULL;
2728 av_free(c->yuvTable);