2 Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
4 This program is free software; you can redistribute it and/or modify
5 it under the terms of the GNU General Public License as published by
6 the Free Software Foundation; either version 2 of the License, or
7 (at your option) any later version.
9 This program is distributed in the hope that it will be useful,
10 but WITHOUT ANY WARRANTY; without even the implied warranty of
11 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 GNU General Public License for more details.
14 You should have received a copy of the GNU General Public License
15 along with this program; if not, write to the Free Software
16 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
20 supported Input formats: YV12, I420/IYUV, YUY2, UYVY, BGR32, BGR24, BGR16, BGR15, RGB32, RGB24, Y8/Y800, YVU9/IF09
21 supported output formats: YV12, I420/IYUV, YUY2, UYVY, {BGR,RGB}{1,4,8,15,16,24,32}, Y8/Y800, YVU9/IF09
22 {BGR,RGB}{1,4,8,15,16} support dithering
24 unscaled special converters (YV12=I420=IYUV, Y800=Y8)
25 YV12 -> {BGR,RGB}{1,4,8,15,16,24,32}
30 BGR24 -> BGR32 & RGB24 -> RGB32
31 BGR32 -> BGR24 & RGB32 -> RGB24
36 tested special converters (most are tested actually but i didnt write it down ...)
43 untested special converters
44 YV12/I420 -> BGR15/BGR24/BGR32 (its the yuv2rgb stuff, so it should be ok)
45 YV12/I420 -> YV12/I420
46 YUY2/BGR15/BGR24/BGR32/RGB24/RGB32 -> same format
47 BGR24 -> BGR32 & RGB24 -> RGB32
48 BGR32 -> BGR24 & RGB32 -> RGB24
64 #ifdef HAVE_SYS_MMAN_H
66 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
67 #define MAP_ANONYMOUS MAP_ANON
71 #include "swscale_internal.h"
74 #include "img_format.h"
77 #include "libvo/fastmemcpy.h"
87 //#define WORDS_BIGENDIAN
90 #define FAST_BGR2YV12 // use 7 bit coeffs instead of 15bit
92 #define RET 0xC3 //near return opcode for X86
95 #define ASSERT(x) assert(x);
103 #define PI 3.14159265358979323846
106 //FIXME replace this with something faster
107 #define isPlanarYUV(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YVU9 \
108 || (x)==IMGFMT_NV12 || (x)==IMGFMT_NV21 \
109 || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P)
110 #define isYUV(x) ((x)==IMGFMT_UYVY || (x)==IMGFMT_YUY2 || isPlanarYUV(x))
111 #define isGray(x) ((x)==IMGFMT_Y800)
112 #define isRGB(x) (((x)&IMGFMT_RGB_MASK)==IMGFMT_RGB)
113 #define isBGR(x) (((x)&IMGFMT_BGR_MASK)==IMGFMT_BGR)
114 #define isSupportedIn(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY\
115 || (x)==IMGFMT_BGR32|| (x)==IMGFMT_BGR24|| (x)==IMGFMT_BGR16|| (x)==IMGFMT_BGR15\
116 || (x)==IMGFMT_RGB32|| (x)==IMGFMT_RGB24\
117 || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9\
118 || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P)
119 #define isSupportedOut(x) ((x)==IMGFMT_YV12 || (x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY\
120 || (x)==IMGFMT_444P || (x)==IMGFMT_422P || (x)==IMGFMT_411P\
121 || isRGB(x) || isBGR(x)\
122 || (x)==IMGFMT_NV12 || (x)==IMGFMT_NV21\
123 || (x)==IMGFMT_Y800 || (x)==IMGFMT_YVU9)
124 #define isPacked(x) ((x)==IMGFMT_YUY2 || (x)==IMGFMT_UYVY ||isRGB(x) || isBGR(x))
126 #define RGB2YUV_SHIFT 16
127 #define BY ((int)( 0.098*(1<<RGB2YUV_SHIFT)+0.5))
128 #define BV ((int)(-0.071*(1<<RGB2YUV_SHIFT)+0.5))
129 #define BU ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
130 #define GY ((int)( 0.504*(1<<RGB2YUV_SHIFT)+0.5))
131 #define GV ((int)(-0.368*(1<<RGB2YUV_SHIFT)+0.5))
132 #define GU ((int)(-0.291*(1<<RGB2YUV_SHIFT)+0.5))
133 #define RY ((int)( 0.257*(1<<RGB2YUV_SHIFT)+0.5))
134 #define RV ((int)( 0.439*(1<<RGB2YUV_SHIFT)+0.5))
135 #define RU ((int)(-0.148*(1<<RGB2YUV_SHIFT)+0.5))
137 extern const int32_t Inverse_Table_6_9[8][4];
141 Special versions: fast Y 1:1 scaling (no interpolation in y direction)
144 more intelligent missalignment avoidance for the horizontal scaler
145 write special vertical cubic upscale version
146 Optimize C code (yv12 / minmax)
147 add support for packed pixel yuv input & output
148 add support for Y8 output
149 optimize bgr24 & bgr32
150 add BGR4 output support
151 write special BGR->BGR scaler
154 #if defined(ARCH_X86) || defined(ARCH_X86_64)
155 static uint64_t attribute_used __attribute__((aligned(8))) bF8= 0xF8F8F8F8F8F8F8F8LL;
156 static uint64_t attribute_used __attribute__((aligned(8))) bFC= 0xFCFCFCFCFCFCFCFCLL;
157 static uint64_t __attribute__((aligned(8))) w10= 0x0010001000100010LL;
158 static uint64_t attribute_used __attribute__((aligned(8))) w02= 0x0002000200020002LL;
159 static uint64_t attribute_used __attribute__((aligned(8))) bm00001111=0x00000000FFFFFFFFLL;
160 static uint64_t attribute_used __attribute__((aligned(8))) bm00000111=0x0000000000FFFFFFLL;
161 static uint64_t attribute_used __attribute__((aligned(8))) bm11111000=0xFFFFFFFFFF000000LL;
162 static uint64_t attribute_used __attribute__((aligned(8))) bm01010101=0x00FF00FF00FF00FFLL;
164 static volatile uint64_t attribute_used __attribute__((aligned(8))) b5Dither;
165 static volatile uint64_t attribute_used __attribute__((aligned(8))) g5Dither;
166 static volatile uint64_t attribute_used __attribute__((aligned(8))) g6Dither;
167 static volatile uint64_t attribute_used __attribute__((aligned(8))) r5Dither;
169 static uint64_t __attribute__((aligned(8))) dither4[2]={
170 0x0103010301030103LL,
171 0x0200020002000200LL,};
173 static uint64_t __attribute__((aligned(8))) dither8[2]={
174 0x0602060206020602LL,
175 0x0004000400040004LL,};
177 static uint64_t __attribute__((aligned(8))) b16Mask= 0x001F001F001F001FLL;
178 static uint64_t attribute_used __attribute__((aligned(8))) g16Mask= 0x07E007E007E007E0LL;
179 static uint64_t attribute_used __attribute__((aligned(8))) r16Mask= 0xF800F800F800F800LL;
180 static uint64_t __attribute__((aligned(8))) b15Mask= 0x001F001F001F001FLL;
181 static uint64_t attribute_used __attribute__((aligned(8))) g15Mask= 0x03E003E003E003E0LL;
182 static uint64_t attribute_used __attribute__((aligned(8))) r15Mask= 0x7C007C007C007C00LL;
184 static uint64_t attribute_used __attribute__((aligned(8))) M24A= 0x00FF0000FF0000FFLL;
185 static uint64_t attribute_used __attribute__((aligned(8))) M24B= 0xFF0000FF0000FF00LL;
186 static uint64_t attribute_used __attribute__((aligned(8))) M24C= 0x0000FF0000FF0000LL;
189 static const uint64_t bgr2YCoeff attribute_used __attribute__((aligned(8))) = 0x000000210041000DULL;
190 static const uint64_t bgr2UCoeff attribute_used __attribute__((aligned(8))) = 0x0000FFEEFFDC0038ULL;
191 static const uint64_t bgr2VCoeff attribute_used __attribute__((aligned(8))) = 0x00000038FFD2FFF8ULL;
193 static const uint64_t bgr2YCoeff attribute_used __attribute__((aligned(8))) = 0x000020E540830C8BULL;
194 static const uint64_t bgr2UCoeff attribute_used __attribute__((aligned(8))) = 0x0000ED0FDAC23831ULL;
195 static const uint64_t bgr2VCoeff attribute_used __attribute__((aligned(8))) = 0x00003831D0E6F6EAULL;
197 static const uint64_t bgr2YOffset attribute_used __attribute__((aligned(8))) = 0x1010101010101010ULL;
198 static const uint64_t bgr2UVOffset attribute_used __attribute__((aligned(8)))= 0x8080808080808080ULL;
199 static const uint64_t w1111 attribute_used __attribute__((aligned(8))) = 0x0001000100010001ULL;
202 // clipping helper table for C implementations:
203 static unsigned char clip_table[768];
205 static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b);
207 extern const uint8_t dither_2x2_4[2][8];
208 extern const uint8_t dither_2x2_8[2][8];
209 extern const uint8_t dither_8x8_32[8][8];
210 extern const uint8_t dither_8x8_73[8][8];
211 extern const uint8_t dither_8x8_220[8][8];
213 char *sws_format_name(int format)
215 static char fmt_name[64];
219 res = fmt_name + buffer * 32;
221 snprintf(res, 32, "0x%x (%c%c%c%c)", format,
222 format >> 24, (format >> 16) & 0xFF,
223 (format >> 8) & 0xFF,
229 #if defined(ARCH_X86) || defined(ARCH_X86_64)
230 void in_asm_used_var_warning_killer()
232 volatile int i= bF8+bFC+w10+
233 bm00001111+bm00000111+bm11111000+b16Mask+g16Mask+r16Mask+b15Mask+g15Mask+r15Mask+
234 M24A+M24B+M24C+w02 + b5Dither+g5Dither+r5Dither+g6Dither+dither4[0]+dither8[0]+bm01010101;
239 static inline void yuv2yuvXinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
240 int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
241 uint8_t *dest, uint8_t *uDest, uint8_t *vDest, int dstW, int chrDstW)
243 //FIXME Optimize (just quickly writen not opti..)
245 for(i=0; i<dstW; i++)
249 for(j=0; j<lumFilterSize; j++)
250 val += lumSrc[j][i] * lumFilter[j];
252 dest[i]= FFMIN(FFMAX(val>>19, 0), 255);
256 for(i=0; i<chrDstW; i++)
261 for(j=0; j<chrFilterSize; j++)
263 u += chrSrc[j][i] * chrFilter[j];
264 v += chrSrc[j][i + 2048] * chrFilter[j];
267 uDest[i]= FFMIN(FFMAX(u>>19, 0), 255);
268 vDest[i]= FFMIN(FFMAX(v>>19, 0), 255);
272 static inline void yuv2nv12XinC(int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
273 int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
274 uint8_t *dest, uint8_t *uDest, int dstW, int chrDstW, int dstFormat)
276 //FIXME Optimize (just quickly writen not opti..)
278 for(i=0; i<dstW; i++)
282 for(j=0; j<lumFilterSize; j++)
283 val += lumSrc[j][i] * lumFilter[j];
285 dest[i]= FFMIN(FFMAX(val>>19, 0), 255);
291 if(dstFormat == IMGFMT_NV12)
292 for(i=0; i<chrDstW; i++)
297 for(j=0; j<chrFilterSize; j++)
299 u += chrSrc[j][i] * chrFilter[j];
300 v += chrSrc[j][i + 2048] * chrFilter[j];
303 uDest[2*i]= FFMIN(FFMAX(u>>19, 0), 255);
304 uDest[2*i+1]= FFMIN(FFMAX(v>>19, 0), 255);
307 for(i=0; i<chrDstW; i++)
312 for(j=0; j<chrFilterSize; j++)
314 u += chrSrc[j][i] * chrFilter[j];
315 v += chrSrc[j][i + 2048] * chrFilter[j];
318 uDest[2*i]= FFMIN(FFMAX(v>>19, 0), 255);
319 uDest[2*i+1]= FFMIN(FFMAX(u>>19, 0), 255);
323 #define YSCALE_YUV_2_PACKEDX_C(type) \
324 for(i=0; i<(dstW>>1); i++){\
333 for(j=0; j<lumFilterSize; j++)\
335 Y1 += lumSrc[j][i2] * lumFilter[j];\
336 Y2 += lumSrc[j][i2+1] * lumFilter[j];\
338 for(j=0; j<chrFilterSize; j++)\
340 U += chrSrc[j][i] * chrFilter[j];\
341 V += chrSrc[j][i+2048] * chrFilter[j];\
359 #define YSCALE_YUV_2_RGBX_C(type) \
360 YSCALE_YUV_2_PACKEDX_C(type)\
362 g = c->table_gU[U] + c->table_gV[V];\
365 #define YSCALE_YUV_2_PACKED2_C \
366 for(i=0; i<(dstW>>1); i++){\
368 int Y1= (buf0[i2 ]*yalpha1+buf1[i2 ]*yalpha)>>19;\
369 int Y2= (buf0[i2+1]*yalpha1+buf1[i2+1]*yalpha)>>19;\
370 int U= (uvbuf0[i ]*uvalpha1+uvbuf1[i ]*uvalpha)>>19;\
371 int V= (uvbuf0[i+2048]*uvalpha1+uvbuf1[i+2048]*uvalpha)>>19;\
373 #define YSCALE_YUV_2_RGB2_C(type) \
374 YSCALE_YUV_2_PACKED2_C\
377 g = c->table_gU[U] + c->table_gV[V];\
380 #define YSCALE_YUV_2_PACKED1_C \
381 for(i=0; i<(dstW>>1); i++){\
383 int Y1= buf0[i2 ]>>7;\
384 int Y2= buf0[i2+1]>>7;\
385 int U= (uvbuf1[i ])>>7;\
386 int V= (uvbuf1[i+2048])>>7;\
388 #define YSCALE_YUV_2_RGB1_C(type) \
389 YSCALE_YUV_2_PACKED1_C\
392 g = c->table_gU[U] + c->table_gV[V];\
395 #define YSCALE_YUV_2_PACKED1B_C \
396 for(i=0; i<(dstW>>1); i++){\
398 int Y1= buf0[i2 ]>>7;\
399 int Y2= buf0[i2+1]>>7;\
400 int U= (uvbuf0[i ] + uvbuf1[i ])>>8;\
401 int V= (uvbuf0[i+2048] + uvbuf1[i+2048])>>8;\
403 #define YSCALE_YUV_2_RGB1B_C(type) \
404 YSCALE_YUV_2_PACKED1B_C\
407 g = c->table_gU[U] + c->table_gV[V];\
410 #define YSCALE_YUV_2_ANYRGB_C(func, func2)\
411 switch(c->dstFormat)\
416 ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];\
417 ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];\
422 ((uint8_t*)dest)[0]= r[Y1];\
423 ((uint8_t*)dest)[1]= g[Y1];\
424 ((uint8_t*)dest)[2]= b[Y1];\
425 ((uint8_t*)dest)[3]= r[Y2];\
426 ((uint8_t*)dest)[4]= g[Y2];\
427 ((uint8_t*)dest)[5]= b[Y2];\
433 ((uint8_t*)dest)[0]= b[Y1];\
434 ((uint8_t*)dest)[1]= g[Y1];\
435 ((uint8_t*)dest)[2]= r[Y1];\
436 ((uint8_t*)dest)[3]= b[Y2];\
437 ((uint8_t*)dest)[4]= g[Y2];\
438 ((uint8_t*)dest)[5]= r[Y2];\
445 const int dr1= dither_2x2_8[y&1 ][0];\
446 const int dg1= dither_2x2_4[y&1 ][0];\
447 const int db1= dither_2x2_8[(y&1)^1][0];\
448 const int dr2= dither_2x2_8[y&1 ][1];\
449 const int dg2= dither_2x2_4[y&1 ][1];\
450 const int db2= dither_2x2_8[(y&1)^1][1];\
452 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
453 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
460 const int dr1= dither_2x2_8[y&1 ][0];\
461 const int dg1= dither_2x2_8[y&1 ][1];\
462 const int db1= dither_2x2_8[(y&1)^1][0];\
463 const int dr2= dither_2x2_8[y&1 ][1];\
464 const int dg2= dither_2x2_8[y&1 ][0];\
465 const int db2= dither_2x2_8[(y&1)^1][1];\
467 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];\
468 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];\
475 const uint8_t * const d64= dither_8x8_73[y&7];\
476 const uint8_t * const d32= dither_8x8_32[y&7];\
478 ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];\
479 ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];\
486 const uint8_t * const d64= dither_8x8_73 [y&7];\
487 const uint8_t * const d128=dither_8x8_220[y&7];\
489 ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]\
490 + ((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);\
497 const uint8_t * const d64= dither_8x8_73 [y&7];\
498 const uint8_t * const d128=dither_8x8_220[y&7];\
500 ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];\
501 ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];\
508 const uint8_t * const d128=dither_8x8_220[y&7];\
509 uint8_t *g= c->table_gU[128] + c->table_gV[128];\
510 for(i=0; i<dstW-7; i+=8){\
512 acc = g[((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19) + d128[0]];\
513 acc+= acc + g[((buf0[i+1]*yalpha1+buf1[i+1]*yalpha)>>19) + d128[1]];\
514 acc+= acc + g[((buf0[i+2]*yalpha1+buf1[i+2]*yalpha)>>19) + d128[2]];\
515 acc+= acc + g[((buf0[i+3]*yalpha1+buf1[i+3]*yalpha)>>19) + d128[3]];\
516 acc+= acc + g[((buf0[i+4]*yalpha1+buf1[i+4]*yalpha)>>19) + d128[4]];\
517 acc+= acc + g[((buf0[i+5]*yalpha1+buf1[i+5]*yalpha)>>19) + d128[5]];\
518 acc+= acc + g[((buf0[i+6]*yalpha1+buf1[i+6]*yalpha)>>19) + d128[6]];\
519 acc+= acc + g[((buf0[i+7]*yalpha1+buf1[i+7]*yalpha)>>19) + d128[7]];\
520 ((uint8_t*)dest)[0]= acc;\
525 ((uint8_t*)dest)-= dstW>>4;\
529 static int top[1024];\
530 static int last_new[1024][1024];\
531 static int last_in3[1024][1024];\
532 static int drift[1024][1024];\
536 const uint8_t * const d128=dither_8x8_220[y&7];\
541 for(i=dstW>>1; i<dstW; i++){\
542 int in= ((buf0[i ]*yalpha1+buf1[i ]*yalpha)>>19);\
543 int in2 = (76309 * (in - 16) + 32768) >> 16;\
544 int in3 = (in2 < 0) ? 0 : ((in2 > 255) ? 255 : in2);\
545 int old= (left*7 + topLeft + top[i]*5 + top[i+1]*3)/20 + in3\
546 + (last_new[y][i] - in3)*f/256;\
547 int new= old> 128 ? 255 : 0;\
549 error_new+= ABS(last_new[y][i] - new);\
550 error_in3+= ABS(last_in3[y][i] - in3);\
551 f= error_new - error_in3*4;\
556 left= top[i]= old - new;\
557 last_new[y][i]= new;\
558 last_in3[y][i]= in3;\
560 acc+= acc + (new&1);\
562 ((uint8_t*)dest)[0]= acc;\
572 ((uint8_t*)dest)[2*i2+0]= Y1;\
573 ((uint8_t*)dest)[2*i2+1]= U;\
574 ((uint8_t*)dest)[2*i2+2]= Y2;\
575 ((uint8_t*)dest)[2*i2+3]= V;\
580 ((uint8_t*)dest)[2*i2+0]= U;\
581 ((uint8_t*)dest)[2*i2+1]= Y1;\
582 ((uint8_t*)dest)[2*i2+2]= V;\
583 ((uint8_t*)dest)[2*i2+3]= Y2;\
589 static inline void yuv2packedXinC(SwsContext *c, int16_t *lumFilter, int16_t **lumSrc, int lumFilterSize,
590 int16_t *chrFilter, int16_t **chrSrc, int chrFilterSize,
591 uint8_t *dest, int dstW, int y)
598 YSCALE_YUV_2_RGBX_C(uint32_t)
599 ((uint32_t*)dest)[i2+0]= r[Y1] + g[Y1] + b[Y1];
600 ((uint32_t*)dest)[i2+1]= r[Y2] + g[Y2] + b[Y2];
604 YSCALE_YUV_2_RGBX_C(uint8_t)
605 ((uint8_t*)dest)[0]= r[Y1];
606 ((uint8_t*)dest)[1]= g[Y1];
607 ((uint8_t*)dest)[2]= b[Y1];
608 ((uint8_t*)dest)[3]= r[Y2];
609 ((uint8_t*)dest)[4]= g[Y2];
610 ((uint8_t*)dest)[5]= b[Y2];
615 YSCALE_YUV_2_RGBX_C(uint8_t)
616 ((uint8_t*)dest)[0]= b[Y1];
617 ((uint8_t*)dest)[1]= g[Y1];
618 ((uint8_t*)dest)[2]= r[Y1];
619 ((uint8_t*)dest)[3]= b[Y2];
620 ((uint8_t*)dest)[4]= g[Y2];
621 ((uint8_t*)dest)[5]= r[Y2];
628 const int dr1= dither_2x2_8[y&1 ][0];
629 const int dg1= dither_2x2_4[y&1 ][0];
630 const int db1= dither_2x2_8[(y&1)^1][0];
631 const int dr2= dither_2x2_8[y&1 ][1];
632 const int dg2= dither_2x2_4[y&1 ][1];
633 const int db2= dither_2x2_8[(y&1)^1][1];
634 YSCALE_YUV_2_RGBX_C(uint16_t)
635 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
636 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
643 const int dr1= dither_2x2_8[y&1 ][0];
644 const int dg1= dither_2x2_8[y&1 ][1];
645 const int db1= dither_2x2_8[(y&1)^1][0];
646 const int dr2= dither_2x2_8[y&1 ][1];
647 const int dg2= dither_2x2_8[y&1 ][0];
648 const int db2= dither_2x2_8[(y&1)^1][1];
649 YSCALE_YUV_2_RGBX_C(uint16_t)
650 ((uint16_t*)dest)[i2+0]= r[Y1+dr1] + g[Y1+dg1] + b[Y1+db1];
651 ((uint16_t*)dest)[i2+1]= r[Y2+dr2] + g[Y2+dg2] + b[Y2+db2];
658 const uint8_t * const d64= dither_8x8_73[y&7];
659 const uint8_t * const d32= dither_8x8_32[y&7];
660 YSCALE_YUV_2_RGBX_C(uint8_t)
661 ((uint8_t*)dest)[i2+0]= r[Y1+d32[(i2+0)&7]] + g[Y1+d32[(i2+0)&7]] + b[Y1+d64[(i2+0)&7]];
662 ((uint8_t*)dest)[i2+1]= r[Y2+d32[(i2+1)&7]] + g[Y2+d32[(i2+1)&7]] + b[Y2+d64[(i2+1)&7]];
669 const uint8_t * const d64= dither_8x8_73 [y&7];
670 const uint8_t * const d128=dither_8x8_220[y&7];
671 YSCALE_YUV_2_RGBX_C(uint8_t)
672 ((uint8_t*)dest)[i]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]]
673 +((r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]])<<4);
680 const uint8_t * const d64= dither_8x8_73 [y&7];
681 const uint8_t * const d128=dither_8x8_220[y&7];
682 YSCALE_YUV_2_RGBX_C(uint8_t)
683 ((uint8_t*)dest)[i2+0]= r[Y1+d128[(i2+0)&7]] + g[Y1+d64[(i2+0)&7]] + b[Y1+d128[(i2+0)&7]];
684 ((uint8_t*)dest)[i2+1]= r[Y2+d128[(i2+1)&7]] + g[Y2+d64[(i2+1)&7]] + b[Y2+d128[(i2+1)&7]];
691 const uint8_t * const d128=dither_8x8_220[y&7];
692 uint8_t *g= c->table_gU[128] + c->table_gV[128];
694 for(i=0; i<dstW-1; i+=2){
699 for(j=0; j<lumFilterSize; j++)
701 Y1 += lumSrc[j][i] * lumFilter[j];
702 Y2 += lumSrc[j][i+1] * lumFilter[j];
713 acc+= acc + g[Y1+d128[(i+0)&7]];
714 acc+= acc + g[Y2+d128[(i+1)&7]];
716 ((uint8_t*)dest)[0]= acc;
723 YSCALE_YUV_2_PACKEDX_C(void)
724 ((uint8_t*)dest)[2*i2+0]= Y1;
725 ((uint8_t*)dest)[2*i2+1]= U;
726 ((uint8_t*)dest)[2*i2+2]= Y2;
727 ((uint8_t*)dest)[2*i2+3]= V;
731 YSCALE_YUV_2_PACKEDX_C(void)
732 ((uint8_t*)dest)[2*i2+0]= U;
733 ((uint8_t*)dest)[2*i2+1]= Y1;
734 ((uint8_t*)dest)[2*i2+2]= V;
735 ((uint8_t*)dest)[2*i2+3]= Y2;
742 //Note: we have C, X86, MMX, MMX2, 3DNOW version therse no 3DNOW+MMX2 one
744 #if !defined (HAVE_MMX) || defined (RUNTIME_CPUDETECT)
749 #if defined (HAVE_ALTIVEC) || defined (RUNTIME_CPUDETECT)
750 #define COMPILE_ALTIVEC
751 #endif //HAVE_ALTIVEC
752 #endif //ARCH_POWERPC
754 #if defined(ARCH_X86) || defined(ARCH_X86_64)
756 #if (defined (HAVE_MMX) && !defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
760 #if defined (HAVE_MMX2) || defined (RUNTIME_CPUDETECT)
764 #if (defined (HAVE_3DNOW) && !defined (HAVE_MMX2)) || defined (RUNTIME_CPUDETECT)
765 #define COMPILE_3DNOW
767 #endif //ARCH_X86 || ARCH_X86_64
778 #define RENAME(a) a ## _C
779 #include "swscale_template.c"
783 #ifdef COMPILE_ALTIVEC
786 #define RENAME(a) a ## _altivec
787 #include "swscale_template.c"
789 #endif //ARCH_POWERPC
791 #if defined(ARCH_X86) || defined(ARCH_X86_64)
800 #define RENAME(a) a ## _X86
801 #include "swscale_template.c"
809 #define RENAME(a) a ## _MMX
810 #include "swscale_template.c"
819 #define RENAME(a) a ## _MMX2
820 #include "swscale_template.c"
829 #define RENAME(a) a ## _3DNow
830 #include "swscale_template.c"
833 #endif //ARCH_X86 || ARCH_X86_64
835 // minor note: the HAVE_xyz is messed up after that line so don't use it
837 static double getSplineCoeff(double a, double b, double c, double d, double dist)
839 // printf("%f %f %f %f %f\n", a,b,c,d,dist);
840 if(dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
841 else return getSplineCoeff( 0.0,
848 static inline int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
849 int srcW, int dstW, int filterAlign, int one, int flags,
850 SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
857 double *filter2=NULL;
858 #if defined(ARCH_X86) || defined(ARCH_X86_64)
859 if(flags & SWS_CPU_CAPS_MMX)
860 asm volatile("emms\n\t"::: "memory"); //FIXME this shouldnt be required but it IS (even for non mmx versions)
863 // Note the +1 is for the MMXscaler which reads over the end
864 *filterPos = av_malloc((dstW+1)*sizeof(int16_t));
866 if(ABS(xInc - 0x10000) <10) // unscaled
870 filter= av_malloc(dstW*sizeof(double)*filterSize);
871 for(i=0; i<dstW*filterSize; i++) filter[i]=0;
873 for(i=0; i<dstW; i++)
875 filter[i*filterSize]=1;
880 else if(flags&SWS_POINT) // lame looking point sampling mode
885 filter= av_malloc(dstW*sizeof(double)*filterSize);
887 xDstInSrc= xInc/2 - 0x8000;
888 for(i=0; i<dstW; i++)
890 int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
897 else if((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) // bilinear upscale
901 if (flags&SWS_BICUBIC) filterSize= 4;
902 else if(flags&SWS_X ) filterSize= 4;
903 else filterSize= 2; // SWS_BILINEAR / SWS_AREA
904 filter= av_malloc(dstW*sizeof(double)*filterSize);
906 xDstInSrc= xInc/2 - 0x8000;
907 for(i=0; i<dstW; i++)
909 int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
913 //Bilinear upscale / linear interpolate / Area averaging
914 for(j=0; j<filterSize; j++)
916 double d= ABS((xx<<16) - xDstInSrc)/(double)(1<<16);
917 double coeff= 1.0 - d;
919 filter[i*filterSize + j]= coeff;
928 double sizeFactor, filterSizeInSrc;
929 const double xInc1= (double)xInc / (double)(1<<16);
931 if (flags&SWS_BICUBIC) sizeFactor= 4.0;
932 else if(flags&SWS_X) sizeFactor= 8.0;
933 else if(flags&SWS_AREA) sizeFactor= 1.0; //downscale only, for upscale it is bilinear
934 else if(flags&SWS_GAUSS) sizeFactor= 8.0; // infinite ;)
935 else if(flags&SWS_LANCZOS) sizeFactor= param[0] != SWS_PARAM_DEFAULT ? 2.0*param[0] : 6.0;
936 else if(flags&SWS_SINC) sizeFactor= 20.0; // infinite ;)
937 else if(flags&SWS_SPLINE) sizeFactor= 20.0; // infinite ;)
938 else if(flags&SWS_BILINEAR) sizeFactor= 2.0;
940 sizeFactor= 0.0; //GCC warning killer
944 if(xInc1 <= 1.0) filterSizeInSrc= sizeFactor; // upscale
945 else filterSizeInSrc= sizeFactor*srcW / (double)dstW;
947 filterSize= (int)ceil(1 + filterSizeInSrc); // will be reduced later if possible
948 if(filterSize > srcW-2) filterSize=srcW-2;
950 filter= av_malloc(dstW*sizeof(double)*filterSize);
952 xDstInSrc= xInc1 / 2.0 - 0.5;
953 for(i=0; i<dstW; i++)
955 int xx= (int)(xDstInSrc - (filterSize-1)*0.5 + 0.5);
958 for(j=0; j<filterSize; j++)
960 double d= ABS(xx - xDstInSrc)/filterSizeInSrc*sizeFactor;
962 if(flags & SWS_BICUBIC)
964 double B= param[0] != SWS_PARAM_DEFAULT ? param[0] : 0.0;
965 double C= param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6;
968 coeff = (12-9*B-6*C)*d*d*d + (-18+12*B+6*C)*d*d + 6-2*B;
970 coeff = (-B-6*C)*d*d*d + (6*B+30*C)*d*d + (-12*B-48*C)*d +8*B+24*C;
974 /* else if(flags & SWS_X)
976 double p= param ? param*0.01 : 0.3;
977 coeff = d ? sin(d*PI)/(d*PI) : 1.0;
978 coeff*= pow(2.0, - p*d*d);
980 else if(flags & SWS_X)
982 double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
988 if(coeff<0.0) coeff= -pow(-coeff, A);
989 else coeff= pow( coeff, A);
990 coeff= coeff*0.5 + 0.5;
992 else if(flags & SWS_AREA)
994 double srcPixelSize= 1.0/xInc1;
995 if(d + srcPixelSize/2 < 0.5) coeff= 1.0;
996 else if(d - srcPixelSize/2 < 0.5) coeff= (0.5-d)/srcPixelSize + 0.5;
999 else if(flags & SWS_GAUSS)
1001 double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
1002 coeff = pow(2.0, - p*d*d);
1004 else if(flags & SWS_SINC)
1006 coeff = d ? sin(d*PI)/(d*PI) : 1.0;
1008 else if(flags & SWS_LANCZOS)
1010 double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
1011 coeff = d ? sin(d*PI)*sin(d*PI/p)/(d*d*PI*PI/p) : 1.0;
1014 else if(flags & SWS_BILINEAR)
1017 if(coeff<0) coeff=0;
1019 else if(flags & SWS_SPLINE)
1021 double p=-2.196152422706632;
1022 coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, d);
1025 coeff= 0.0; //GCC warning killer
1029 filter[i*filterSize + j]= coeff;
1036 /* apply src & dst Filter to filter -> filter2
1039 ASSERT(filterSize>0)
1040 filter2Size= filterSize;
1041 if(srcFilter) filter2Size+= srcFilter->length - 1;
1042 if(dstFilter) filter2Size+= dstFilter->length - 1;
1043 ASSERT(filter2Size>0)
1044 filter2= av_malloc(filter2Size*dstW*sizeof(double));
1046 for(i=0; i<dstW; i++)
1049 SwsVector scaleFilter;
1052 scaleFilter.coeff= filter + i*filterSize;
1053 scaleFilter.length= filterSize;
1055 if(srcFilter) outVec= sws_getConvVec(srcFilter, &scaleFilter);
1056 else outVec= &scaleFilter;
1058 ASSERT(outVec->length == filter2Size)
1061 for(j=0; j<outVec->length; j++)
1063 filter2[i*filter2Size + j]= outVec->coeff[j];
1066 (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
1068 if(outVec != &scaleFilter) sws_freeVec(outVec);
1070 av_free(filter); filter=NULL;
1072 /* try to reduce the filter-size (step1 find size and shift left) */
1073 // Assume its near normalized (*0.5 or *2.0 is ok but * 0.001 is not)
1075 for(i=dstW-1; i>=0; i--)
1077 int min= filter2Size;
1081 /* get rid off near zero elements on the left by shifting left */
1082 for(j=0; j<filter2Size; j++)
1085 cutOff += ABS(filter2[i*filter2Size]);
1087 if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1089 /* preserve Monotonicity because the core can't handle the filter otherwise */
1090 if(i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
1092 // Move filter coeffs left
1093 for(k=1; k<filter2Size; k++)
1094 filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
1095 filter2[i*filter2Size + k - 1]= 0.0;
1100 /* count near zeros on the right */
1101 for(j=filter2Size-1; j>0; j--)
1103 cutOff += ABS(filter2[i*filter2Size + j]);
1105 if(cutOff > SWS_MAX_REDUCE_CUTOFF) break;
1109 if(min>minFilterSize) minFilterSize= min;
1112 if (flags & SWS_CPU_CAPS_ALTIVEC) {
1113 // we can handle the special case 4,
1114 // so we don't want to go to the full 8
1115 if (minFilterSize < 5)
1118 // we really don't want to waste our time
1119 // doing useless computation, so fall-back on
1120 // the scalar C code for very small filter.
1121 // vectorizing is worth it only if you have
1122 // decent-sized vector.
1123 if (minFilterSize < 3)
1127 if (flags & SWS_CPU_CAPS_MMX) {
1128 // special case for unscaled vertical filtering
1129 if(minFilterSize == 1 && filterAlign == 2)
1133 ASSERT(minFilterSize > 0)
1134 filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
1135 ASSERT(filterSize > 0)
1136 filter= av_malloc(filterSize*dstW*sizeof(double));
1137 if(filterSize >= MAX_FILTER_SIZE)
1139 *outFilterSize= filterSize;
1141 if(flags&SWS_PRINT_INFO)
1142 MSG_V("SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
1143 /* try to reduce the filter-size (step2 reduce it) */
1144 for(i=0; i<dstW; i++)
1148 for(j=0; j<filterSize; j++)
1150 if(j>=filter2Size) filter[i*filterSize + j]= 0.0;
1151 else filter[i*filterSize + j]= filter2[i*filter2Size + j];
1154 av_free(filter2); filter2=NULL;
1157 //FIXME try to align filterpos if possible
1160 for(i=0; i<dstW; i++)
1163 if((*filterPos)[i] < 0)
1165 // Move filter coeffs left to compensate for filterPos
1166 for(j=1; j<filterSize; j++)
1168 int left= FFMAX(j + (*filterPos)[i], 0);
1169 filter[i*filterSize + left] += filter[i*filterSize + j];
1170 filter[i*filterSize + j]=0;
1175 if((*filterPos)[i] + filterSize > srcW)
1177 int shift= (*filterPos)[i] + filterSize - srcW;
1178 // Move filter coeffs right to compensate for filterPos
1179 for(j=filterSize-2; j>=0; j--)
1181 int right= FFMIN(j + shift, filterSize-1);
1182 filter[i*filterSize +right] += filter[i*filterSize +j];
1183 filter[i*filterSize +j]=0;
1185 (*filterPos)[i]= srcW - filterSize;
1189 // Note the +1 is for the MMXscaler which reads over the end
1190 /* align at 16 for AltiVec (needed by hScale_altivec_real) */
1191 *outFilter= av_malloc(*outFilterSize*(dstW+1)*sizeof(int16_t));
1192 memset(*outFilter, 0, *outFilterSize*(dstW+1)*sizeof(int16_t));
1194 /* Normalize & Store in outFilter */
1195 for(i=0; i<dstW; i++)
1202 for(j=0; j<filterSize; j++)
1204 sum+= filter[i*filterSize + j];
1207 for(j=0; j<*outFilterSize; j++)
1209 double v= filter[i*filterSize + j]*scale + error;
1210 int intV= floor(v + 0.5);
1211 (*outFilter)[i*(*outFilterSize) + j]= intV;
1216 (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
1217 for(i=0; i<*outFilterSize; i++)
1219 int j= dstW*(*outFilterSize);
1220 (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
1227 #if defined(ARCH_X86) || defined(ARCH_X86_64)
1228 static void initMMX2HScaler(int dstW, int xInc, uint8_t *funnyCode, int16_t *filter, int32_t *filterPos, int numSplits)
1231 long imm8OfPShufW1A;
1232 long imm8OfPShufW2A;
1233 long fragmentLengthA;
1235 long imm8OfPShufW1B;
1236 long imm8OfPShufW2B;
1237 long fragmentLengthB;
1242 // create an optimized horizontal scaling routine
1250 "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t"
1251 "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t"
1252 "movd 1(%%"REG_c", %%"REG_S"), %%mm1\n\t"
1253 "punpcklbw %%mm7, %%mm1 \n\t"
1254 "punpcklbw %%mm7, %%mm0 \n\t"
1255 "pshufw $0xFF, %%mm1, %%mm1 \n\t"
1257 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
1259 "psubw %%mm1, %%mm0 \n\t"
1260 "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
1261 "pmullw %%mm3, %%mm0 \n\t"
1262 "psllw $7, %%mm1 \n\t"
1263 "paddw %%mm1, %%mm0 \n\t"
1265 "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
1267 "add $8, %%"REG_a" \n\t"
1282 :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
1283 "=r" (fragmentLengthA)
1290 "movq (%%"REG_d", %%"REG_a"), %%mm3\n\t"
1291 "movd (%%"REG_c", %%"REG_S"), %%mm0\n\t"
1292 "punpcklbw %%mm7, %%mm0 \n\t"
1293 "pshufw $0xFF, %%mm0, %%mm1 \n\t"
1295 "pshufw $0xFF, %%mm0, %%mm0 \n\t"
1297 "psubw %%mm1, %%mm0 \n\t"
1298 "movl 8(%%"REG_b", %%"REG_a"), %%esi\n\t"
1299 "pmullw %%mm3, %%mm0 \n\t"
1300 "psllw $7, %%mm1 \n\t"
1301 "paddw %%mm1, %%mm0 \n\t"
1303 "movq %%mm0, (%%"REG_D", %%"REG_a")\n\t"
1305 "add $8, %%"REG_a" \n\t"
1320 :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
1321 "=r" (fragmentLengthB)
1324 xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
1327 for(i=0; i<dstW/numSplits; i++)
1334 int b=((xpos+xInc)>>16) - xx;
1335 int c=((xpos+xInc*2)>>16) - xx;
1336 int d=((xpos+xInc*3)>>16) - xx;
1338 filter[i ] = (( xpos & 0xFFFF) ^ 0xFFFF)>>9;
1339 filter[i+1] = (((xpos+xInc ) & 0xFFFF) ^ 0xFFFF)>>9;
1340 filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
1341 filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
1346 int maxShift= 3-(d+1);
1349 memcpy(funnyCode + fragmentPos, fragmentB, fragmentLengthB);
1351 funnyCode[fragmentPos + imm8OfPShufW1B]=
1352 (a+1) | ((b+1)<<2) | ((c+1)<<4) | ((d+1)<<6);
1353 funnyCode[fragmentPos + imm8OfPShufW2B]=
1354 a | (b<<2) | (c<<4) | (d<<6);
1356 if(i+3>=dstW) shift=maxShift; //avoid overread
1357 else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
1359 if(shift && i>=shift)
1361 funnyCode[fragmentPos + imm8OfPShufW1B]+= 0x55*shift;
1362 funnyCode[fragmentPos + imm8OfPShufW2B]+= 0x55*shift;
1363 filterPos[i/2]-=shift;
1366 fragmentPos+= fragmentLengthB;
1373 memcpy(funnyCode + fragmentPos, fragmentA, fragmentLengthA);
1375 funnyCode[fragmentPos + imm8OfPShufW1A]=
1376 funnyCode[fragmentPos + imm8OfPShufW2A]=
1377 a | (b<<2) | (c<<4) | (d<<6);
1379 if(i+4>=dstW) shift=maxShift; //avoid overread
1380 else if((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //partial align
1382 if(shift && i>=shift)
1384 funnyCode[fragmentPos + imm8OfPShufW1A]+= 0x55*shift;
1385 funnyCode[fragmentPos + imm8OfPShufW2A]+= 0x55*shift;
1386 filterPos[i/2]-=shift;
1389 fragmentPos+= fragmentLengthA;
1392 funnyCode[fragmentPos]= RET;
1396 filterPos[i/2]= xpos>>16; // needed to jump to the next part
1398 #endif // ARCH_X86 || ARCH_X86_64
1400 static void globalInit(void){
1401 // generating tables:
1403 for(i=0; i<768; i++){
1404 int c= FFMIN(FFMAX(i-256, 0), 255);
1409 static SwsFunc getSwsFunc(int flags){
1411 #ifdef RUNTIME_CPUDETECT
1412 #if defined(ARCH_X86) || defined(ARCH_X86_64)
1413 // ordered per speed fasterst first
1414 if(flags & SWS_CPU_CAPS_MMX2)
1415 return swScale_MMX2;
1416 else if(flags & SWS_CPU_CAPS_3DNOW)
1417 return swScale_3DNow;
1418 else if(flags & SWS_CPU_CAPS_MMX)
1425 if(flags & SWS_CPU_CAPS_ALTIVEC)
1426 return swScale_altivec;
1432 #else //RUNTIME_CPUDETECT
1434 return swScale_MMX2;
1435 #elif defined (HAVE_3DNOW)
1436 return swScale_3DNow;
1437 #elif defined (HAVE_MMX)
1439 #elif defined (HAVE_ALTIVEC)
1440 return swScale_altivec;
1444 #endif //!RUNTIME_CPUDETECT
1447 static int PlanarToNV12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1448 int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1449 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1451 if(dstStride[0]==srcStride[0] && srcStride[0] > 0)
1452 memcpy(dst, src[0], srcSliceH*dstStride[0]);
1456 uint8_t *srcPtr= src[0];
1457 uint8_t *dstPtr= dst;
1458 for(i=0; i<srcSliceH; i++)
1460 memcpy(dstPtr, srcPtr, c->srcW);
1461 srcPtr+= srcStride[0];
1462 dstPtr+= dstStride[0];
1465 dst = dstParam[1] + dstStride[1]*srcSliceY/2;
1466 if (c->dstFormat == IMGFMT_NV12)
1467 interleaveBytes( src[1],src[2],dst,c->srcW/2,srcSliceH/2,srcStride[1],srcStride[2],dstStride[0] );
1469 interleaveBytes( src[2],src[1],dst,c->srcW/2,srcSliceH/2,srcStride[2],srcStride[1],dstStride[0] );
1474 static int PlanarToYuy2Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1475 int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1476 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1478 yv12toyuy2( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1483 static int PlanarToUyvyWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1484 int srcSliceH, uint8_t* dstParam[], int dstStride[]){
1485 uint8_t *dst=dstParam[0] + dstStride[0]*srcSliceY;
1487 yv12touyvy( src[0],src[1],src[2],dst,c->srcW,srcSliceH,srcStride[0],srcStride[1],dstStride[0] );
1492 /* {RGB,BGR}{15,16,24,32} -> {RGB,BGR}{15,16,24,32} */
1493 static int rgb2rgbWrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1494 int srcSliceH, uint8_t* dst[], int dstStride[]){
1495 const int srcFormat= c->srcFormat;
1496 const int dstFormat= c->dstFormat;
1497 const int srcBpp= ((srcFormat&0xFF) + 7)>>3;
1498 const int dstBpp= ((dstFormat&0xFF) + 7)>>3;
1499 const int srcId= (srcFormat&0xFF)>>2; // 1:0, 4:1, 8:2, 15:3, 16:4, 24:6, 32:8
1500 const int dstId= (dstFormat&0xFF)>>2;
1501 void (*conv)(const uint8_t *src, uint8_t *dst, long src_size)=NULL;
1504 if( (isBGR(srcFormat) && isBGR(dstFormat))
1505 || (isRGB(srcFormat) && isRGB(dstFormat))){
1506 switch(srcId | (dstId<<4)){
1507 case 0x34: conv= rgb16to15; break;
1508 case 0x36: conv= rgb24to15; break;
1509 case 0x38: conv= rgb32to15; break;
1510 case 0x43: conv= rgb15to16; break;
1511 case 0x46: conv= rgb24to16; break;
1512 case 0x48: conv= rgb32to16; break;
1513 case 0x63: conv= rgb15to24; break;
1514 case 0x64: conv= rgb16to24; break;
1515 case 0x68: conv= rgb32to24; break;
1516 case 0x83: conv= rgb15to32; break;
1517 case 0x84: conv= rgb16to32; break;
1518 case 0x86: conv= rgb24to32; break;
1519 default: MSG_ERR("swScaler: internal error %s -> %s converter\n",
1520 sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
1522 }else if( (isBGR(srcFormat) && isRGB(dstFormat))
1523 || (isRGB(srcFormat) && isBGR(dstFormat))){
1524 switch(srcId | (dstId<<4)){
1525 case 0x33: conv= rgb15tobgr15; break;
1526 case 0x34: conv= rgb16tobgr15; break;
1527 case 0x36: conv= rgb24tobgr15; break;
1528 case 0x38: conv= rgb32tobgr15; break;
1529 case 0x43: conv= rgb15tobgr16; break;
1530 case 0x44: conv= rgb16tobgr16; break;
1531 case 0x46: conv= rgb24tobgr16; break;
1532 case 0x48: conv= rgb32tobgr16; break;
1533 case 0x63: conv= rgb15tobgr24; break;
1534 case 0x64: conv= rgb16tobgr24; break;
1535 case 0x66: conv= rgb24tobgr24; break;
1536 case 0x68: conv= rgb32tobgr24; break;
1537 case 0x83: conv= rgb15tobgr32; break;
1538 case 0x84: conv= rgb16tobgr32; break;
1539 case 0x86: conv= rgb24tobgr32; break;
1540 case 0x88: conv= rgb32tobgr32; break;
1541 default: MSG_ERR("swScaler: internal error %s -> %s converter\n",
1542 sws_format_name(srcFormat), sws_format_name(dstFormat)); break;
1545 MSG_ERR("swScaler: internal error %s -> %s converter\n",
1546 sws_format_name(srcFormat), sws_format_name(dstFormat));
1549 if(dstStride[0]*srcBpp == srcStride[0]*dstBpp)
1550 conv(src[0], dst[0] + dstStride[0]*srcSliceY, srcSliceH*srcStride[0]);
1554 uint8_t *srcPtr= src[0];
1555 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1557 for(i=0; i<srcSliceH; i++)
1559 conv(srcPtr, dstPtr, c->srcW*srcBpp);
1560 srcPtr+= srcStride[0];
1561 dstPtr+= dstStride[0];
1567 static int bgr24toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1568 int srcSliceH, uint8_t* dst[], int dstStride[]){
1572 dst[0]+ srcSliceY *dstStride[0],
1573 dst[1]+(srcSliceY>>1)*dstStride[1],
1574 dst[2]+(srcSliceY>>1)*dstStride[2],
1576 dstStride[0], dstStride[1], srcStride[0]);
1580 static int yvu9toyv12Wrapper(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1581 int srcSliceH, uint8_t* dst[], int dstStride[]){
1585 if(srcStride[0]==dstStride[0] && srcStride[0] > 0)
1586 memcpy(dst[0]+ srcSliceY*dstStride[0], src[0], srcStride[0]*srcSliceH);
1588 uint8_t *srcPtr= src[0];
1589 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1591 for(i=0; i<srcSliceH; i++)
1593 memcpy(dstPtr, srcPtr, c->srcW);
1594 srcPtr+= srcStride[0];
1595 dstPtr+= dstStride[0];
1599 if(c->dstFormat==IMGFMT_YV12){
1600 planar2x(src[1], dst[1], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[1]);
1601 planar2x(src[2], dst[2], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[2]);
1603 planar2x(src[1], dst[2], c->chrSrcW, c->chrSrcH, srcStride[1], dstStride[2]);
1604 planar2x(src[2], dst[1], c->chrSrcW, c->chrSrcH, srcStride[2], dstStride[1]);
1610 * bring pointers in YUV order instead of YVU
1612 static inline void sws_orderYUV(int format, uint8_t * sortedP[], int sortedStride[], uint8_t * p[], int stride[]){
1613 if(format == IMGFMT_YV12 || format == IMGFMT_YVU9
1614 || format == IMGFMT_444P || format == IMGFMT_422P || format == IMGFMT_411P){
1618 sortedStride[0]= stride[0];
1619 sortedStride[1]= stride[2];
1620 sortedStride[2]= stride[1];
1622 else if(isPacked(format) || isGray(format) || format == IMGFMT_Y8)
1627 sortedStride[0]= stride[0];
1631 else if(format == IMGFMT_I420 || format == IMGFMT_IYUV)
1636 sortedStride[0]= stride[0];
1637 sortedStride[1]= stride[1];
1638 sortedStride[2]= stride[2];
1640 else if(format == IMGFMT_NV12 || format == IMGFMT_NV21)
1645 sortedStride[0]= stride[0];
1646 sortedStride[1]= stride[1];
1649 MSG_ERR("internal error in orderYUV\n");
1653 /* unscaled copy like stuff (assumes nearly identical formats) */
1654 static int simpleCopy(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
1655 int srcSliceH, uint8_t* dst[], int dstStride[]){
1657 if(isPacked(c->srcFormat))
1659 if(dstStride[0]==srcStride[0] && srcStride[0] > 0)
1660 memcpy(dst[0] + dstStride[0]*srcSliceY, src[0], srcSliceH*dstStride[0]);
1664 uint8_t *srcPtr= src[0];
1665 uint8_t *dstPtr= dst[0] + dstStride[0]*srcSliceY;
1668 /* universal length finder */
1669 while(length+c->srcW <= ABS(dstStride[0])
1670 && length+c->srcW <= ABS(srcStride[0])) length+= c->srcW;
1673 for(i=0; i<srcSliceH; i++)
1675 memcpy(dstPtr, srcPtr, length);
1676 srcPtr+= srcStride[0];
1677 dstPtr+= dstStride[0];
1682 { /* Planar YUV or gray */
1684 for(plane=0; plane<3; plane++)
1686 int length= plane==0 ? c->srcW : -((-c->srcW )>>c->chrDstHSubSample);
1687 int y= plane==0 ? srcSliceY: -((-srcSliceY)>>c->chrDstVSubSample);
1688 int height= plane==0 ? srcSliceH: -((-srcSliceH)>>c->chrDstVSubSample);
1690 if((isGray(c->srcFormat) || isGray(c->dstFormat)) && plane>0)
1692 if(!isGray(c->dstFormat))
1693 memset(dst[plane], 128, dstStride[plane]*height);
1697 if(dstStride[plane]==srcStride[plane] && srcStride[plane] > 0)
1698 memcpy(dst[plane] + dstStride[plane]*y, src[plane], height*dstStride[plane]);
1702 uint8_t *srcPtr= src[plane];
1703 uint8_t *dstPtr= dst[plane] + dstStride[plane]*y;
1704 for(i=0; i<height; i++)
1706 memcpy(dstPtr, srcPtr, length);
1707 srcPtr+= srcStride[plane];
1708 dstPtr+= dstStride[plane];
1717 static int remove_dup_fourcc(int fourcc)
1722 case IMGFMT_IYUV: return IMGFMT_YV12;
1723 case IMGFMT_Y8 : return IMGFMT_Y800;
1724 case IMGFMT_IF09: return IMGFMT_YVU9;
1725 default: return fourcc;
1729 static void getSubSampleFactors(int *h, int *v, int format){
1737 case IMGFMT_Y800: //FIXME remove after different subsamplings are fully implemented
1766 static uint16_t roundToInt16(int64_t f){
1767 int r= (f + (1<<15))>>16;
1768 if(r<-0x7FFF) return 0x8000;
1769 else if(r> 0x7FFF) return 0x7FFF;
1774 * @param inv_table the yuv2rgb coeffs, normally Inverse_Table_6_9[x]
1775 * @param fullRange if 1 then the luma range is 0..255 if 0 its 16..235
1776 * @return -1 if not supported
1778 int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation){
1779 int64_t crv = inv_table[0];
1780 int64_t cbu = inv_table[1];
1781 int64_t cgu = -inv_table[2];
1782 int64_t cgv = -inv_table[3];
1786 if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1787 memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
1788 memcpy(c->dstColorspaceTable, table, sizeof(int)*4);
1790 c->brightness= brightness;
1791 c->contrast = contrast;
1792 c->saturation= saturation;
1793 c->srcRange = srcRange;
1794 c->dstRange = dstRange;
1796 c->uOffset= 0x0400040004000400LL;
1797 c->vOffset= 0x0400040004000400LL;
1804 cy = (cy *contrast )>>16;
1805 crv= (crv*contrast * saturation)>>32;
1806 cbu= (cbu*contrast * saturation)>>32;
1807 cgu= (cgu*contrast * saturation)>>32;
1808 cgv= (cgv*contrast * saturation)>>32;
1810 oy -= 256*brightness;
1812 c->yCoeff= roundToInt16(cy *8192) * 0x0001000100010001ULL;
1813 c->vrCoeff= roundToInt16(crv*8192) * 0x0001000100010001ULL;
1814 c->ubCoeff= roundToInt16(cbu*8192) * 0x0001000100010001ULL;
1815 c->vgCoeff= roundToInt16(cgv*8192) * 0x0001000100010001ULL;
1816 c->ugCoeff= roundToInt16(cgu*8192) * 0x0001000100010001ULL;
1817 c->yOffset= roundToInt16(oy * 8) * 0x0001000100010001ULL;
1819 yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
1822 #ifdef COMPILE_ALTIVEC
1823 if (c->flags & SWS_CPU_CAPS_ALTIVEC)
1824 yuv2rgb_altivec_init_tables (c, inv_table, brightness, contrast, saturation);
1830 * @return -1 if not supported
1832 int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation){
1833 if(isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
1835 *inv_table = c->srcColorspaceTable;
1836 *table = c->dstColorspaceTable;
1837 *srcRange = c->srcRange;
1838 *dstRange = c->dstRange;
1839 *brightness= c->brightness;
1840 *contrast = c->contrast;
1841 *saturation= c->saturation;
1846 SwsContext *sws_getContext(int srcW, int srcH, int origSrcFormat, int dstW, int dstH, int origDstFormat, int flags,
1847 SwsFilter *srcFilter, SwsFilter *dstFilter, double *param){
1851 int usesVFilter, usesHFilter;
1852 int unscaled, needsDither;
1853 int srcFormat, dstFormat;
1854 SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
1855 #if defined(ARCH_X86) || defined(ARCH_X86_64)
1856 if(flags & SWS_CPU_CAPS_MMX)
1857 asm volatile("emms\n\t"::: "memory");
1860 #ifndef RUNTIME_CPUDETECT //ensure that the flags match the compiled variant if cpudetect is off
1861 flags &= ~(SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2|SWS_CPU_CAPS_3DNOW|SWS_CPU_CAPS_ALTIVEC);
1863 flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_MMX2;
1864 #elif defined (HAVE_3DNOW)
1865 flags |= SWS_CPU_CAPS_MMX|SWS_CPU_CAPS_3DNOW;
1866 #elif defined (HAVE_MMX)
1867 flags |= SWS_CPU_CAPS_MMX;
1868 #elif defined (HAVE_ALTIVEC)
1869 flags |= SWS_CPU_CAPS_ALTIVEC;
1872 if(clip_table[512] != 255) globalInit();
1873 if(rgb15to16 == NULL) sws_rgb2rgb_init(flags);
1875 /* avoid duplicate Formats, so we don't need to check to much */
1876 srcFormat = remove_dup_fourcc(origSrcFormat);
1877 dstFormat = remove_dup_fourcc(origDstFormat);
1879 unscaled = (srcW == dstW && srcH == dstH);
1880 needsDither= (isBGR(dstFormat) || isRGB(dstFormat))
1881 && (dstFormat&0xFF)<24
1882 && ((dstFormat&0xFF)<(srcFormat&0xFF) || (!(isRGB(srcFormat) || isBGR(srcFormat))));
1884 if(!isSupportedIn(srcFormat))
1886 MSG_ERR("swScaler: %s is not supported as input format\n", sws_format_name(srcFormat));
1889 if(!isSupportedOut(dstFormat))
1891 MSG_ERR("swScaler: %s is not supported as output format\n", sws_format_name(dstFormat));
1896 if(srcW<4 || srcH<1 || dstW<8 || dstH<1) //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
1898 MSG_ERR("swScaler: %dx%d -> %dx%d is invalid scaling dimension\n",
1899 srcW, srcH, dstW, dstH);
1903 if(!dstFilter) dstFilter= &dummyFilter;
1904 if(!srcFilter) srcFilter= &dummyFilter;
1906 c= av_malloc(sizeof(SwsContext));
1907 memset(c, 0, sizeof(SwsContext));
1913 c->lumXInc= ((srcW<<16) + (dstW>>1))/dstW;
1914 c->lumYInc= ((srcH<<16) + (dstH>>1))/dstH;
1916 c->dstFormat= dstFormat;
1917 c->srcFormat= srcFormat;
1918 c->origDstFormat= origDstFormat;
1919 c->origSrcFormat= origSrcFormat;
1920 c->vRounder= 4* 0x0001000100010001ULL;
1922 usesHFilter= usesVFilter= 0;
1923 if(dstFilter->lumV!=NULL && dstFilter->lumV->length>1) usesVFilter=1;
1924 if(dstFilter->lumH!=NULL && dstFilter->lumH->length>1) usesHFilter=1;
1925 if(dstFilter->chrV!=NULL && dstFilter->chrV->length>1) usesVFilter=1;
1926 if(dstFilter->chrH!=NULL && dstFilter->chrH->length>1) usesHFilter=1;
1927 if(srcFilter->lumV!=NULL && srcFilter->lumV->length>1) usesVFilter=1;
1928 if(srcFilter->lumH!=NULL && srcFilter->lumH->length>1) usesHFilter=1;
1929 if(srcFilter->chrV!=NULL && srcFilter->chrV->length>1) usesVFilter=1;
1930 if(srcFilter->chrH!=NULL && srcFilter->chrH->length>1) usesHFilter=1;
1932 getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
1933 getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
1935 // reuse chroma for 2 pixles rgb/bgr unless user wants full chroma interpolation
1936 if((isBGR(dstFormat) || isRGB(dstFormat)) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
1938 // drop some chroma lines if the user wants it
1939 c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
1940 c->chrSrcVSubSample+= c->vChrDrop;
1942 // drop every 2. pixel for chroma calculation unless user wants full chroma
1943 if((isBGR(srcFormat) || isRGB(srcFormat)) && !(flags&SWS_FULL_CHR_H_INP))
1944 c->chrSrcHSubSample=1;
1947 c->param[0] = param[0];
1948 c->param[1] = param[1];
1951 c->param[1] = SWS_PARAM_DEFAULT;
1954 c->chrIntHSubSample= c->chrDstHSubSample;
1955 c->chrIntVSubSample= c->chrSrcVSubSample;
1957 // note the -((-x)>>y) is so that we allways round toward +inf
1958 c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
1959 c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
1960 c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
1961 c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
1963 sws_setColorspaceDetails(c, Inverse_Table_6_9[SWS_CS_DEFAULT], 0, Inverse_Table_6_9[SWS_CS_DEFAULT] /* FIXME*/, 0, 0, 1<<16, 1<<16);
1965 /* unscaled special Cases */
1966 if(unscaled && !usesHFilter && !usesVFilter)
1969 if(srcFormat == IMGFMT_YV12 && (dstFormat == IMGFMT_NV12 || dstFormat == IMGFMT_NV21))
1971 c->swScale= PlanarToNV12Wrapper;
1974 if((srcFormat==IMGFMT_YV12 || srcFormat==IMGFMT_422P) && (isBGR(dstFormat) || isRGB(dstFormat)))
1976 c->swScale= yuv2rgb_get_func_ptr(c);
1979 if( srcFormat==IMGFMT_YVU9 && dstFormat==IMGFMT_YV12 )
1981 c->swScale= yvu9toyv12Wrapper;
1985 if(srcFormat==IMGFMT_BGR24 && dstFormat==IMGFMT_YV12)
1986 c->swScale= bgr24toyv12Wrapper;
1988 /* rgb/bgr -> rgb/bgr (no dither needed forms) */
1989 if( (isBGR(srcFormat) || isRGB(srcFormat))
1990 && (isBGR(dstFormat) || isRGB(dstFormat))
1992 c->swScale= rgb2rgbWrapper;
1994 /* LQ converters if -sws 0 or -sws 4*/
1995 if(c->flags&(SWS_FAST_BILINEAR|SWS_POINT)){
1996 /* rgb/bgr -> rgb/bgr (dither needed forms) */
1997 if( (isBGR(srcFormat) || isRGB(srcFormat))
1998 && (isBGR(dstFormat) || isRGB(dstFormat))
2000 c->swScale= rgb2rgbWrapper;
2003 if(srcFormat == IMGFMT_YV12 &&
2004 (dstFormat == IMGFMT_YUY2 || dstFormat == IMGFMT_UYVY))
2006 if (dstFormat == IMGFMT_YUY2)
2007 c->swScale= PlanarToYuy2Wrapper;
2009 c->swScale= PlanarToUyvyWrapper;
2013 #ifdef COMPILE_ALTIVEC
2014 if ((c->flags & SWS_CPU_CAPS_ALTIVEC) &&
2015 ((srcFormat == IMGFMT_YV12 &&
2016 (dstFormat == IMGFMT_YUY2 || dstFormat == IMGFMT_UYVY)))) {
2017 // unscaled YV12 -> packed YUV, we want speed
2018 if (dstFormat == IMGFMT_YUY2)
2019 c->swScale= yv12toyuy2_unscaled_altivec;
2021 c->swScale= yv12touyvy_unscaled_altivec;
2026 if( srcFormat == dstFormat
2027 || (isPlanarYUV(srcFormat) && isGray(dstFormat))
2028 || (isPlanarYUV(dstFormat) && isGray(srcFormat))
2031 c->swScale= simpleCopy;
2035 if(flags&SWS_PRINT_INFO)
2036 MSG_INFO("SwScaler: using unscaled %s -> %s special converter\n",
2037 sws_format_name(srcFormat), sws_format_name(dstFormat));
2042 if(flags & SWS_CPU_CAPS_MMX2)
2044 c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
2045 if(!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR))
2047 if(flags&SWS_PRINT_INFO)
2048 MSG_INFO("SwScaler: output Width is not a multiple of 32 -> no MMX2 scaler\n");
2050 if(usesHFilter) c->canMMX2BeUsed=0;
2055 c->chrXInc= ((c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
2056 c->chrYInc= ((c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
2058 // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
2059 // but only for the FAST_BILINEAR mode otherwise do correct scaling
2060 // n-2 is the last chrominance sample available
2061 // this is not perfect, but noone shuld notice the difference, the more correct variant
2062 // would be like the vertical one, but that would require some special code for the
2063 // first and last pixel
2064 if(flags&SWS_FAST_BILINEAR)
2066 if(c->canMMX2BeUsed)
2071 //we don't use the x86asm scaler if mmx is available
2072 else if(flags & SWS_CPU_CAPS_MMX)
2074 c->lumXInc = ((srcW-2)<<16)/(dstW-2) - 20;
2075 c->chrXInc = ((c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
2079 /* precalculate horizontal scaler filter coefficients */
2081 const int filterAlign=
2082 (flags & SWS_CPU_CAPS_MMX) ? 4 :
2083 (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2086 initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
2087 srcW , dstW, filterAlign, 1<<14,
2088 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
2089 srcFilter->lumH, dstFilter->lumH, c->param);
2090 initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
2091 c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
2092 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2093 srcFilter->chrH, dstFilter->chrH, c->param);
2095 #if defined(ARCH_X86) || defined(ARCH_X86_64)
2096 // can't downscale !!!
2097 if(c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR))
2099 #define MAX_FUNNY_CODE_SIZE 10000
2100 #ifdef MAP_ANONYMOUS
2101 c->funnyYCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2102 c->funnyUVCode = (uint8_t*)mmap(NULL, MAX_FUNNY_CODE_SIZE, PROT_EXEC | PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
2104 c->funnyYCode = av_malloc(MAX_FUNNY_CODE_SIZE);
2105 c->funnyUVCode = av_malloc(MAX_FUNNY_CODE_SIZE);
2108 c->lumMmx2Filter = av_malloc((dstW /8+8)*sizeof(int16_t));
2109 c->chrMmx2Filter = av_malloc((c->chrDstW /4+8)*sizeof(int16_t));
2110 c->lumMmx2FilterPos= av_malloc((dstW /2/8+8)*sizeof(int32_t));
2111 c->chrMmx2FilterPos= av_malloc((c->chrDstW/2/4+8)*sizeof(int32_t));
2113 initMMX2HScaler( dstW, c->lumXInc, c->funnyYCode , c->lumMmx2Filter, c->lumMmx2FilterPos, 8);
2114 initMMX2HScaler(c->chrDstW, c->chrXInc, c->funnyUVCode, c->chrMmx2Filter, c->chrMmx2FilterPos, 4);
2117 } // Init Horizontal stuff
2121 /* precalculate vertical scaler filter coefficients */
2123 const int filterAlign=
2124 (flags & SWS_CPU_CAPS_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
2125 (flags & SWS_CPU_CAPS_ALTIVEC) ? 8 :
2128 initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
2129 srcH , dstH, filterAlign, (1<<12)-4,
2130 (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC) : flags,
2131 srcFilter->lumV, dstFilter->lumV, c->param);
2132 initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
2133 c->chrSrcH, c->chrDstH, filterAlign, (1<<12)-4,
2134 (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags,
2135 srcFilter->chrV, dstFilter->chrV, c->param);
2138 c->vYCoeffsBank = av_malloc(sizeof (vector signed short)*c->vLumFilterSize*c->dstH);
2139 c->vCCoeffsBank = av_malloc(sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH);
2141 for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
2143 short *p = (short *)&c->vYCoeffsBank[i];
2145 p[j] = c->vLumFilter[i];
2148 for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
2150 short *p = (short *)&c->vCCoeffsBank[i];
2152 p[j] = c->vChrFilter[i];
2157 // Calculate Buffer Sizes so that they won't run out while handling these damn slices
2158 c->vLumBufSize= c->vLumFilterSize;
2159 c->vChrBufSize= c->vChrFilterSize;
2160 for(i=0; i<dstH; i++)
2162 int chrI= i*c->chrDstH / dstH;
2163 int nextSlice= FFMAX(c->vLumFilterPos[i ] + c->vLumFilterSize - 1,
2164 ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
2166 nextSlice>>= c->chrSrcVSubSample;
2167 nextSlice<<= c->chrSrcVSubSample;
2168 if(c->vLumFilterPos[i ] + c->vLumBufSize < nextSlice)
2169 c->vLumBufSize= nextSlice - c->vLumFilterPos[i ];
2170 if(c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
2171 c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
2174 // allocate pixbufs (we use dynamic allocation because otherwise we would need to
2175 c->lumPixBuf= av_malloc(c->vLumBufSize*2*sizeof(int16_t*));
2176 c->chrPixBuf= av_malloc(c->vChrBufSize*2*sizeof(int16_t*));
2177 //Note we need at least one pixel more at the end because of the mmx code (just in case someone wanna replace the 4000/8000)
2178 /* align at 16 bytes for AltiVec */
2179 for(i=0; i<c->vLumBufSize; i++)
2180 c->lumPixBuf[i]= c->lumPixBuf[i+c->vLumBufSize]= av_malloc(4000);
2181 for(i=0; i<c->vChrBufSize; i++)
2182 c->chrPixBuf[i]= c->chrPixBuf[i+c->vChrBufSize]= av_malloc(8000);
2184 //try to avoid drawing green stuff between the right end and the stride end
2185 for(i=0; i<c->vLumBufSize; i++) memset(c->lumPixBuf[i], 0, 4000);
2186 for(i=0; i<c->vChrBufSize; i++) memset(c->chrPixBuf[i], 64, 8000);
2188 ASSERT(c->chrDstH <= dstH)
2190 if(flags&SWS_PRINT_INFO)
2193 char *dither= " dithered";
2197 if(flags&SWS_FAST_BILINEAR)
2198 MSG_INFO("\nSwScaler: FAST_BILINEAR scaler, ");
2199 else if(flags&SWS_BILINEAR)
2200 MSG_INFO("\nSwScaler: BILINEAR scaler, ");
2201 else if(flags&SWS_BICUBIC)
2202 MSG_INFO("\nSwScaler: BICUBIC scaler, ");
2203 else if(flags&SWS_X)
2204 MSG_INFO("\nSwScaler: Experimental scaler, ");
2205 else if(flags&SWS_POINT)
2206 MSG_INFO("\nSwScaler: Nearest Neighbor / POINT scaler, ");
2207 else if(flags&SWS_AREA)
2208 MSG_INFO("\nSwScaler: Area Averageing scaler, ");
2209 else if(flags&SWS_BICUBLIN)
2210 MSG_INFO("\nSwScaler: luma BICUBIC / chroma BILINEAR scaler, ");
2211 else if(flags&SWS_GAUSS)
2212 MSG_INFO("\nSwScaler: Gaussian scaler, ");
2213 else if(flags&SWS_SINC)
2214 MSG_INFO("\nSwScaler: Sinc scaler, ");
2215 else if(flags&SWS_LANCZOS)
2216 MSG_INFO("\nSwScaler: Lanczos scaler, ");
2217 else if(flags&SWS_SPLINE)
2218 MSG_INFO("\nSwScaler: Bicubic spline scaler, ");
2220 MSG_INFO("\nSwScaler: ehh flags invalid?! ");
2222 if(dstFormat==IMGFMT_BGR15 || dstFormat==IMGFMT_BGR16)
2223 MSG_INFO("from %s to%s %s ",
2224 sws_format_name(srcFormat), dither, sws_format_name(dstFormat));
2226 MSG_INFO("from %s to %s ",
2227 sws_format_name(srcFormat), sws_format_name(dstFormat));
2229 if(flags & SWS_CPU_CAPS_MMX2)
2230 MSG_INFO("using MMX2\n");
2231 else if(flags & SWS_CPU_CAPS_3DNOW)
2232 MSG_INFO("using 3DNOW\n");
2233 else if(flags & SWS_CPU_CAPS_MMX)
2234 MSG_INFO("using MMX\n");
2235 else if(flags & SWS_CPU_CAPS_ALTIVEC)
2236 MSG_INFO("using AltiVec\n");
2238 MSG_INFO("using C\n");
2241 if(flags & SWS_PRINT_INFO)
2243 if(flags & SWS_CPU_CAPS_MMX)
2245 if(c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
2246 MSG_V("SwScaler: using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
2249 if(c->hLumFilterSize==4)
2250 MSG_V("SwScaler: using 4-tap MMX scaler for horizontal luminance scaling\n");
2251 else if(c->hLumFilterSize==8)
2252 MSG_V("SwScaler: using 8-tap MMX scaler for horizontal luminance scaling\n");
2254 MSG_V("SwScaler: using n-tap MMX scaler for horizontal luminance scaling\n");
2256 if(c->hChrFilterSize==4)
2257 MSG_V("SwScaler: using 4-tap MMX scaler for horizontal chrominance scaling\n");
2258 else if(c->hChrFilterSize==8)
2259 MSG_V("SwScaler: using 8-tap MMX scaler for horizontal chrominance scaling\n");
2261 MSG_V("SwScaler: using n-tap MMX scaler for horizontal chrominance scaling\n");
2266 #if defined(ARCH_X86) || defined(ARCH_X86_64)
2267 MSG_V("SwScaler: using X86-Asm scaler for horizontal scaling\n");
2269 if(flags & SWS_FAST_BILINEAR)
2270 MSG_V("SwScaler: using FAST_BILINEAR C scaler for horizontal scaling\n");
2272 MSG_V("SwScaler: using C scaler for horizontal scaling\n");
2275 if(isPlanarYUV(dstFormat))
2277 if(c->vLumFilterSize==1)
2278 MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2280 MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (YV12 like)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2284 if(c->vLumFilterSize==1 && c->vChrFilterSize==2)
2285 MSG_V("SwScaler: using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
2286 "SwScaler: 2-tap scaler for vertical chrominance scaling (BGR)\n",(flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2287 else if(c->vLumFilterSize==2 && c->vChrFilterSize==2)
2288 MSG_V("SwScaler: using 2-tap linear %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2290 MSG_V("SwScaler: using n-tap %s scaler for vertical scaling (BGR)\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2293 if(dstFormat==IMGFMT_BGR24)
2294 MSG_V("SwScaler: using %s YV12->BGR24 Converter\n",
2295 (flags & SWS_CPU_CAPS_MMX2) ? "MMX2" : ((flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C"));
2296 else if(dstFormat==IMGFMT_BGR32)
2297 MSG_V("SwScaler: using %s YV12->BGR32 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2298 else if(dstFormat==IMGFMT_BGR16)
2299 MSG_V("SwScaler: using %s YV12->BGR16 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2300 else if(dstFormat==IMGFMT_BGR15)
2301 MSG_V("SwScaler: using %s YV12->BGR15 Converter\n", (flags & SWS_CPU_CAPS_MMX) ? "MMX" : "C");
2303 MSG_V("SwScaler: %dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
2305 if(flags & SWS_PRINT_INFO)
2307 MSG_DBG2("SwScaler:Lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2308 c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
2309 MSG_DBG2("SwScaler:Chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
2310 c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
2313 c->swScale= getSwsFunc(flags);
2318 * swscale warper, so we don't need to export the SwsContext.
2319 * assumes planar YUV to be in YUV order instead of YVU
2321 int sws_scale_ordered(SwsContext *c, uint8_t* src[], int srcStride[], int srcSliceY,
2322 int srcSliceH, uint8_t* dst[], int dstStride[]){
2323 if (c->sliceDir == 0 && srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
2324 MSG_ERR("swScaler: slices start in the middle!\n");
2327 if (c->sliceDir == 0) {
2328 if (srcSliceY == 0) c->sliceDir = 1; else c->sliceDir = -1;
2331 // copy strides, so they can safely be modified
2332 if (c->sliceDir == 1) {
2333 // slices go from top to bottom
2334 int srcStride2[3]= {srcStride[0], srcStride[1], srcStride[2]};
2335 int dstStride2[3]= {dstStride[0], dstStride[1], dstStride[2]};
2336 return c->swScale(c, src, srcStride2, srcSliceY, srcSliceH, dst, dstStride2);
2338 // slices go from bottom to top => we flip the image internally
2339 uint8_t* src2[3]= {src[0] + (srcSliceH-1)*srcStride[0],
2340 src[1] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[1],
2341 src[2] + ((srcSliceH>>c->chrSrcVSubSample)-1)*srcStride[2]
2343 uint8_t* dst2[3]= {dst[0] + (c->dstH-1)*dstStride[0],
2344 dst[1] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[1],
2345 dst[2] + ((c->dstH>>c->chrDstVSubSample)-1)*dstStride[2]};
2346 int srcStride2[3]= {-srcStride[0], -srcStride[1], -srcStride[2]};
2347 int dstStride2[3]= {-dstStride[0], -dstStride[1], -dstStride[2]};
2349 return c->swScale(c, src2, srcStride2, c->srcH-srcSliceY-srcSliceH, srcSliceH, dst2, dstStride2);
2354 * swscale warper, so we don't need to export the SwsContext
2356 int sws_scale(SwsContext *c, uint8_t* srcParam[], int srcStrideParam[], int srcSliceY,
2357 int srcSliceH, uint8_t* dstParam[], int dstStrideParam[]){
2362 sws_orderYUV(c->origSrcFormat, src, srcStride, srcParam, srcStrideParam);
2363 sws_orderYUV(c->origDstFormat, dst, dstStride, dstParam, dstStrideParam);
2364 //printf("sws: slice %d %d\n", srcSliceY, srcSliceH);
2366 return c->swScale(c, src, srcStride, srcSliceY, srcSliceH, dst, dstStride);
2369 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
2370 float lumaSharpen, float chromaSharpen,
2371 float chromaHShift, float chromaVShift,
2374 SwsFilter *filter= av_malloc(sizeof(SwsFilter));
2377 filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
2378 filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
2380 filter->lumH= sws_getIdentityVec();
2381 filter->lumV= sws_getIdentityVec();
2384 if(chromaGBlur!=0.0){
2385 filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
2386 filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
2388 filter->chrH= sws_getIdentityVec();
2389 filter->chrV= sws_getIdentityVec();
2392 if(chromaSharpen!=0.0){
2393 SwsVector *id= sws_getIdentityVec();
2394 sws_scaleVec(filter->chrH, -chromaSharpen);
2395 sws_scaleVec(filter->chrV, -chromaSharpen);
2396 sws_addVec(filter->chrH, id);
2397 sws_addVec(filter->chrV, id);
2401 if(lumaSharpen!=0.0){
2402 SwsVector *id= sws_getIdentityVec();
2403 sws_scaleVec(filter->lumH, -lumaSharpen);
2404 sws_scaleVec(filter->lumV, -lumaSharpen);
2405 sws_addVec(filter->lumH, id);
2406 sws_addVec(filter->lumV, id);
2410 if(chromaHShift != 0.0)
2411 sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
2413 if(chromaVShift != 0.0)
2414 sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
2416 sws_normalizeVec(filter->chrH, 1.0);
2417 sws_normalizeVec(filter->chrV, 1.0);
2418 sws_normalizeVec(filter->lumH, 1.0);
2419 sws_normalizeVec(filter->lumV, 1.0);
2421 if(verbose) sws_printVec(filter->chrH);
2422 if(verbose) sws_printVec(filter->lumH);
2428 * returns a normalized gaussian curve used to filter stuff
2429 * quality=3 is high quality, lowwer is lowwer quality
2431 SwsVector *sws_getGaussianVec(double variance, double quality){
2432 const int length= (int)(variance*quality + 0.5) | 1;
2434 double *coeff= av_malloc(length*sizeof(double));
2435 double middle= (length-1)*0.5;
2436 SwsVector *vec= av_malloc(sizeof(SwsVector));
2439 vec->length= length;
2441 for(i=0; i<length; i++)
2443 double dist= i-middle;
2444 coeff[i]= exp( -dist*dist/(2*variance*variance) ) / sqrt(2*variance*PI);
2447 sws_normalizeVec(vec, 1.0);
2452 SwsVector *sws_getConstVec(double c, int length){
2454 double *coeff= av_malloc(length*sizeof(double));
2455 SwsVector *vec= av_malloc(sizeof(SwsVector));
2458 vec->length= length;
2460 for(i=0; i<length; i++)
2467 SwsVector *sws_getIdentityVec(void){
2468 return sws_getConstVec(1.0, 1);
2471 double sws_dcVec(SwsVector *a){
2475 for(i=0; i<a->length; i++)
2481 void sws_scaleVec(SwsVector *a, double scalar){
2484 for(i=0; i<a->length; i++)
2485 a->coeff[i]*= scalar;
2488 void sws_normalizeVec(SwsVector *a, double height){
2489 sws_scaleVec(a, height/sws_dcVec(a));
2492 static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b){
2493 int length= a->length + b->length - 1;
2494 double *coeff= av_malloc(length*sizeof(double));
2496 SwsVector *vec= av_malloc(sizeof(SwsVector));
2499 vec->length= length;
2501 for(i=0; i<length; i++) coeff[i]= 0.0;
2503 for(i=0; i<a->length; i++)
2505 for(j=0; j<b->length; j++)
2507 coeff[i+j]+= a->coeff[i]*b->coeff[j];
2514 static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b){
2515 int length= FFMAX(a->length, b->length);
2516 double *coeff= av_malloc(length*sizeof(double));
2518 SwsVector *vec= av_malloc(sizeof(SwsVector));
2521 vec->length= length;
2523 for(i=0; i<length; i++) coeff[i]= 0.0;
2525 for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2526 for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
2531 static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b){
2532 int length= FFMAX(a->length, b->length);
2533 double *coeff= av_malloc(length*sizeof(double));
2535 SwsVector *vec= av_malloc(sizeof(SwsVector));
2538 vec->length= length;
2540 for(i=0; i<length; i++) coeff[i]= 0.0;
2542 for(i=0; i<a->length; i++) coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
2543 for(i=0; i<b->length; i++) coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
2548 /* shift left / or right if "shift" is negative */
2549 static SwsVector *sws_getShiftedVec(SwsVector *a, int shift){
2550 int length= a->length + ABS(shift)*2;
2551 double *coeff= av_malloc(length*sizeof(double));
2553 SwsVector *vec= av_malloc(sizeof(SwsVector));
2556 vec->length= length;
2558 for(i=0; i<length; i++) coeff[i]= 0.0;
2560 for(i=0; i<a->length; i++)
2562 coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
2568 void sws_shiftVec(SwsVector *a, int shift){
2569 SwsVector *shifted= sws_getShiftedVec(a, shift);
2571 a->coeff= shifted->coeff;
2572 a->length= shifted->length;
2576 void sws_addVec(SwsVector *a, SwsVector *b){
2577 SwsVector *sum= sws_sumVec(a, b);
2579 a->coeff= sum->coeff;
2580 a->length= sum->length;
2584 void sws_subVec(SwsVector *a, SwsVector *b){
2585 SwsVector *diff= sws_diffVec(a, b);
2587 a->coeff= diff->coeff;
2588 a->length= diff->length;
2592 void sws_convVec(SwsVector *a, SwsVector *b){
2593 SwsVector *conv= sws_getConvVec(a, b);
2595 a->coeff= conv->coeff;
2596 a->length= conv->length;
2600 SwsVector *sws_cloneVec(SwsVector *a){
2601 double *coeff= av_malloc(a->length*sizeof(double));
2603 SwsVector *vec= av_malloc(sizeof(SwsVector));
2606 vec->length= a->length;
2608 for(i=0; i<a->length; i++) coeff[i]= a->coeff[i];
2613 void sws_printVec(SwsVector *a){
2619 for(i=0; i<a->length; i++)
2620 if(a->coeff[i]>max) max= a->coeff[i];
2622 for(i=0; i<a->length; i++)
2623 if(a->coeff[i]<min) min= a->coeff[i];
2627 for(i=0; i<a->length; i++)
2629 int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
2630 MSG_DBG2("%1.3f ", a->coeff[i]);
2631 for(;x>0; x--) MSG_DBG2(" ");
2636 void sws_freeVec(SwsVector *a){
2644 void sws_freeFilter(SwsFilter *filter){
2647 if(filter->lumH) sws_freeVec(filter->lumH);
2648 if(filter->lumV) sws_freeVec(filter->lumV);
2649 if(filter->chrH) sws_freeVec(filter->chrH);
2650 if(filter->chrV) sws_freeVec(filter->chrV);
2655 void sws_freeContext(SwsContext *c){
2661 for(i=0; i<c->vLumBufSize; i++)
2663 av_free(c->lumPixBuf[i]);
2664 c->lumPixBuf[i]=NULL;
2666 av_free(c->lumPixBuf);
2672 for(i=0; i<c->vChrBufSize; i++)
2674 av_free(c->chrPixBuf[i]);
2675 c->chrPixBuf[i]=NULL;
2677 av_free(c->chrPixBuf);
2681 av_free(c->vLumFilter);
2682 c->vLumFilter = NULL;
2683 av_free(c->vChrFilter);
2684 c->vChrFilter = NULL;
2685 av_free(c->hLumFilter);
2686 c->hLumFilter = NULL;
2687 av_free(c->hChrFilter);
2688 c->hChrFilter = NULL;
2690 av_free(c->vYCoeffsBank);
2691 c->vYCoeffsBank = NULL;
2692 av_free(c->vCCoeffsBank);
2693 c->vCCoeffsBank = NULL;
2696 av_free(c->vLumFilterPos);
2697 c->vLumFilterPos = NULL;
2698 av_free(c->vChrFilterPos);
2699 c->vChrFilterPos = NULL;
2700 av_free(c->hLumFilterPos);
2701 c->hLumFilterPos = NULL;
2702 av_free(c->hChrFilterPos);
2703 c->hChrFilterPos = NULL;
2705 #if defined(ARCH_X86) || defined(ARCH_X86_64)
2706 #ifdef MAP_ANONYMOUS
2707 if(c->funnyYCode) munmap(c->funnyYCode, MAX_FUNNY_CODE_SIZE);
2708 if(c->funnyUVCode) munmap(c->funnyUVCode, MAX_FUNNY_CODE_SIZE);
2710 av_free(c->funnyYCode);
2711 av_free(c->funnyUVCode);
2714 c->funnyUVCode=NULL;
2717 av_free(c->lumMmx2Filter);
2718 c->lumMmx2Filter=NULL;
2719 av_free(c->chrMmx2Filter);
2720 c->chrMmx2Filter=NULL;
2721 av_free(c->lumMmx2FilterPos);
2722 c->lumMmx2FilterPos=NULL;
2723 av_free(c->chrMmx2FilterPos);
2724 c->chrMmx2FilterPos=NULL;
2725 av_free(c->yuvTable);