bfin: Refactor duplicated assembly-related macros
[ffmpeg.git] / libavutil / lls.h
1 /*
2  * linear least squares model
3  *
4  * Copyright (c) 2006 Michael Niedermayer <michaelni@gmx.at>
5  *
6  * This file is part of Libav.
7  *
8  * Libav is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * Libav is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with Libav; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22
23 #ifndef AVUTIL_LLS_H
24 #define AVUTIL_LLS_H
25
26 #include "common.h"
27 #include "mem.h"
28 #include "version.h"
29
30 #define MAX_VARS 32
31 #define MAX_VARS_ALIGN FFALIGN(MAX_VARS+1,4)
32
33 //FIXME avoid direct access to LLSModel from outside
34
35 /**
36  * Linear least squares model.
37  */
38 typedef struct LLSModel {
39     DECLARE_ALIGNED(32, double, covariance[MAX_VARS_ALIGN][MAX_VARS_ALIGN]);
40     DECLARE_ALIGNED(32, double, coeff[MAX_VARS][MAX_VARS]);
41     double variance[MAX_VARS];
42     int indep_count;
43     /**
44      * Take the outer-product of var[] with itself, and add to the covariance matrix.
45      * @param m this context
46      * @param var training samples, starting with the value to be predicted
47      *            32-byte aligned, and any padding elements must be initialized
48      *            (i.e not denormal/nan).
49      */
50     void (*update_lls)(struct LLSModel *m, double *var);
51     /**
52      * Inner product of var[] and the LPC coefs.
53      * @param m this context
54      * @param var training samples, excluding the value to be predicted. unaligned.
55      * @param order lpc order
56      */
57     double (*evaluate_lls)(struct LLSModel *m, double *var, int order);
58 } LLSModel;
59
60 void avpriv_init_lls(LLSModel *m, int indep_count);
61 void ff_init_lls_x86(LLSModel *m);
62 void avpriv_solve_lls(LLSModel *m, double threshold, unsigned short min_order);
63
64 #if FF_API_LLS_PRIVATE
65 void av_init_lls(LLSModel *m, int indep_count);
66 void av_update_lls(LLSModel *m, double *param, double decay);
67 void av_solve_lls(LLSModel *m, double threshold, int min_order);
68 double av_evaluate_lls(LLSModel *m, double *param, int order);
69 #endif /* FF_API_LLS_PRIVATE */
70
71 #endif /* AVUTIL_LLS_H */