avcodec/h264_slice: Check picture structure before setting the related fields
[ffmpeg.git] / libavfilter / af_biquads.c
1 /*
2  * Copyright (c) 2013 Paul B Mahol
3  * Copyright (c) 2006-2008 Rob Sykes <robs@users.sourceforge.net>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 /*
23  * 2-pole filters designed by Robert Bristow-Johnson <rbj@audioimagination.com>
24  *   see http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt
25  *
26  * 1-pole filters based on code (c) 2000 Chris Bagwell <cbagwell@sprynet.com>
27  *   Algorithms: Recursive single pole low/high pass filter
28  *   Reference: The Scientist and Engineer's Guide to Digital Signal Processing
29  *
30  *   low-pass: output[N] = input[N] * A + output[N-1] * B
31  *     X = exp(-2.0 * pi * Fc)
32  *     A = 1 - X
33  *     B = X
34  *     Fc = cutoff freq / sample rate
35  *
36  *     Mimics an RC low-pass filter:
37  *
38  *     ---/\/\/\/\----------->
39  *                   |
40  *                  --- C
41  *                  ---
42  *                   |
43  *                   |
44  *                   V
45  *
46  *   high-pass: output[N] = A0 * input[N] + A1 * input[N-1] + B1 * output[N-1]
47  *     X  = exp(-2.0 * pi * Fc)
48  *     A0 = (1 + X) / 2
49  *     A1 = -(1 + X) / 2
50  *     B1 = X
51  *     Fc = cutoff freq / sample rate
52  *
53  *     Mimics an RC high-pass filter:
54  *
55  *         || C
56  *     ----||--------->
57  *         ||    |
58  *               <
59  *               > R
60  *               <
61  *               |
62  *               V
63  */
64
65 #include "libavutil/avassert.h"
66 #include "libavutil/opt.h"
67 #include "audio.h"
68 #include "avfilter.h"
69 #include "internal.h"
70
71 enum FilterType {
72     biquad,
73     equalizer,
74     bass,
75     treble,
76     band,
77     bandpass,
78     bandreject,
79     allpass,
80     highpass,
81     lowpass,
82 };
83
84 enum WidthType {
85     NONE,
86     HERTZ,
87     OCTAVE,
88     QFACTOR,
89     SLOPE,
90 };
91
92 typedef struct ChanCache {
93     double i1, i2;
94     double o1, o2;
95 } ChanCache;
96
97 typedef struct {
98     const AVClass *class;
99
100     enum FilterType filter_type;
101     enum WidthType width_type;
102     int poles;
103     int csg;
104
105     double gain;
106     double frequency;
107     double width;
108
109     double a0, a1, a2;
110     double b0, b1, b2;
111
112     ChanCache *cache;
113
114     void (*filter)(const void *ibuf, void *obuf, int len,
115                    double *i1, double *i2, double *o1, double *o2,
116                    double b0, double b1, double b2, double a1, double a2);
117 } BiquadsContext;
118
119 static av_cold int init(AVFilterContext *ctx)
120 {
121     BiquadsContext *s = ctx->priv;
122
123     if (s->filter_type != biquad) {
124         if (s->frequency <= 0 || s->width <= 0) {
125             av_log(ctx, AV_LOG_ERROR, "Invalid frequency %f and/or width %f <= 0\n",
126                    s->frequency, s->width);
127             return AVERROR(EINVAL);
128         }
129     }
130
131     return 0;
132 }
133
134 static int query_formats(AVFilterContext *ctx)
135 {
136     AVFilterFormats *formats;
137     AVFilterChannelLayouts *layouts;
138     static const enum AVSampleFormat sample_fmts[] = {
139         AV_SAMPLE_FMT_S16P,
140         AV_SAMPLE_FMT_S32P,
141         AV_SAMPLE_FMT_FLTP,
142         AV_SAMPLE_FMT_DBLP,
143         AV_SAMPLE_FMT_NONE
144     };
145
146     layouts = ff_all_channel_layouts();
147     if (!layouts)
148         return AVERROR(ENOMEM);
149     ff_set_common_channel_layouts(ctx, layouts);
150
151     formats = ff_make_format_list(sample_fmts);
152     if (!formats)
153         return AVERROR(ENOMEM);
154     ff_set_common_formats(ctx, formats);
155
156     formats = ff_all_samplerates();
157     if (!formats)
158         return AVERROR(ENOMEM);
159     ff_set_common_samplerates(ctx, formats);
160
161     return 0;
162 }
163
164 #define BIQUAD_FILTER(name, type, min, max, need_clipping)                    \
165 static void biquad_## name (const void *input, void *output, int len,         \
166                             double *in1, double *in2,                         \
167                             double *out1, double *out2,                       \
168                             double b0, double b1, double b2,                  \
169                             double a1, double a2)                             \
170 {                                                                             \
171     const type *ibuf = input;                                                 \
172     type *obuf = output;                                                      \
173     double i1 = *in1;                                                         \
174     double i2 = *in2;                                                         \
175     double o1 = *out1;                                                        \
176     double o2 = *out2;                                                        \
177     int i;                                                                    \
178     a1 = -a1;                                                                 \
179     a2 = -a2;                                                                 \
180                                                                               \
181     for (i = 0; i+1 < len; i++) {                                             \
182         o2 = i2 * b2 + i1 * b1 + ibuf[i] * b0 + o2 * a2 + o1 * a1;            \
183         i2 = ibuf[i];                                                         \
184         if (need_clipping && o2 < min) {                                      \
185             av_log(NULL, AV_LOG_WARNING, "clipping\n");                       \
186             obuf[i] = min;                                                    \
187         } else if (need_clipping && o2 > max) {                               \
188             av_log(NULL, AV_LOG_WARNING, "clipping\n");                       \
189             obuf[i] = max;                                                    \
190         } else {                                                              \
191             obuf[i] = o2;                                                     \
192         }                                                                     \
193         i++;                                                                  \
194         o1 = i1 * b2 + i2 * b1 + ibuf[i] * b0 + o1 * a2 + o2 * a1;            \
195         i1 = ibuf[i];                                                         \
196         if (need_clipping && o1 < min) {                                      \
197             av_log(NULL, AV_LOG_WARNING, "clipping\n");                       \
198             obuf[i] = min;                                                    \
199         } else if (need_clipping && o1 > max) {                               \
200             av_log(NULL, AV_LOG_WARNING, "clipping\n");                       \
201             obuf[i] = max;                                                    \
202         } else {                                                              \
203             obuf[i] = o1;                                                     \
204         }                                                                     \
205     }                                                                         \
206     if (i < len) {                                                            \
207         double o0 = ibuf[i] * b0 + i1 * b1 + i2 * b2 + o1 * a1 + o2 * a2;     \
208         i2 = i1;                                                              \
209         i1 = ibuf[i];                                                         \
210         o2 = o1;                                                              \
211         o1 = o0;                                                              \
212         if (need_clipping && o0 < min) {                                      \
213             av_log(NULL, AV_LOG_WARNING, "clipping\n");                       \
214             obuf[i] = min;                                                    \
215         } else if (need_clipping && o0 > max) {                               \
216             av_log(NULL, AV_LOG_WARNING, "clipping\n");                       \
217             obuf[i] = max;                                                    \
218         } else {                                                              \
219             obuf[i] = o0;                                                     \
220         }                                                                     \
221     }                                                                         \
222     *in1  = i1;                                                               \
223     *in2  = i2;                                                               \
224     *out1 = o1;                                                               \
225     *out2 = o2;                                                               \
226 }
227
228 BIQUAD_FILTER(s16, int16_t, INT16_MIN, INT16_MAX, 1)
229 BIQUAD_FILTER(s32, int32_t, INT32_MIN, INT32_MAX, 1)
230 BIQUAD_FILTER(flt, float,   -1., 1., 0)
231 BIQUAD_FILTER(dbl, double,  -1., 1., 0)
232
233 static int config_output(AVFilterLink *outlink)
234 {
235     AVFilterContext *ctx    = outlink->src;
236     BiquadsContext *s       = ctx->priv;
237     AVFilterLink *inlink    = ctx->inputs[0];
238     double A = exp(s->gain / 40 * log(10.));
239     double w0 = 2 * M_PI * s->frequency / inlink->sample_rate;
240     double alpha;
241
242     if (w0 > M_PI) {
243         av_log(ctx, AV_LOG_ERROR,
244                "Invalid frequency %f. Frequency must be less than half the sample-rate %d.\n",
245                s->frequency, inlink->sample_rate);
246         return AVERROR(EINVAL);
247     }
248
249     switch (s->width_type) {
250     case NONE:
251         alpha = 0.0;
252         break;
253     case HERTZ:
254         alpha = sin(w0) / (2 * s->frequency / s->width);
255         break;
256     case OCTAVE:
257         alpha = sin(w0) * sinh(log(2.) / 2 * s->width * w0 / sin(w0));
258         break;
259     case QFACTOR:
260         alpha = sin(w0) / (2 * s->width);
261         break;
262     case SLOPE:
263         alpha = sin(w0) / 2 * sqrt((A + 1 / A) * (1 / s->width - 1) + 2);
264         break;
265     default:
266         av_assert0(0);
267     }
268
269     switch (s->filter_type) {
270     case biquad:
271         break;
272     case equalizer:
273         s->a0 =   1 + alpha / A;
274         s->a1 =  -2 * cos(w0);
275         s->a2 =   1 - alpha / A;
276         s->b0 =   1 + alpha * A;
277         s->b1 =  -2 * cos(w0);
278         s->b2 =   1 - alpha * A;
279         break;
280     case bass:
281         s->a0 =          (A + 1) + (A - 1) * cos(w0) + 2 * sqrt(A) * alpha;
282         s->a1 =    -2 * ((A - 1) + (A + 1) * cos(w0));
283         s->a2 =          (A + 1) + (A - 1) * cos(w0) - 2 * sqrt(A) * alpha;
284         s->b0 =     A * ((A + 1) - (A - 1) * cos(w0) + 2 * sqrt(A) * alpha);
285         s->b1 = 2 * A * ((A - 1) - (A + 1) * cos(w0));
286         s->b2 =     A * ((A + 1) - (A - 1) * cos(w0) - 2 * sqrt(A) * alpha);
287         break;
288     case treble:
289         s->a0 =          (A + 1) - (A - 1) * cos(w0) + 2 * sqrt(A) * alpha;
290         s->a1 =     2 * ((A - 1) - (A + 1) * cos(w0));
291         s->a2 =          (A + 1) - (A - 1) * cos(w0) - 2 * sqrt(A) * alpha;
292         s->b0 =     A * ((A + 1) + (A - 1) * cos(w0) + 2 * sqrt(A) * alpha);
293         s->b1 =-2 * A * ((A - 1) + (A + 1) * cos(w0));
294         s->b2 =     A * ((A + 1) + (A - 1) * cos(w0) - 2 * sqrt(A) * alpha);
295         break;
296     case bandpass:
297         if (s->csg) {
298             s->a0 =  1 + alpha;
299             s->a1 = -2 * cos(w0);
300             s->a2 =  1 - alpha;
301             s->b0 =  sin(w0) / 2;
302             s->b1 =  0;
303             s->b2 = -sin(w0) / 2;
304         } else {
305             s->a0 =  1 + alpha;
306             s->a1 = -2 * cos(w0);
307             s->a2 =  1 - alpha;
308             s->b0 =  alpha;
309             s->b1 =  0;
310             s->b2 = -alpha;
311         }
312         break;
313     case bandreject:
314         s->a0 =  1 + alpha;
315         s->a1 = -2 * cos(w0);
316         s->a2 =  1 - alpha;
317         s->b0 =  1;
318         s->b1 = -2 * cos(w0);
319         s->b2 =  1;
320         break;
321     case lowpass:
322         if (s->poles == 1) {
323             s->a0 = 1;
324             s->a1 = -exp(-w0);
325             s->a2 = 0;
326             s->b0 = 1 + s->a1;
327             s->b1 = 0;
328             s->b2 = 0;
329         } else {
330             s->a0 =  1 + alpha;
331             s->a1 = -2 * cos(w0);
332             s->a2 =  1 - alpha;
333             s->b0 = (1 - cos(w0)) / 2;
334             s->b1 =  1 - cos(w0);
335             s->b2 = (1 - cos(w0)) / 2;
336         }
337         break;
338     case highpass:
339         if (s->poles == 1) {
340             s->a0 = 1;
341             s->a1 = -exp(-w0);
342             s->a2 = 0;
343             s->b0 = (1 - s->a1) / 2;
344             s->b1 = -s->b0;
345             s->b2 = 0;
346         } else {
347             s->a0 =   1 + alpha;
348             s->a1 =  -2 * cos(w0);
349             s->a2 =   1 - alpha;
350             s->b0 =  (1 + cos(w0)) / 2;
351             s->b1 = -(1 + cos(w0));
352             s->b2 =  (1 + cos(w0)) / 2;
353         }
354         break;
355     case allpass:
356         s->a0 =  1 + alpha;
357         s->a1 = -2 * cos(w0);
358         s->a2 =  1 - alpha;
359         s->b0 =  1 - alpha;
360         s->b1 = -2 * cos(w0);
361         s->b2 =  1 + alpha;
362         break;
363     default:
364         av_assert0(0);
365     }
366
367     s->a1 /= s->a0;
368     s->a2 /= s->a0;
369     s->b0 /= s->a0;
370     s->b1 /= s->a0;
371     s->b2 /= s->a0;
372
373     s->cache = av_realloc_f(s->cache, sizeof(ChanCache), inlink->channels);
374     if (!s->cache)
375         return AVERROR(ENOMEM);
376     memset(s->cache, 0, sizeof(ChanCache) * inlink->channels);
377
378     switch (inlink->format) {
379     case AV_SAMPLE_FMT_S16P: s->filter = biquad_s16; break;
380     case AV_SAMPLE_FMT_S32P: s->filter = biquad_s32; break;
381     case AV_SAMPLE_FMT_FLTP: s->filter = biquad_flt; break;
382     case AV_SAMPLE_FMT_DBLP: s->filter = biquad_dbl; break;
383     default: av_assert0(0);
384     }
385
386     return 0;
387 }
388
389 static int filter_frame(AVFilterLink *inlink, AVFrame *buf)
390 {
391     BiquadsContext *s       = inlink->dst->priv;
392     AVFilterLink *outlink   = inlink->dst->outputs[0];
393     AVFrame *out_buf;
394     int nb_samples = buf->nb_samples;
395     int ch;
396
397     if (av_frame_is_writable(buf)) {
398         out_buf = buf;
399     } else {
400         out_buf = ff_get_audio_buffer(inlink, nb_samples);
401         if (!out_buf)
402             return AVERROR(ENOMEM);
403         av_frame_copy_props(out_buf, buf);
404     }
405
406     for (ch = 0; ch < av_frame_get_channels(buf); ch++)
407         s->filter(buf->extended_data[ch],
408                   out_buf->extended_data[ch], nb_samples,
409                   &s->cache[ch].i1, &s->cache[ch].i2,
410                   &s->cache[ch].o1, &s->cache[ch].o2,
411                   s->b0, s->b1, s->b2, s->a1, s->a2);
412
413     if (buf != out_buf)
414         av_frame_free(&buf);
415
416     return ff_filter_frame(outlink, out_buf);
417 }
418
419 static av_cold void uninit(AVFilterContext *ctx)
420 {
421     BiquadsContext *s = ctx->priv;
422
423     av_freep(&s->cache);
424 }
425
426 static const AVFilterPad inputs[] = {
427     {
428         .name         = "default",
429         .type         = AVMEDIA_TYPE_AUDIO,
430         .filter_frame = filter_frame,
431     },
432     { NULL }
433 };
434
435 static const AVFilterPad outputs[] = {
436     {
437         .name         = "default",
438         .type         = AVMEDIA_TYPE_AUDIO,
439         .config_props = config_output,
440     },
441     { NULL }
442 };
443
444 #define OFFSET(x) offsetof(BiquadsContext, x)
445 #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
446
447 #define DEFINE_BIQUAD_FILTER(name_, description_)                       \
448 AVFILTER_DEFINE_CLASS(name_);                                           \
449 static av_cold int name_##_init(AVFilterContext *ctx) \
450 {                                                                       \
451     BiquadsContext *s = ctx->priv;                                      \
452     s->class = &name_##_class;                                          \
453     s->filter_type = name_;                                             \
454     return init(ctx);                                             \
455 }                                                                       \
456                                                          \
457 AVFilter ff_af_##name_ = {                         \
458     .name          = #name_,                             \
459     .description   = NULL_IF_CONFIG_SMALL(description_), \
460     .priv_size     = sizeof(BiquadsContext),             \
461     .init          = name_##_init,                       \
462     .uninit        = uninit,                             \
463     .query_formats = query_formats,                      \
464     .inputs        = inputs,                             \
465     .outputs       = outputs,                            \
466     .priv_class    = &name_##_class,                     \
467 }
468
469 #if CONFIG_EQUALIZER_FILTER
470 static const AVOption equalizer_options[] = {
471     {"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=0}, 0, 999999, FLAGS},
472     {"f",         "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=0}, 0, 999999, FLAGS},
473     {"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, SLOPE, FLAGS, "width_type"},
474     {"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
475     {"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
476     {"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
477     {"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
478     {"width", "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 999, FLAGS},
479     {"w",     "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0, 999, FLAGS},
480     {"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
481     {"g",    "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
482     {NULL}
483 };
484
485 DEFINE_BIQUAD_FILTER(equalizer, "Apply two-pole peaking equalization (EQ) filter.");
486 #endif  /* CONFIG_EQUALIZER_FILTER */
487 #if CONFIG_BASS_FILTER
488 static const AVOption bass_options[] = {
489     {"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=100}, 0, 999999, FLAGS},
490     {"f",         "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=100}, 0, 999999, FLAGS},
491     {"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, SLOPE, FLAGS, "width_type"},
492     {"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
493     {"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
494     {"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
495     {"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
496     {"width", "set shelf transition steep", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 99999, FLAGS},
497     {"w",     "set shelf transition steep", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 99999, FLAGS},
498     {"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
499     {"g",    "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
500     {NULL}
501 };
502
503 DEFINE_BIQUAD_FILTER(bass, "Boost or cut lower frequencies.");
504 #endif  /* CONFIG_BASS_FILTER */
505 #if CONFIG_TREBLE_FILTER
506 static const AVOption treble_options[] = {
507     {"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
508     {"f",         "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
509     {"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, SLOPE, FLAGS, "width_type"},
510     {"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
511     {"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
512     {"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
513     {"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
514     {"width", "set shelf transition steep", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 99999, FLAGS},
515     {"w",     "set shelf transition steep", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 99999, FLAGS},
516     {"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
517     {"g",    "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS},
518     {NULL}
519 };
520
521 DEFINE_BIQUAD_FILTER(treble, "Boost or cut upper frequencies.");
522 #endif  /* CONFIG_TREBLE_FILTER */
523 #if CONFIG_BANDPASS_FILTER
524 static const AVOption bandpass_options[] = {
525     {"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
526     {"f",         "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
527     {"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, SLOPE, FLAGS, "width_type"},
528     {"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
529     {"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
530     {"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
531     {"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
532     {"width", "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 999, FLAGS},
533     {"w",     "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 999, FLAGS},
534     {"csg",   "use constant skirt gain", OFFSET(csg), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS},
535     {NULL}
536 };
537
538 DEFINE_BIQUAD_FILTER(bandpass, "Apply a two-pole Butterworth band-pass filter.");
539 #endif  /* CONFIG_BANDPASS_FILTER */
540 #if CONFIG_BANDREJECT_FILTER
541 static const AVOption bandreject_options[] = {
542     {"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
543     {"f",         "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
544     {"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, SLOPE, FLAGS, "width_type"},
545     {"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
546     {"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
547     {"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
548     {"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
549     {"width", "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 999, FLAGS},
550     {"w",     "set band-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 999, FLAGS},
551     {NULL}
552 };
553
554 DEFINE_BIQUAD_FILTER(bandreject, "Apply a two-pole Butterworth band-reject filter.");
555 #endif  /* CONFIG_BANDREJECT_FILTER */
556 #if CONFIG_LOWPASS_FILTER
557 static const AVOption lowpass_options[] = {
558     {"frequency", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=500}, 0, 999999, FLAGS},
559     {"f",         "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=500}, 0, 999999, FLAGS},
560     {"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, SLOPE, FLAGS, "width_type"},
561     {"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
562     {"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
563     {"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
564     {"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
565     {"width", "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.707}, 0, 99999, FLAGS},
566     {"w",     "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.707}, 0, 99999, FLAGS},
567     {"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS},
568     {"p",     "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS},
569     {NULL}
570 };
571
572 DEFINE_BIQUAD_FILTER(lowpass, "Apply a low-pass filter with 3dB point frequency.");
573 #endif  /* CONFIG_LOWPASS_FILTER */
574 #if CONFIG_HIGHPASS_FILTER
575 static const AVOption highpass_options[] = {
576     {"frequency", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
577     {"f",         "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
578     {"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=QFACTOR}, HERTZ, SLOPE, FLAGS, "width_type"},
579     {"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
580     {"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
581     {"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
582     {"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
583     {"width", "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.707}, 0, 99999, FLAGS},
584     {"w",     "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=0.707}, 0, 99999, FLAGS},
585     {"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS},
586     {"p",     "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS},
587     {NULL}
588 };
589
590 DEFINE_BIQUAD_FILTER(highpass, "Apply a high-pass filter with 3dB point frequency.");
591 #endif  /* CONFIG_HIGHPASS_FILTER */
592 #if CONFIG_ALLPASS_FILTER
593 static const AVOption allpass_options[] = {
594     {"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
595     {"f",         "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS},
596     {"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=HERTZ}, HERTZ, SLOPE, FLAGS, "width_type"},
597     {"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, "width_type"},
598     {"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, "width_type"},
599     {"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, "width_type"},
600     {"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, "width_type"},
601     {"width", "set filter-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=707.1}, 0, 99999, FLAGS},
602     {"w",     "set filter-width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=707.1}, 0, 99999, FLAGS},
603     {NULL}
604 };
605
606 DEFINE_BIQUAD_FILTER(allpass, "Apply a two-pole all-pass filter.");
607 #endif  /* CONFIG_ALLPASS_FILTER */
608 #if CONFIG_BIQUAD_FILTER
609 static const AVOption biquad_options[] = {
610     {"a0", NULL, OFFSET(a0), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MIN, INT16_MAX, FLAGS},
611     {"a1", NULL, OFFSET(a1), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MIN, INT16_MAX, FLAGS},
612     {"a2", NULL, OFFSET(a2), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MIN, INT16_MAX, FLAGS},
613     {"b0", NULL, OFFSET(b0), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MIN, INT16_MAX, FLAGS},
614     {"b1", NULL, OFFSET(b1), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MIN, INT16_MAX, FLAGS},
615     {"b2", NULL, OFFSET(b2), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT16_MIN, INT16_MAX, FLAGS},
616     {NULL}
617 };
618
619 DEFINE_BIQUAD_FILTER(biquad, "Apply a biquad IIR filter with the given coefficients.");
620 #endif  /* CONFIG_BIQUAD_FILTER */