2 * WMA compatible decoder
3 * Copyright (c) 2002 The Libav Project
5 * This file is part of Libav.
7 * Libav is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * Libav is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with Libav; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 * WMA compatible decoder.
25 * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
26 * WMA v1 is identified by audio format 0x160 in Microsoft media files
27 * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
29 * To use this decoder, a calling application must supply the extra data
30 * bytes provided with the WMA data. These are the extra, codec-specific
31 * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
32 * to the decoder using the extradata[_size] fields in AVCodecContext. There
33 * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
44 #define EXPMAX ((19+EXPVLCBITS-1)/EXPVLCBITS)
46 #define HGAINVLCBITS 9
47 #define HGAINMAX ((13+HGAINVLCBITS-1)/HGAINVLCBITS)
49 static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
52 static void dump_floats(WMACodecContext *s, const char *name, int prec, const float *tab, int n)
56 tprintf(s->avctx, "%s[%d]:\n", name, n);
59 tprintf(s->avctx, "%4d: ", i);
60 tprintf(s->avctx, " %8.*f", prec, tab[i]);
62 tprintf(s->avctx, "\n");
65 tprintf(s->avctx, "\n");
69 static int wma_decode_init(AVCodecContext * avctx)
71 WMACodecContext *s = avctx->priv_data;
77 /* extract flag infos */
79 extradata = avctx->extradata;
80 if (avctx->codec->id == AV_CODEC_ID_WMAV1 && avctx->extradata_size >= 4) {
81 flags2 = AV_RL16(extradata+2);
82 } else if (avctx->codec->id == AV_CODEC_ID_WMAV2 && avctx->extradata_size >= 6) {
83 flags2 = AV_RL16(extradata+4);
86 s->use_exp_vlc = flags2 & 0x0001;
87 s->use_bit_reservoir = flags2 & 0x0002;
88 s->use_variable_block_len = flags2 & 0x0004;
90 if(ff_wma_init(avctx, flags2)<0)
94 for(i = 0; i < s->nb_block_sizes; i++)
95 ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1, 1.0 / 32768.0);
97 if (s->use_noise_coding) {
98 init_vlc(&s->hgain_vlc, HGAINVLCBITS, sizeof(ff_wma_hgain_huffbits),
99 ff_wma_hgain_huffbits, 1, 1,
100 ff_wma_hgain_huffcodes, 2, 2, 0);
103 if (s->use_exp_vlc) {
104 init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_aac_scalefactor_bits), //FIXME move out of context
105 ff_aac_scalefactor_bits, 1, 1,
106 ff_aac_scalefactor_code, 4, 4, 0);
108 wma_lsp_to_curve_init(s, s->frame_len);
111 avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
117 * compute x^-0.25 with an exponent and mantissa table. We use linear
118 * interpolation to reduce the mantissa table size at a small speed
119 * expense (linear interpolation approximately doubles the number of
120 * bits of precision).
122 static inline float pow_m1_4(WMACodecContext *s, float x)
133 m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
134 /* build interpolation scale: 1 <= t < 2. */
135 t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
136 a = s->lsp_pow_m_table1[m];
137 b = s->lsp_pow_m_table2[m];
138 return s->lsp_pow_e_table[e] * (a + b * t.f);
141 static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
146 wdel = M_PI / frame_len;
147 for(i=0;i<frame_len;i++)
148 s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
150 /* tables for x^-0.25 computation */
153 s->lsp_pow_e_table[i] = pow(2.0, e * -0.25);
156 /* NOTE: these two tables are needed to avoid two operations in
159 for(i=(1 << LSP_POW_BITS) - 1;i>=0;i--) {
160 m = (1 << LSP_POW_BITS) + i;
161 a = (float)m * (0.5 / (1 << LSP_POW_BITS));
163 s->lsp_pow_m_table1[i] = 2 * a - b;
164 s->lsp_pow_m_table2[i] = b - a;
170 * NOTE: We use the same code as Vorbis here
171 * @todo optimize it further with SSE/3Dnow
173 static void wma_lsp_to_curve(WMACodecContext *s,
174 float *out, float *val_max_ptr,
178 float p, q, w, v, val_max;
184 w = s->lsp_cos_table[i];
185 for(j=1;j<NB_LSP_COEFS;j+=2){
197 *val_max_ptr = val_max;
201 * decode exponents coded with LSP coefficients (same idea as Vorbis)
203 static void decode_exp_lsp(WMACodecContext *s, int ch)
205 float lsp_coefs[NB_LSP_COEFS];
208 for(i = 0; i < NB_LSP_COEFS; i++) {
209 if (i == 0 || i >= 8)
210 val = get_bits(&s->gb, 3);
212 val = get_bits(&s->gb, 4);
213 lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
216 wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
217 s->block_len, lsp_coefs);
220 /** pow(10, i / 16.0) for i in -60..95 */
221 static const float pow_tab[] = {
222 1.7782794100389e-04, 2.0535250264571e-04,
223 2.3713737056617e-04, 2.7384196342644e-04,
224 3.1622776601684e-04, 3.6517412725484e-04,
225 4.2169650342858e-04, 4.8696752516586e-04,
226 5.6234132519035e-04, 6.4938163157621e-04,
227 7.4989420933246e-04, 8.6596432336006e-04,
228 1.0000000000000e-03, 1.1547819846895e-03,
229 1.3335214321633e-03, 1.5399265260595e-03,
230 1.7782794100389e-03, 2.0535250264571e-03,
231 2.3713737056617e-03, 2.7384196342644e-03,
232 3.1622776601684e-03, 3.6517412725484e-03,
233 4.2169650342858e-03, 4.8696752516586e-03,
234 5.6234132519035e-03, 6.4938163157621e-03,
235 7.4989420933246e-03, 8.6596432336006e-03,
236 1.0000000000000e-02, 1.1547819846895e-02,
237 1.3335214321633e-02, 1.5399265260595e-02,
238 1.7782794100389e-02, 2.0535250264571e-02,
239 2.3713737056617e-02, 2.7384196342644e-02,
240 3.1622776601684e-02, 3.6517412725484e-02,
241 4.2169650342858e-02, 4.8696752516586e-02,
242 5.6234132519035e-02, 6.4938163157621e-02,
243 7.4989420933246e-02, 8.6596432336007e-02,
244 1.0000000000000e-01, 1.1547819846895e-01,
245 1.3335214321633e-01, 1.5399265260595e-01,
246 1.7782794100389e-01, 2.0535250264571e-01,
247 2.3713737056617e-01, 2.7384196342644e-01,
248 3.1622776601684e-01, 3.6517412725484e-01,
249 4.2169650342858e-01, 4.8696752516586e-01,
250 5.6234132519035e-01, 6.4938163157621e-01,
251 7.4989420933246e-01, 8.6596432336007e-01,
252 1.0000000000000e+00, 1.1547819846895e+00,
253 1.3335214321633e+00, 1.5399265260595e+00,
254 1.7782794100389e+00, 2.0535250264571e+00,
255 2.3713737056617e+00, 2.7384196342644e+00,
256 3.1622776601684e+00, 3.6517412725484e+00,
257 4.2169650342858e+00, 4.8696752516586e+00,
258 5.6234132519035e+00, 6.4938163157621e+00,
259 7.4989420933246e+00, 8.6596432336007e+00,
260 1.0000000000000e+01, 1.1547819846895e+01,
261 1.3335214321633e+01, 1.5399265260595e+01,
262 1.7782794100389e+01, 2.0535250264571e+01,
263 2.3713737056617e+01, 2.7384196342644e+01,
264 3.1622776601684e+01, 3.6517412725484e+01,
265 4.2169650342858e+01, 4.8696752516586e+01,
266 5.6234132519035e+01, 6.4938163157621e+01,
267 7.4989420933246e+01, 8.6596432336007e+01,
268 1.0000000000000e+02, 1.1547819846895e+02,
269 1.3335214321633e+02, 1.5399265260595e+02,
270 1.7782794100389e+02, 2.0535250264571e+02,
271 2.3713737056617e+02, 2.7384196342644e+02,
272 3.1622776601684e+02, 3.6517412725484e+02,
273 4.2169650342858e+02, 4.8696752516586e+02,
274 5.6234132519035e+02, 6.4938163157621e+02,
275 7.4989420933246e+02, 8.6596432336007e+02,
276 1.0000000000000e+03, 1.1547819846895e+03,
277 1.3335214321633e+03, 1.5399265260595e+03,
278 1.7782794100389e+03, 2.0535250264571e+03,
279 2.3713737056617e+03, 2.7384196342644e+03,
280 3.1622776601684e+03, 3.6517412725484e+03,
281 4.2169650342858e+03, 4.8696752516586e+03,
282 5.6234132519035e+03, 6.4938163157621e+03,
283 7.4989420933246e+03, 8.6596432336007e+03,
284 1.0000000000000e+04, 1.1547819846895e+04,
285 1.3335214321633e+04, 1.5399265260595e+04,
286 1.7782794100389e+04, 2.0535250264571e+04,
287 2.3713737056617e+04, 2.7384196342644e+04,
288 3.1622776601684e+04, 3.6517412725484e+04,
289 4.2169650342858e+04, 4.8696752516586e+04,
290 5.6234132519035e+04, 6.4938163157621e+04,
291 7.4989420933246e+04, 8.6596432336007e+04,
292 1.0000000000000e+05, 1.1547819846895e+05,
293 1.3335214321633e+05, 1.5399265260595e+05,
294 1.7782794100389e+05, 2.0535250264571e+05,
295 2.3713737056617e+05, 2.7384196342644e+05,
296 3.1622776601684e+05, 3.6517412725484e+05,
297 4.2169650342858e+05, 4.8696752516586e+05,
298 5.6234132519035e+05, 6.4938163157621e+05,
299 7.4989420933246e+05, 8.6596432336007e+05,
303 * decode exponents coded with VLC codes
305 static int decode_exp_vlc(WMACodecContext *s, int ch)
307 int last_exp, n, code;
310 uint32_t *q, *q_end, iv;
311 const float *ptab = pow_tab + 60;
312 const uint32_t *iptab = (const uint32_t*)ptab;
314 ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
315 q = (uint32_t *)s->exponents[ch];
316 q_end = q + s->block_len;
318 if (s->version == 1) {
319 last_exp = get_bits(&s->gb, 5) + 10;
321 iv = iptab[last_exp];
329 } while ((n -= 4) > 0);
334 code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
336 av_log(s->avctx, AV_LOG_ERROR, "Exponent vlc invalid\n");
339 /* NOTE: this offset is the same as MPEG4 AAC ! */
340 last_exp += code - 60;
341 if ((unsigned)last_exp + 60 >= FF_ARRAY_ELEMS(pow_tab)) {
342 av_log(s->avctx, AV_LOG_ERROR, "Exponent out of range: %d\n",
347 iv = iptab[last_exp];
356 } while ((n -= 4) > 0);
358 s->max_exponent[ch] = max_scale;
364 * Apply MDCT window and add into output.
366 * We ensure that when the windows overlap their squared sum
367 * is always 1 (MDCT reconstruction rule).
369 static void wma_window(WMACodecContext *s, float *out)
371 float *in = s->output;
372 int block_len, bsize, n;
375 if (s->block_len_bits <= s->prev_block_len_bits) {
376 block_len = s->block_len;
377 bsize = s->frame_len_bits - s->block_len_bits;
379 s->fdsp.vector_fmul_add(out, in, s->windows[bsize],
383 block_len = 1 << s->prev_block_len_bits;
384 n = (s->block_len - block_len) / 2;
385 bsize = s->frame_len_bits - s->prev_block_len_bits;
387 s->fdsp.vector_fmul_add(out+n, in+n, s->windows[bsize],
390 memcpy(out+n+block_len, in+n+block_len, n*sizeof(float));
397 if (s->block_len_bits <= s->next_block_len_bits) {
398 block_len = s->block_len;
399 bsize = s->frame_len_bits - s->block_len_bits;
401 s->fdsp.vector_fmul_reverse(out, in, s->windows[bsize], block_len);
404 block_len = 1 << s->next_block_len_bits;
405 n = (s->block_len - block_len) / 2;
406 bsize = s->frame_len_bits - s->next_block_len_bits;
408 memcpy(out, in, n*sizeof(float));
410 s->fdsp.vector_fmul_reverse(out+n, in+n, s->windows[bsize], block_len);
412 memset(out+n+block_len, 0, n*sizeof(float));
418 * @return 0 if OK. 1 if last block of frame. return -1 if
419 * unrecorrable error.
421 static int wma_decode_block(WMACodecContext *s)
423 int n, v, a, ch, bsize;
424 int coef_nb_bits, total_gain;
425 int nb_coefs[MAX_CHANNELS];
430 tprintf(s->avctx, "***decode_block: %d:%d\n", s->frame_count - 1, s->block_num);
433 /* compute current block length */
434 if (s->use_variable_block_len) {
435 n = av_log2(s->nb_block_sizes - 1) + 1;
437 if (s->reset_block_lengths) {
438 s->reset_block_lengths = 0;
439 v = get_bits(&s->gb, n);
440 if (v >= s->nb_block_sizes){
441 av_log(s->avctx, AV_LOG_ERROR, "prev_block_len_bits %d out of range\n", s->frame_len_bits - v);
444 s->prev_block_len_bits = s->frame_len_bits - v;
445 v = get_bits(&s->gb, n);
446 if (v >= s->nb_block_sizes){
447 av_log(s->avctx, AV_LOG_ERROR, "block_len_bits %d out of range\n", s->frame_len_bits - v);
450 s->block_len_bits = s->frame_len_bits - v;
452 /* update block lengths */
453 s->prev_block_len_bits = s->block_len_bits;
454 s->block_len_bits = s->next_block_len_bits;
456 v = get_bits(&s->gb, n);
457 if (v >= s->nb_block_sizes){
458 av_log(s->avctx, AV_LOG_ERROR, "next_block_len_bits %d out of range\n", s->frame_len_bits - v);
461 s->next_block_len_bits = s->frame_len_bits - v;
463 /* fixed block len */
464 s->next_block_len_bits = s->frame_len_bits;
465 s->prev_block_len_bits = s->frame_len_bits;
466 s->block_len_bits = s->frame_len_bits;
469 /* now check if the block length is coherent with the frame length */
470 s->block_len = 1 << s->block_len_bits;
471 if ((s->block_pos + s->block_len) > s->frame_len){
472 av_log(s->avctx, AV_LOG_ERROR, "frame_len overflow\n");
476 if (s->avctx->channels == 2) {
477 s->ms_stereo = get_bits1(&s->gb);
480 for(ch = 0; ch < s->avctx->channels; ch++) {
481 a = get_bits1(&s->gb);
482 s->channel_coded[ch] = a;
486 bsize = s->frame_len_bits - s->block_len_bits;
488 /* if no channel coded, no need to go further */
489 /* XXX: fix potential framing problems */
493 /* read total gain and extract corresponding number of bits for
494 coef escape coding */
497 a = get_bits(&s->gb, 7);
503 coef_nb_bits= ff_wma_total_gain_to_bits(total_gain);
505 /* compute number of coefficients */
506 n = s->coefs_end[bsize] - s->coefs_start;
507 for(ch = 0; ch < s->avctx->channels; ch++)
511 if (s->use_noise_coding) {
513 for(ch = 0; ch < s->avctx->channels; ch++) {
514 if (s->channel_coded[ch]) {
516 n = s->exponent_high_sizes[bsize];
518 a = get_bits1(&s->gb);
519 s->high_band_coded[ch][i] = a;
520 /* if noise coding, the coefficients are not transmitted */
522 nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
526 for(ch = 0; ch < s->avctx->channels; ch++) {
527 if (s->channel_coded[ch]) {
530 n = s->exponent_high_sizes[bsize];
531 val = (int)0x80000000;
533 if (s->high_band_coded[ch][i]) {
534 if (val == (int)0x80000000) {
535 val = get_bits(&s->gb, 7) - 19;
537 code = get_vlc2(&s->gb, s->hgain_vlc.table, HGAINVLCBITS, HGAINMAX);
539 av_log(s->avctx, AV_LOG_ERROR, "hgain vlc invalid\n");
544 s->high_band_values[ch][i] = val;
551 /* exponents can be reused in short blocks. */
552 if ((s->block_len_bits == s->frame_len_bits) ||
554 for(ch = 0; ch < s->avctx->channels; ch++) {
555 if (s->channel_coded[ch]) {
556 if (s->use_exp_vlc) {
557 if (decode_exp_vlc(s, ch) < 0)
560 decode_exp_lsp(s, ch);
562 s->exponents_bsize[ch] = bsize;
567 /* parse spectral coefficients : just RLE encoding */
568 for (ch = 0; ch < s->avctx->channels; ch++) {
569 if (s->channel_coded[ch]) {
571 WMACoef* ptr = &s->coefs1[ch][0];
573 /* special VLC tables are used for ms stereo because
574 there is potentially less energy there */
575 tindex = (ch == 1 && s->ms_stereo);
576 memset(ptr, 0, s->block_len * sizeof(WMACoef));
577 ff_wma_run_level_decode(s->avctx, &s->gb, &s->coef_vlc[tindex],
578 s->level_table[tindex], s->run_table[tindex],
579 0, ptr, 0, nb_coefs[ch],
580 s->block_len, s->frame_len_bits, coef_nb_bits);
582 if (s->version == 1 && s->avctx->channels >= 2) {
583 align_get_bits(&s->gb);
589 int n4 = s->block_len / 2;
590 mdct_norm = 1.0 / (float)n4;
591 if (s->version == 1) {
592 mdct_norm *= sqrt(n4);
596 /* finally compute the MDCT coefficients */
597 for (ch = 0; ch < s->avctx->channels; ch++) {
598 if (s->channel_coded[ch]) {
600 float *coefs, *exponents, mult, mult1, noise;
601 int i, j, n, n1, last_high_band, esize;
602 float exp_power[HIGH_BAND_MAX_SIZE];
604 coefs1 = s->coefs1[ch];
605 exponents = s->exponents[ch];
606 esize = s->exponents_bsize[ch];
607 mult = pow(10, total_gain * 0.05) / s->max_exponent[ch];
609 coefs = s->coefs[ch];
610 if (s->use_noise_coding) {
612 /* very low freqs : noise */
613 for(i = 0;i < s->coefs_start; i++) {
614 *coefs++ = s->noise_table[s->noise_index] *
615 exponents[i<<bsize>>esize] * mult1;
616 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
619 n1 = s->exponent_high_sizes[bsize];
621 /* compute power of high bands */
622 exponents = s->exponents[ch] +
623 (s->high_band_start[bsize]<<bsize>>esize);
624 last_high_band = 0; /* avoid warning */
626 n = s->exponent_high_bands[s->frame_len_bits -
627 s->block_len_bits][j];
628 if (s->high_band_coded[ch][j]) {
631 for(i = 0;i < n; i++) {
632 v = exponents[i<<bsize>>esize];
635 exp_power[j] = e2 / n;
637 tprintf(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
639 exponents += n<<bsize>>esize;
642 /* main freqs and high freqs */
643 exponents = s->exponents[ch] + (s->coefs_start<<bsize>>esize);
646 n = s->high_band_start[bsize] -
649 n = s->exponent_high_bands[s->frame_len_bits -
650 s->block_len_bits][j];
652 if (j >= 0 && s->high_band_coded[ch][j]) {
653 /* use noise with specified power */
654 mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
655 /* XXX: use a table */
656 mult1 = mult1 * pow(10, s->high_band_values[ch][j] * 0.05);
657 mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
659 for(i = 0;i < n; i++) {
660 noise = s->noise_table[s->noise_index];
661 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
663 exponents[i<<bsize>>esize] * mult1;
665 exponents += n<<bsize>>esize;
667 /* coded values + small noise */
668 for(i = 0;i < n; i++) {
669 noise = s->noise_table[s->noise_index];
670 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
671 *coefs++ = ((*coefs1++) + noise) *
672 exponents[i<<bsize>>esize] * mult;
674 exponents += n<<bsize>>esize;
678 /* very high freqs : noise */
679 n = s->block_len - s->coefs_end[bsize];
680 mult1 = mult * exponents[((-1<<bsize))>>esize];
681 for(i = 0; i < n; i++) {
682 *coefs++ = s->noise_table[s->noise_index] * mult1;
683 s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
686 /* XXX: optimize more */
687 for(i = 0;i < s->coefs_start; i++)
690 for(i = 0;i < n; i++) {
691 *coefs++ = coefs1[i] * exponents[i<<bsize>>esize] * mult;
693 n = s->block_len - s->coefs_end[bsize];
694 for(i = 0;i < n; i++)
701 for (ch = 0; ch < s->avctx->channels; ch++) {
702 if (s->channel_coded[ch]) {
703 dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
704 dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
709 if (s->ms_stereo && s->channel_coded[1]) {
710 /* nominal case for ms stereo: we do it before mdct */
711 /* no need to optimize this case because it should almost
713 if (!s->channel_coded[0]) {
714 tprintf(s->avctx, "rare ms-stereo case happened\n");
715 memset(s->coefs[0], 0, sizeof(float) * s->block_len);
716 s->channel_coded[0] = 1;
719 s->fdsp.butterflies_float(s->coefs[0], s->coefs[1], s->block_len);
723 mdct = &s->mdct_ctx[bsize];
725 for (ch = 0; ch < s->avctx->channels; ch++) {
728 n4 = s->block_len / 2;
729 if(s->channel_coded[ch]){
730 mdct->imdct_calc(mdct, s->output, s->coefs[ch]);
731 }else if(!(s->ms_stereo && ch==1))
732 memset(s->output, 0, sizeof(s->output));
734 /* multiply by the window and add in the frame */
735 index = (s->frame_len / 2) + s->block_pos - n4;
736 wma_window(s, &s->frame_out[ch][index]);
739 /* update block number */
741 s->block_pos += s->block_len;
742 if (s->block_pos >= s->frame_len)
748 /* decode a frame of frame_len samples */
749 static int wma_decode_frame(WMACodecContext *s, float **samples,
755 tprintf(s->avctx, "***decode_frame: %d size=%d\n", s->frame_count++, s->frame_len);
758 /* read each block */
762 ret = wma_decode_block(s);
769 for (ch = 0; ch < s->avctx->channels; ch++) {
770 /* copy current block to output */
771 memcpy(samples[ch] + samples_offset, s->frame_out[ch],
772 s->frame_len * sizeof(*s->frame_out[ch]));
773 /* prepare for next block */
774 memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
775 s->frame_len * sizeof(*s->frame_out[ch]));
778 dump_floats(s, "samples", 6, samples[ch] + samples_offset, s->frame_len);
785 static int wma_decode_superframe(AVCodecContext *avctx, void *data,
786 int *got_frame_ptr, AVPacket *avpkt)
788 AVFrame *frame = data;
789 const uint8_t *buf = avpkt->data;
790 int buf_size = avpkt->size;
791 WMACodecContext *s = avctx->priv_data;
792 int nb_frames, bit_offset, i, pos, len, ret;
797 tprintf(avctx, "***decode_superframe:\n");
800 s->last_superframe_len = 0;
803 if (buf_size < avctx->block_align) {
804 av_log(avctx, AV_LOG_ERROR,
805 "Input packet size too small (%d < %d)\n",
806 buf_size, avctx->block_align);
807 return AVERROR_INVALIDDATA;
809 buf_size = avctx->block_align;
811 init_get_bits(&s->gb, buf, buf_size*8);
813 if (s->use_bit_reservoir) {
814 /* read super frame header */
815 skip_bits(&s->gb, 4); /* super frame index */
816 nb_frames = get_bits(&s->gb, 4) - (s->last_superframe_len <= 0);
821 /* get output buffer */
822 frame->nb_samples = nb_frames * s->frame_len;
823 if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) {
824 av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
827 samples = (float **)frame->extended_data;
830 if (s->use_bit_reservoir) {
831 bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
832 if (bit_offset > get_bits_left(&s->gb)) {
833 av_log(avctx, AV_LOG_ERROR,
834 "Invalid last frame bit offset %d > buf size %d (%d)\n",
835 bit_offset, get_bits_left(&s->gb), buf_size);
839 if (s->last_superframe_len > 0) {
840 /* add bit_offset bits to last frame */
841 if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
842 MAX_CODED_SUPERFRAME_SIZE)
844 q = s->last_superframe + s->last_superframe_len;
847 *q++ = (get_bits)(&s->gb, 8);
851 *q++ = (get_bits)(&s->gb, len) << (8 - len);
853 memset(q, 0, FF_INPUT_BUFFER_PADDING_SIZE);
855 /* XXX: bit_offset bits into last frame */
856 init_get_bits(&s->gb, s->last_superframe, s->last_superframe_len * 8 + bit_offset);
857 /* skip unused bits */
858 if (s->last_bitoffset > 0)
859 skip_bits(&s->gb, s->last_bitoffset);
860 /* this frame is stored in the last superframe and in the
862 if (wma_decode_frame(s, samples, samples_offset) < 0)
864 samples_offset += s->frame_len;
868 /* read each frame starting from bit_offset */
869 pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
870 if (pos >= MAX_CODED_SUPERFRAME_SIZE * 8 || pos > buf_size * 8)
871 return AVERROR_INVALIDDATA;
872 init_get_bits(&s->gb, buf + (pos >> 3), (buf_size - (pos >> 3))*8);
875 skip_bits(&s->gb, len);
877 s->reset_block_lengths = 1;
878 for(i=0;i<nb_frames;i++) {
879 if (wma_decode_frame(s, samples, samples_offset) < 0)
881 samples_offset += s->frame_len;
884 /* we copy the end of the frame in the last frame buffer */
885 pos = get_bits_count(&s->gb) + ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
886 s->last_bitoffset = pos & 7;
888 len = buf_size - pos;
889 if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
890 av_log(s->avctx, AV_LOG_ERROR, "len %d invalid\n", len);
893 s->last_superframe_len = len;
894 memcpy(s->last_superframe, buf + pos, len);
896 /* single frame decode */
897 if (wma_decode_frame(s, samples, samples_offset) < 0)
899 samples_offset += s->frame_len;
902 av_dlog(s->avctx, "%d %d %d %d outbytes:%td eaten:%d\n",
903 s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len,
904 (int8_t *)samples - (int8_t *)data, avctx->block_align);
908 return avctx->block_align;
910 /* when error, we reset the bit reservoir */
911 s->last_superframe_len = 0;
915 static av_cold void flush(AVCodecContext *avctx)
917 WMACodecContext *s = avctx->priv_data;
920 s->last_superframe_len= 0;
923 AVCodec ff_wmav1_decoder = {
925 .type = AVMEDIA_TYPE_AUDIO,
926 .id = AV_CODEC_ID_WMAV1,
927 .priv_data_size = sizeof(WMACodecContext),
928 .init = wma_decode_init,
930 .decode = wma_decode_superframe,
932 .capabilities = CODEC_CAP_DR1,
933 .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
934 .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
935 AV_SAMPLE_FMT_NONE },
938 AVCodec ff_wmav2_decoder = {
940 .type = AVMEDIA_TYPE_AUDIO,
941 .id = AV_CODEC_ID_WMAV2,
942 .priv_data_size = sizeof(WMACodecContext),
943 .init = wma_decode_init,
945 .decode = wma_decode_superframe,
947 .capabilities = CODEC_CAP_DR1,
948 .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
949 .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
950 AV_SAMPLE_FMT_NONE },