2 * VC-1 and WMV3 decoder
3 * Copyright (c) 2011 Mashiat Sarker Shakkhar
4 * Copyright (c) 2006-2007 Konstantin Shishkov
5 * Partly based on vc9.c (c) 2005 Anonymous, Alex Beregszaszi, Michael Niedermayer
7 * This file is part of Libav.
9 * Libav is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
14 * Libav is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with Libav; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
26 * VC-1 and WMV3 decoder
32 #include "mpegvideo.h"
36 #include "vc1acdata.h"
37 #include "msmpeg4data.h"
39 #include "simple_idct.h"
41 #include "vdpau_internal.h"
46 #define MB_INTRA_VLC_BITS 9
51 static const uint16_t vlc_offs[] = {
52 0, 520, 552, 616, 1128, 1160, 1224, 1740, 1772, 1836, 1900, 2436,
53 2986, 3050, 3610, 4154, 4218, 4746, 5326, 5390, 5902, 6554, 7658, 8342,
54 9304, 9988, 10630, 11234, 12174, 13006, 13560, 14232, 14786, 15432, 16350, 17522,
55 20372, 21818, 22330, 22394, 23166, 23678, 23742, 24820, 25332, 25396, 26460, 26980,
56 27048, 27592, 27600, 27608, 27616, 27624, 28224, 28258, 28290, 28802, 28834, 28866,
57 29378, 29412, 29444, 29960, 29994, 30026, 30538, 30572, 30604, 31120, 31154, 31186,
58 31714, 31746, 31778, 32306, 32340, 32372
61 // offset tables for interlaced picture MVDATA decoding
62 static const int offset_table1[9] = { 0, 1, 2, 4, 8, 16, 32, 64, 128 };
63 static const int offset_table2[9] = { 0, 1, 3, 7, 15, 31, 63, 127, 255 };
66 * Init VC-1 specific tables and VC1Context members
67 * @param v The VC1Context to initialize
70 static int vc1_init_common(VC1Context *v)
74 static VLC_TYPE vlc_table[32372][2];
76 v->hrd_rate = v->hrd_buffer = NULL;
80 INIT_VLC_STATIC(&ff_vc1_bfraction_vlc, VC1_BFRACTION_VLC_BITS, 23,
81 ff_vc1_bfraction_bits, 1, 1,
82 ff_vc1_bfraction_codes, 1, 1, 1 << VC1_BFRACTION_VLC_BITS);
83 INIT_VLC_STATIC(&ff_vc1_norm2_vlc, VC1_NORM2_VLC_BITS, 4,
84 ff_vc1_norm2_bits, 1, 1,
85 ff_vc1_norm2_codes, 1, 1, 1 << VC1_NORM2_VLC_BITS);
86 INIT_VLC_STATIC(&ff_vc1_norm6_vlc, VC1_NORM6_VLC_BITS, 64,
87 ff_vc1_norm6_bits, 1, 1,
88 ff_vc1_norm6_codes, 2, 2, 556);
89 INIT_VLC_STATIC(&ff_vc1_imode_vlc, VC1_IMODE_VLC_BITS, 7,
90 ff_vc1_imode_bits, 1, 1,
91 ff_vc1_imode_codes, 1, 1, 1 << VC1_IMODE_VLC_BITS);
92 for (i = 0; i < 3; i++) {
93 ff_vc1_ttmb_vlc[i].table = &vlc_table[vlc_offs[i * 3 + 0]];
94 ff_vc1_ttmb_vlc[i].table_allocated = vlc_offs[i * 3 + 1] - vlc_offs[i * 3 + 0];
95 init_vlc(&ff_vc1_ttmb_vlc[i], VC1_TTMB_VLC_BITS, 16,
96 ff_vc1_ttmb_bits[i], 1, 1,
97 ff_vc1_ttmb_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
98 ff_vc1_ttblk_vlc[i].table = &vlc_table[vlc_offs[i * 3 + 1]];
99 ff_vc1_ttblk_vlc[i].table_allocated = vlc_offs[i * 3 + 2] - vlc_offs[i * 3 + 1];
100 init_vlc(&ff_vc1_ttblk_vlc[i], VC1_TTBLK_VLC_BITS, 8,
101 ff_vc1_ttblk_bits[i], 1, 1,
102 ff_vc1_ttblk_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
103 ff_vc1_subblkpat_vlc[i].table = &vlc_table[vlc_offs[i * 3 + 2]];
104 ff_vc1_subblkpat_vlc[i].table_allocated = vlc_offs[i * 3 + 3] - vlc_offs[i * 3 + 2];
105 init_vlc(&ff_vc1_subblkpat_vlc[i], VC1_SUBBLKPAT_VLC_BITS, 15,
106 ff_vc1_subblkpat_bits[i], 1, 1,
107 ff_vc1_subblkpat_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
109 for (i = 0; i < 4; i++) {
110 ff_vc1_4mv_block_pattern_vlc[i].table = &vlc_table[vlc_offs[i * 3 + 9]];
111 ff_vc1_4mv_block_pattern_vlc[i].table_allocated = vlc_offs[i * 3 + 10] - vlc_offs[i * 3 + 9];
112 init_vlc(&ff_vc1_4mv_block_pattern_vlc[i], VC1_4MV_BLOCK_PATTERN_VLC_BITS, 16,
113 ff_vc1_4mv_block_pattern_bits[i], 1, 1,
114 ff_vc1_4mv_block_pattern_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
115 ff_vc1_cbpcy_p_vlc[i].table = &vlc_table[vlc_offs[i * 3 + 10]];
116 ff_vc1_cbpcy_p_vlc[i].table_allocated = vlc_offs[i * 3 + 11] - vlc_offs[i * 3 + 10];
117 init_vlc(&ff_vc1_cbpcy_p_vlc[i], VC1_CBPCY_P_VLC_BITS, 64,
118 ff_vc1_cbpcy_p_bits[i], 1, 1,
119 ff_vc1_cbpcy_p_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
120 ff_vc1_mv_diff_vlc[i].table = &vlc_table[vlc_offs[i * 3 + 11]];
121 ff_vc1_mv_diff_vlc[i].table_allocated = vlc_offs[i * 3 + 12] - vlc_offs[i * 3 + 11];
122 init_vlc(&ff_vc1_mv_diff_vlc[i], VC1_MV_DIFF_VLC_BITS, 73,
123 ff_vc1_mv_diff_bits[i], 1, 1,
124 ff_vc1_mv_diff_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
126 for (i = 0; i < 8; i++) {
127 ff_vc1_ac_coeff_table[i].table = &vlc_table[vlc_offs[i * 2 + 21]];
128 ff_vc1_ac_coeff_table[i].table_allocated = vlc_offs[i * 2 + 22] - vlc_offs[i * 2 + 21];
129 init_vlc(&ff_vc1_ac_coeff_table[i], AC_VLC_BITS, vc1_ac_sizes[i],
130 &vc1_ac_tables[i][0][1], 8, 4,
131 &vc1_ac_tables[i][0][0], 8, 4, INIT_VLC_USE_NEW_STATIC);
132 /* initialize interlaced MVDATA tables (2-Ref) */
133 ff_vc1_2ref_mvdata_vlc[i].table = &vlc_table[vlc_offs[i * 2 + 22]];
134 ff_vc1_2ref_mvdata_vlc[i].table_allocated = vlc_offs[i * 2 + 23] - vlc_offs[i * 2 + 22];
135 init_vlc(&ff_vc1_2ref_mvdata_vlc[i], VC1_2REF_MVDATA_VLC_BITS, 126,
136 ff_vc1_2ref_mvdata_bits[i], 1, 1,
137 ff_vc1_2ref_mvdata_codes[i], 4, 4, INIT_VLC_USE_NEW_STATIC);
139 for (i = 0; i < 4; i++) {
140 /* initialize 4MV MBMODE VLC tables for interlaced frame P picture */
141 ff_vc1_intfr_4mv_mbmode_vlc[i].table = &vlc_table[vlc_offs[i * 3 + 37]];
142 ff_vc1_intfr_4mv_mbmode_vlc[i].table_allocated = vlc_offs[i * 3 + 38] - vlc_offs[i * 3 + 37];
143 init_vlc(&ff_vc1_intfr_4mv_mbmode_vlc[i], VC1_INTFR_4MV_MBMODE_VLC_BITS, 15,
144 ff_vc1_intfr_4mv_mbmode_bits[i], 1, 1,
145 ff_vc1_intfr_4mv_mbmode_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
146 /* initialize NON-4MV MBMODE VLC tables for the same */
147 ff_vc1_intfr_non4mv_mbmode_vlc[i].table = &vlc_table[vlc_offs[i * 3 + 38]];
148 ff_vc1_intfr_non4mv_mbmode_vlc[i].table_allocated = vlc_offs[i * 3 + 39] - vlc_offs[i * 3 + 38];
149 init_vlc(&ff_vc1_intfr_non4mv_mbmode_vlc[i], VC1_INTFR_NON4MV_MBMODE_VLC_BITS, 9,
150 ff_vc1_intfr_non4mv_mbmode_bits[i], 1, 1,
151 ff_vc1_intfr_non4mv_mbmode_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
152 /* initialize interlaced MVDATA tables (1-Ref) */
153 ff_vc1_1ref_mvdata_vlc[i].table = &vlc_table[vlc_offs[i * 3 + 39]];
154 ff_vc1_1ref_mvdata_vlc[i].table_allocated = vlc_offs[i * 3 + 40] - vlc_offs[i * 3 + 39];
155 init_vlc(&ff_vc1_1ref_mvdata_vlc[i], VC1_1REF_MVDATA_VLC_BITS, 72,
156 ff_vc1_1ref_mvdata_bits[i], 1, 1,
157 ff_vc1_1ref_mvdata_codes[i], 4, 4, INIT_VLC_USE_NEW_STATIC);
159 for (i = 0; i < 4; i++) {
160 /* Initialize 2MV Block pattern VLC tables */
161 ff_vc1_2mv_block_pattern_vlc[i].table = &vlc_table[vlc_offs[i + 49]];
162 ff_vc1_2mv_block_pattern_vlc[i].table_allocated = vlc_offs[i + 50] - vlc_offs[i + 49];
163 init_vlc(&ff_vc1_2mv_block_pattern_vlc[i], VC1_2MV_BLOCK_PATTERN_VLC_BITS, 4,
164 ff_vc1_2mv_block_pattern_bits[i], 1, 1,
165 ff_vc1_2mv_block_pattern_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
167 for (i = 0; i < 8; i++) {
168 /* Initialize interlaced CBPCY VLC tables (Table 124 - Table 131) */
169 ff_vc1_icbpcy_vlc[i].table = &vlc_table[vlc_offs[i * 3 + 53]];
170 ff_vc1_icbpcy_vlc[i].table_allocated = vlc_offs[i * 3 + 54] - vlc_offs[i * 3 + 53];
171 init_vlc(&ff_vc1_icbpcy_vlc[i], VC1_ICBPCY_VLC_BITS, 63,
172 ff_vc1_icbpcy_p_bits[i], 1, 1,
173 ff_vc1_icbpcy_p_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
174 /* Initialize interlaced field picture MBMODE VLC tables */
175 ff_vc1_if_mmv_mbmode_vlc[i].table = &vlc_table[vlc_offs[i * 3 + 54]];
176 ff_vc1_if_mmv_mbmode_vlc[i].table_allocated = vlc_offs[i * 3 + 55] - vlc_offs[i * 3 + 54];
177 init_vlc(&ff_vc1_if_mmv_mbmode_vlc[i], VC1_IF_MMV_MBMODE_VLC_BITS, 8,
178 ff_vc1_if_mmv_mbmode_bits[i], 1, 1,
179 ff_vc1_if_mmv_mbmode_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
180 ff_vc1_if_1mv_mbmode_vlc[i].table = &vlc_table[vlc_offs[i * 3 + 55]];
181 ff_vc1_if_1mv_mbmode_vlc[i].table_allocated = vlc_offs[i * 3 + 56] - vlc_offs[i * 3 + 55];
182 init_vlc(&ff_vc1_if_1mv_mbmode_vlc[i], VC1_IF_1MV_MBMODE_VLC_BITS, 6,
183 ff_vc1_if_1mv_mbmode_bits[i], 1, 1,
184 ff_vc1_if_1mv_mbmode_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
191 v->mvrange = 0; /* 7.1.1.18, p80 */
196 /***********************************************************************/
198 * @name VC-1 Bitplane decoding
216 /** @} */ //imode defines
219 /** @} */ //Bitplane group
221 static void vc1_put_signed_blocks_clamped(VC1Context *v)
223 MpegEncContext *s = &v->s;
224 int topleft_mb_pos, top_mb_pos;
225 int stride_y, fieldtx;
228 /* The put pixels loop is always one MB row behind the decoding loop,
229 * because we can only put pixels when overlap filtering is done, and
230 * for filtering of the bottom edge of a MB, we need the next MB row
232 * Within the row, the put pixels loop is also one MB col behind the
233 * decoding loop. The reason for this is again, because for filtering
234 * of the right MB edge, we need the next MB present. */
235 if (!s->first_slice_line) {
237 topleft_mb_pos = (s->mb_y - 1) * s->mb_stride + s->mb_x - 1;
238 fieldtx = v->fieldtx_plane[topleft_mb_pos];
239 stride_y = s->linesize << fieldtx;
240 v_dist = (16 - fieldtx) >> (fieldtx == 0);
241 s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][0],
242 s->dest[0] - 16 * s->linesize - 16,
244 s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][1],
245 s->dest[0] - 16 * s->linesize - 8,
247 s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][2],
248 s->dest[0] - v_dist * s->linesize - 16,
250 s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][3],
251 s->dest[0] - v_dist * s->linesize - 8,
253 s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][4],
254 s->dest[1] - 8 * s->uvlinesize - 8,
256 s->dsp.put_signed_pixels_clamped(v->block[v->topleft_blk_idx][5],
257 s->dest[2] - 8 * s->uvlinesize - 8,
260 if (s->mb_x == s->mb_width - 1) {
261 top_mb_pos = (s->mb_y - 1) * s->mb_stride + s->mb_x;
262 fieldtx = v->fieldtx_plane[top_mb_pos];
263 stride_y = s->linesize << fieldtx;
264 v_dist = fieldtx ? 15 : 8;
265 s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][0],
266 s->dest[0] - 16 * s->linesize,
268 s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][1],
269 s->dest[0] - 16 * s->linesize + 8,
271 s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][2],
272 s->dest[0] - v_dist * s->linesize,
274 s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][3],
275 s->dest[0] - v_dist * s->linesize + 8,
277 s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][4],
278 s->dest[1] - 8 * s->uvlinesize,
280 s->dsp.put_signed_pixels_clamped(v->block[v->top_blk_idx][5],
281 s->dest[2] - 8 * s->uvlinesize,
286 #define inc_blk_idx(idx) do { \
288 if (idx >= v->n_allocated_blks) \
292 inc_blk_idx(v->topleft_blk_idx);
293 inc_blk_idx(v->top_blk_idx);
294 inc_blk_idx(v->left_blk_idx);
295 inc_blk_idx(v->cur_blk_idx);
298 static void vc1_loop_filter_iblk(VC1Context *v, int pq)
300 MpegEncContext *s = &v->s;
302 if (!s->first_slice_line) {
303 v->vc1dsp.vc1_v_loop_filter16(s->dest[0], s->linesize, pq);
305 v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
306 v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize + 8, s->linesize, pq);
307 for (j = 0; j < 2; j++) {
308 v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1], s->uvlinesize, pq);
310 v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
313 v->vc1dsp.vc1_v_loop_filter16(s->dest[0] + 8 * s->linesize, s->linesize, pq);
315 if (s->mb_y == s->end_mb_y - 1) {
317 v->vc1dsp.vc1_h_loop_filter16(s->dest[0], s->linesize, pq);
318 v->vc1dsp.vc1_h_loop_filter8(s->dest[1], s->uvlinesize, pq);
319 v->vc1dsp.vc1_h_loop_filter8(s->dest[2], s->uvlinesize, pq);
321 v->vc1dsp.vc1_h_loop_filter16(s->dest[0] + 8, s->linesize, pq);
325 static void vc1_loop_filter_iblk_delayed(VC1Context *v, int pq)
327 MpegEncContext *s = &v->s;
330 /* The loopfilter runs 1 row and 1 column behind the overlap filter, which
331 * means it runs two rows/cols behind the decoding loop. */
332 if (!s->first_slice_line) {
334 if (s->mb_y >= s->start_mb_y + 2) {
335 v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 16 * s->linesize - 16, s->linesize, pq);
338 v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize - 16, s->linesize, pq);
339 v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize - 8, s->linesize, pq);
340 for (j = 0; j < 2; j++) {
341 v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize - 8, s->uvlinesize, pq);
343 v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 16 * s->uvlinesize - 8, s->uvlinesize, pq);
347 v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 8 * s->linesize - 16, s->linesize, pq);
350 if (s->mb_x == s->mb_width - 1) {
351 if (s->mb_y >= s->start_mb_y + 2) {
352 v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
355 v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize, s->linesize, pq);
356 v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 32 * s->linesize + 8, s->linesize, pq);
357 for (j = 0; j < 2; j++) {
358 v->vc1dsp.vc1_v_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
360 v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 16 * s->uvlinesize, s->uvlinesize, pq);
364 v->vc1dsp.vc1_v_loop_filter16(s->dest[0] - 8 * s->linesize, s->linesize, pq);
367 if (s->mb_y == s->end_mb_y) {
370 v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize - 16, s->linesize, pq);
371 v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize - 8, s->linesize, pq);
373 for (j = 0; j < 2; j++) {
374 v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize - 8, s->uvlinesize, pq);
379 if (s->mb_x == s->mb_width - 1) {
381 v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize, s->linesize, pq);
382 v->vc1dsp.vc1_h_loop_filter16(s->dest[0] - 16 * s->linesize + 8, s->linesize, pq);
384 for (j = 0; j < 2; j++) {
385 v->vc1dsp.vc1_h_loop_filter8(s->dest[j + 1] - 8 * s->uvlinesize, s->uvlinesize, pq);
393 static void vc1_smooth_overlap_filter_iblk(VC1Context *v)
395 MpegEncContext *s = &v->s;
398 if (v->condover == CONDOVER_NONE)
401 mb_pos = s->mb_x + s->mb_y * s->mb_stride;
403 /* Within a MB, the horizontal overlap always runs before the vertical.
404 * To accomplish that, we run the H on left and internal borders of the
405 * currently decoded MB. Then, we wait for the next overlap iteration
406 * to do H overlap on the right edge of this MB, before moving over and
407 * running the V overlap. Therefore, the V overlap makes us trail by one
408 * MB col and the H overlap filter makes us trail by one MB row. This
409 * is reflected in the time at which we run the put_pixels loop. */
410 if (v->condover == CONDOVER_ALL || v->pq >= 9 || v->over_flags_plane[mb_pos]) {
411 if (s->mb_x && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
412 v->over_flags_plane[mb_pos - 1])) {
413 v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][1],
414 v->block[v->cur_blk_idx][0]);
415 v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][3],
416 v->block[v->cur_blk_idx][2]);
417 if (!(s->flags & CODEC_FLAG_GRAY)) {
418 v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][4],
419 v->block[v->cur_blk_idx][4]);
420 v->vc1dsp.vc1_h_s_overlap(v->block[v->left_blk_idx][5],
421 v->block[v->cur_blk_idx][5]);
424 v->vc1dsp.vc1_h_s_overlap(v->block[v->cur_blk_idx][0],
425 v->block[v->cur_blk_idx][1]);
426 v->vc1dsp.vc1_h_s_overlap(v->block[v->cur_blk_idx][2],
427 v->block[v->cur_blk_idx][3]);
429 if (s->mb_x == s->mb_width - 1) {
430 if (!s->first_slice_line && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
431 v->over_flags_plane[mb_pos - s->mb_stride])) {
432 v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][2],
433 v->block[v->cur_blk_idx][0]);
434 v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][3],
435 v->block[v->cur_blk_idx][1]);
436 if (!(s->flags & CODEC_FLAG_GRAY)) {
437 v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][4],
438 v->block[v->cur_blk_idx][4]);
439 v->vc1dsp.vc1_v_s_overlap(v->block[v->top_blk_idx][5],
440 v->block[v->cur_blk_idx][5]);
443 v->vc1dsp.vc1_v_s_overlap(v->block[v->cur_blk_idx][0],
444 v->block[v->cur_blk_idx][2]);
445 v->vc1dsp.vc1_v_s_overlap(v->block[v->cur_blk_idx][1],
446 v->block[v->cur_blk_idx][3]);
449 if (s->mb_x && (v->condover == CONDOVER_ALL || v->over_flags_plane[mb_pos - 1])) {
450 if (!s->first_slice_line && (v->condover == CONDOVER_ALL || v->pq >= 9 ||
451 v->over_flags_plane[mb_pos - s->mb_stride - 1])) {
452 v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][2],
453 v->block[v->left_blk_idx][0]);
454 v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][3],
455 v->block[v->left_blk_idx][1]);
456 if (!(s->flags & CODEC_FLAG_GRAY)) {
457 v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][4],
458 v->block[v->left_blk_idx][4]);
459 v->vc1dsp.vc1_v_s_overlap(v->block[v->topleft_blk_idx][5],
460 v->block[v->left_blk_idx][5]);
463 v->vc1dsp.vc1_v_s_overlap(v->block[v->left_blk_idx][0],
464 v->block[v->left_blk_idx][2]);
465 v->vc1dsp.vc1_v_s_overlap(v->block[v->left_blk_idx][1],
466 v->block[v->left_blk_idx][3]);
470 /** Do motion compensation over 1 macroblock
471 * Mostly adapted hpel_motion and qpel_motion from mpegvideo.c
473 static void vc1_mc_1mv(VC1Context *v, int dir)
475 MpegEncContext *s = &v->s;
476 DSPContext *dsp = &v->s.dsp;
477 uint8_t *srcY, *srcU, *srcV;
478 int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
480 int v_edge_pos = s->v_edge_pos >> v->field_mode;
481 if (!v->field_mode && !v->s.last_picture.f.data[0])
484 mx = s->mv[dir][0][0];
485 my = s->mv[dir][0][1];
487 // store motion vectors for further use in B frames
488 if (s->pict_type == AV_PICTURE_TYPE_P) {
489 s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = mx;
490 s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = my;
493 uvmx = (mx + ((mx & 3) == 3)) >> 1;
494 uvmy = (my + ((my & 3) == 3)) >> 1;
495 v->luma_mv[s->mb_x][0] = uvmx;
496 v->luma_mv[s->mb_x][1] = uvmy;
499 v->cur_field_type != v->ref_field_type[dir]) {
500 my = my - 2 + 4 * v->cur_field_type;
501 uvmy = uvmy - 2 + 4 * v->cur_field_type;
504 // fastuvmc shall be ignored for interlaced frame picture
505 if (v->fastuvmc && (v->fcm != ILACE_FRAME)) {
506 uvmx = uvmx + ((uvmx < 0) ? (uvmx & 1) : -(uvmx & 1));
507 uvmy = uvmy + ((uvmy < 0) ? (uvmy & 1) : -(uvmy & 1));
509 if (v->field_mode) { // interlaced field picture
511 if ((v->cur_field_type != v->ref_field_type[dir]) && v->cur_field_type) {
512 srcY = s->current_picture.f.data[0];
513 srcU = s->current_picture.f.data[1];
514 srcV = s->current_picture.f.data[2];
516 srcY = s->last_picture.f.data[0];
517 srcU = s->last_picture.f.data[1];
518 srcV = s->last_picture.f.data[2];
521 srcY = s->next_picture.f.data[0];
522 srcU = s->next_picture.f.data[1];
523 srcV = s->next_picture.f.data[2];
527 srcY = s->last_picture.f.data[0];
528 srcU = s->last_picture.f.data[1];
529 srcV = s->last_picture.f.data[2];
531 srcY = s->next_picture.f.data[0];
532 srcU = s->next_picture.f.data[1];
533 srcV = s->next_picture.f.data[2];
537 src_x = s->mb_x * 16 + (mx >> 2);
538 src_y = s->mb_y * 16 + (my >> 2);
539 uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
540 uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
542 if (v->profile != PROFILE_ADVANCED) {
543 src_x = av_clip( src_x, -16, s->mb_width * 16);
544 src_y = av_clip( src_y, -16, s->mb_height * 16);
545 uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
546 uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
548 src_x = av_clip( src_x, -17, s->avctx->coded_width);
549 src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
550 uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
551 uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
554 srcY += src_y * s->linesize + src_x;
555 srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
556 srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
558 if (v->field_mode && v->ref_field_type[dir]) {
559 srcY += s->current_picture_ptr->f.linesize[0];
560 srcU += s->current_picture_ptr->f.linesize[1];
561 srcV += s->current_picture_ptr->f.linesize[2];
564 /* for grayscale we should not try to read from unknown area */
565 if (s->flags & CODEC_FLAG_GRAY) {
566 srcU = s->edge_emu_buffer + 18 * s->linesize;
567 srcV = s->edge_emu_buffer + 18 * s->linesize;
570 if (v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
571 || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx&3) - 16 - s->mspel * 3
572 || (unsigned)(src_y - s->mspel) > v_edge_pos - (my&3) - 16 - s->mspel * 3) {
573 uint8_t *uvbuf = s->edge_emu_buffer + 19 * s->linesize;
575 srcY -= s->mspel * (1 + s->linesize);
576 s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize,
577 17 + s->mspel * 2, 17 + s->mspel * 2,
578 src_x - s->mspel, src_y - s->mspel,
579 s->h_edge_pos, v_edge_pos);
580 srcY = s->edge_emu_buffer;
581 s->dsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8 + 1, 8 + 1,
582 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
583 s->dsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8 + 1, 8 + 1,
584 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
587 /* if we deal with range reduction we need to scale source blocks */
588 if (v->rangeredfrm) {
593 for (j = 0; j < 17 + s->mspel * 2; j++) {
594 for (i = 0; i < 17 + s->mspel * 2; i++)
595 src[i] = ((src[i] - 128) >> 1) + 128;
600 for (j = 0; j < 9; j++) {
601 for (i = 0; i < 9; i++) {
602 src[i] = ((src[i] - 128) >> 1) + 128;
603 src2[i] = ((src2[i] - 128) >> 1) + 128;
605 src += s->uvlinesize;
606 src2 += s->uvlinesize;
609 /* if we deal with intensity compensation we need to scale source blocks */
610 if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
615 for (j = 0; j < 17 + s->mspel * 2; j++) {
616 for (i = 0; i < 17 + s->mspel * 2; i++)
617 src[i] = v->luty[src[i]];
622 for (j = 0; j < 9; j++) {
623 for (i = 0; i < 9; i++) {
624 src[i] = v->lutuv[src[i]];
625 src2[i] = v->lutuv[src2[i]];
627 src += s->uvlinesize;
628 src2 += s->uvlinesize;
631 srcY += s->mspel * (1 + s->linesize);
634 if (v->field_mode && v->cur_field_type) {
635 off = s->current_picture_ptr->f.linesize[0];
636 off_uv = s->current_picture_ptr->f.linesize[1];
642 dxy = ((my & 3) << 2) | (mx & 3);
643 v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off , srcY , s->linesize, v->rnd);
644 v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8, srcY + 8, s->linesize, v->rnd);
645 srcY += s->linesize * 8;
646 v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize , srcY , s->linesize, v->rnd);
647 v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
648 } else { // hpel mc - always used for luma
649 dxy = (my & 2) | ((mx & 2) >> 1);
651 dsp->put_pixels_tab[0][dxy](s->dest[0] + off, srcY, s->linesize, 16);
653 dsp->put_no_rnd_pixels_tab[0][dxy](s->dest[0] + off, srcY, s->linesize, 16);
656 if (s->flags & CODEC_FLAG_GRAY) return;
657 /* Chroma MC always uses qpel bilinear */
658 uvmx = (uvmx & 3) << 1;
659 uvmy = (uvmy & 3) << 1;
661 dsp->put_h264_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
662 dsp->put_h264_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
664 v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
665 v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
669 static inline int median4(int a, int b, int c, int d)
672 if (c < d) return (FFMIN(b, d) + FFMAX(a, c)) / 2;
673 else return (FFMIN(b, c) + FFMAX(a, d)) / 2;
675 if (c < d) return (FFMIN(a, d) + FFMAX(b, c)) / 2;
676 else return (FFMIN(a, c) + FFMAX(b, d)) / 2;
680 /** Do motion compensation for 4-MV macroblock - luminance block
682 static void vc1_mc_4mv_luma(VC1Context *v, int n, int dir)
684 MpegEncContext *s = &v->s;
685 DSPContext *dsp = &v->s.dsp;
687 int dxy, mx, my, src_x, src_y;
689 int fieldmv = (v->fcm == ILACE_FRAME) ? v->blk_mv_type[s->block_index[n]] : 0;
690 int v_edge_pos = s->v_edge_pos >> v->field_mode;
692 if (!v->field_mode && !v->s.last_picture.f.data[0])
695 mx = s->mv[dir][n][0];
696 my = s->mv[dir][n][1];
700 if ((v->cur_field_type != v->ref_field_type[dir]) && v->cur_field_type)
701 srcY = s->current_picture.f.data[0];
703 srcY = s->last_picture.f.data[0];
705 srcY = s->last_picture.f.data[0];
707 srcY = s->next_picture.f.data[0];
710 if (v->cur_field_type != v->ref_field_type[dir])
711 my = my - 2 + 4 * v->cur_field_type;
714 if (s->pict_type == AV_PICTURE_TYPE_P && n == 3 && v->field_mode) {
715 int same_count = 0, opp_count = 0, k;
716 int chosen_mv[2][4][2], f;
718 for (k = 0; k < 4; k++) {
719 f = v->mv_f[0][s->block_index[k] + v->blocks_off];
720 chosen_mv[f][f ? opp_count : same_count][0] = s->mv[0][k][0];
721 chosen_mv[f][f ? opp_count : same_count][1] = s->mv[0][k][1];
725 f = opp_count > same_count;
726 switch (f ? opp_count : same_count) {
728 tx = median4(chosen_mv[f][0][0], chosen_mv[f][1][0],
729 chosen_mv[f][2][0], chosen_mv[f][3][0]);
730 ty = median4(chosen_mv[f][0][1], chosen_mv[f][1][1],
731 chosen_mv[f][2][1], chosen_mv[f][3][1]);
734 tx = mid_pred(chosen_mv[f][0][0], chosen_mv[f][1][0], chosen_mv[f][2][0]);
735 ty = mid_pred(chosen_mv[f][0][1], chosen_mv[f][1][1], chosen_mv[f][2][1]);
738 tx = (chosen_mv[f][0][0] + chosen_mv[f][1][0]) / 2;
739 ty = (chosen_mv[f][0][1] + chosen_mv[f][1][1]) / 2;
742 s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = tx;
743 s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = ty;
744 for (k = 0; k < 4; k++)
745 v->mv_f[1][s->block_index[k] + v->blocks_off] = f;
748 if (v->fcm == ILACE_FRAME) { // not sure if needed for other types of picture
750 int width = s->avctx->coded_width;
751 int height = s->avctx->coded_height >> 1;
752 qx = (s->mb_x * 16) + (mx >> 2);
753 qy = (s->mb_y * 8) + (my >> 3);
758 mx -= 4 * (qx - width);
761 else if (qy > height + 1)
762 my -= 8 * (qy - height - 1);
765 if ((v->fcm == ILACE_FRAME) && fieldmv)
766 off = ((n > 1) ? s->linesize : 0) + (n & 1) * 8;
768 off = s->linesize * 4 * (n & 2) + (n & 1) * 8;
769 if (v->field_mode && v->cur_field_type)
770 off += s->current_picture_ptr->f.linesize[0];
772 src_x = s->mb_x * 16 + (n & 1) * 8 + (mx >> 2);
774 src_y = s->mb_y * 16 + (n & 2) * 4 + (my >> 2);
776 src_y = s->mb_y * 16 + ((n > 1) ? 1 : 0) + (my >> 2);
778 if (v->profile != PROFILE_ADVANCED) {
779 src_x = av_clip(src_x, -16, s->mb_width * 16);
780 src_y = av_clip(src_y, -16, s->mb_height * 16);
782 src_x = av_clip(src_x, -17, s->avctx->coded_width);
783 if (v->fcm == ILACE_FRAME) {
785 src_y = av_clip(src_y, -17, s->avctx->coded_height + 1);
787 src_y = av_clip(src_y, -18, s->avctx->coded_height);
789 src_y = av_clip(src_y, -18, s->avctx->coded_height + 1);
793 srcY += src_y * s->linesize + src_x;
794 if (v->field_mode && v->ref_field_type[dir])
795 srcY += s->current_picture_ptr->f.linesize[0];
797 if (fieldmv && !(src_y & 1))
799 if (fieldmv && (src_y & 1) && src_y < 4)
801 if (v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
802 || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx & 3) - 8 - s->mspel * 2
803 || (unsigned)(src_y - (s->mspel << fieldmv)) > v_edge_pos - (my & 3) - ((8 + s->mspel * 2) << fieldmv)) {
804 srcY -= s->mspel * (1 + (s->linesize << fieldmv));
805 /* check emulate edge stride and offset */
806 s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize,
807 9 + s->mspel * 2, (9 + s->mspel * 2) << fieldmv,
808 src_x - s->mspel, src_y - (s->mspel << fieldmv),
809 s->h_edge_pos, v_edge_pos);
810 srcY = s->edge_emu_buffer;
811 /* if we deal with range reduction we need to scale source blocks */
812 if (v->rangeredfrm) {
817 for (j = 0; j < 9 + s->mspel * 2; j++) {
818 for (i = 0; i < 9 + s->mspel * 2; i++)
819 src[i] = ((src[i] - 128) >> 1) + 128;
820 src += s->linesize << fieldmv;
823 /* if we deal with intensity compensation we need to scale source blocks */
824 if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
829 for (j = 0; j < 9 + s->mspel * 2; j++) {
830 for (i = 0; i < 9 + s->mspel * 2; i++)
831 src[i] = v->luty[src[i]];
832 src += s->linesize << fieldmv;
835 srcY += s->mspel * (1 + (s->linesize << fieldmv));
839 dxy = ((my & 3) << 2) | (mx & 3);
840 v->vc1dsp.put_vc1_mspel_pixels_tab[dxy](s->dest[0] + off, srcY, s->linesize << fieldmv, v->rnd);
841 } else { // hpel mc - always used for luma
842 dxy = (my & 2) | ((mx & 2) >> 1);
844 dsp->put_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
846 dsp->put_no_rnd_pixels_tab[1][dxy](s->dest[0] + off, srcY, s->linesize, 8);
850 static av_always_inline int get_chroma_mv(int *mvx, int *mvy, int *a, int flag, int *tx, int *ty)
853 static const int count[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
855 idx = ((a[3] != flag) << 3)
856 | ((a[2] != flag) << 2)
857 | ((a[1] != flag) << 1)
860 *tx = median4(mvx[0], mvx[1], mvx[2], mvx[3]);
861 *ty = median4(mvy[0], mvy[1], mvy[2], mvy[3]);
863 } else if (count[idx] == 1) {
866 *tx = mid_pred(mvx[1], mvx[2], mvx[3]);
867 *ty = mid_pred(mvy[1], mvy[2], mvy[3]);
870 *tx = mid_pred(mvx[0], mvx[2], mvx[3]);
871 *ty = mid_pred(mvy[0], mvy[2], mvy[3]);
874 *tx = mid_pred(mvx[0], mvx[1], mvx[3]);
875 *ty = mid_pred(mvy[0], mvy[1], mvy[3]);
878 *tx = mid_pred(mvx[0], mvx[1], mvx[2]);
879 *ty = mid_pred(mvy[0], mvy[1], mvy[2]);
882 } else if (count[idx] == 2) {
884 for (i = 0; i < 3; i++)
889 for (i = t1 + 1; i < 4; i++)
894 *tx = (mvx[t1] + mvx[t2]) / 2;
895 *ty = (mvy[t1] + mvy[t2]) / 2;
903 /** Do motion compensation for 4-MV macroblock - both chroma blocks
905 static void vc1_mc_4mv_chroma(VC1Context *v, int dir)
907 MpegEncContext *s = &v->s;
908 DSPContext *dsp = &v->s.dsp;
909 uint8_t *srcU, *srcV;
910 int uvmx, uvmy, uvsrc_x, uvsrc_y;
911 int k, tx = 0, ty = 0;
912 int mvx[4], mvy[4], intra[4], mv_f[4];
914 int chroma_ref_type = v->cur_field_type, off = 0;
915 int v_edge_pos = s->v_edge_pos >> v->field_mode;
917 if (!v->field_mode && !v->s.last_picture.f.data[0])
919 if (s->flags & CODEC_FLAG_GRAY)
922 for (k = 0; k < 4; k++) {
923 mvx[k] = s->mv[dir][k][0];
924 mvy[k] = s->mv[dir][k][1];
925 intra[k] = v->mb_type[0][s->block_index[k]];
927 mv_f[k] = v->mv_f[dir][s->block_index[k] + v->blocks_off];
930 /* calculate chroma MV vector from four luma MVs */
931 if (!v->field_mode || (v->field_mode && !v->numref)) {
932 valid_count = get_chroma_mv(mvx, mvy, intra, 0, &tx, &ty);
934 s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = 0;
935 s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = 0;
936 v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
937 return; //no need to do MC for intra blocks
941 if (mv_f[0] + mv_f[1] + mv_f[2] + mv_f[3] > 2)
943 valid_count = get_chroma_mv(mvx, mvy, mv_f, dominant, &tx, &ty);
945 chroma_ref_type = !v->cur_field_type;
947 s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0] = tx;
948 s->current_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1] = ty;
949 uvmx = (tx + ((tx & 3) == 3)) >> 1;
950 uvmy = (ty + ((ty & 3) == 3)) >> 1;
952 v->luma_mv[s->mb_x][0] = uvmx;
953 v->luma_mv[s->mb_x][1] = uvmy;
956 uvmx = uvmx + ((uvmx < 0) ? (uvmx & 1) : -(uvmx & 1));
957 uvmy = uvmy + ((uvmy < 0) ? (uvmy & 1) : -(uvmy & 1));
959 // Field conversion bias
960 if (v->cur_field_type != chroma_ref_type)
961 uvmy += 2 - 4 * chroma_ref_type;
963 uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
964 uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
966 if (v->profile != PROFILE_ADVANCED) {
967 uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
968 uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
970 uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
971 uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
976 if ((v->cur_field_type != chroma_ref_type) && v->cur_field_type) {
977 srcU = s->current_picture.f.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
978 srcV = s->current_picture.f.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
980 srcU = s->last_picture.f.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
981 srcV = s->last_picture.f.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
984 srcU = s->last_picture.f.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
985 srcV = s->last_picture.f.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
988 srcU = s->next_picture.f.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
989 srcV = s->next_picture.f.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
993 if (chroma_ref_type) {
994 srcU += s->current_picture_ptr->f.linesize[1];
995 srcV += s->current_picture_ptr->f.linesize[2];
997 off = v->cur_field_type ? s->current_picture_ptr->f.linesize[1] : 0;
1000 if (v->rangeredfrm || (v->mv_mode == MV_PMODE_INTENSITY_COMP)
1001 || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 9
1002 || (unsigned)uvsrc_y > (v_edge_pos >> 1) - 9) {
1003 s->dsp.emulated_edge_mc(s->edge_emu_buffer , srcU, s->uvlinesize,
1004 8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
1005 s->h_edge_pos >> 1, v_edge_pos >> 1);
1006 s->dsp.emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize,
1007 8 + 1, 8 + 1, uvsrc_x, uvsrc_y,
1008 s->h_edge_pos >> 1, v_edge_pos >> 1);
1009 srcU = s->edge_emu_buffer;
1010 srcV = s->edge_emu_buffer + 16;
1012 /* if we deal with range reduction we need to scale source blocks */
1013 if (v->rangeredfrm) {
1015 uint8_t *src, *src2;
1019 for (j = 0; j < 9; j++) {
1020 for (i = 0; i < 9; i++) {
1021 src[i] = ((src[i] - 128) >> 1) + 128;
1022 src2[i] = ((src2[i] - 128) >> 1) + 128;
1024 src += s->uvlinesize;
1025 src2 += s->uvlinesize;
1028 /* if we deal with intensity compensation we need to scale source blocks */
1029 if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
1031 uint8_t *src, *src2;
1035 for (j = 0; j < 9; j++) {
1036 for (i = 0; i < 9; i++) {
1037 src[i] = v->lutuv[src[i]];
1038 src2[i] = v->lutuv[src2[i]];
1040 src += s->uvlinesize;
1041 src2 += s->uvlinesize;
1046 /* Chroma MC always uses qpel bilinear */
1047 uvmx = (uvmx & 3) << 1;
1048 uvmy = (uvmy & 3) << 1;
1050 dsp->put_h264_chroma_pixels_tab[0](s->dest[1] + off, srcU, s->uvlinesize, 8, uvmx, uvmy);
1051 dsp->put_h264_chroma_pixels_tab[0](s->dest[2] + off, srcV, s->uvlinesize, 8, uvmx, uvmy);
1053 v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1] + off, srcU, s->uvlinesize, 8, uvmx, uvmy);
1054 v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2] + off, srcV, s->uvlinesize, 8, uvmx, uvmy);
1058 /** Do motion compensation for 4-MV field chroma macroblock (both U and V)
1060 static void vc1_mc_4mv_chroma4(VC1Context *v)
1062 MpegEncContext *s = &v->s;
1063 DSPContext *dsp = &v->s.dsp;
1064 uint8_t *srcU, *srcV;
1065 int uvsrc_x, uvsrc_y;
1066 int uvmx_field[4], uvmy_field[4];
1068 int fieldmv = v->blk_mv_type[s->block_index[0]];
1069 static const int s_rndtblfield[16] = { 0, 0, 1, 2, 4, 4, 5, 6, 2, 2, 3, 8, 6, 6, 7, 12 };
1070 int v_dist = fieldmv ? 1 : 4; // vertical offset for lower sub-blocks
1071 int v_edge_pos = s->v_edge_pos >> 1;
1073 if (!v->s.last_picture.f.data[0])
1075 if (s->flags & CODEC_FLAG_GRAY)
1078 for (i = 0; i < 4; i++) {
1079 tx = s->mv[0][i][0];
1080 uvmx_field[i] = (tx + ((tx & 3) == 3)) >> 1;
1081 ty = s->mv[0][i][1];
1083 uvmy_field[i] = (ty >> 4) * 8 + s_rndtblfield[ty & 0xF];
1085 uvmy_field[i] = (ty + ((ty & 3) == 3)) >> 1;
1088 for (i = 0; i < 4; i++) {
1089 off = (i & 1) * 4 + ((i & 2) ? v_dist * s->uvlinesize : 0);
1090 uvsrc_x = s->mb_x * 8 + (i & 1) * 4 + (uvmx_field[i] >> 2);
1091 uvsrc_y = s->mb_y * 8 + ((i & 2) ? v_dist : 0) + (uvmy_field[i] >> 2);
1092 // FIXME: implement proper pull-back (see vc1cropmv.c, vc1CROPMV_ChromaPullBack())
1093 uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
1094 uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
1095 srcU = s->last_picture.f.data[1] + uvsrc_y * s->uvlinesize + uvsrc_x;
1096 srcV = s->last_picture.f.data[2] + uvsrc_y * s->uvlinesize + uvsrc_x;
1097 uvmx_field[i] = (uvmx_field[i] & 3) << 1;
1098 uvmy_field[i] = (uvmy_field[i] & 3) << 1;
1100 if (fieldmv && !(uvsrc_y & 1))
1102 if (fieldmv && (uvsrc_y & 1) && uvsrc_y < 2)
1104 if ((v->mv_mode == MV_PMODE_INTENSITY_COMP)
1105 || (unsigned)uvsrc_x > (s->h_edge_pos >> 1) - 5
1106 || (unsigned)uvsrc_y > v_edge_pos - (5 << fieldmv)) {
1107 s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcU, s->uvlinesize,
1108 5, (5 << fieldmv), uvsrc_x, uvsrc_y,
1109 s->h_edge_pos >> 1, v_edge_pos);
1110 s->dsp.emulated_edge_mc(s->edge_emu_buffer + 16, srcV, s->uvlinesize,
1111 5, (5 << fieldmv), uvsrc_x, uvsrc_y,
1112 s->h_edge_pos >> 1, v_edge_pos);
1113 srcU = s->edge_emu_buffer;
1114 srcV = s->edge_emu_buffer + 16;
1116 /* if we deal with intensity compensation we need to scale source blocks */
1117 if (v->mv_mode == MV_PMODE_INTENSITY_COMP) {
1119 uint8_t *src, *src2;
1123 for (j = 0; j < 5; j++) {
1124 for (i = 0; i < 5; i++) {
1125 src[i] = v->lutuv[src[i]];
1126 src2[i] = v->lutuv[src2[i]];
1128 src += s->uvlinesize << 1;
1129 src2 += s->uvlinesize << 1;
1134 dsp->put_h264_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
1135 dsp->put_h264_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
1137 v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[1](s->dest[1] + off, srcU, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
1138 v->vc1dsp.put_no_rnd_vc1_chroma_pixels_tab[1](s->dest[2] + off, srcV, s->uvlinesize << fieldmv, 4, uvmx_field[i], uvmy_field[i]);
1143 /***********************************************************************/
1145 * @name VC-1 Block-level functions
1146 * @see 7.1.4, p91 and 8.1.1.7, p(1)04
1152 * @brief Get macroblock-level quantizer scale
1154 #define GET_MQUANT() \
1155 if (v->dquantfrm) { \
1157 if (v->dqprofile == DQPROFILE_ALL_MBS) { \
1158 if (v->dqbilevel) { \
1159 mquant = (get_bits1(gb)) ? v->altpq : v->pq; \
1161 mqdiff = get_bits(gb, 3); \
1163 mquant = v->pq + mqdiff; \
1165 mquant = get_bits(gb, 5); \
1168 if (v->dqprofile == DQPROFILE_SINGLE_EDGE) \
1169 edges = 1 << v->dqsbedge; \
1170 else if (v->dqprofile == DQPROFILE_DOUBLE_EDGES) \
1171 edges = (3 << v->dqsbedge) % 15; \
1172 else if (v->dqprofile == DQPROFILE_FOUR_EDGES) \
1174 if ((edges&1) && !s->mb_x) \
1175 mquant = v->altpq; \
1176 if ((edges&2) && s->first_slice_line) \
1177 mquant = v->altpq; \
1178 if ((edges&4) && s->mb_x == (s->mb_width - 1)) \
1179 mquant = v->altpq; \
1180 if ((edges&8) && s->mb_y == (s->mb_height - 1)) \
1181 mquant = v->altpq; \
1185 * @def GET_MVDATA(_dmv_x, _dmv_y)
1186 * @brief Get MV differentials
1187 * @see MVDATA decoding from 8.3.5.2, p(1)20
1188 * @param _dmv_x Horizontal differential for decoded MV
1189 * @param _dmv_y Vertical differential for decoded MV
1191 #define GET_MVDATA(_dmv_x, _dmv_y) \
1192 index = 1 + get_vlc2(gb, ff_vc1_mv_diff_vlc[s->mv_table_index].table, \
1193 VC1_MV_DIFF_VLC_BITS, 2); \
1195 mb_has_coeffs = 1; \
1198 mb_has_coeffs = 0; \
1201 _dmv_x = _dmv_y = 0; \
1202 } else if (index == 35) { \
1203 _dmv_x = get_bits(gb, v->k_x - 1 + s->quarter_sample); \
1204 _dmv_y = get_bits(gb, v->k_y - 1 + s->quarter_sample); \
1205 } else if (index == 36) { \
1210 index1 = index % 6; \
1211 if (!s->quarter_sample && index1 == 5) val = 1; \
1213 if (size_table[index1] - val > 0) \
1214 val = get_bits(gb, size_table[index1] - val); \
1216 sign = 0 - (val&1); \
1217 _dmv_x = (sign ^ ((val>>1) + offset_table[index1])) - sign; \
1219 index1 = index / 6; \
1220 if (!s->quarter_sample && index1 == 5) val = 1; \
1222 if (size_table[index1] - val > 0) \
1223 val = get_bits(gb, size_table[index1] - val); \
1225 sign = 0 - (val & 1); \
1226 _dmv_y = (sign ^ ((val >> 1) + offset_table[index1])) - sign; \
1229 static av_always_inline void get_mvdata_interlaced(VC1Context *v, int *dmv_x,
1230 int *dmv_y, int *pred_flag)
1233 int extend_x = 0, extend_y = 0;
1234 GetBitContext *gb = &v->s.gb;
1237 const int* offs_tab;
1240 bits = VC1_2REF_MVDATA_VLC_BITS;
1243 bits = VC1_1REF_MVDATA_VLC_BITS;
1246 switch (v->dmvrange) {
1254 extend_x = extend_y = 1;
1257 index = get_vlc2(gb, v->imv_vlc->table, bits, 3);
1259 *dmv_x = get_bits(gb, v->k_x);
1260 *dmv_y = get_bits(gb, v->k_y);
1262 *pred_flag = *dmv_y & 1;
1263 *dmv_y = (*dmv_y + *pred_flag) >> 1;
1268 offs_tab = offset_table2;
1270 offs_tab = offset_table1;
1271 index1 = (index + 1) % 9;
1273 val = get_bits(gb, index1 + extend_x);
1274 sign = 0 -(val & 1);
1275 *dmv_x = (sign ^ ((val >> 1) + offs_tab[index1])) - sign;
1279 offs_tab = offset_table2;
1281 offs_tab = offset_table1;
1282 index1 = (index + 1) / 9;
1283 if (index1 > v->numref) {
1284 val = get_bits(gb, (index1 + (extend_y << v->numref)) >> v->numref);
1285 sign = 0 - (val & 1);
1286 *dmv_y = (sign ^ ((val >> 1) + offs_tab[index1 >> v->numref])) - sign;
1290 *pred_flag = index1 & 1;
1294 static av_always_inline int scaleforsame_x(VC1Context *v, int n /* MV */, int dir)
1296 int scaledvalue, refdist;
1297 int scalesame1, scalesame2;
1298 int scalezone1_x, zone1offset_x;
1299 int table_index = dir ^ v->second_field;
1301 if (v->s.pict_type != AV_PICTURE_TYPE_B)
1302 refdist = v->refdist;
1304 refdist = dir ? v->brfd : v->frfd;
1307 scalesame1 = vc1_field_mvpred_scales[table_index][1][refdist];
1308 scalesame2 = vc1_field_mvpred_scales[table_index][2][refdist];
1309 scalezone1_x = vc1_field_mvpred_scales[table_index][3][refdist];
1310 zone1offset_x = vc1_field_mvpred_scales[table_index][5][refdist];
1315 if (FFABS(n) < scalezone1_x)
1316 scaledvalue = (n * scalesame1) >> 8;
1319 scaledvalue = ((n * scalesame2) >> 8) - zone1offset_x;
1321 scaledvalue = ((n * scalesame2) >> 8) + zone1offset_x;
1324 return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
1327 static av_always_inline int scaleforsame_y(VC1Context *v, int i, int n /* MV */, int dir)
1329 int scaledvalue, refdist;
1330 int scalesame1, scalesame2;
1331 int scalezone1_y, zone1offset_y;
1332 int table_index = dir ^ v->second_field;
1334 if (v->s.pict_type != AV_PICTURE_TYPE_B)
1335 refdist = v->refdist;
1337 refdist = dir ? v->brfd : v->frfd;
1340 scalesame1 = vc1_field_mvpred_scales[table_index][1][refdist];
1341 scalesame2 = vc1_field_mvpred_scales[table_index][2][refdist];
1342 scalezone1_y = vc1_field_mvpred_scales[table_index][4][refdist];
1343 zone1offset_y = vc1_field_mvpred_scales[table_index][6][refdist];
1348 if (FFABS(n) < scalezone1_y)
1349 scaledvalue = (n * scalesame1) >> 8;
1352 scaledvalue = ((n * scalesame2) >> 8) - zone1offset_y;
1354 scaledvalue = ((n * scalesame2) >> 8) + zone1offset_y;
1358 if (v->cur_field_type && !v->ref_field_type[dir])
1359 return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
1361 return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
1364 static av_always_inline int scaleforopp_x(VC1Context *v, int n /* MV */)
1366 int scalezone1_x, zone1offset_x;
1367 int scaleopp1, scaleopp2, brfd;
1370 brfd = FFMIN(v->brfd, 3);
1371 scalezone1_x = vc1_b_field_mvpred_scales[3][brfd];
1372 zone1offset_x = vc1_b_field_mvpred_scales[5][brfd];
1373 scaleopp1 = vc1_b_field_mvpred_scales[1][brfd];
1374 scaleopp2 = vc1_b_field_mvpred_scales[2][brfd];
1379 if (FFABS(n) < scalezone1_x)
1380 scaledvalue = (n * scaleopp1) >> 8;
1383 scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_x;
1385 scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_x;
1388 return av_clip(scaledvalue, -v->range_x, v->range_x - 1);
1391 static av_always_inline int scaleforopp_y(VC1Context *v, int n /* MV */, int dir)
1393 int scalezone1_y, zone1offset_y;
1394 int scaleopp1, scaleopp2, brfd;
1397 brfd = FFMIN(v->brfd, 3);
1398 scalezone1_y = vc1_b_field_mvpred_scales[4][brfd];
1399 zone1offset_y = vc1_b_field_mvpred_scales[6][brfd];
1400 scaleopp1 = vc1_b_field_mvpred_scales[1][brfd];
1401 scaleopp2 = vc1_b_field_mvpred_scales[2][brfd];
1406 if (FFABS(n) < scalezone1_y)
1407 scaledvalue = (n * scaleopp1) >> 8;
1410 scaledvalue = ((n * scaleopp2) >> 8) - zone1offset_y;
1412 scaledvalue = ((n * scaleopp2) >> 8) + zone1offset_y;
1415 if (v->cur_field_type && !v->ref_field_type[dir]) {
1416 return av_clip(scaledvalue, -v->range_y / 2 + 1, v->range_y / 2);
1418 return av_clip(scaledvalue, -v->range_y / 2, v->range_y / 2 - 1);
1422 static av_always_inline int scaleforsame(VC1Context *v, int i, int n /* MV */,
1425 int brfd, scalesame;
1426 int hpel = 1 - v->s.quarter_sample;
1429 if (v->s.pict_type != AV_PICTURE_TYPE_B || v->second_field || !dir) {
1431 n = scaleforsame_y(v, i, n, dir) << hpel;
1433 n = scaleforsame_x(v, n, dir) << hpel;
1436 brfd = FFMIN(v->brfd, 3);
1437 scalesame = vc1_b_field_mvpred_scales[0][brfd];
1439 n = (n * scalesame >> 8) << hpel;
1443 static av_always_inline int scaleforopp(VC1Context *v, int n /* MV */,
1446 int refdist, scaleopp;
1447 int hpel = 1 - v->s.quarter_sample;
1450 if (v->s.pict_type == AV_PICTURE_TYPE_B && !v->second_field && dir == 1) {
1452 n = scaleforopp_y(v, n, dir) << hpel;
1454 n = scaleforopp_x(v, n) << hpel;
1457 if (v->s.pict_type != AV_PICTURE_TYPE_B)
1458 refdist = FFMIN(v->refdist, 3);
1460 refdist = dir ? v->brfd : v->frfd;
1461 scaleopp = vc1_field_mvpred_scales[dir ^ v->second_field][0][refdist];
1463 n = (n * scaleopp >> 8) << hpel;
1467 /** Predict and set motion vector
1469 static inline void vc1_pred_mv(VC1Context *v, int n, int dmv_x, int dmv_y,
1470 int mv1, int r_x, int r_y, uint8_t* is_intra,
1471 int pred_flag, int dir)
1473 MpegEncContext *s = &v->s;
1474 int xy, wrap, off = 0;
1478 int mixedmv_pic, num_samefield = 0, num_oppfield = 0;
1479 int opposit, a_f, b_f, c_f;
1480 int16_t field_predA[2];
1481 int16_t field_predB[2];
1482 int16_t field_predC[2];
1483 int a_valid, b_valid, c_valid;
1484 int hybridmv_thresh, y_bias = 0;
1486 if (v->mv_mode == MV_PMODE_MIXED_MV ||
1487 ((v->mv_mode == MV_PMODE_INTENSITY_COMP) && (v->mv_mode2 == MV_PMODE_MIXED_MV)))
1491 /* scale MV difference to be quad-pel */
1492 dmv_x <<= 1 - s->quarter_sample;
1493 dmv_y <<= 1 - s->quarter_sample;
1495 wrap = s->b8_stride;
1496 xy = s->block_index[n];
1499 s->mv[0][n][0] = s->current_picture.f.motion_val[0][xy + v->blocks_off][0] = 0;
1500 s->mv[0][n][1] = s->current_picture.f.motion_val[0][xy + v->blocks_off][1] = 0;
1501 s->current_picture.f.motion_val[1][xy + v->blocks_off][0] = 0;
1502 s->current_picture.f.motion_val[1][xy + v->blocks_off][1] = 0;
1503 if (mv1) { /* duplicate motion data for 1-MV block */
1504 s->current_picture.f.motion_val[0][xy + 1 + v->blocks_off][0] = 0;
1505 s->current_picture.f.motion_val[0][xy + 1 + v->blocks_off][1] = 0;
1506 s->current_picture.f.motion_val[0][xy + wrap + v->blocks_off][0] = 0;
1507 s->current_picture.f.motion_val[0][xy + wrap + v->blocks_off][1] = 0;
1508 s->current_picture.f.motion_val[0][xy + wrap + 1 + v->blocks_off][0] = 0;
1509 s->current_picture.f.motion_val[0][xy + wrap + 1 + v->blocks_off][1] = 0;
1510 v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
1511 s->current_picture.f.motion_val[1][xy + 1 + v->blocks_off][0] = 0;
1512 s->current_picture.f.motion_val[1][xy + 1 + v->blocks_off][1] = 0;
1513 s->current_picture.f.motion_val[1][xy + wrap][0] = 0;
1514 s->current_picture.f.motion_val[1][xy + wrap + v->blocks_off][1] = 0;
1515 s->current_picture.f.motion_val[1][xy + wrap + 1 + v->blocks_off][0] = 0;
1516 s->current_picture.f.motion_val[1][xy + wrap + 1 + v->blocks_off][1] = 0;
1521 C = s->current_picture.f.motion_val[dir][xy - 1 + v->blocks_off];
1522 A = s->current_picture.f.motion_val[dir][xy - wrap + v->blocks_off];
1524 if (v->field_mode && mixedmv_pic)
1525 off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
1527 off = (s->mb_x == (s->mb_width - 1)) ? -1 : 2;
1529 //in 4-MV mode different blocks have different B predictor position
1532 off = (s->mb_x > 0) ? -1 : 1;
1535 off = (s->mb_x == (s->mb_width - 1)) ? -1 : 1;
1544 B = s->current_picture.f.motion_val[dir][xy - wrap + off + v->blocks_off];
1546 a_valid = !s->first_slice_line || (n == 2 || n == 3);
1547 b_valid = a_valid && (s->mb_width > 1);
1548 c_valid = s->mb_x || (n == 1 || n == 3);
1549 if (v->field_mode) {
1550 a_valid = a_valid && !is_intra[xy - wrap];
1551 b_valid = b_valid && !is_intra[xy - wrap + off];
1552 c_valid = c_valid && !is_intra[xy - 1];
1556 a_f = v->mv_f[dir][xy - wrap + v->blocks_off];
1557 num_oppfield += a_f;
1558 num_samefield += 1 - a_f;
1559 field_predA[0] = A[0];
1560 field_predA[1] = A[1];
1562 field_predA[0] = field_predA[1] = 0;
1566 b_f = v->mv_f[dir][xy - wrap + off + v->blocks_off];
1567 num_oppfield += b_f;
1568 num_samefield += 1 - b_f;
1569 field_predB[0] = B[0];
1570 field_predB[1] = B[1];
1572 field_predB[0] = field_predB[1] = 0;
1576 c_f = v->mv_f[dir][xy - 1 + v->blocks_off];
1577 num_oppfield += c_f;
1578 num_samefield += 1 - c_f;
1579 field_predC[0] = C[0];
1580 field_predC[1] = C[1];
1582 field_predC[0] = field_predC[1] = 0;
1586 if (v->field_mode) {
1587 if (num_samefield <= num_oppfield)
1588 opposit = 1 - pred_flag;
1590 opposit = pred_flag;
1594 if (a_valid && !a_f) {
1595 field_predA[0] = scaleforopp(v, field_predA[0], 0, dir);
1596 field_predA[1] = scaleforopp(v, field_predA[1], 1, dir);
1598 if (b_valid && !b_f) {
1599 field_predB[0] = scaleforopp(v, field_predB[0], 0, dir);
1600 field_predB[1] = scaleforopp(v, field_predB[1], 1, dir);
1602 if (c_valid && !c_f) {
1603 field_predC[0] = scaleforopp(v, field_predC[0], 0, dir);
1604 field_predC[1] = scaleforopp(v, field_predC[1], 1, dir);
1606 v->mv_f[dir][xy + v->blocks_off] = 1;
1607 v->ref_field_type[dir] = !v->cur_field_type;
1609 if (a_valid && a_f) {
1610 field_predA[0] = scaleforsame(v, n, field_predA[0], 0, dir);
1611 field_predA[1] = scaleforsame(v, n, field_predA[1], 1, dir);
1613 if (b_valid && b_f) {
1614 field_predB[0] = scaleforsame(v, n, field_predB[0], 0, dir);
1615 field_predB[1] = scaleforsame(v, n, field_predB[1], 1, dir);
1617 if (c_valid && c_f) {
1618 field_predC[0] = scaleforsame(v, n, field_predC[0], 0, dir);
1619 field_predC[1] = scaleforsame(v, n, field_predC[1], 1, dir);
1621 v->mv_f[dir][xy + v->blocks_off] = 0;
1622 v->ref_field_type[dir] = v->cur_field_type;
1626 px = field_predA[0];
1627 py = field_predA[1];
1628 } else if (c_valid) {
1629 px = field_predC[0];
1630 py = field_predC[1];
1631 } else if (b_valid) {
1632 px = field_predB[0];
1633 py = field_predB[1];
1639 if (num_samefield + num_oppfield > 1) {
1640 px = mid_pred(field_predA[0], field_predB[0], field_predC[0]);
1641 py = mid_pred(field_predA[1], field_predB[1], field_predC[1]);
1644 /* Pullback MV as specified in 8.3.5.3.4 */
1645 if (!v->field_mode) {
1647 qx = (s->mb_x << 6) + ((n == 1 || n == 3) ? 32 : 0);
1648 qy = (s->mb_y << 6) + ((n == 2 || n == 3) ? 32 : 0);
1649 X = (s->mb_width << 6) - 4;
1650 Y = (s->mb_height << 6) - 4;
1652 if (qx + px < -60) px = -60 - qx;
1653 if (qy + py < -60) py = -60 - qy;
1655 if (qx + px < -28) px = -28 - qx;
1656 if (qy + py < -28) py = -28 - qy;
1658 if (qx + px > X) px = X - qx;
1659 if (qy + py > Y) py = Y - qy;
1662 if (!v->field_mode || s->pict_type != AV_PICTURE_TYPE_B) {
1663 /* Calculate hybrid prediction as specified in 8.3.5.3.5 (also 10.3.5.4.3.5) */
1664 hybridmv_thresh = 32;
1665 if (a_valid && c_valid) {
1666 if (is_intra[xy - wrap])
1667 sum = FFABS(px) + FFABS(py);
1669 sum = FFABS(px - field_predA[0]) + FFABS(py - field_predA[1]);
1670 if (sum > hybridmv_thresh) {
1671 if (get_bits1(&s->gb)) { // read HYBRIDPRED bit
1672 px = field_predA[0];
1673 py = field_predA[1];
1675 px = field_predC[0];
1676 py = field_predC[1];
1679 if (is_intra[xy - 1])
1680 sum = FFABS(px) + FFABS(py);
1682 sum = FFABS(px - field_predC[0]) + FFABS(py - field_predC[1]);
1683 if (sum > hybridmv_thresh) {
1684 if (get_bits1(&s->gb)) {
1685 px = field_predA[0];
1686 py = field_predA[1];
1688 px = field_predC[0];
1689 py = field_predC[1];
1696 if (v->field_mode && !s->quarter_sample) {
1700 if (v->field_mode && v->numref)
1702 if (v->field_mode && v->cur_field_type && v->ref_field_type[dir] == 0)
1704 /* store MV using signed modulus of MV range defined in 4.11 */
1705 s->mv[dir][n][0] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
1706 s->mv[dir][n][1] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][1] = ((py + dmv_y + r_y - y_bias) & ((r_y << 1) - 1)) - r_y + y_bias;
1707 if (mv1) { /* duplicate motion data for 1-MV block */
1708 s->current_picture.f.motion_val[dir][xy + 1 + v->blocks_off][0] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][0];
1709 s->current_picture.f.motion_val[dir][xy + 1 + v->blocks_off][1] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][1];
1710 s->current_picture.f.motion_val[dir][xy + wrap + v->blocks_off][0] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][0];
1711 s->current_picture.f.motion_val[dir][xy + wrap + v->blocks_off][1] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][1];
1712 s->current_picture.f.motion_val[dir][xy + wrap + 1 + v->blocks_off][0] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][0];
1713 s->current_picture.f.motion_val[dir][xy + wrap + 1 + v->blocks_off][1] = s->current_picture.f.motion_val[dir][xy + v->blocks_off][1];
1714 v->mv_f[dir][xy + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
1715 v->mv_f[dir][xy + wrap + v->blocks_off] = v->mv_f[dir][xy + wrap + 1 + v->blocks_off] = v->mv_f[dir][xy + v->blocks_off];
1719 /** Predict and set motion vector for interlaced frame picture MBs
1721 static inline void vc1_pred_mv_intfr(VC1Context *v, int n, int dmv_x, int dmv_y,
1722 int mvn, int r_x, int r_y, uint8_t* is_intra)
1724 MpegEncContext *s = &v->s;
1725 int xy, wrap, off = 0;
1726 int A[2], B[2], C[2];
1728 int a_valid = 0, b_valid = 0, c_valid = 0;
1729 int field_a, field_b, field_c; // 0: same, 1: opposit
1730 int total_valid, num_samefield, num_oppfield;
1731 int pos_c, pos_b, n_adj;
1733 wrap = s->b8_stride;
1734 xy = s->block_index[n];
1737 s->mv[0][n][0] = s->current_picture.f.motion_val[0][xy][0] = 0;
1738 s->mv[0][n][1] = s->current_picture.f.motion_val[0][xy][1] = 0;
1739 s->current_picture.f.motion_val[1][xy][0] = 0;
1740 s->current_picture.f.motion_val[1][xy][1] = 0;
1741 if (mvn == 1) { /* duplicate motion data for 1-MV block */
1742 s->current_picture.f.motion_val[0][xy + 1][0] = 0;
1743 s->current_picture.f.motion_val[0][xy + 1][1] = 0;
1744 s->current_picture.f.motion_val[0][xy + wrap][0] = 0;
1745 s->current_picture.f.motion_val[0][xy + wrap][1] = 0;
1746 s->current_picture.f.motion_val[0][xy + wrap + 1][0] = 0;
1747 s->current_picture.f.motion_val[0][xy + wrap + 1][1] = 0;
1748 v->luma_mv[s->mb_x][0] = v->luma_mv[s->mb_x][1] = 0;
1749 s->current_picture.f.motion_val[1][xy + 1][0] = 0;
1750 s->current_picture.f.motion_val[1][xy + 1][1] = 0;
1751 s->current_picture.f.motion_val[1][xy + wrap][0] = 0;
1752 s->current_picture.f.motion_val[1][xy + wrap][1] = 0;
1753 s->current_picture.f.motion_val[1][xy + wrap + 1][0] = 0;
1754 s->current_picture.f.motion_val[1][xy + wrap + 1][1] = 0;
1759 off = ((n == 0) || (n == 1)) ? 1 : -1;
1761 if (s->mb_x || (n == 1) || (n == 3)) {
1762 if ((v->blk_mv_type[xy]) // current block (MB) has a field MV
1763 || (!v->blk_mv_type[xy] && !v->blk_mv_type[xy - 1])) { // or both have frame MV
1764 A[0] = s->current_picture.f.motion_val[0][xy - 1][0];
1765 A[1] = s->current_picture.f.motion_val[0][xy - 1][1];
1767 } else { // current block has frame mv and cand. has field MV (so average)
1768 A[0] = (s->current_picture.f.motion_val[0][xy - 1][0]
1769 + s->current_picture.f.motion_val[0][xy - 1 + off * wrap][0] + 1) >> 1;
1770 A[1] = (s->current_picture.f.motion_val[0][xy - 1][1]
1771 + s->current_picture.f.motion_val[0][xy - 1 + off * wrap][1] + 1) >> 1;
1774 if (!(n & 1) && v->is_intra[s->mb_x - 1]) {
1780 /* Predict B and C */
1781 B[0] = B[1] = C[0] = C[1] = 0;
1782 if (n == 0 || n == 1 || v->blk_mv_type[xy]) {
1783 if (!s->first_slice_line) {
1784 if (!v->is_intra[s->mb_x - s->mb_stride]) {
1787 pos_b = s->block_index[n_adj] - 2 * wrap;
1788 if (v->blk_mv_type[pos_b] && v->blk_mv_type[xy]) {
1789 n_adj = (n & 2) | (n & 1);
1791 B[0] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap][0];
1792 B[1] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap][1];
1793 if (v->blk_mv_type[pos_b] && !v->blk_mv_type[xy]) {
1794 B[0] = (B[0] + s->current_picture.f.motion_val[0][s->block_index[n_adj ^ 2] - 2 * wrap][0] + 1) >> 1;
1795 B[1] = (B[1] + s->current_picture.f.motion_val[0][s->block_index[n_adj ^ 2] - 2 * wrap][1] + 1) >> 1;
1798 if (s->mb_width > 1) {
1799 if (!v->is_intra[s->mb_x - s->mb_stride + 1]) {
1802 pos_c = s->block_index[2] - 2 * wrap + 2;
1803 if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
1806 C[0] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap + 2][0];
1807 C[1] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap + 2][1];
1808 if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
1809 C[0] = (1 + C[0] + (s->current_picture.f.motion_val[0][s->block_index[n_adj ^ 2] - 2 * wrap + 2][0])) >> 1;
1810 C[1] = (1 + C[1] + (s->current_picture.f.motion_val[0][s->block_index[n_adj ^ 2] - 2 * wrap + 2][1])) >> 1;
1812 if (s->mb_x == s->mb_width - 1) {
1813 if (!v->is_intra[s->mb_x - s->mb_stride - 1]) {
1816 pos_c = s->block_index[3] - 2 * wrap - 2;
1817 if (v->blk_mv_type[pos_c] && v->blk_mv_type[xy]) {
1820 C[0] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap - 2][0];
1821 C[1] = s->current_picture.f.motion_val[0][s->block_index[n_adj] - 2 * wrap - 2][1];
1822 if (v->blk_mv_type[pos_c] && !v->blk_mv_type[xy]) {
1823 C[0] = (1 + C[0] + s->current_picture.f.motion_val[0][s->block_index[1] - 2 * wrap - 2][0]) >> 1;
1824 C[1] = (1 + C[1] + s->current_picture.f.motion_val[0][s->block_index[1] - 2 * wrap - 2][1]) >> 1;
1833 pos_b = s->block_index[1];
1835 B[0] = s->current_picture.f.motion_val[0][pos_b][0];
1836 B[1] = s->current_picture.f.motion_val[0][pos_b][1];
1837 pos_c = s->block_index[0];
1839 C[0] = s->current_picture.f.motion_val[0][pos_c][0];
1840 C[1] = s->current_picture.f.motion_val[0][pos_c][1];
1843 total_valid = a_valid + b_valid + c_valid;
1844 // check if predictor A is out of bounds
1845 if (!s->mb_x && !(n == 1 || n == 3)) {
1848 // check if predictor B is out of bounds
1849 if ((s->first_slice_line && v->blk_mv_type[xy]) || (s->first_slice_line && !(n & 2))) {
1850 B[0] = B[1] = C[0] = C[1] = 0;
1852 if (!v->blk_mv_type[xy]) {
1853 if (s->mb_width == 1) {
1857 if (total_valid >= 2) {
1858 px = mid_pred(A[0], B[0], C[0]);
1859 py = mid_pred(A[1], B[1], C[1]);
1860 } else if (total_valid) {
1861 if (a_valid) { px = A[0]; py = A[1]; }
1862 if (b_valid) { px = B[0]; py = B[1]; }
1863 if (c_valid) { px = C[0]; py = C[1]; }
1869 field_a = (A[1] & 4) ? 1 : 0;
1873 field_b = (B[1] & 4) ? 1 : 0;
1877 field_c = (C[1] & 4) ? 1 : 0;
1881 num_oppfield = field_a + field_b + field_c;
1882 num_samefield = total_valid - num_oppfield;
1883 if (total_valid == 3) {
1884 if ((num_samefield == 3) || (num_oppfield == 3)) {
1885 px = mid_pred(A[0], B[0], C[0]);
1886 py = mid_pred(A[1], B[1], C[1]);
1887 } else if (num_samefield >= num_oppfield) {
1888 /* take one MV from same field set depending on priority
1889 the check for B may not be necessary */
1890 px = !field_a ? A[0] : B[0];
1891 py = !field_a ? A[1] : B[1];
1893 px = field_a ? A[0] : B[0];
1894 py = field_a ? A[1] : B[1];
1896 } else if (total_valid == 2) {
1897 if (num_samefield >= num_oppfield) {
1898 if (!field_a && a_valid) {
1901 } else if (!field_b && b_valid) {
1904 } else if (c_valid) {
1909 if (field_a && a_valid) {
1912 } else if (field_b && b_valid) {
1915 } else if (c_valid) {
1920 } else if (total_valid == 1) {
1921 px = (a_valid) ? A[0] : ((b_valid) ? B[0] : C[0]);
1922 py = (a_valid) ? A[1] : ((b_valid) ? B[1] : C[1]);
1927 /* store MV using signed modulus of MV range defined in 4.11 */
1928 s->mv[0][n][0] = s->current_picture.f.motion_val[0][xy][0] = ((px + dmv_x + r_x) & ((r_x << 1) - 1)) - r_x;
1929 s->mv[0][n][1] = s->current_picture.f.motion_val[0][xy][1] = ((py + dmv_y + r_y) & ((r_y << 1) - 1)) - r_y;
1930 if (mvn == 1) { /* duplicate motion data for 1-MV block */
1931 s->current_picture.f.motion_val[0][xy + 1 ][0] = s->current_picture.f.motion_val[0][xy][0];
1932 s->current_picture.f.motion_val[0][xy + 1 ][1] = s->current_picture.f.motion_val[0][xy][1];
1933 s->current_picture.f.motion_val[0][xy + wrap ][0] = s->current_picture.f.motion_val[0][xy][0];
1934 s->current_picture.f.motion_val[0][xy + wrap ][1] = s->current_picture.f.motion_val[0][xy][1];
1935 s->current_picture.f.motion_val[0][xy + wrap + 1][0] = s->current_picture.f.motion_val[0][xy][0];
1936 s->current_picture.f.motion_val[0][xy + wrap + 1][1] = s->current_picture.f.motion_val[0][xy][1];
1937 } else if (mvn == 2) { /* duplicate motion data for 2-Field MV block */
1938 s->current_picture.f.motion_val[0][xy + 1][0] = s->current_picture.f.motion_val[0][xy][0];
1939 s->current_picture.f.motion_val[0][xy + 1][1] = s->current_picture.f.motion_val[0][xy][1];
1940 s->mv[0][n + 1][0] = s->mv[0][n][0];
1941 s->mv[0][n + 1][1] = s->mv[0][n][1];
1945 /** Motion compensation for direct or interpolated blocks in B-frames
1947 static void vc1_interp_mc(VC1Context *v)
1949 MpegEncContext *s = &v->s;
1950 DSPContext *dsp = &v->s.dsp;
1951 uint8_t *srcY, *srcU, *srcV;
1952 int dxy, mx, my, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
1954 int v_edge_pos = s->v_edge_pos >> v->field_mode;
1956 if (!v->field_mode && !v->s.next_picture.f.data[0])
1959 mx = s->mv[1][0][0];
1960 my = s->mv[1][0][1];
1961 uvmx = (mx + ((mx & 3) == 3)) >> 1;
1962 uvmy = (my + ((my & 3) == 3)) >> 1;
1963 if (v->field_mode) {
1964 if (v->cur_field_type != v->ref_field_type[1])
1965 my = my - 2 + 4 * v->cur_field_type;
1966 uvmy = uvmy - 2 + 4 * v->cur_field_type;
1969 uvmx = uvmx + ((uvmx < 0) ? -(uvmx & 1) : (uvmx & 1));
1970 uvmy = uvmy + ((uvmy < 0) ? -(uvmy & 1) : (uvmy & 1));
1972 srcY = s->next_picture.f.data[0];
1973 srcU = s->next_picture.f.data[1];
1974 srcV = s->next_picture.f.data[2];
1976 src_x = s->mb_x * 16 + (mx >> 2);
1977 src_y = s->mb_y * 16 + (my >> 2);
1978 uvsrc_x = s->mb_x * 8 + (uvmx >> 2);
1979 uvsrc_y = s->mb_y * 8 + (uvmy >> 2);
1981 if (v->profile != PROFILE_ADVANCED) {
1982 src_x = av_clip( src_x, -16, s->mb_width * 16);
1983 src_y = av_clip( src_y, -16, s->mb_height * 16);
1984 uvsrc_x = av_clip(uvsrc_x, -8, s->mb_width * 8);
1985 uvsrc_y = av_clip(uvsrc_y, -8, s->mb_height * 8);
1987 src_x = av_clip( src_x, -17, s->avctx->coded_width);
1988 src_y = av_clip( src_y, -18, s->avctx->coded_height + 1);
1989 uvsrc_x = av_clip(uvsrc_x, -8, s->avctx->coded_width >> 1);
1990 uvsrc_y = av_clip(uvsrc_y, -8, s->avctx->coded_height >> 1);
1993 srcY += src_y * s->linesize + src_x;
1994 srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
1995 srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
1997 if (v->field_mode && v->ref_field_type[1]) {
1998 srcY += s->current_picture_ptr->f.linesize[0];
1999 srcU += s->current_picture_ptr->f.linesize[1];
2000 srcV += s->current_picture_ptr->f.linesize[2];
2003 /* for grayscale we should not try to read from unknown area */
2004 if (s->flags & CODEC_FLAG_GRAY) {
2005 srcU = s->edge_emu_buffer + 18 * s->linesize;
2006 srcV = s->edge_emu_buffer + 18 * s->linesize;
2010 || (unsigned)(src_x - s->mspel) > s->h_edge_pos - (mx & 3) - 16 - s->mspel * 3
2011 || (unsigned)(src_y - s->mspel) > v_edge_pos - (my & 3) - 16 - s->mspel * 3) {
2012 uint8_t *uvbuf = s->edge_emu_buffer + 19 * s->linesize;
2014 srcY -= s->mspel * (1 + s->linesize);
2015 s->dsp.emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize,
2016 17 + s->mspel * 2, 17 + s->mspel * 2,
2017 src_x - s->mspel, src_y - s->mspel,
2018 s->h_edge_pos, v_edge_pos);
2019 srcY = s->edge_emu_buffer;
2020 s->dsp.emulated_edge_mc(uvbuf , srcU, s->uvlinesize, 8 + 1, 8 + 1,
2021 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
2022 s->dsp.emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, 8 + 1, 8 + 1,
2023 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, v_edge_pos >> 1);
2026 /* if we deal with range reduction we need to scale source blocks */
2027 if (v->rangeredfrm) {
2029 uint8_t *src, *src2;
2032 for (j = 0; j < 17 + s->mspel * 2; j++) {
2033 for (i = 0; i < 17 + s->mspel * 2; i++)
2034 src[i] = ((src[i] - 128) >> 1) + 128;
2039 for (j = 0; j < 9; j++) {
2040 for (i = 0; i < 9; i++) {
2041 src[i] = ((src[i] - 128) >> 1) + 128;
2042 src2[i] = ((src2[i] - 128) >> 1) + 128;
2044 src += s->uvlinesize;
2045 src2 += s->uvlinesize;
2048 srcY += s->mspel * (1 + s->linesize);
2051 if (v->field_mode && v->cur_field_type) {
2052 off = s->current_picture_ptr->f.linesize[0];
2053 off_uv = s->current_picture_ptr->f.linesize[1];
2060 dxy = ((my & 3) << 2) | (mx & 3);
2061 v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off , srcY , s->linesize, v->rnd);
2062 v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8, srcY + 8, s->linesize, v->rnd);
2063 srcY += s->linesize * 8;
2064 v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize , srcY , s->linesize, v->rnd);
2065 v->vc1dsp.avg_vc1_mspel_pixels_tab[dxy](s->dest[0] + off + 8 * s->linesize + 8, srcY + 8, s->linesize, v->rnd);
2067 dxy = (my & 2) | ((mx & 2) >> 1);
2070 dsp->avg_pixels_tab[0][dxy](s->dest[0] + off, srcY, s->linesize, 16);
2072 dsp->avg_no_rnd_pixels_tab[0][dxy](s->dest[0] + off, srcY, s->linesize, 16);
2075 if (s->flags & CODEC_FLAG_GRAY) return;
2076 /* Chroma MC always uses qpel blilinear */
2077 uvmx = (uvmx & 3) << 1;
2078 uvmy = (uvmy & 3) << 1;
2080 dsp->avg_h264_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
2081 dsp->avg_h264_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
2083 v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[1] + off_uv, srcU, s->uvlinesize, 8, uvmx, uvmy);
2084 v->vc1dsp.avg_no_rnd_vc1_chroma_pixels_tab[0](s->dest[2] + off_uv, srcV, s->uvlinesize, 8, uvmx, uvmy);
2088 static av_always_inline int scale_mv(int value, int bfrac, int inv, int qs)
2092 #if B_FRACTION_DEN==256
2096 return 2 * ((value * n + 255) >> 9);
2097 return (value * n + 128) >> 8;
2100 n -= B_FRACTION_DEN;
2102 return 2 * ((value * n + B_FRACTION_DEN - 1) / (2 * B_FRACTION_DEN));
2103 return (value * n + B_FRACTION_DEN/2) / B_FRACTION_DEN;
2107 static av_always_inline int scale_mv_intfi(int value, int bfrac, int inv,
2108 int qs, int qs_last)
2116 return (value * n + 255) >> 9;
2118 return (value * n + 128) >> 8;
2121 /** Reconstruct motion vector for B-frame and do motion compensation
2123 static inline void vc1_b_mc(VC1Context *v, int dmv_x[2], int dmv_y[2],
2124 int direct, int mode)
2127 v->mv_mode2 = v->mv_mode;
2128 v->mv_mode = MV_PMODE_INTENSITY_COMP;
2134 v->mv_mode = v->mv_mode2;
2137 if (mode == BMV_TYPE_INTERPOLATED) {
2141 v->mv_mode = v->mv_mode2;
2145 if (v->use_ic && (mode == BMV_TYPE_BACKWARD))
2146 v->mv_mode = v->mv_mode2;
2147 vc1_mc_1mv(v, (mode == BMV_TYPE_BACKWARD));
2149 v->mv_mode = v->mv_mode2;
2152 static inline void vc1_pred_b_mv(VC1Context *v, int dmv_x[2], int dmv_y[2],
2153 int direct, int mvtype)
2155 MpegEncContext *s = &v->s;
2156 int xy, wrap, off = 0;
2161 const uint8_t *is_intra = v->mb_type[0];
2165 /* scale MV difference to be quad-pel */
2166 dmv_x[0] <<= 1 - s->quarter_sample;
2167 dmv_y[0] <<= 1 - s->quarter_sample;
2168 dmv_x[1] <<= 1 - s->quarter_sample;
2169 dmv_y[1] <<= 1 - s->quarter_sample;
2171 wrap = s->b8_stride;
2172 xy = s->block_index[0];
2175 s->current_picture.f.motion_val[0][xy + v->blocks_off][0] =
2176 s->current_picture.f.motion_val[0][xy + v->blocks_off][1] =
2177 s->current_picture.f.motion_val[1][xy + v->blocks_off][0] =
2178 s->current_picture.f.motion_val[1][xy + v->blocks_off][1] = 0;
2181 if (!v->field_mode) {
2182 s->mv[0][0][0] = scale_mv(s->next_picture.f.motion_val[1][xy][0], v->bfraction, 0, s->quarter_sample);
2183 s->mv[0][0][1] = scale_mv(s->next_picture.f.motion_val[1][xy][1], v->bfraction, 0, s->quarter_sample);
2184 s->mv[1][0][0] = scale_mv(s->next_picture.f.motion_val[1][xy][0], v->bfraction, 1, s->quarter_sample);
2185 s->mv[1][0][1] = scale_mv(s->next_picture.f.motion_val[1][xy][1], v->bfraction, 1, s->quarter_sample);
2187 /* Pullback predicted motion vectors as specified in 8.4.5.4 */
2188 s->mv[0][0][0] = av_clip(s->mv[0][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
2189 s->mv[0][0][1] = av_clip(s->mv[0][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
2190 s->mv[1][0][0] = av_clip(s->mv[1][0][0], -60 - (s->mb_x << 6), (s->mb_width << 6) - 4 - (s->mb_x << 6));
2191 s->mv[1][0][1] = av_clip(s->mv[1][0][1], -60 - (s->mb_y << 6), (s->mb_height << 6) - 4 - (s->mb_y << 6));
2194 s->current_picture.f.motion_val[0][xy + v->blocks_off][0] = s->mv[0][0][0];
2195 s->current_picture.f.motion_val[0][xy + v->blocks_off][1] = s->mv[0][0][1];
2196 s->current_picture.f.motion_val[1][xy + v->blocks_off][0] = s->mv[1][0][0];
2197 s->current_picture.f.motion_val[1][xy + v->blocks_off][1] = s->mv[1][0][1];
2201 if ((mvtype == BMV_TYPE_FORWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
2202 C = s->current_picture.f.motion_val[0][xy - 2];
2203 A = s->current_picture.f.motion_val[0][xy - wrap * 2];
2204 off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
2205 B = s->current_picture.f.motion_val[0][xy - wrap * 2 + off];
2207 if (!s->mb_x) C[0] = C[1] = 0;
2208 if (!s->first_slice_line) { // predictor A is not out of bounds
2209 if (s->mb_width == 1) {
2213 px = mid_pred(A[0], B[0], C[0]);
2214 py = mid_pred(A[1], B[1], C[1]);
2216 } else if (s->mb_x) { // predictor C is not out of bounds
2222 /* Pullback MV as specified in 8.3.5.3.4 */
2225 if (v->profile < PROFILE_ADVANCED) {
2226 qx = (s->mb_x << 5);
2227 qy = (s->mb_y << 5);
2228 X = (s->mb_width << 5) - 4;
2229 Y = (s->mb_height << 5) - 4;
2230 if (qx + px < -28) px = -28 - qx;
2231 if (qy + py < -28) py = -28 - qy;
2232 if (qx + px > X) px = X - qx;
2233 if (qy + py > Y) py = Y - qy;
2235 qx = (s->mb_x << 6);
2236 qy = (s->mb_y << 6);
2237 X = (s->mb_width << 6) - 4;
2238 Y = (s->mb_height << 6) - 4;
2239 if (qx + px < -60) px = -60 - qx;
2240 if (qy + py < -60) py = -60 - qy;
2241 if (qx + px > X) px = X - qx;
2242 if (qy + py > Y) py = Y - qy;
2245 /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
2246 if (0 && !s->first_slice_line && s->mb_x) {
2247 if (is_intra[xy - wrap])
2248 sum = FFABS(px) + FFABS(py);
2250 sum = FFABS(px - A[0]) + FFABS(py - A[1]);
2252 if (get_bits1(&s->gb)) {
2260 if (is_intra[xy - 2])
2261 sum = FFABS(px) + FFABS(py);
2263 sum = FFABS(px - C[0]) + FFABS(py - C[1]);
2265 if (get_bits1(&s->gb)) {
2275 /* store MV using signed modulus of MV range defined in 4.11 */
2276 s->mv[0][0][0] = ((px + dmv_x[0] + r_x) & ((r_x << 1) - 1)) - r_x;
2277 s->mv[0][0][1] = ((py + dmv_y[0] + r_y) & ((r_y << 1) - 1)) - r_y;
2279 if ((mvtype == BMV_TYPE_BACKWARD) || (mvtype == BMV_TYPE_INTERPOLATED)) {
2280 C = s->current_picture.f.motion_val[1][xy - 2];
2281 A = s->current_picture.f.motion_val[1][xy - wrap * 2];
2282 off = (s->mb_x == (s->mb_width - 1)) ? -2 : 2;
2283 B = s->current_picture.f.motion_val[1][xy - wrap * 2 + off];
2287 if (!s->first_slice_line) { // predictor A is not out of bounds
2288 if (s->mb_width == 1) {
2292 px = mid_pred(A[0], B[0], C[0]);
2293 py = mid_pred(A[1], B[1], C[1]);
2295 } else if (s->mb_x) { // predictor C is not out of bounds
2301 /* Pullback MV as specified in 8.3.5.3.4 */
2304 if (v->profile < PROFILE_ADVANCED) {
2305 qx = (s->mb_x << 5);
2306 qy = (s->mb_y << 5);
2307 X = (s->mb_width << 5) - 4;
2308 Y = (s->mb_height << 5) - 4;
2309 if (qx + px < -28) px = -28 - qx;
2310 if (qy + py < -28) py = -28 - qy;
2311 if (qx + px > X) px = X - qx;
2312 if (qy + py > Y) py = Y - qy;
2314 qx = (s->mb_x << 6);
2315 qy = (s->mb_y << 6);
2316 X = (s->mb_width << 6) - 4;
2317 Y = (s->mb_height << 6) - 4;
2318 if (qx + px < -60) px = -60 - qx;
2319 if (qy + py < -60) py = -60 - qy;
2320 if (qx + px > X) px = X - qx;
2321 if (qy + py > Y) py = Y - qy;
2324 /* Calculate hybrid prediction as specified in 8.3.5.3.5 */
2325 if (0 && !s->first_slice_line && s->mb_x) {
2326 if (is_intra[xy - wrap])
2327 sum = FFABS(px) + FFABS(py);
2329 sum = FFABS(px - A[0]) + FFABS(py - A[1]);
2331 if (get_bits1(&s->gb)) {
2339 if (is_intra[xy - 2])
2340 sum = FFABS(px) + FFABS(py);
2342 sum = FFABS(px - C[0]) + FFABS(py - C[1]);
2344 if (get_bits1(&s->gb)) {
2354 /* store MV using signed modulus of MV range defined in 4.11 */
2356 s->mv[1][0][0] = ((px + dmv_x[1] + r_x) & ((r_x << 1) - 1)) - r_x;
2357 s->mv[1][0][1] = ((py + dmv_y[1] + r_y) & ((r_y << 1) - 1)) - r_y;
2359 s->current_picture.f.motion_val[0][xy][0] = s->mv[0][0][0];
2360 s->current_picture.f.motion_val[0][xy][1] = s->mv[0][0][1];
2361 s->current_picture.f.motion_val[1][xy][0] = s->mv[1][0][0];
2362 s->current_picture.f.motion_val[1][xy][1] = s->mv[1][0][1];
2365 static inline void vc1_pred_b_mv_intfi(VC1Context *v, int n, int *dmv_x, int *dmv_y, int mv1, int *pred_flag)
2367 int dir = (v->bmvtype == BMV_TYPE_BACKWARD) ? 1 : 0;
2368 MpegEncContext *s = &v->s;
2369 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2371 if (v->bmvtype == BMV_TYPE_DIRECT) {
2372 int total_opp, k, f;
2373 if (s->next_picture.f.mb_type[mb_pos + v->mb_off] != MB_TYPE_INTRA) {
2374 s->mv[0][0][0] = scale_mv_intfi(s->next_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0],
2375 v->bfraction, 0, s->quarter_sample, v->qs_last);
2376 s->mv[0][0][1] = scale_mv_intfi(s->next_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1],
2377 v->bfraction, 0, s->quarter_sample, v->qs_last);
2378 s->mv[1][0][0] = scale_mv_intfi(s->next_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][0],
2379 v->bfraction, 1, s->quarter_sample, v->qs_last);
2380 s->mv[1][0][1] = scale_mv_intfi(s->next_picture.f.motion_val[1][s->block_index[0] + v->blocks_off][1],
2381 v->bfraction, 1, s->quarter_sample, v->qs_last);
2383 total_opp = v->mv_f_next[0][s->block_index[0] + v->blocks_off]
2384 + v->mv_f_next[0][s->block_index[1] + v->blocks_off]
2385 + v->mv_f_next[0][s->block_index[2] + v->blocks_off]
2386 + v->mv_f_next[0][s->block_index[3] + v->blocks_off];
2387 f = (total_opp > 2) ? 1 : 0;
2389 s->mv[0][0][0] = s->mv[0][0][1] = 0;
2390 s->mv[1][0][0] = s->mv[1][0][1] = 0;
2393 v->ref_field_type[0] = v->ref_field_type[1] = v->cur_field_type ^ f;
2394 for (k = 0; k < 4; k++) {
2395 s->current_picture.f.motion_val[0][s->block_index[k] + v->blocks_off][0] = s->mv[0][0][0];
2396 s->current_picture.f.motion_val[0][s->block_index[k] + v->blocks_off][1] = s->mv[0][0][1];
2397 s->current_picture.f.motion_val[1][s->block_index[k] + v->blocks_off][0] = s->mv[1][0][0];
2398 s->current_picture.f.motion_val[1][s->block_index[k] + v->blocks_off][1] = s->mv[1][0][1];
2399 v->mv_f[0][s->block_index[k] + v->blocks_off] = f;
2400 v->mv_f[1][s->block_index[k] + v->blocks_off] = f;
2404 if (v->bmvtype == BMV_TYPE_INTERPOLATED) {
2405 vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
2406 vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
2409 if (dir) { // backward
2410 vc1_pred_mv(v, n, dmv_x[1], dmv_y[1], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[1], 1);
2411 if (n == 3 || mv1) {
2412 vc1_pred_mv(v, 0, dmv_x[0], dmv_y[0], 1, v->range_x, v->range_y, v->mb_type[0], 0, 0);
2415 vc1_pred_mv(v, n, dmv_x[0], dmv_y[0], mv1, v->range_x, v->range_y, v->mb_type[0], pred_flag[0], 0);
2416 if (n == 3 || mv1) {
2417 vc1_pred_mv(v, 0, dmv_x[1], dmv_y[1], 1, v->range_x, v->range_y, v->mb_type[0], 0, 1);
2422 /** Get predicted DC value for I-frames only
2423 * prediction dir: left=0, top=1
2424 * @param s MpegEncContext
2425 * @param overlap flag indicating that overlap filtering is used
2426 * @param pq integer part of picture quantizer
2427 * @param[in] n block index in the current MB
2428 * @param dc_val_ptr Pointer to DC predictor
2429 * @param dir_ptr Prediction direction for use in AC prediction
2431 static inline int vc1_i_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
2432 int16_t **dc_val_ptr, int *dir_ptr)
2434 int a, b, c, wrap, pred, scale;
2436 static const uint16_t dcpred[32] = {
2437 -1, 1024, 512, 341, 256, 205, 171, 146, 128,
2438 114, 102, 93, 85, 79, 73, 68, 64,
2439 60, 57, 54, 51, 49, 47, 45, 43,
2440 41, 39, 38, 37, 35, 34, 33
2443 /* find prediction - wmv3_dc_scale always used here in fact */
2444 if (n < 4) scale = s->y_dc_scale;
2445 else scale = s->c_dc_scale;
2447 wrap = s->block_wrap[n];
2448 dc_val = s->dc_val[0] + s->block_index[n];
2454 b = dc_val[ - 1 - wrap];
2455 a = dc_val[ - wrap];
2457 if (pq < 9 || !overlap) {
2458 /* Set outer values */
2459 if (s->first_slice_line && (n != 2 && n != 3))
2460 b = a = dcpred[scale];
2461 if (s->mb_x == 0 && (n != 1 && n != 3))
2462 b = c = dcpred[scale];
2464 /* Set outer values */
2465 if (s->first_slice_line && (n != 2 && n != 3))
2467 if (s->mb_x == 0 && (n != 1 && n != 3))
2471 if (abs(a - b) <= abs(b - c)) {
2473 *dir_ptr = 1; // left
2476 *dir_ptr = 0; // top
2479 /* update predictor */
2480 *dc_val_ptr = &dc_val[0];
2485 /** Get predicted DC value
2486 * prediction dir: left=0, top=1
2487 * @param s MpegEncContext
2488 * @param overlap flag indicating that overlap filtering is used
2489 * @param pq integer part of picture quantizer
2490 * @param[in] n block index in the current MB
2491 * @param a_avail flag indicating top block availability
2492 * @param c_avail flag indicating left block availability
2493 * @param dc_val_ptr Pointer to DC predictor
2494 * @param dir_ptr Prediction direction for use in AC prediction
2496 static inline int vc1_pred_dc(MpegEncContext *s, int overlap, int pq, int n,
2497 int a_avail, int c_avail,
2498 int16_t **dc_val_ptr, int *dir_ptr)
2500 int a, b, c, wrap, pred;
2502 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2505 wrap = s->block_wrap[n];
2506 dc_val = s->dc_val[0] + s->block_index[n];
2512 b = dc_val[ - 1 - wrap];
2513 a = dc_val[ - wrap];
2514 /* scale predictors if needed */
2515 q1 = s->current_picture.f.qscale_table[mb_pos];
2516 if (c_avail && (n != 1 && n != 3)) {
2517 q2 = s->current_picture.f.qscale_table[mb_pos - 1];
2519 c = (c * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
2521 if (a_avail && (n != 2 && n != 3)) {
2522 q2 = s->current_picture.f.qscale_table[mb_pos - s->mb_stride];
2524 a = (a * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
2526 if (a_avail && c_avail && (n != 3)) {
2531 off -= s->mb_stride;
2532 q2 = s->current_picture.f.qscale_table[off];
2534 b = (b * s->y_dc_scale_table[q2] * ff_vc1_dqscale[s->y_dc_scale_table[q1] - 1] + 0x20000) >> 18;
2537 if (a_avail && c_avail) {
2538 if (abs(a - b) <= abs(b - c)) {
2540 *dir_ptr = 1; // left
2543 *dir_ptr = 0; // top
2545 } else if (a_avail) {
2547 *dir_ptr = 0; // top
2548 } else if (c_avail) {
2550 *dir_ptr = 1; // left
2553 *dir_ptr = 1; // left
2556 /* update predictor */
2557 *dc_val_ptr = &dc_val[0];
2561 /** @} */ // Block group
2564 * @name VC1 Macroblock-level functions in Simple/Main Profiles
2565 * @see 7.1.4, p91 and 8.1.1.7, p(1)04
2569 static inline int vc1_coded_block_pred(MpegEncContext * s, int n,
2570 uint8_t **coded_block_ptr)
2572 int xy, wrap, pred, a, b, c;
2574 xy = s->block_index[n];
2575 wrap = s->b8_stride;
2580 a = s->coded_block[xy - 1 ];
2581 b = s->coded_block[xy - 1 - wrap];
2582 c = s->coded_block[xy - wrap];
2591 *coded_block_ptr = &s->coded_block[xy];
2597 * Decode one AC coefficient
2598 * @param v The VC1 context
2599 * @param last Last coefficient
2600 * @param skip How much zero coefficients to skip
2601 * @param value Decoded AC coefficient value
2602 * @param codingset set of VLC to decode data
2605 static void vc1_decode_ac_coeff(VC1Context *v, int *last, int *skip,
2606 int *value, int codingset)
2608 GetBitContext *gb = &v->s.gb;
2609 int index, escape, run = 0, level = 0, lst = 0;
2611 index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
2612 if (index != vc1_ac_sizes[codingset] - 1) {
2613 run = vc1_index_decode_table[codingset][index][0];
2614 level = vc1_index_decode_table[codingset][index][1];
2615 lst = index >= vc1_last_decode_table[codingset] || get_bits_left(gb) < 0;
2619 escape = decode210(gb);
2621 index = get_vlc2(gb, ff_vc1_ac_coeff_table[codingset].table, AC_VLC_BITS, 3);
2622 run = vc1_index_decode_table[codingset][index][0];
2623 level = vc1_index_decode_table[codingset][index][1];
2624 lst = index >= vc1_last_decode_table[codingset];
2627 level += vc1_last_delta_level_table[codingset][run];
2629 level += vc1_delta_level_table[codingset][run];
2632 run += vc1_last_delta_run_table[codingset][level] + 1;
2634 run += vc1_delta_run_table[codingset][level] + 1;
2640 lst = get_bits1(gb);
2641 if (v->s.esc3_level_length == 0) {
2642 if (v->pq < 8 || v->dquantfrm) { // table 59
2643 v->s.esc3_level_length = get_bits(gb, 3);
2644 if (!v->s.esc3_level_length)
2645 v->s.esc3_level_length = get_bits(gb, 2) + 8;
2646 } else { // table 60
2647 v->s.esc3_level_length = get_unary(gb, 1, 6) + 2;
2649 v->s.esc3_run_length = 3 + get_bits(gb, 2);
2651 run = get_bits(gb, v->s.esc3_run_length);
2652 sign = get_bits1(gb);
2653 level = get_bits(gb, v->s.esc3_level_length);
2664 /** Decode intra block in intra frames - should be faster than decode_intra_block
2665 * @param v VC1Context
2666 * @param block block to decode
2667 * @param[in] n subblock index
2668 * @param coded are AC coeffs present or not
2669 * @param codingset set of VLC to decode data
2671 static int vc1_decode_i_block(VC1Context *v, DCTELEM block[64], int n,
2672 int coded, int codingset)
2674 GetBitContext *gb = &v->s.gb;
2675 MpegEncContext *s = &v->s;
2676 int dc_pred_dir = 0; /* Direction of the DC prediction used */
2679 int16_t *ac_val, *ac_val2;
2682 /* Get DC differential */
2684 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2686 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2689 av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2693 if (dcdiff == 119 /* ESC index value */) {
2694 /* TODO: Optimize */
2695 if (v->pq == 1) dcdiff = get_bits(gb, 10);
2696 else if (v->pq == 2) dcdiff = get_bits(gb, 9);
2697 else dcdiff = get_bits(gb, 8);
2700 dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
2701 else if (v->pq == 2)
2702 dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
2709 dcdiff += vc1_i_pred_dc(&v->s, v->overlap, v->pq, n, &dc_val, &dc_pred_dir);
2712 /* Store the quantized DC coeff, used for prediction */
2714 block[0] = dcdiff * s->y_dc_scale;
2716 block[0] = dcdiff * s->c_dc_scale;
2727 int last = 0, skip, value;
2728 const uint8_t *zz_table;
2732 scale = v->pq * 2 + v->halfpq;
2736 zz_table = v->zz_8x8[2];
2738 zz_table = v->zz_8x8[3];
2740 zz_table = v->zz_8x8[1];
2742 ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2744 if (dc_pred_dir) // left
2747 ac_val -= 16 * s->block_wrap[n];
2750 vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
2754 block[zz_table[i++]] = value;
2757 /* apply AC prediction if needed */
2759 if (dc_pred_dir) { // left
2760 for (k = 1; k < 8; k++)
2761 block[k << v->left_blk_sh] += ac_val[k];
2763 for (k = 1; k < 8; k++)
2764 block[k << v->top_blk_sh] += ac_val[k + 8];
2767 /* save AC coeffs for further prediction */
2768 for (k = 1; k < 8; k++) {
2769 ac_val2[k] = block[k << v->left_blk_sh];
2770 ac_val2[k + 8] = block[k << v->top_blk_sh];
2773 /* scale AC coeffs */
2774 for (k = 1; k < 64; k++)
2778 block[k] += (block[k] < 0) ? -v->pq : v->pq;
2781 if (s->ac_pred) i = 63;
2787 ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2791 scale = v->pq * 2 + v->halfpq;
2792 memset(ac_val2, 0, 16 * 2);
2793 if (dc_pred_dir) { // left
2796 memcpy(ac_val2, ac_val, 8 * 2);
2798 ac_val -= 16 * s->block_wrap[n];
2800 memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
2803 /* apply AC prediction if needed */
2805 if (dc_pred_dir) { //left
2806 for (k = 1; k < 8; k++) {
2807 block[k << v->left_blk_sh] = ac_val[k] * scale;
2808 if (!v->pquantizer && block[k << v->left_blk_sh])
2809 block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -v->pq : v->pq;
2812 for (k = 1; k < 8; k++) {
2813 block[k << v->top_blk_sh] = ac_val[k + 8] * scale;
2814 if (!v->pquantizer && block[k << v->top_blk_sh])
2815 block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -v->pq : v->pq;
2821 s->block_last_index[n] = i;
2826 /** Decode intra block in intra frames - should be faster than decode_intra_block
2827 * @param v VC1Context
2828 * @param block block to decode
2829 * @param[in] n subblock number
2830 * @param coded are AC coeffs present or not
2831 * @param codingset set of VLC to decode data
2832 * @param mquant quantizer value for this macroblock
2834 static int vc1_decode_i_block_adv(VC1Context *v, DCTELEM block[64], int n,
2835 int coded, int codingset, int mquant)
2837 GetBitContext *gb = &v->s.gb;
2838 MpegEncContext *s = &v->s;
2839 int dc_pred_dir = 0; /* Direction of the DC prediction used */
2842 int16_t *ac_val, *ac_val2;
2844 int a_avail = v->a_avail, c_avail = v->c_avail;
2845 int use_pred = s->ac_pred;
2848 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
2850 /* Get DC differential */
2852 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2854 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
2857 av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
2861 if (dcdiff == 119 /* ESC index value */) {
2862 /* TODO: Optimize */
2863 if (mquant == 1) dcdiff = get_bits(gb, 10);
2864 else if (mquant == 2) dcdiff = get_bits(gb, 9);
2865 else dcdiff = get_bits(gb, 8);
2868 dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
2869 else if (mquant == 2)
2870 dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
2877 dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, v->a_avail, v->c_avail, &dc_val, &dc_pred_dir);
2880 /* Store the quantized DC coeff, used for prediction */
2882 block[0] = dcdiff * s->y_dc_scale;
2884 block[0] = dcdiff * s->c_dc_scale;
2890 /* check if AC is needed at all */
2891 if (!a_avail && !c_avail)
2893 ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
2896 scale = mquant * 2 + ((mquant == v->pq) ? v->halfpq : 0);
2898 if (dc_pred_dir) // left
2901 ac_val -= 16 * s->block_wrap[n];
2903 q1 = s->current_picture.f.qscale_table[mb_pos];
2904 if ( dc_pred_dir && c_avail && mb_pos)
2905 q2 = s->current_picture.f.qscale_table[mb_pos - 1];
2906 if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride)
2907 q2 = s->current_picture.f.qscale_table[mb_pos - s->mb_stride];
2908 if ( dc_pred_dir && n == 1)
2910 if (!dc_pred_dir && n == 2)
2916 int last = 0, skip, value;
2917 const uint8_t *zz_table;
2921 if (!use_pred && v->fcm == ILACE_FRAME) {
2922 zz_table = v->zzi_8x8;
2924 if (!dc_pred_dir) // top
2925 zz_table = v->zz_8x8[2];
2927 zz_table = v->zz_8x8[3];
2930 if (v->fcm != ILACE_FRAME)
2931 zz_table = v->zz_8x8[1];
2933 zz_table = v->zzi_8x8;
2937 vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
2941 block[zz_table[i++]] = value;
2944 /* apply AC prediction if needed */
2946 /* scale predictors if needed*/
2947 if (q2 && q1 != q2) {
2948 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2949 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2951 if (dc_pred_dir) { // left
2952 for (k = 1; k < 8; k++)
2953 block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2955 for (k = 1; k < 8; k++)
2956 block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2959 if (dc_pred_dir) { //left
2960 for (k = 1; k < 8; k++)
2961 block[k << v->left_blk_sh] += ac_val[k];
2963 for (k = 1; k < 8; k++)
2964 block[k << v->top_blk_sh] += ac_val[k + 8];
2968 /* save AC coeffs for further prediction */
2969 for (k = 1; k < 8; k++) {
2970 ac_val2[k ] = block[k << v->left_blk_sh];
2971 ac_val2[k + 8] = block[k << v->top_blk_sh];
2974 /* scale AC coeffs */
2975 for (k = 1; k < 64; k++)
2979 block[k] += (block[k] < 0) ? -mquant : mquant;
2982 if (use_pred) i = 63;
2983 } else { // no AC coeffs
2986 memset(ac_val2, 0, 16 * 2);
2987 if (dc_pred_dir) { // left
2989 memcpy(ac_val2, ac_val, 8 * 2);
2990 if (q2 && q1 != q2) {
2991 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
2992 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
2993 for (k = 1; k < 8; k++)
2994 ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
2999 memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
3000 if (q2 && q1 != q2) {
3001 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
3002 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
3003 for (k = 1; k < 8; k++)
3004 ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
3009 /* apply AC prediction if needed */
3011 if (dc_pred_dir) { // left
3012 for (k = 1; k < 8; k++) {
3013 block[k << v->left_blk_sh] = ac_val2[k] * scale;
3014 if (!v->pquantizer && block[k << v->left_blk_sh])
3015 block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
3018 for (k = 1; k < 8; k++) {
3019 block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
3020 if (!v->pquantizer && block[k << v->top_blk_sh])
3021 block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
3027 s->block_last_index[n] = i;
3032 /** Decode intra block in inter frames - more generic version than vc1_decode_i_block
3033 * @param v VC1Context
3034 * @param block block to decode
3035 * @param[in] n subblock index
3036 * @param coded are AC coeffs present or not
3037 * @param mquant block quantizer
3038 * @param codingset set of VLC to decode data
3040 static int vc1_decode_intra_block(VC1Context *v, DCTELEM block[64], int n,
3041 int coded, int mquant, int codingset)
3043 GetBitContext *gb = &v->s.gb;
3044 MpegEncContext *s = &v->s;
3045 int dc_pred_dir = 0; /* Direction of the DC prediction used */
3048 int16_t *ac_val, *ac_val2;
3050 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
3051 int a_avail = v->a_avail, c_avail = v->c_avail;
3052 int use_pred = s->ac_pred;
3056 s->dsp.clear_block(block);
3058 /* XXX: Guard against dumb values of mquant */
3059 mquant = (mquant < 1) ? 0 : ((mquant > 31) ? 31 : mquant);
3061 /* Set DC scale - y and c use the same */
3062 s->y_dc_scale = s->y_dc_scale_table[mquant];
3063 s->c_dc_scale = s->c_dc_scale_table[mquant];
3065 /* Get DC differential */
3067 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_luma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
3069 dcdiff = get_vlc2(&s->gb, ff_msmp4_dc_chroma_vlc[s->dc_table_index].table, DC_VLC_BITS, 3);
3072 av_log(s->avctx, AV_LOG_ERROR, "Illegal DC VLC\n");
3076 if (dcdiff == 119 /* ESC index value */) {
3077 /* TODO: Optimize */
3078 if (mquant == 1) dcdiff = get_bits(gb, 10);
3079 else if (mquant == 2) dcdiff = get_bits(gb, 9);
3080 else dcdiff = get_bits(gb, 8);
3083 dcdiff = (dcdiff << 2) + get_bits(gb, 2) - 3;
3084 else if (mquant == 2)
3085 dcdiff = (dcdiff << 1) + get_bits1(gb) - 1;
3092 dcdiff += vc1_pred_dc(&v->s, v->overlap, mquant, n, a_avail, c_avail, &dc_val, &dc_pred_dir);
3095 /* Store the quantized DC coeff, used for prediction */
3098 block[0] = dcdiff * s->y_dc_scale;
3100 block[0] = dcdiff * s->c_dc_scale;
3106 /* check if AC is needed at all and adjust direction if needed */
3107 if (!a_avail) dc_pred_dir = 1;
3108 if (!c_avail) dc_pred_dir = 0;
3109 if (!a_avail && !c_avail) use_pred = 0;
3110 ac_val = s->ac_val[0][0] + s->block_index[n] * 16;
3113 scale = mquant * 2 + v->halfpq;
3115 if (dc_pred_dir) //left
3118 ac_val -= 16 * s->block_wrap[n];
3120 q1 = s->current_picture.f.qscale_table[mb_pos];
3121 if (dc_pred_dir && c_avail && mb_pos)
3122 q2 = s->current_picture.f.qscale_table[mb_pos - 1];
3123 if (!dc_pred_dir && a_avail && mb_pos >= s->mb_stride)
3124 q2 = s->current_picture.f.qscale_table[mb_pos - s->mb_stride];
3125 if ( dc_pred_dir && n == 1)
3127 if (!dc_pred_dir && n == 2)
3129 if (n == 3) q2 = q1;
3132 int last = 0, skip, value;
3136 vc1_decode_ac_coeff(v, &last, &skip, &value, codingset);
3140 if (v->fcm == PROGRESSIVE)
3141 block[v->zz_8x8[0][i++]] = value;
3143 if (use_pred && (v->fcm == ILACE_FRAME)) {
3144 if (!dc_pred_dir) // top
3145 block[v->zz_8x8[2][i++]] = value;
3147 block[v->zz_8x8[3][i++]] = value;
3149 block[v->zzi_8x8[i++]] = value;
3154 /* apply AC prediction if needed */
3156 /* scale predictors if needed*/
3157 if (q2 && q1 != q2) {
3158 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
3159 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
3161 if (dc_pred_dir) { // left
3162 for (k = 1; k < 8; k++)
3163 block[k << v->left_blk_sh] += (ac_val[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
3165 for (k = 1; k < 8; k++)
3166 block[k << v->top_blk_sh] += (ac_val[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
3169 if (dc_pred_dir) { // left
3170 for (k = 1; k < 8; k++)
3171 block[k << v->left_blk_sh] += ac_val[k];
3173 for (k = 1; k < 8; k++)
3174 block[k << v->top_blk_sh] += ac_val[k + 8];
3178 /* save AC coeffs for further prediction */
3179 for (k = 1; k < 8; k++) {
3180 ac_val2[k ] = block[k << v->left_blk_sh];
3181 ac_val2[k + 8] = block[k << v->top_blk_sh];
3184 /* scale AC coeffs */
3185 for (k = 1; k < 64; k++)
3189 block[k] += (block[k] < 0) ? -mquant : mquant;
3192 if (use_pred) i = 63;
3193 } else { // no AC coeffs
3196 memset(ac_val2, 0, 16 * 2);
3197 if (dc_pred_dir) { // left
3199 memcpy(ac_val2, ac_val, 8 * 2);
3200 if (q2 && q1 != q2) {
3201 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
3202 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
3203 for (k = 1; k < 8; k++)
3204 ac_val2[k] = (ac_val2[k] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
3209 memcpy(ac_val2 + 8, ac_val + 8, 8 * 2);
3210 if (q2 && q1 != q2) {
3211 q1 = q1 * 2 + ((q1 == v->pq) ? v->halfpq : 0) - 1;
3212 q2 = q2 * 2 + ((q2 == v->pq) ? v->halfpq : 0) - 1;
3213 for (k = 1; k < 8; k++)
3214 ac_val2[k + 8] = (ac_val2[k + 8] * q2 * ff_vc1_dqscale[q1 - 1] + 0x20000) >> 18;
3219 /* apply AC prediction if needed */
3221 if (dc_pred_dir) { // left
3222 for (k = 1; k < 8; k++) {
3223 block[k << v->left_blk_sh] = ac_val2[k] * scale;
3224 if (!v->pquantizer && block[k << v->left_blk_sh])
3225 block[k << v->left_blk_sh] += (block[k << v->left_blk_sh] < 0) ? -mquant : mquant;
3228 for (k = 1; k < 8; k++) {
3229 block[k << v->top_blk_sh] = ac_val2[k + 8] * scale;
3230 if (!v->pquantizer && block[k << v->top_blk_sh])
3231 block[k << v->top_blk_sh] += (block[k << v->top_blk_sh] < 0) ? -mquant : mquant;
3237 s->block_last_index[n] = i;
3244 static int vc1_decode_p_block(VC1Context *v, DCTELEM block[64], int n,
3245 int mquant, int ttmb, int first_block,
3246 uint8_t *dst, int linesize, int skip_block,
3249 MpegEncContext *s = &v->s;
3250 GetBitContext *gb = &s->gb;
3253 int scale, off, idx, last, skip, value;
3254 int ttblk = ttmb & 7;
3257 s->dsp.clear_block(block);
3260 ttblk = ff_vc1_ttblk_to_tt[v->tt_index][get_vlc2(gb, ff_vc1_ttblk_vlc[v->tt_index].table, VC1_TTBLK_VLC_BITS, 1)];
3262 if (ttblk == TT_4X4) {
3263 subblkpat = ~(get_vlc2(gb, ff_vc1_subblkpat_vlc[v->tt_index].table, VC1_SUBBLKPAT_VLC_BITS, 1) + 1);
3265 if ((ttblk != TT_8X8 && ttblk != TT_4X4)
3266 && ((v->ttmbf || (ttmb != -1 && (ttmb & 8) && !first_block))
3267 || (!v->res_rtm_flag && !first_block))) {
3268 subblkpat = decode012(gb);
3270 subblkpat ^= 3; // swap decoded pattern bits
3271 if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM)
3273 if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT)
3276 scale = 2 * mquant + ((v->pq == mquant) ? v->halfpq : 0);
3278 // convert transforms like 8X4_TOP to generic TT and SUBBLKPAT
3279 if (ttblk == TT_8X4_TOP || ttblk == TT_8X4_BOTTOM) {
3280 subblkpat = 2 - (ttblk == TT_8X4_TOP);
3283 if (ttblk == TT_4X8_RIGHT || ttblk == TT_4X8_LEFT) {
3284 subblkpat = 2 - (ttblk == TT_4X8_LEFT);
3293 vc1_decode_ac_coeff(v, &last, &skip, &value, v->codingset2);
3298 idx = v->zz_8x8[0][i++];
3300 idx = v->zzi_8x8[i++];
3301 block[idx] = value * scale;
3303 block[idx] += (block[idx] < 0) ? -mquant : mquant;
3307 v->vc1dsp.vc1_inv_trans_8x8_dc(dst, linesize, block);
3309 v->vc1dsp.vc1_inv_trans_8x8(block);
3310 s->dsp.add_pixels_clamped(block, dst, linesize);
3315 pat = ~subblkpat & 0xF;
3316 for (j = 0; j < 4; j++) {
3317 last = subblkpat & (1 << (3 - j));
3319 off = (j & 1) * 4 + (j & 2) * 16;