e5b18218694e4a8c64b169c3d84219e312003ad3
[ffmpeg.git] / libavcodec / rv40.c
1 /*
2  * RV40 decoder
3  * Copyright (c) 2007 Konstantin Shishkov
4  *
5  * This file is part of Libav.
6  *
7  * Libav is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * Libav is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with Libav; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 /**
23  * @file
24  * RV40 decoder
25  */
26
27 #include "libavutil/imgutils.h"
28
29 #include "avcodec.h"
30 #include "mpegutils.h"
31 #include "mpegvideo.h"
32 #include "golomb.h"
33
34 #include "rv34.h"
35 #include "rv40vlc2.h"
36 #include "rv40data.h"
37
38 static VLC aic_top_vlc;
39 static VLC aic_mode1_vlc[AIC_MODE1_NUM], aic_mode2_vlc[AIC_MODE2_NUM];
40 static VLC ptype_vlc[NUM_PTYPE_VLCS], btype_vlc[NUM_BTYPE_VLCS];
41
42 static const int16_t mode2_offs[] = {
43        0,  614, 1222, 1794, 2410,  3014,  3586,  4202,  4792, 5382, 5966, 6542,
44     7138, 7716, 8292, 8864, 9444, 10030, 10642, 11212, 11814
45 };
46
47 /**
48  * Initialize all tables.
49  */
50 static av_cold void rv40_init_tables(void)
51 {
52     int i;
53     static VLC_TYPE aic_table[1 << AIC_TOP_BITS][2];
54     static VLC_TYPE aic_mode1_table[AIC_MODE1_NUM << AIC_MODE1_BITS][2];
55     static VLC_TYPE aic_mode2_table[11814][2];
56     static VLC_TYPE ptype_table[NUM_PTYPE_VLCS << PTYPE_VLC_BITS][2];
57     static VLC_TYPE btype_table[NUM_BTYPE_VLCS << BTYPE_VLC_BITS][2];
58
59     aic_top_vlc.table = aic_table;
60     aic_top_vlc.table_allocated = 1 << AIC_TOP_BITS;
61     init_vlc(&aic_top_vlc, AIC_TOP_BITS, AIC_TOP_SIZE,
62              rv40_aic_top_vlc_bits,  1, 1,
63              rv40_aic_top_vlc_codes, 1, 1, INIT_VLC_USE_NEW_STATIC);
64     for(i = 0; i < AIC_MODE1_NUM; i++){
65         // Every tenth VLC table is empty
66         if((i % 10) == 9) continue;
67         aic_mode1_vlc[i].table = &aic_mode1_table[i << AIC_MODE1_BITS];
68         aic_mode1_vlc[i].table_allocated = 1 << AIC_MODE1_BITS;
69         init_vlc(&aic_mode1_vlc[i], AIC_MODE1_BITS, AIC_MODE1_SIZE,
70                  aic_mode1_vlc_bits[i],  1, 1,
71                  aic_mode1_vlc_codes[i], 1, 1, INIT_VLC_USE_NEW_STATIC);
72     }
73     for(i = 0; i < AIC_MODE2_NUM; i++){
74         aic_mode2_vlc[i].table = &aic_mode2_table[mode2_offs[i]];
75         aic_mode2_vlc[i].table_allocated = mode2_offs[i + 1] - mode2_offs[i];
76         init_vlc(&aic_mode2_vlc[i], AIC_MODE2_BITS, AIC_MODE2_SIZE,
77                  aic_mode2_vlc_bits[i],  1, 1,
78                  aic_mode2_vlc_codes[i], 2, 2, INIT_VLC_USE_NEW_STATIC);
79     }
80     for(i = 0; i < NUM_PTYPE_VLCS; i++){
81         ptype_vlc[i].table = &ptype_table[i << PTYPE_VLC_BITS];
82         ptype_vlc[i].table_allocated = 1 << PTYPE_VLC_BITS;
83         ff_init_vlc_sparse(&ptype_vlc[i], PTYPE_VLC_BITS, PTYPE_VLC_SIZE,
84                             ptype_vlc_bits[i],  1, 1,
85                             ptype_vlc_codes[i], 1, 1,
86                             ptype_vlc_syms,     1, 1, INIT_VLC_USE_NEW_STATIC);
87     }
88     for(i = 0; i < NUM_BTYPE_VLCS; i++){
89         btype_vlc[i].table = &btype_table[i << BTYPE_VLC_BITS];
90         btype_vlc[i].table_allocated = 1 << BTYPE_VLC_BITS;
91         ff_init_vlc_sparse(&btype_vlc[i], BTYPE_VLC_BITS, BTYPE_VLC_SIZE,
92                             btype_vlc_bits[i],  1, 1,
93                             btype_vlc_codes[i], 1, 1,
94                             btype_vlc_syms,     1, 1, INIT_VLC_USE_NEW_STATIC);
95     }
96 }
97
98 /**
99  * Get stored dimension from bitstream.
100  *
101  * If the width/height is the standard one then it's coded as a 3-bit index.
102  * Otherwise it is coded as escaped 8-bit portions.
103  */
104 static int get_dimension(GetBitContext *gb, const int *dim)
105 {
106     int t   = get_bits(gb, 3);
107     int val = dim[t];
108     if(val < 0)
109         val = dim[get_bits1(gb) - val];
110     if(!val){
111         do{
112             t = get_bits(gb, 8);
113             val += t << 2;
114         }while(t == 0xFF);
115     }
116     return val;
117 }
118
119 /**
120  * Get encoded picture size - usually this is called from rv40_parse_slice_header.
121  */
122 static void rv40_parse_picture_size(GetBitContext *gb, int *w, int *h)
123 {
124     *w = get_dimension(gb, rv40_standard_widths);
125     *h = get_dimension(gb, rv40_standard_heights);
126 }
127
128 static int rv40_parse_slice_header(RV34DecContext *r, GetBitContext *gb, SliceInfo *si)
129 {
130     int mb_bits;
131     int w = r->s.width, h = r->s.height;
132     int mb_size;
133
134     memset(si, 0, sizeof(SliceInfo));
135     if(get_bits1(gb))
136         return -1;
137     si->type = get_bits(gb, 2);
138     if(si->type == 1) si->type = 0;
139     si->quant = get_bits(gb, 5);
140     if(get_bits(gb, 2))
141         return -1;
142     si->vlc_set = get_bits(gb, 2);
143     skip_bits1(gb);
144     si->pts = get_bits(gb, 13);
145     if(!si->type || !get_bits1(gb))
146         rv40_parse_picture_size(gb, &w, &h);
147     if(av_image_check_size(w, h, 0, r->s.avctx) < 0)
148         return -1;
149     si->width  = w;
150     si->height = h;
151     mb_size = ((w + 15) >> 4) * ((h + 15) >> 4);
152     mb_bits = ff_rv34_get_start_offset(gb, mb_size);
153     si->start = get_bits(gb, mb_bits);
154
155     return 0;
156 }
157
158 /**
159  * Decode 4x4 intra types array.
160  */
161 static int rv40_decode_intra_types(RV34DecContext *r, GetBitContext *gb, int8_t *dst)
162 {
163     MpegEncContext *s = &r->s;
164     int i, j, k, v;
165     int A, B, C;
166     int pattern;
167     int8_t *ptr;
168
169     for(i = 0; i < 4; i++, dst += r->intra_types_stride){
170         if(!i && s->first_slice_line){
171             pattern = get_vlc2(gb, aic_top_vlc.table, AIC_TOP_BITS, 1);
172             dst[0] = (pattern >> 2) & 2;
173             dst[1] = (pattern >> 1) & 2;
174             dst[2] =  pattern       & 2;
175             dst[3] = (pattern << 1) & 2;
176             continue;
177         }
178         ptr = dst;
179         for(j = 0; j < 4; j++){
180             /* Coefficients are read using VLC chosen by the prediction pattern
181              * The first one (used for retrieving a pair of coefficients) is
182              * constructed from the top, top right and left coefficients
183              * The second one (used for retrieving only one coefficient) is
184              * top + 10 * left.
185              */
186             A = ptr[-r->intra_types_stride + 1]; // it won't be used for the last coefficient in a row
187             B = ptr[-r->intra_types_stride];
188             C = ptr[-1];
189             pattern = A + (B << 4) + (C << 8);
190             for(k = 0; k < MODE2_PATTERNS_NUM; k++)
191                 if(pattern == rv40_aic_table_index[k])
192                     break;
193             if(j < 3 && k < MODE2_PATTERNS_NUM){ //pattern is found, decoding 2 coefficients
194                 v = get_vlc2(gb, aic_mode2_vlc[k].table, AIC_MODE2_BITS, 2);
195                 *ptr++ = v/9;
196                 *ptr++ = v%9;
197                 j++;
198             }else{
199                 if(B != -1 && C != -1)
200                     v = get_vlc2(gb, aic_mode1_vlc[B + C*10].table, AIC_MODE1_BITS, 1);
201                 else{ // tricky decoding
202                     v = 0;
203                     switch(C){
204                     case -1: // code 0 -> 1, 1 -> 0
205                         if(B < 2)
206                             v = get_bits1(gb) ^ 1;
207                         break;
208                     case  0:
209                     case  2: // code 0 -> 2, 1 -> 0
210                         v = (get_bits1(gb) ^ 1) << 1;
211                         break;
212                     }
213                 }
214                 *ptr++ = v;
215             }
216         }
217     }
218     return 0;
219 }
220
221 /**
222  * Decode macroblock information.
223  */
224 static int rv40_decode_mb_info(RV34DecContext *r)
225 {
226     MpegEncContext *s = &r->s;
227     GetBitContext *gb = &s->gb;
228     int q, i;
229     int prev_type = 0;
230     int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
231
232     if(!r->s.mb_skip_run)
233         r->s.mb_skip_run = svq3_get_ue_golomb(gb) + 1;
234
235     if(--r->s.mb_skip_run)
236          return RV34_MB_SKIP;
237
238     if(r->avail_cache[6-4]){
239         int blocks[RV34_MB_TYPES] = {0};
240         int count = 0;
241         if(r->avail_cache[6-1])
242             blocks[r->mb_type[mb_pos - 1]]++;
243         blocks[r->mb_type[mb_pos - s->mb_stride]]++;
244         if(r->avail_cache[6-2])
245             blocks[r->mb_type[mb_pos - s->mb_stride + 1]]++;
246         if(r->avail_cache[6-5])
247             blocks[r->mb_type[mb_pos - s->mb_stride - 1]]++;
248         for(i = 0; i < RV34_MB_TYPES; i++){
249             if(blocks[i] > count){
250                 count = blocks[i];
251                 prev_type = i;
252                 if(count>1)
253                     break;
254             }
255         }
256     } else if (r->avail_cache[6-1])
257         prev_type = r->mb_type[mb_pos - 1];
258
259     if(s->pict_type == AV_PICTURE_TYPE_P){
260         prev_type = block_num_to_ptype_vlc_num[prev_type];
261         q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
262         if(q < PBTYPE_ESCAPE)
263             return q;
264         q = get_vlc2(gb, ptype_vlc[prev_type].table, PTYPE_VLC_BITS, 1);
265         av_log(s->avctx, AV_LOG_ERROR, "Dquant for P-frame\n");
266     }else{
267         prev_type = block_num_to_btype_vlc_num[prev_type];
268         q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
269         if(q < PBTYPE_ESCAPE)
270             return q;
271         q = get_vlc2(gb, btype_vlc[prev_type].table, BTYPE_VLC_BITS, 1);
272         av_log(s->avctx, AV_LOG_ERROR, "Dquant for B-frame\n");
273     }
274     return 0;
275 }
276
277 enum RV40BlockPos{
278     POS_CUR,
279     POS_TOP,
280     POS_LEFT,
281     POS_BOTTOM,
282 };
283
284 #define MASK_CUR          0x0001
285 #define MASK_RIGHT        0x0008
286 #define MASK_BOTTOM       0x0010
287 #define MASK_TOP          0x1000
288 #define MASK_Y_TOP_ROW    0x000F
289 #define MASK_Y_LAST_ROW   0xF000
290 #define MASK_Y_LEFT_COL   0x1111
291 #define MASK_Y_RIGHT_COL  0x8888
292 #define MASK_C_TOP_ROW    0x0003
293 #define MASK_C_LAST_ROW   0x000C
294 #define MASK_C_LEFT_COL   0x0005
295 #define MASK_C_RIGHT_COL  0x000A
296
297 static const int neighbour_offs_x[4] = { 0,  0, -1, 0 };
298 static const int neighbour_offs_y[4] = { 0, -1,  0, 1 };
299
300 static void rv40_adaptive_loop_filter(RV34DSPContext *rdsp,
301                                       uint8_t *src, int stride, int dmode,
302                                       int lim_q1, int lim_p1,
303                                       int alpha, int beta, int beta2,
304                                       int chroma, int edge, int dir)
305 {
306     int filter_p1, filter_q1;
307     int strong;
308     int lims;
309
310     strong = rdsp->rv40_loop_filter_strength[dir](src, stride, beta, beta2,
311                                                   edge, &filter_p1, &filter_q1);
312
313     lims = filter_p1 + filter_q1 + ((lim_q1 + lim_p1) >> 1) + 1;
314
315     if (strong) {
316         rdsp->rv40_strong_loop_filter[dir](src, stride, alpha,
317                                            lims, dmode, chroma);
318     } else if (filter_p1 & filter_q1) {
319         rdsp->rv40_weak_loop_filter[dir](src, stride, 1, 1, alpha, beta,
320                                          lims, lim_q1, lim_p1);
321     } else if (filter_p1 | filter_q1) {
322         rdsp->rv40_weak_loop_filter[dir](src, stride, filter_p1, filter_q1,
323                                          alpha, beta, lims >> 1, lim_q1 >> 1,
324                                          lim_p1 >> 1);
325     }
326 }
327
328 /**
329  * RV40 loop filtering function
330  */
331 static void rv40_loop_filter(RV34DecContext *r, int row)
332 {
333     MpegEncContext *s = &r->s;
334     int mb_pos, mb_x;
335     int i, j, k;
336     uint8_t *Y, *C;
337     int alpha, beta, betaY, betaC;
338     int q;
339     int mbtype[4];   ///< current macroblock and its neighbours types
340     /**
341      * flags indicating that macroblock can be filtered with strong filter
342      * it is set only for intra coded MB and MB with DCs coded separately
343      */
344     int mb_strong[4];
345     int clip[4];     ///< MB filter clipping value calculated from filtering strength
346     /**
347      * coded block patterns for luma part of current macroblock and its neighbours
348      * Format:
349      * LSB corresponds to the top left block,
350      * each nibble represents one row of subblocks.
351      */
352     int cbp[4];
353     /**
354      * coded block patterns for chroma part of current macroblock and its neighbours
355      * Format is the same as for luma with two subblocks in a row.
356      */
357     int uvcbp[4][2];
358     /**
359      * This mask represents the pattern of luma subblocks that should be filtered
360      * in addition to the coded ones because because they lie at the edge of
361      * 8x8 block with different enough motion vectors
362      */
363     unsigned mvmasks[4];
364
365     mb_pos = row * s->mb_stride;
366     for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
367         int mbtype = s->current_picture_ptr->mb_type[mb_pos];
368         if(IS_INTRA(mbtype) || IS_SEPARATE_DC(mbtype))
369             r->cbp_luma  [mb_pos] = r->deblock_coefs[mb_pos] = 0xFFFF;
370         if(IS_INTRA(mbtype))
371             r->cbp_chroma[mb_pos] = 0xFF;
372     }
373     mb_pos = row * s->mb_stride;
374     for(mb_x = 0; mb_x < s->mb_width; mb_x++, mb_pos++){
375         int y_h_deblock, y_v_deblock;
376         int c_v_deblock[2], c_h_deblock[2];
377         int clip_left;
378         int avail[4];
379         unsigned y_to_deblock;
380         int c_to_deblock[2];
381
382         q = s->current_picture_ptr->qscale_table[mb_pos];
383         alpha = rv40_alpha_tab[q];
384         beta  = rv40_beta_tab [q];
385         betaY = betaC = beta * 3;
386         if(s->width * s->height <= 176*144)
387             betaY += beta;
388
389         avail[0] = 1;
390         avail[1] = row;
391         avail[2] = mb_x;
392         avail[3] = row < s->mb_height - 1;
393         for(i = 0; i < 4; i++){
394             if(avail[i]){
395                 int pos = mb_pos + neighbour_offs_x[i] + neighbour_offs_y[i]*s->mb_stride;
396                 mvmasks[i] = r->deblock_coefs[pos];
397                 mbtype [i] = s->current_picture_ptr->mb_type[pos];
398                 cbp    [i] = r->cbp_luma[pos];
399                 uvcbp[i][0] = r->cbp_chroma[pos] & 0xF;
400                 uvcbp[i][1] = r->cbp_chroma[pos] >> 4;
401             }else{
402                 mvmasks[i] = 0;
403                 mbtype [i] = mbtype[0];
404                 cbp    [i] = 0;
405                 uvcbp[i][0] = uvcbp[i][1] = 0;
406             }
407             mb_strong[i] = IS_INTRA(mbtype[i]) || IS_SEPARATE_DC(mbtype[i]);
408             clip[i] = rv40_filter_clip_tbl[mb_strong[i] + 1][q];
409         }
410         y_to_deblock =  mvmasks[POS_CUR]
411                      | (mvmasks[POS_BOTTOM] << 16);
412         /* This pattern contains bits signalling that horizontal edges of
413          * the current block can be filtered.
414          * That happens when either of adjacent subblocks is coded or lies on
415          * the edge of 8x8 blocks with motion vectors differing by more than
416          * 3/4 pel in any component (any edge orientation for some reason).
417          */
418         y_h_deblock =   y_to_deblock
419                     | ((cbp[POS_CUR]                           <<  4) & ~MASK_Y_TOP_ROW)
420                     | ((cbp[POS_TOP]        & MASK_Y_LAST_ROW) >> 12);
421         /* This pattern contains bits signalling that vertical edges of
422          * the current block can be filtered.
423          * That happens when either of adjacent subblocks is coded or lies on
424          * the edge of 8x8 blocks with motion vectors differing by more than
425          * 3/4 pel in any component (any edge orientation for some reason).
426          */
427         y_v_deblock =   y_to_deblock
428                     | ((cbp[POS_CUR]                      << 1) & ~MASK_Y_LEFT_COL)
429                     | ((cbp[POS_LEFT] & MASK_Y_RIGHT_COL) >> 3);
430         if(!mb_x)
431             y_v_deblock &= ~MASK_Y_LEFT_COL;
432         if(!row)
433             y_h_deblock &= ~MASK_Y_TOP_ROW;
434         if(row == s->mb_height - 1 || (mb_strong[POS_CUR] | mb_strong[POS_BOTTOM]))
435             y_h_deblock &= ~(MASK_Y_TOP_ROW << 16);
436         /* Calculating chroma patterns is similar and easier since there is
437          * no motion vector pattern for them.
438          */
439         for(i = 0; i < 2; i++){
440             c_to_deblock[i] = (uvcbp[POS_BOTTOM][i] << 4) | uvcbp[POS_CUR][i];
441             c_v_deblock[i] =   c_to_deblock[i]
442                            | ((uvcbp[POS_CUR] [i]                       << 1) & ~MASK_C_LEFT_COL)
443                            | ((uvcbp[POS_LEFT][i]   & MASK_C_RIGHT_COL) >> 1);
444             c_h_deblock[i] =   c_to_deblock[i]
445                            | ((uvcbp[POS_TOP][i]    & MASK_C_LAST_ROW)  >> 2)
446                            |  (uvcbp[POS_CUR][i]                        << 2);
447             if(!mb_x)
448                 c_v_deblock[i] &= ~MASK_C_LEFT_COL;
449             if(!row)
450                 c_h_deblock[i] &= ~MASK_C_TOP_ROW;
451             if(row == s->mb_height - 1 || (mb_strong[POS_CUR] | mb_strong[POS_BOTTOM]))
452                 c_h_deblock[i] &= ~(MASK_C_TOP_ROW << 4);
453         }
454
455         for(j = 0; j < 16; j += 4){
456             Y = s->current_picture_ptr->f.data[0] + mb_x*16 + (row*16 + j) * s->linesize;
457             for(i = 0; i < 4; i++, Y += 4){
458                 int ij = i + j;
459                 int clip_cur = y_to_deblock & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
460                 int dither = j ? ij : i*4;
461
462                 // if bottom block is coded then we can filter its top edge
463                 // (or bottom edge of this block, which is the same)
464                 if(y_h_deblock & (MASK_BOTTOM << ij)){
465                     rv40_adaptive_loop_filter(&r->rdsp, Y+4*s->linesize,
466                                               s->linesize, dither,
467                                               y_to_deblock & (MASK_BOTTOM << ij) ? clip[POS_CUR] : 0,
468                                               clip_cur, alpha, beta, betaY,
469                                               0, 0, 0);
470                 }
471                 // filter left block edge in ordinary mode (with low filtering strength)
472                 if(y_v_deblock & (MASK_CUR << ij) && (i || !(mb_strong[POS_CUR] | mb_strong[POS_LEFT]))){
473                     if(!i)
474                         clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
475                     else
476                         clip_left = y_to_deblock & (MASK_CUR << (ij-1)) ? clip[POS_CUR] : 0;
477                     rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
478                                               clip_cur,
479                                               clip_left,
480                                               alpha, beta, betaY, 0, 0, 1);
481                 }
482                 // filter top edge of the current macroblock when filtering strength is high
483                 if(!j && y_h_deblock & (MASK_CUR << i) && (mb_strong[POS_CUR] | mb_strong[POS_TOP])){
484                     rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
485                                        clip_cur,
486                                        mvmasks[POS_TOP] & (MASK_TOP << i) ? clip[POS_TOP] : 0,
487                                        alpha, beta, betaY, 0, 1, 0);
488                 }
489                 // filter left block edge in edge mode (with high filtering strength)
490                 if(y_v_deblock & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] | mb_strong[POS_LEFT])){
491                     clip_left = mvmasks[POS_LEFT] & (MASK_RIGHT << j) ? clip[POS_LEFT] : 0;
492                     rv40_adaptive_loop_filter(&r->rdsp, Y, s->linesize, dither,
493                                        clip_cur,
494                                        clip_left,
495                                        alpha, beta, betaY, 0, 1, 1);
496                 }
497             }
498         }
499         for(k = 0; k < 2; k++){
500             for(j = 0; j < 2; j++){
501                 C = s->current_picture_ptr->f.data[k + 1] + mb_x*8 + (row*8 + j*4) * s->uvlinesize;
502                 for(i = 0; i < 2; i++, C += 4){
503                     int ij = i + j*2;
504                     int clip_cur = c_to_deblock[k] & (MASK_CUR << ij) ? clip[POS_CUR] : 0;
505                     if(c_h_deblock[k] & (MASK_CUR << (ij+2))){
506                         int clip_bot = c_to_deblock[k] & (MASK_CUR << (ij+2)) ? clip[POS_CUR] : 0;
507                         rv40_adaptive_loop_filter(&r->rdsp, C+4*s->uvlinesize, s->uvlinesize, i*8,
508                                            clip_bot,
509                                            clip_cur,
510                                            alpha, beta, betaC, 1, 0, 0);
511                     }
512                     if((c_v_deblock[k] & (MASK_CUR << ij)) && (i || !(mb_strong[POS_CUR] | mb_strong[POS_LEFT]))){
513                         if(!i)
514                             clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
515                         else
516                             clip_left = c_to_deblock[k]    & (MASK_CUR << (ij-1))  ? clip[POS_CUR]  : 0;
517                         rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, j*8,
518                                            clip_cur,
519                                            clip_left,
520                                            alpha, beta, betaC, 1, 0, 1);
521                     }
522                     if(!j && c_h_deblock[k] & (MASK_CUR << ij) && (mb_strong[POS_CUR] | mb_strong[POS_TOP])){
523                         int clip_top = uvcbp[POS_TOP][k] & (MASK_CUR << (ij+2)) ? clip[POS_TOP] : 0;
524                         rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, i*8,
525                                            clip_cur,
526                                            clip_top,
527                                            alpha, beta, betaC, 1, 1, 0);
528                     }
529                     if(c_v_deblock[k] & (MASK_CUR << ij) && !i && (mb_strong[POS_CUR] | mb_strong[POS_LEFT])){
530                         clip_left = uvcbp[POS_LEFT][k] & (MASK_CUR << (2*j+1)) ? clip[POS_LEFT] : 0;
531                         rv40_adaptive_loop_filter(&r->rdsp, C, s->uvlinesize, j*8,
532                                            clip_cur,
533                                            clip_left,
534                                            alpha, beta, betaC, 1, 1, 1);
535                     }
536                 }
537             }
538         }
539     }
540 }
541
542 /**
543  * Initialize decoder.
544  */
545 static av_cold int rv40_decode_init(AVCodecContext *avctx)
546 {
547     RV34DecContext *r = avctx->priv_data;
548     int ret;
549
550     r->rv30 = 0;
551     if ((ret = ff_rv34_decode_init(avctx)) < 0)
552         return ret;
553     if(!aic_top_vlc.bits)
554         rv40_init_tables();
555     r->parse_slice_header = rv40_parse_slice_header;
556     r->decode_intra_types = rv40_decode_intra_types;
557     r->decode_mb_info     = rv40_decode_mb_info;
558     r->loop_filter        = rv40_loop_filter;
559     r->luma_dc_quant_i = rv40_luma_dc_quant[0];
560     r->luma_dc_quant_p = rv40_luma_dc_quant[1];
561     return 0;
562 }
563
564 AVCodec ff_rv40_decoder = {
565     .name                  = "rv40",
566     .long_name             = NULL_IF_CONFIG_SMALL("RealVideo 4.0"),
567     .type                  = AVMEDIA_TYPE_VIDEO,
568     .id                    = AV_CODEC_ID_RV40,
569     .priv_data_size        = sizeof(RV34DecContext),
570     .init                  = rv40_decode_init,
571     .close                 = ff_rv34_decode_end,
572     .decode                = ff_rv34_decode_frame,
573     .capabilities          = CODEC_CAP_DR1 | CODEC_CAP_DELAY |
574                              CODEC_CAP_FRAME_THREADS,
575     .flush                 = ff_mpeg_flush,
576     .pix_fmts              = (const enum AVPixelFormat[]) {
577         AV_PIX_FMT_YUV420P,
578         AV_PIX_FMT_NONE
579     },
580     .init_thread_copy      = ONLY_IF_THREADS_ENABLED(ff_rv34_decode_init_thread_copy),
581     .update_thread_context = ONLY_IF_THREADS_ENABLED(ff_rv34_decode_update_thread_context),
582 };