2 * RV30/40 decoder common data
3 * Copyright (c) 2007 Mike Melanson, Konstantin Shishkov
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 * RV30/40 decoder common data
29 #include "mpegvideo.h"
32 #include "rectangle.h"
40 /** translation of RV30/40 macroblock types to lavc ones */
41 static const int rv34_mb_type_to_lavc[12] = {
43 MB_TYPE_INTRA16x16 | MB_TYPE_SEPARATE_DC,
44 MB_TYPE_16x16 | MB_TYPE_L0,
45 MB_TYPE_8x8 | MB_TYPE_L0,
46 MB_TYPE_16x16 | MB_TYPE_L0,
47 MB_TYPE_16x16 | MB_TYPE_L1,
49 MB_TYPE_DIRECT2 | MB_TYPE_16x16,
50 MB_TYPE_16x8 | MB_TYPE_L0,
51 MB_TYPE_8x16 | MB_TYPE_L0,
52 MB_TYPE_16x16 | MB_TYPE_L0L1,
53 MB_TYPE_16x16 | MB_TYPE_L0 | MB_TYPE_SEPARATE_DC
57 static RV34VLC intra_vlcs[NUM_INTRA_TABLES], inter_vlcs[NUM_INTER_TABLES];
60 * @defgroup vlc RV30/40 VLC generating functions
65 * Generate VLC from codeword lengths.
66 * @param bits codeword lengths (zeroes are accepted)
67 * @param size length of input data
68 * @param insyms symbols for input codes (NULL for default ones)
70 static void rv34_gen_vlc(const uint8_t *bits, int size, VLC *vlc, const uint8_t *insyms)
73 int counts[17] = {0}, codes[17];
74 uint16_t cw[size], syms[size];
76 int maxbits = 0, realsize = 0;
78 for(i = 0; i < size; i++){
80 bits2[realsize] = bits[i];
81 syms[realsize] = insyms ? insyms[i] : i;
83 maxbits = FFMAX(maxbits, bits[i]);
89 for(i = 0; i < 16; i++)
90 codes[i+1] = (codes[i] + counts[i]) << 1;
91 for(i = 0; i < realsize; i++)
92 cw[i] = codes[bits2[i]]++;
94 init_vlc_sparse(vlc, FFMIN(maxbits, 9), realsize,
97 syms, 2, 2, INIT_VLC_USE_STATIC);
101 * Initialize all tables.
103 static av_cold void rv34_init_tables()
107 for(i = 0; i < NUM_INTRA_TABLES; i++){
108 for(j = 0; j < 2; j++){
109 rv34_gen_vlc(rv34_table_intra_cbppat [i][j], CBPPAT_VLC_SIZE, &intra_vlcs[i].cbppattern[j], NULL);
110 rv34_gen_vlc(rv34_table_intra_secondpat[i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].second_pattern[j], NULL);
111 rv34_gen_vlc(rv34_table_intra_thirdpat [i][j], OTHERBLK_VLC_SIZE, &intra_vlcs[i].third_pattern[j], NULL);
112 for(k = 0; k < 4; k++)
113 rv34_gen_vlc(rv34_table_intra_cbp[i][j+k*2], CBP_VLC_SIZE, &intra_vlcs[i].cbp[j][k], rv34_cbp_code);
115 for(j = 0; j < 4; j++)
116 rv34_gen_vlc(rv34_table_intra_firstpat[i][j], FIRSTBLK_VLC_SIZE, &intra_vlcs[i].first_pattern[j], NULL);
117 rv34_gen_vlc(rv34_intra_coeff[i], COEFF_VLC_SIZE, &intra_vlcs[i].coefficient, NULL);
120 for(i = 0; i < NUM_INTER_TABLES; i++){
121 rv34_gen_vlc(rv34_inter_cbppat[i], CBPPAT_VLC_SIZE, &inter_vlcs[i].cbppattern[0], NULL);
122 for(j = 0; j < 4; j++)
123 rv34_gen_vlc(rv34_inter_cbp[i][j], CBP_VLC_SIZE, &inter_vlcs[i].cbp[0][j], rv34_cbp_code);
124 for(j = 0; j < 2; j++){
125 rv34_gen_vlc(rv34_table_inter_firstpat [i][j], FIRSTBLK_VLC_SIZE, &inter_vlcs[i].first_pattern[j], NULL);
126 rv34_gen_vlc(rv34_table_inter_secondpat[i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].second_pattern[j], NULL);
127 rv34_gen_vlc(rv34_table_inter_thirdpat [i][j], OTHERBLK_VLC_SIZE, &inter_vlcs[i].third_pattern[j], NULL);
129 rv34_gen_vlc(rv34_inter_coeff[i], COEFF_VLC_SIZE, &inter_vlcs[i].coefficient, NULL);
133 /** @} */ // vlc group
137 * @defgroup transform RV30/40 inverse transform functions
141 static av_always_inline void rv34_row_transform(int temp[16], DCTELEM *block)
146 const int z0= 13*(block[i+8*0] + block[i+8*2]);
147 const int z1= 13*(block[i+8*0] - block[i+8*2]);
148 const int z2= 7* block[i+8*1] - 17*block[i+8*3];
149 const int z3= 17* block[i+8*1] + 7*block[i+8*3];
159 * Real Video 3.0/4.0 inverse transform
160 * Code is almost the same as in SVQ3, only scaling is different.
162 static void rv34_inv_transform(DCTELEM *block){
166 rv34_row_transform(temp, block);
169 const int z0= 13*(temp[4*0+i] + temp[4*2+i]) + 0x200;
170 const int z1= 13*(temp[4*0+i] - temp[4*2+i]) + 0x200;
171 const int z2= 7* temp[4*1+i] - 17*temp[4*3+i];
172 const int z3= 17* temp[4*1+i] + 7*temp[4*3+i];
174 block[i*8+0]= (z0 + z3)>>10;
175 block[i*8+1]= (z1 + z2)>>10;
176 block[i*8+2]= (z1 - z2)>>10;
177 block[i*8+3]= (z0 - z3)>>10;
183 * RealVideo 3.0/4.0 inverse transform for DC block
185 * Code is almost the same as rv34_inv_transform()
186 * but final coefficients are multiplied by 1.5 and have no rounding.
188 static void rv34_inv_transform_noround(DCTELEM *block){
192 rv34_row_transform(temp, block);
195 const int z0= 13*(temp[4*0+i] + temp[4*2+i]);
196 const int z1= 13*(temp[4*0+i] - temp[4*2+i]);
197 const int z2= 7* temp[4*1+i] - 17*temp[4*3+i];
198 const int z3= 17* temp[4*1+i] + 7*temp[4*3+i];
200 block[i*8+0]= ((z0 + z3)*3)>>11;
201 block[i*8+1]= ((z1 + z2)*3)>>11;
202 block[i*8+2]= ((z1 - z2)*3)>>11;
203 block[i*8+3]= ((z0 - z3)*3)>>11;
208 /** @} */ // transform
212 * @defgroup block RV30/40 4x4 block decoding functions
217 * Decode coded block pattern.
219 static int rv34_decode_cbp(GetBitContext *gb, RV34VLC *vlc, int table)
221 int pattern, code, cbp=0;
223 static const int cbp_masks[3] = {0x100000, 0x010000, 0x110000};
224 static const int shifts[4] = { 0, 2, 8, 10 };
225 int *curshift = shifts;
228 code = get_vlc2(gb, vlc->cbppattern[table].table, 9, 2);
229 pattern = code & 0xF;
232 ones = rv34_count_ones[pattern];
234 for(mask = 8; mask; mask >>= 1, curshift++){
236 cbp |= get_vlc2(gb, vlc->cbp[table][ones].table, vlc->cbp[table][ones].bits, 1) << curshift[0];
239 for(i = 0; i < 4; i++){
240 t = modulo_three_table[code][i];
242 cbp |= cbp_masks[get_bits1(gb)] << i;
244 cbp |= cbp_masks[2] << i;
250 * Get one coefficient value from the bistream and store it.
252 static inline void decode_coeff(DCTELEM *dst, int coef, int esc, GetBitContext *gb, VLC* vlc)
256 coef = get_vlc2(gb, vlc->table, 9, 2);
259 coef = 22 + ((1 << coef) | get_bits(gb, coef));
270 * Decode 2x2 subblock of coefficients.
272 static inline void decode_subblock(DCTELEM *dst, int code, const int is_block2, GetBitContext *gb, VLC *vlc)
276 coeffs[0] = modulo_three_table[code][0];
277 coeffs[1] = modulo_three_table[code][1];
278 coeffs[2] = modulo_three_table[code][2];
279 coeffs[3] = modulo_three_table[code][3];
280 decode_coeff(dst , coeffs[0], 3, gb, vlc);
282 decode_coeff(dst+8, coeffs[1], 2, gb, vlc);
283 decode_coeff(dst+1, coeffs[2], 2, gb, vlc);
285 decode_coeff(dst+1, coeffs[1], 2, gb, vlc);
286 decode_coeff(dst+8, coeffs[2], 2, gb, vlc);
288 decode_coeff(dst+9, coeffs[3], 2, gb, vlc);
292 * Decode coefficients for 4x4 block.
294 * This is done by filling 2x2 subblocks with decoded coefficients
295 * in this order (the same for subblocks and subblock coefficients):
302 static inline void rv34_decode_block(DCTELEM *dst, GetBitContext *gb, RV34VLC *rvlc, int fc, int sc)
306 code = get_vlc2(gb, rvlc->first_pattern[fc].table, 9, 2);
308 pattern = code & 0x7;
311 decode_subblock(dst, code, 0, gb, &rvlc->coefficient);
314 code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
315 decode_subblock(dst + 2, code, 0, gb, &rvlc->coefficient);
317 if(pattern & 2){ // Looks like coefficients 1 and 2 are swapped for this block
318 code = get_vlc2(gb, rvlc->second_pattern[sc].table, 9, 2);
319 decode_subblock(dst + 8*2, code, 1, gb, &rvlc->coefficient);
322 code = get_vlc2(gb, rvlc->third_pattern[sc].table, 9, 2);
323 decode_subblock(dst + 8*2+2, code, 0, gb, &rvlc->coefficient);
329 * Dequantize ordinary 4x4 block.
332 static inline void rv34_dequant4x4(DCTELEM *block, int Qdc, int Q)
336 block[0] = (block[0] * Qdc + 8) >> 4;
337 for(i = 0; i < 4; i++)
338 for(j = !i; j < 4; j++)
339 block[j + i*8] = (block[j + i*8] * Q + 8) >> 4;
343 * Dequantize 4x4 block of DC values for 16x16 macroblock.
346 static inline void rv34_dequant4x4_16x16(DCTELEM *block, int Qdc, int Q)
350 for(i = 0; i < 3; i++)
351 block[rv34_dezigzag[i]] = (block[rv34_dezigzag[i]] * Qdc + 8) >> 4;
353 block[rv34_dezigzag[i]] = (block[rv34_dezigzag[i]] * Q + 8) >> 4;
355 /** @} */ //block functions
359 * @defgroup bitstream RV30/40 bitstream parsing
364 * Decode starting slice position.
365 * @todo Maybe replace with ff_h263_decode_mba() ?
367 int ff_rv34_get_start_offset(GetBitContext *gb, int mb_size)
370 for(i = 0; i < 5; i++)
371 if(rv34_mb_max_sizes[i] >= mb_size - 1)
373 return rv34_mb_bits_sizes[i];
377 * Select VLC set for decoding from current quantizer, modifier and frame type.
379 static inline RV34VLC* choose_vlc_set(int quant, int mod, int type)
381 if(mod == 2 && quant < 19) quant += 10;
382 else if(mod && quant < 26) quant += 5;
383 return type ? &inter_vlcs[rv34_quant_to_vlc_set[1][av_clip(quant, 0, 30)]]
384 : &intra_vlcs[rv34_quant_to_vlc_set[0][av_clip(quant, 0, 30)]];
388 * Decode quantizer difference and return modified quantizer.
390 static inline int rv34_decode_dquant(GetBitContext *gb, int quant)
393 return rv34_dquant_tab[get_bits1(gb)][quant];
395 return get_bits(gb, 5);
398 /** @} */ //bitstream functions
401 * @defgroup mv motion vector related code (prediction, reconstruction, motion compensation)
405 /** macroblock partition width in 8x8 blocks */
406 static const uint8_t part_sizes_w[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2 };
408 /** macroblock partition height in 8x8 blocks */
409 static const uint8_t part_sizes_h[RV34_MB_TYPES] = { 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2 };
411 /** availability index for subblocks */
412 static const uint8_t avail_indexes[4] = { 5, 6, 9, 10 };
415 * motion vector prediction
417 * Motion prediction performed for the block by using median prediction of
418 * motion vectors from the left, top and right top blocks but in corner cases
419 * some other vectors may be used instead.
421 static void rv34_pred_mv(RV34DecContext *r, int block_type, int subblock_no, int dmv_no)
423 MpegEncContext *s = &r->s;
424 int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
425 int A[2] = {0}, B[2], C[2];
428 int avail_index = avail_indexes[subblock_no];
429 int c_off = part_sizes_w[block_type];
431 mv_pos += (subblock_no & 1) + (subblock_no >> 1)*s->b8_stride;
435 if(r->avail_cache[avail_index - 1]){
436 A[0] = s->current_picture_ptr->motion_val[0][mv_pos-1][0];
437 A[1] = s->current_picture_ptr->motion_val[0][mv_pos-1][1];
439 if(r->avail_cache[avail_index - 4]){
440 B[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][0];
441 B[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][1];
446 if(!r->avail_cache[avail_index - 4 + c_off]){
447 if(r->avail_cache[avail_index - 4] && (r->avail_cache[avail_index - 1] || r->rv30)){
448 C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][0];
449 C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][1];
455 C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][0];
456 C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+c_off][1];
458 mx = mid_pred(A[0], B[0], C[0]);
459 my = mid_pred(A[1], B[1], C[1]);
460 mx += r->dmv[dmv_no][0];
461 my += r->dmv[dmv_no][1];
462 for(j = 0; j < part_sizes_h[block_type]; j++){
463 for(i = 0; i < part_sizes_w[block_type]; i++){
464 s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][0] = mx;
465 s->current_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][1] = my;
470 #define GET_PTS_DIFF(a, b) ((a - b + 8192) & 0x1FFF)
473 * Calculate motion vector component that should be added for direct blocks.
475 static int calc_add_mv(RV34DecContext *r, int dir, int val)
477 int refdist = GET_PTS_DIFF(r->next_pts, r->last_pts);
478 int dist = dir ? -GET_PTS_DIFF(r->next_pts, r->cur_pts) : GET_PTS_DIFF(r->cur_pts, r->last_pts);
481 if(!refdist) return 0;
482 mul = (dist << 14) / refdist;
483 return (val * mul + 0x2000) >> 14;
487 * Predict motion vector for B-frame macroblock.
489 static inline void rv34_pred_b_vector(int A[2], int B[2], int C[2],
490 int A_avail, int B_avail, int C_avail,
493 if(A_avail + B_avail + C_avail != 3){
494 *mx = A[0] + B[0] + C[0];
495 *my = A[1] + B[1] + C[1];
496 if(A_avail + B_avail + C_avail == 2){
501 *mx = mid_pred(A[0], B[0], C[0]);
502 *my = mid_pred(A[1], B[1], C[1]);
507 * motion vector prediction for B-frames
509 static void rv34_pred_mv_b(RV34DecContext *r, int block_type, int dir)
511 MpegEncContext *s = &r->s;
512 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
513 int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
514 int A[2], B[2], C[2];
515 int has_A = 0, has_B = 0, has_C = 0;
518 Picture *cur_pic = s->current_picture_ptr;
519 const int mask = dir ? MB_TYPE_L1 : MB_TYPE_L0;
520 int type = cur_pic->mb_type[mb_pos];
522 memset(A, 0, sizeof(A));
523 memset(B, 0, sizeof(B));
524 memset(C, 0, sizeof(C));
525 if((r->avail_cache[5-1] & type) & mask){
526 A[0] = cur_pic->motion_val[dir][mv_pos - 1][0];
527 A[1] = cur_pic->motion_val[dir][mv_pos - 1][1];
530 if((r->avail_cache[5-4] & type) & mask){
531 B[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][0];
532 B[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride][1];
535 if((r->avail_cache[5-2] & type) & mask){
536 C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][0];
537 C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride + 2][1];
539 }else if((s->mb_x+1) == s->mb_width && (r->avail_cache[5-5] & type) & mask){
540 C[0] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][0];
541 C[1] = cur_pic->motion_val[dir][mv_pos - s->b8_stride - 1][1];
545 rv34_pred_b_vector(A, B, C, has_A, has_B, has_C, &mx, &my);
547 mx += r->dmv[dir][0];
548 my += r->dmv[dir][1];
550 for(j = 0; j < 2; j++){
551 for(i = 0; i < 2; i++){
552 cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][0] = mx;
553 cur_pic->motion_val[dir][mv_pos + i + j*s->b8_stride][1] = my;
556 if(block_type == RV34_MB_B_BACKWARD || block_type == RV34_MB_B_FORWARD)
557 fill_rectangle(cur_pic->motion_val[!dir][mv_pos], 2, 2, s->b8_stride, 0, 4);
561 * motion vector prediction - RV3 version
563 static void rv34_pred_mv_rv3(RV34DecContext *r, int block_type, int dir)
565 MpegEncContext *s = &r->s;
566 int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
567 int A[2] = {0}, B[2], C[2];
570 int avail_index = avail_indexes[0];
572 if(r->avail_cache[avail_index - 1]){
573 A[0] = s->current_picture_ptr->motion_val[0][mv_pos-1][0];
574 A[1] = s->current_picture_ptr->motion_val[0][mv_pos-1][1];
576 if(r->avail_cache[avail_index - 4]){
577 B[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][0];
578 B[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride][1];
583 if(!r->avail_cache[avail_index - 4 + 2]){
584 if(r->avail_cache[avail_index - 4] && (r->avail_cache[avail_index - 1])){
585 C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][0];
586 C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride-1][1];
592 C[0] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+2][0];
593 C[1] = s->current_picture_ptr->motion_val[0][mv_pos-s->b8_stride+2][1];
595 mx = mid_pred(A[0], B[0], C[0]);
596 my = mid_pred(A[1], B[1], C[1]);
599 for(j = 0; j < 2; j++){
600 for(i = 0; i < 2; i++){
601 for(k = 0; k < 2; k++){
602 s->current_picture_ptr->motion_val[k][mv_pos + i + j*s->b8_stride][0] = mx;
603 s->current_picture_ptr->motion_val[k][mv_pos + i + j*s->b8_stride][1] = my;
609 static const int chroma_coeffs[3] = { 0, 3, 5 };
612 * generic motion compensation function
614 * @param r decoder context
615 * @param block_type type of the current block
616 * @param xoff horizontal offset from the start of the current block
617 * @param yoff vertical offset from the start of the current block
618 * @param mv_off offset to the motion vector information
619 * @param width width of the current partition in 8x8 blocks
620 * @param height height of the current partition in 8x8 blocks
622 static inline void rv34_mc(RV34DecContext *r, const int block_type,
623 const int xoff, const int yoff, int mv_off,
624 const int width, const int height, int dir,
626 qpel_mc_func (*qpel_mc)[16],
627 h264_chroma_mc_func (*chroma_mc))
629 MpegEncContext *s = &r->s;
630 uint8_t *Y, *U, *V, *srcY, *srcU, *srcV;
631 int dxy, mx, my, umx, umy, lx, ly, uvmx, uvmy, src_x, src_y, uvsrc_x, uvsrc_y;
632 int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride + mv_off;
636 int chroma_mx, chroma_my;
637 mx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) / 3 - (1 << 24);
638 my = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) / 3 - (1 << 24);
639 lx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + (3 << 24)) % 3;
640 ly = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + (3 << 24)) % 3;
641 chroma_mx = (s->current_picture_ptr->motion_val[dir][mv_pos][0] + 1) >> 1;
642 chroma_my = (s->current_picture_ptr->motion_val[dir][mv_pos][1] + 1) >> 1;
643 umx = (chroma_mx + (3 << 24)) / 3 - (1 << 24);
644 umy = (chroma_my + (3 << 24)) / 3 - (1 << 24);
645 uvmx = chroma_coeffs[(chroma_mx + (3 << 24)) % 3];
646 uvmy = chroma_coeffs[(chroma_my + (3 << 24)) % 3];
649 mx = s->current_picture_ptr->motion_val[dir][mv_pos][0] >> 2;
650 my = s->current_picture_ptr->motion_val[dir][mv_pos][1] >> 2;
651 lx = s->current_picture_ptr->motion_val[dir][mv_pos][0] & 3;
652 ly = s->current_picture_ptr->motion_val[dir][mv_pos][1] & 3;
653 cx = s->current_picture_ptr->motion_val[dir][mv_pos][0] / 2;
654 cy = s->current_picture_ptr->motion_val[dir][mv_pos][1] / 2;
657 uvmx = (cx & 3) << 1;
658 uvmy = (cy & 3) << 1;
659 //due to some flaw RV40 uses the same MC compensation routine for H2V2 and H3V3
660 if(uvmx == 6 && uvmy == 6)
664 srcY = dir ? s->next_picture_ptr->data[0] : s->last_picture_ptr->data[0];
665 srcU = dir ? s->next_picture_ptr->data[1] : s->last_picture_ptr->data[1];
666 srcV = dir ? s->next_picture_ptr->data[2] : s->last_picture_ptr->data[2];
667 src_x = s->mb_x * 16 + xoff + mx;
668 src_y = s->mb_y * 16 + yoff + my;
669 uvsrc_x = s->mb_x * 8 + (xoff >> 1) + umx;
670 uvsrc_y = s->mb_y * 8 + (yoff >> 1) + umy;
671 srcY += src_y * s->linesize + src_x;
672 srcU += uvsrc_y * s->uvlinesize + uvsrc_x;
673 srcV += uvsrc_y * s->uvlinesize + uvsrc_x;
674 if( (unsigned)(src_x - !!lx*2) > s->h_edge_pos - !!lx*2 - (width <<3) - 4
675 || (unsigned)(src_y - !!ly*2) > s->v_edge_pos - !!ly*2 - (height<<3) - 4){
676 uint8_t *uvbuf= s->edge_emu_buffer + 22 * s->linesize;
678 srcY -= 2 + 2*s->linesize;
679 ff_emulated_edge_mc(s->edge_emu_buffer, srcY, s->linesize, (width<<3)+6, (height<<3)+6,
680 src_x - 2, src_y - 2, s->h_edge_pos, s->v_edge_pos);
681 srcY = s->edge_emu_buffer + 2 + 2*s->linesize;
682 ff_emulated_edge_mc(uvbuf , srcU, s->uvlinesize, (width<<2)+1, (height<<2)+1,
683 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
684 ff_emulated_edge_mc(uvbuf + 16, srcV, s->uvlinesize, (width<<2)+1, (height<<2)+1,
685 uvsrc_x, uvsrc_y, s->h_edge_pos >> 1, s->v_edge_pos >> 1);
689 Y = s->dest[0] + xoff + yoff *s->linesize;
690 U = s->dest[1] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
691 V = s->dest[2] + (xoff>>1) + (yoff>>1)*s->uvlinesize;
693 if(block_type == RV34_MB_P_16x8){
694 qpel_mc[1][dxy](Y, srcY, s->linesize);
697 }else if(block_type == RV34_MB_P_8x16){
698 qpel_mc[1][dxy](Y, srcY, s->linesize);
699 Y += 8 * s->linesize;
700 srcY += 8 * s->linesize;
702 is16x16 = (block_type != RV34_MB_P_8x8) && (block_type != RV34_MB_P_16x8) && (block_type != RV34_MB_P_8x16);
703 qpel_mc[!is16x16][dxy](Y, srcY, s->linesize);
704 chroma_mc[2-width] (U, srcU, s->uvlinesize, height*4, uvmx, uvmy);
705 chroma_mc[2-width] (V, srcV, s->uvlinesize, height*4, uvmx, uvmy);
708 static void rv34_mc_1mv(RV34DecContext *r, const int block_type,
709 const int xoff, const int yoff, int mv_off,
710 const int width, const int height, int dir)
712 rv34_mc(r, block_type, xoff, yoff, mv_off, width, height, dir, r->rv30,
713 r->rv30 ? r->s.dsp.put_rv30_tpel_pixels_tab
714 : r->s.dsp.put_rv40_qpel_pixels_tab,
715 r->rv30 ? r->s.dsp.put_h264_chroma_pixels_tab
716 : r->s.dsp.put_rv40_chroma_pixels_tab);
719 static void rv34_mc_2mv(RV34DecContext *r, const int block_type)
721 rv34_mc(r, block_type, 0, 0, 0, 2, 2, 0, r->rv30,
722 r->rv30 ? r->s.dsp.put_rv30_tpel_pixels_tab
723 : r->s.dsp.put_rv40_qpel_pixels_tab,
724 r->rv30 ? r->s.dsp.put_h264_chroma_pixels_tab
725 : r->s.dsp.put_rv40_chroma_pixels_tab);
726 rv34_mc(r, block_type, 0, 0, 0, 2, 2, 1, r->rv30,
727 r->rv30 ? r->s.dsp.avg_rv30_tpel_pixels_tab
728 : r->s.dsp.avg_rv40_qpel_pixels_tab,
729 r->rv30 ? r->s.dsp.avg_h264_chroma_pixels_tab
730 : r->s.dsp.avg_rv40_chroma_pixels_tab);
733 static void rv34_mc_2mv_skip(RV34DecContext *r)
736 for(j = 0; j < 2; j++)
737 for(i = 0; i < 2; i++){
738 rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 0, r->rv30,
739 r->rv30 ? r->s.dsp.put_rv30_tpel_pixels_tab
740 : r->s.dsp.put_rv40_qpel_pixels_tab,
741 r->rv30 ? r->s.dsp.put_h264_chroma_pixels_tab
742 : r->s.dsp.put_rv40_chroma_pixels_tab);
743 rv34_mc(r, RV34_MB_P_8x8, i*8, j*8, i+j*r->s.b8_stride, 1, 1, 1, r->rv30,
744 r->rv30 ? r->s.dsp.avg_rv30_tpel_pixels_tab
745 : r->s.dsp.avg_rv40_qpel_pixels_tab,
746 r->rv30 ? r->s.dsp.avg_h264_chroma_pixels_tab
747 : r->s.dsp.avg_rv40_chroma_pixels_tab);
751 /** number of motion vectors in each macroblock type */
752 static const int num_mvs[RV34_MB_TYPES] = { 0, 0, 1, 4, 1, 1, 0, 0, 2, 2, 2, 1 };
755 * Decode motion vector differences
756 * and perform motion vector reconstruction and motion compensation.
758 static int rv34_decode_mv(RV34DecContext *r, int block_type)
760 MpegEncContext *s = &r->s;
761 GetBitContext *gb = &s->gb;
763 int mv_pos = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
766 memset(r->dmv, 0, sizeof(r->dmv));
767 for(i = 0; i < num_mvs[block_type]; i++){
768 r->dmv[i][0] = svq3_get_se_golomb(gb);
769 r->dmv[i][1] = svq3_get_se_golomb(gb);
772 case RV34_MB_TYPE_INTRA:
773 case RV34_MB_TYPE_INTRA16x16:
774 fill_rectangle(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], 2, 2, s->b8_stride, 0, 4);
777 if(s->pict_type == FF_P_TYPE){
778 fill_rectangle(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], 2, 2, s->b8_stride, 0, 4);
779 rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
782 case RV34_MB_B_DIRECT:
783 //surprisingly, it uses motion scheme from next reference frame
784 next_bt = s->next_picture_ptr->mb_type[s->mb_x + s->mb_y * s->mb_stride];
785 for(j = 0; j < 2; j++)
786 for(i = 0; i < 2; i++)
787 for(k = 0; k < 2; k++)
788 for(l = 0; l < 2; l++)
789 s->current_picture_ptr->motion_val[l][mv_pos + i + j*s->b8_stride][k] = calc_add_mv(r, l, s->next_picture_ptr->motion_val[0][mv_pos + i + j*s->b8_stride][k]);
790 if(IS_16X16(next_bt)) //we can use whole macroblock MC
791 rv34_mc_2mv(r, block_type);
794 fill_rectangle(s->current_picture_ptr->motion_val[0][s->mb_x * 2 + s->mb_y * 2 * s->b8_stride], 2, 2, s->b8_stride, 0, 4);
796 case RV34_MB_P_16x16:
797 case RV34_MB_P_MIX16x16:
798 rv34_pred_mv(r, block_type, 0, 0);
799 rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, 0);
801 case RV34_MB_B_FORWARD:
802 case RV34_MB_B_BACKWARD:
803 r->dmv[1][0] = r->dmv[0][0];
804 r->dmv[1][1] = r->dmv[0][1];
806 rv34_pred_mv_rv3(r, block_type, block_type == RV34_MB_B_BACKWARD);
808 rv34_pred_mv_b (r, block_type, block_type == RV34_MB_B_BACKWARD);
809 rv34_mc_1mv (r, block_type, 0, 0, 0, 2, 2, block_type == RV34_MB_B_BACKWARD);
813 rv34_pred_mv(r, block_type, 0, 0);
814 rv34_pred_mv(r, block_type, 1 + (block_type == RV34_MB_P_16x8), 1);
815 if(block_type == RV34_MB_P_16x8){
816 rv34_mc_1mv(r, block_type, 0, 0, 0, 2, 1, 0);
817 rv34_mc_1mv(r, block_type, 0, 8, s->b8_stride, 2, 1, 0);
819 if(block_type == RV34_MB_P_8x16){
820 rv34_mc_1mv(r, block_type, 0, 0, 0, 1, 2, 0);
821 rv34_mc_1mv(r, block_type, 8, 0, 1, 1, 2, 0);
824 case RV34_MB_B_BIDIR:
825 rv34_pred_mv_b (r, block_type, 0);
826 rv34_pred_mv_b (r, block_type, 1);
827 rv34_mc_2mv (r, block_type);
831 rv34_pred_mv(r, block_type, i, i);
832 rv34_mc_1mv (r, block_type, (i&1)<<3, (i&2)<<2, (i&1)+(i>>1)*s->b8_stride, 1, 1, 0);
839 /** @} */ // mv group
842 * @defgroup recons Macroblock reconstruction functions
845 /** mapping of RV30/40 intra prediction types to standard H.264 types */
846 static const int ittrans[9] = {
847 DC_PRED, VERT_PRED, HOR_PRED, DIAG_DOWN_RIGHT_PRED, DIAG_DOWN_LEFT_PRED,
848 VERT_RIGHT_PRED, VERT_LEFT_PRED, HOR_UP_PRED, HOR_DOWN_PRED,
851 /** mapping of RV30/40 intra 16x16 prediction types to standard H.264 types */
852 static const int ittrans16[4] = {
853 DC_PRED8x8, VERT_PRED8x8, HOR_PRED8x8, PLANE_PRED8x8,
857 * Perform 4x4 intra prediction.
859 static void rv34_pred_4x4_block(RV34DecContext *r, uint8_t *dst, int stride, int itype, int up, int left, int down, int right)
861 uint8_t *prev = dst - stride + 4;
867 if(itype == VERT_PRED) itype = HOR_PRED;
868 if(itype == DC_PRED) itype = LEFT_DC_PRED;
870 if(itype == HOR_PRED) itype = VERT_PRED;
871 if(itype == DC_PRED) itype = TOP_DC_PRED;
872 if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN;
875 if(itype == DIAG_DOWN_LEFT_PRED) itype = DIAG_DOWN_LEFT_PRED_RV40_NODOWN;
876 if(itype == HOR_UP_PRED) itype = HOR_UP_PRED_RV40_NODOWN;
877 if(itype == VERT_LEFT_PRED) itype = VERT_LEFT_PRED_RV40_NODOWN;
880 topleft = dst[-stride + 3] * 0x01010101;
883 r->h.pred4x4[itype](dst, prev, stride);
886 /** add_pixels_clamped for 4x4 block */
887 static void rv34_add_4x4_block(uint8_t *dst, int stride, DCTELEM block[64], int off)
890 for(y = 0; y < 4; y++)
891 for(x = 0; x < 4; x++)
892 dst[x + y*stride] = av_clip_uint8(dst[x + y*stride] + block[off + x+y*8]);
895 static inline int adjust_pred16(int itype, int up, int left)
898 itype = DC_128_PRED8x8;
900 if(itype == PLANE_PRED8x8)itype = HOR_PRED8x8;
901 if(itype == VERT_PRED8x8) itype = HOR_PRED8x8;
902 if(itype == DC_PRED8x8) itype = LEFT_DC_PRED8x8;
904 if(itype == PLANE_PRED8x8)itype = VERT_PRED8x8;
905 if(itype == HOR_PRED8x8) itype = VERT_PRED8x8;
906 if(itype == DC_PRED8x8) itype = TOP_DC_PRED8x8;
911 static void rv34_output_macroblock(RV34DecContext *r, int8_t *intra_types, int cbp, int is16)
913 MpegEncContext *s = &r->s;
914 DSPContext *dsp = &s->dsp;
918 int avail[6*8] = {0};
921 // Set neighbour information.
922 if(r->avail_cache[0])
924 if(r->avail_cache[1])
925 avail[1] = avail[2] = 1;
926 if(r->avail_cache[2])
927 avail[3] = avail[4] = 1;
928 if(r->avail_cache[3])
930 if(r->avail_cache[4])
931 avail[8] = avail[16] = 1;
932 if(r->avail_cache[8])
933 avail[24] = avail[32] = 1;
939 for(j = 0; j < 4; j++){
941 for(i = 0; i < 4; i++, cbp >>= 1, Y += 4, idx++){
942 rv34_pred_4x4_block(r, Y, s->linesize, ittrans[intra_types[i]], avail[idx-8], avail[idx-1], avail[idx+7], avail[idx-7]);
945 rv34_add_4x4_block(Y, s->linesize, s->block[(i>>1)+(j&2)], (i&1)*4+(j&1)*32);
947 Y += s->linesize * 4 - 4*4;
948 intra_types += s->b4_stride;
950 intra_types -= s->b4_stride * 4;
951 fill_rectangle(r->avail_cache + 5, 2, 2, 4, 0, 4);
952 for(j = 0; j < 2; j++){
954 for(i = 0; i < 2; i++, cbp >>= 1, idx++){
955 rv34_pred_4x4_block(r, U + i*4 + j*4*s->uvlinesize, s->uvlinesize, ittrans[intra_types[i*2+j*2*s->b4_stride]], r->avail_cache[idx-4], r->avail_cache[idx-1], !i && !j, r->avail_cache[idx-3]);
956 rv34_pred_4x4_block(r, V + i*4 + j*4*s->uvlinesize, s->uvlinesize, ittrans[intra_types[i*2+j*2*s->b4_stride]], r->avail_cache[idx-4], r->avail_cache[idx-1], !i && !j, r->avail_cache[idx-3]);
957 r->avail_cache[idx] = 1;
959 rv34_add_4x4_block(U + i*4 + j*4*s->uvlinesize, s->uvlinesize, s->block[4], i*4+j*32);
961 rv34_add_4x4_block(V + i*4 + j*4*s->uvlinesize, s->uvlinesize, s->block[5], i*4+j*32);
965 itype = ittrans16[intra_types[0]];
966 itype = adjust_pred16(itype, r->avail_cache[5-4], r->avail_cache[5-1]);
967 r->h.pred16x16[itype](Y, s->linesize);
968 dsp->add_pixels_clamped(s->block[0], Y, s->linesize);
969 dsp->add_pixels_clamped(s->block[1], Y + 8, s->linesize);
970 Y += s->linesize * 8;
971 dsp->add_pixels_clamped(s->block[2], Y, s->linesize);
972 dsp->add_pixels_clamped(s->block[3], Y + 8, s->linesize);
974 itype = ittrans16[intra_types[0]];
975 if(itype == PLANE_PRED8x8) itype = DC_PRED8x8;
976 itype = adjust_pred16(itype, r->avail_cache[5-4], r->avail_cache[5-1]);
977 r->h.pred8x8[itype](U, s->uvlinesize);
978 dsp->add_pixels_clamped(s->block[4], U, s->uvlinesize);
979 r->h.pred8x8[itype](V, s->uvlinesize);
980 dsp->add_pixels_clamped(s->block[5], V, s->uvlinesize);
984 /** @} */ // recons group
987 * @addtogroup bitstream
988 * Decode macroblock header and return CBP in case of success, -1 otherwise.
990 static int rv34_decode_mb_header(RV34DecContext *r, int8_t *intra_types)
992 MpegEncContext *s = &r->s;
993 GetBitContext *gb = &s->gb;
994 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
998 r->is16 = get_bits1(gb);
999 if(!r->is16 && !r->rv30){
1001 av_log(s->avctx, AV_LOG_ERROR, "Need DQUANT\n");
1003 s->current_picture_ptr->mb_type[mb_pos] = r->is16 ? MB_TYPE_INTRA16x16 : MB_TYPE_INTRA;
1004 r->block_type = r->is16 ? RV34_MB_TYPE_INTRA16x16 : RV34_MB_TYPE_INTRA;
1006 r->block_type = r->decode_mb_info(r);
1007 if(r->block_type == -1)
1009 s->current_picture_ptr->mb_type[mb_pos] = rv34_mb_type_to_lavc[r->block_type];
1010 r->mb_type[mb_pos] = r->block_type;
1011 if(r->block_type == RV34_MB_SKIP){
1012 if(s->pict_type == FF_P_TYPE)
1013 r->mb_type[mb_pos] = RV34_MB_P_16x16;
1014 if(s->pict_type == FF_B_TYPE)
1015 r->mb_type[mb_pos] = RV34_MB_B_DIRECT;
1017 r->is16 = !!IS_INTRA16x16(s->current_picture_ptr->mb_type[mb_pos]);
1018 rv34_decode_mv(r, r->block_type);
1019 if(r->block_type == RV34_MB_SKIP){
1020 fill_rectangle(intra_types, 4, 4, s->b4_stride, 0, sizeof(intra_types[0]));
1026 if(IS_INTRA(s->current_picture_ptr->mb_type[mb_pos])){
1028 t = get_bits(gb, 2);
1029 fill_rectangle(intra_types, 4, 4, s->b4_stride, t, sizeof(intra_types[0]));
1032 if(r->decode_intra_types(r, gb, intra_types) < 0)
1037 r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
1039 for(i = 0; i < 16; i++)
1040 intra_types[(i & 3) + (i>>2) * s->b4_stride] = 0;
1041 r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
1042 if(r->mb_type[mb_pos] == RV34_MB_P_MIX16x16){
1046 r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 0);
1050 return rv34_decode_cbp(gb, r->cur_vlcs, r->is16);
1054 * @addtogroup recons
1058 * mask for retrieving all bits in coded block pattern
1059 * corresponding to one 8x8 block
1061 #define LUMA_CBP_BLOCK_MASK 0x33
1063 #define U_CBP_MASK 0x0F0000
1064 #define V_CBP_MASK 0xF00000
1067 static void rv34_apply_differences(RV34DecContext *r, int cbp)
1069 static const int shifts[4] = { 0, 2, 8, 10 };
1070 MpegEncContext *s = &r->s;
1073 for(i = 0; i < 4; i++)
1074 if((cbp & (LUMA_CBP_BLOCK_MASK << shifts[i])) || r->block_type == RV34_MB_P_MIX16x16)
1075 s->dsp.add_pixels_clamped(s->block[i], s->dest[0] + (i & 1)*8 + (i&2)*4*s->linesize, s->linesize);
1076 if(cbp & U_CBP_MASK)
1077 s->dsp.add_pixels_clamped(s->block[4], s->dest[1], s->uvlinesize);
1078 if(cbp & V_CBP_MASK)
1079 s->dsp.add_pixels_clamped(s->block[5], s->dest[2], s->uvlinesize);
1082 static int is_mv_diff_gt_3(int16_t (*motion_val)[2], int step)
1085 d = motion_val[0][0] - motion_val[-step][0];
1088 d = motion_val[0][1] - motion_val[-step][1];
1094 static int rv34_set_deblock_coef(RV34DecContext *r)
1096 MpegEncContext *s = &r->s;
1097 int hmvmask = 0, vmvmask = 0, i, j;
1098 int midx = s->mb_x * 2 + s->mb_y * 2 * s->b8_stride;
1099 int16_t (*motion_val)[2] = s->current_picture_ptr->motion_val[0][midx];
1100 for(j = 0; j < 16; j += 8){
1101 for(i = 0; i < 2; i++){
1102 if(is_mv_diff_gt_3(motion_val + i, 1))
1103 vmvmask |= 0x11 << (j + i*2);
1104 if((j || s->mb_y) && is_mv_diff_gt_3(motion_val + i, s->b8_stride))
1105 hmvmask |= 0x03 << (j + i*2);
1107 motion_val += s->b8_stride;
1109 if(s->first_slice_line)
1113 if(r->rv30){ //RV30 marks both subblocks on the edge for filtering
1114 vmvmask |= (vmvmask & 0x4444) >> 1;
1115 hmvmask |= (hmvmask & 0x0F00) >> 4;
1117 r->deblock_coefs[s->mb_x - 1 + s->mb_y*s->mb_stride] |= (vmvmask & 0x1111) << 3;
1118 if(!s->first_slice_line)
1119 r->deblock_coefs[s->mb_x + (s->mb_y - 1)*s->mb_stride] |= (hmvmask & 0xF) << 12;
1121 return hmvmask | vmvmask;
1124 static int rv34_decode_macroblock(RV34DecContext *r, int8_t *intra_types)
1126 MpegEncContext *s = &r->s;
1127 GetBitContext *gb = &s->gb;
1129 int i, blknum, blkoff;
1130 DCTELEM block16[64];
1133 int mb_pos = s->mb_x + s->mb_y * s->mb_stride;
1135 // Calculate which neighbours are available. Maybe it's worth optimizing too.
1136 memset(r->avail_cache, 0, sizeof(r->avail_cache));
1137 fill_rectangle(r->avail_cache + 5, 2, 2, 4, 1, 4);
1138 dist = (s->mb_x - s->resync_mb_x) + (s->mb_y - s->resync_mb_y) * s->mb_width;
1141 r->avail_cache[8] = s->current_picture_ptr->mb_type[mb_pos - 1];
1142 if(dist >= s->mb_width)
1144 r->avail_cache[2] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride];
1145 if(((s->mb_x+1) < s->mb_width) && dist >= s->mb_width - 1)
1146 r->avail_cache[3] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride + 1];
1147 if(s->mb_x && dist > s->mb_width)
1148 r->avail_cache[0] = s->current_picture_ptr->mb_type[mb_pos - s->mb_stride - 1];
1150 s->qscale = r->si.quant;
1151 cbp = cbp2 = rv34_decode_mb_header(r, intra_types);
1152 r->cbp_luma [mb_pos] = cbp;
1153 r->cbp_chroma[mb_pos] = cbp >> 16;
1154 if(s->pict_type == FF_I_TYPE)
1155 r->deblock_coefs[mb_pos] = 0xFFFF;
1157 r->deblock_coefs[mb_pos] = rv34_set_deblock_coef(r) | r->cbp_luma[mb_pos];
1158 s->current_picture_ptr->qscale_table[mb_pos] = s->qscale;
1163 luma_dc_quant = r->block_type == RV34_MB_P_MIX16x16 ? r->luma_dc_quant_p[s->qscale] : r->luma_dc_quant_i[s->qscale];
1165 memset(block16, 0, sizeof(block16));
1166 rv34_decode_block(block16, gb, r->cur_vlcs, 3, 0);
1167 rv34_dequant4x4_16x16(block16, rv34_qscale_tab[luma_dc_quant],rv34_qscale_tab[s->qscale]);
1168 rv34_inv_transform_noround(block16);
1171 for(i = 0; i < 16; i++, cbp >>= 1){
1172 if(!r->is16 && !(cbp & 1)) continue;
1173 blknum = ((i & 2) >> 1) + ((i & 8) >> 2);
1174 blkoff = ((i & 1) << 2) + ((i & 4) << 3);
1176 rv34_decode_block(s->block[blknum] + blkoff, gb, r->cur_vlcs, r->luma_vlc, 0);
1177 rv34_dequant4x4(s->block[blknum] + blkoff, rv34_qscale_tab[s->qscale],rv34_qscale_tab[s->qscale]);
1178 if(r->is16) //FIXME: optimize
1179 s->block[blknum][blkoff] = block16[(i & 3) | ((i & 0xC) << 1)];
1180 rv34_inv_transform(s->block[blknum] + blkoff);
1182 if(r->block_type == RV34_MB_P_MIX16x16)
1183 r->cur_vlcs = choose_vlc_set(r->si.quant, r->si.vlc_set, 1);
1184 for(; i < 24; i++, cbp >>= 1){
1185 if(!(cbp & 1)) continue;
1186 blknum = ((i & 4) >> 2) + 4;
1187 blkoff = ((i & 1) << 2) + ((i & 2) << 4);
1188 rv34_decode_block(s->block[blknum] + blkoff, gb, r->cur_vlcs, r->chroma_vlc, 1);
1189 rv34_dequant4x4(s->block[blknum] + blkoff, rv34_qscale_tab[rv34_chroma_quant[1][s->qscale]],rv34_qscale_tab[rv34_chroma_quant[0][s->qscale]]);
1190 rv34_inv_transform(s->block[blknum] + blkoff);
1192 if(IS_INTRA(s->current_picture_ptr->mb_type[mb_pos]))
1193 rv34_output_macroblock(r, intra_types, cbp2, r->is16);
1195 rv34_apply_differences(r, cbp2);
1200 static int check_slice_end(RV34DecContext *r, MpegEncContext *s)
1203 if(s->mb_y >= s->mb_height)
1207 if(r->s.mb_skip_run > 1)
1209 bits = r->bits - get_bits_count(&s->gb);
1210 if(bits < 0 || (bits < 8 && !show_bits(&s->gb, bits)))
1215 static inline int slice_compare(SliceInfo *si1, SliceInfo *si2)
1217 return si1->type != si2->type ||
1218 si1->start >= si2->start ||
1219 si1->width != si2->width ||
1220 si1->height != si2->height||
1221 si1->pts != si2->pts;
1224 static int rv34_decode_slice(RV34DecContext *r, int end, const uint8_t* buf, int buf_size)
1226 MpegEncContext *s = &r->s;
1227 GetBitContext *gb = &s->gb;
1231 init_get_bits(&r->s.gb, buf, buf_size*8);
1232 res = r->parse_slice_header(r, gb, &r->si);
1234 av_log(s->avctx, AV_LOG_ERROR, "Incorrect or unknown slice header\n");
1238 if ((s->mb_x == 0 && s->mb_y == 0) || s->current_picture_ptr==NULL) {
1239 if(s->width != r->si.width || s->height != r->si.height){
1240 av_log(s->avctx, AV_LOG_DEBUG, "Changing dimensions to %dx%d\n", r->si.width,r->si.height);
1242 s->width = r->si.width;
1243 s->height = r->si.height;
1244 if(MPV_common_init(s) < 0)
1246 r->intra_types_hist = av_realloc(r->intra_types_hist, s->b4_stride * 4 * 2 * sizeof(*r->intra_types_hist));
1247 r->intra_types = r->intra_types_hist + s->b4_stride * 4;
1248 r->mb_type = av_realloc(r->mb_type, r->s.mb_stride * r->s.mb_height * sizeof(*r->mb_type));
1249 r->cbp_luma = av_realloc(r->cbp_luma, r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_luma));
1250 r->cbp_chroma = av_realloc(r->cbp_chroma, r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_chroma));
1251 r->deblock_coefs = av_realloc(r->deblock_coefs, r->s.mb_stride * r->s.mb_height * sizeof(*r->deblock_coefs));
1253 s->pict_type = r->si.type ? r->si.type : FF_I_TYPE;
1254 if(MPV_frame_start(s, s->avctx) < 0)
1256 ff_er_frame_start(s);
1257 r->cur_pts = r->si.pts;
1258 if(s->pict_type != FF_B_TYPE){
1259 r->last_pts = r->next_pts;
1260 r->next_pts = r->cur_pts;
1262 s->mb_x = s->mb_y = 0;
1266 s->qscale = r->si.quant;
1267 r->bits = buf_size*8;
1268 s->mb_num_left = r->si.end - r->si.start;
1269 r->s.mb_skip_run = 0;
1271 mb_pos = s->mb_x + s->mb_y * s->mb_width;
1272 if(r->si.start != mb_pos){
1273 av_log(s->avctx, AV_LOG_ERROR, "Slice indicates MB offset %d, got %d\n", r->si.start, mb_pos);
1274 s->mb_x = r->si.start % s->mb_width;
1275 s->mb_y = r->si.start / s->mb_width;
1277 memset(r->intra_types_hist, -1, s->b4_stride * 4 * 2 * sizeof(*r->intra_types_hist));
1278 s->first_slice_line = 1;
1279 s->resync_mb_x= s->mb_x;
1280 s->resync_mb_y= s->mb_y;
1282 ff_init_block_index(s);
1283 while(!check_slice_end(r, s)) {
1284 ff_update_block_index(s);
1285 s->dsp.clear_blocks(s->block[0]);
1287 if(rv34_decode_macroblock(r, r->intra_types + s->mb_x * 4 + 1) < 0){
1288 ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, AC_ERROR|DC_ERROR|MV_ERROR);
1291 if (++s->mb_x == s->mb_width) {
1294 ff_init_block_index(s);
1296 memmove(r->intra_types_hist, r->intra_types, s->b4_stride * 4 * sizeof(*r->intra_types_hist));
1297 memset(r->intra_types, -1, s->b4_stride * 4 * sizeof(*r->intra_types_hist));
1299 if(r->loop_filter && s->mb_y >= 2)
1300 r->loop_filter(r, s->mb_y - 2);
1302 if(s->mb_x == s->resync_mb_x)
1303 s->first_slice_line=0;
1306 ff_er_add_slice(s, s->resync_mb_x, s->resync_mb_y, s->mb_x-1, s->mb_y, AC_END|DC_END|MV_END);
1308 return s->mb_y == s->mb_height;
1311 /** @} */ // recons group end
1314 * Initialize decoder.
1316 av_cold int ff_rv34_decode_init(AVCodecContext *avctx)
1318 RV34DecContext *r = avctx->priv_data;
1319 MpegEncContext *s = &r->s;
1321 MPV_decode_defaults(s);
1323 s->out_format = FMT_H263;
1324 s->codec_id= avctx->codec_id;
1326 s->width = avctx->width;
1327 s->height = avctx->height;
1330 avctx->flags |= CODEC_FLAG_EMU_EDGE;
1331 r->s.flags |= CODEC_FLAG_EMU_EDGE;
1332 avctx->pix_fmt = PIX_FMT_YUV420P;
1333 avctx->has_b_frames = 1;
1336 if (MPV_common_init(s) < 0)
1339 ff_h264_pred_init(&r->h, CODEC_ID_RV40);
1341 r->intra_types_hist = av_malloc(s->b4_stride * 4 * 2 * sizeof(*r->intra_types_hist));
1342 r->intra_types = r->intra_types_hist + s->b4_stride * 4;
1344 r->mb_type = av_mallocz(r->s.mb_stride * r->s.mb_height * sizeof(*r->mb_type));
1346 r->cbp_luma = av_malloc(r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_luma));
1347 r->cbp_chroma = av_malloc(r->s.mb_stride * r->s.mb_height * sizeof(*r->cbp_chroma));
1348 r->deblock_coefs = av_malloc(r->s.mb_stride * r->s.mb_height * sizeof(*r->deblock_coefs));
1350 if(!intra_vlcs[0].cbppattern[0].bits)
1356 static int get_slice_offset(AVCodecContext *avctx, const uint8_t *buf, int n)
1358 if(avctx->slice_count) return avctx->slice_offset[n];
1359 else return AV_RL32(buf + n*8 - 4) == 1 ? AV_RL32(buf + n*8) : AV_RB32(buf + n*8);
1362 int ff_rv34_decode_frame(AVCodecContext *avctx,
1363 void *data, int *data_size,
1364 const uint8_t *buf, int buf_size)
1366 RV34DecContext *r = avctx->priv_data;
1367 MpegEncContext *s = &r->s;
1368 AVFrame *pict = data;
1372 const uint8_t *slices_hdr = NULL;
1375 /* no supplementary picture */
1376 if (buf_size == 0) {
1377 /* special case for last picture */
1378 if (s->low_delay==0 && s->next_picture_ptr) {
1379 *pict= *(AVFrame*)s->next_picture_ptr;
1380 s->next_picture_ptr= NULL;
1382 *data_size = sizeof(AVFrame);
1387 if(!avctx->slice_count){
1388 slice_count = (*buf++) + 1;
1389 slices_hdr = buf + 4;
1390 buf += 8 * slice_count;
1392 slice_count = avctx->slice_count;
1394 for(i=0; i<slice_count; i++){
1395 int offset= get_slice_offset(avctx, slices_hdr, i);
1397 if(i+1 == slice_count)
1398 size= buf_size - offset;
1400 size= get_slice_offset(avctx, slices_hdr, i+1) - offset;
1402 if(offset > buf_size){
1403 av_log(avctx, AV_LOG_ERROR, "Slice offset is greater than frame size\n");
1407 r->si.end = s->mb_width * s->mb_height;
1408 if(i+1 < slice_count){
1409 init_get_bits(&s->gb, buf+get_slice_offset(avctx, slices_hdr, i+1), (buf_size-get_slice_offset(avctx, slices_hdr, i+1))*8);
1410 if(r->parse_slice_header(r, &r->s.gb, &si) < 0){
1411 if(i+2 < slice_count)
1412 size = get_slice_offset(avctx, slices_hdr, i+2) - offset;
1414 size = buf_size - offset;
1416 r->si.end = si.start;
1418 if(!i && si.type == FF_B_TYPE && (!s->last_picture_ptr || !s->last_picture_ptr->data[0]))
1420 last = rv34_decode_slice(r, r->si.end, buf + offset, size);
1421 s->mb_num_left = r->s.mb_x + r->s.mb_y*r->s.mb_width - r->si.start;
1428 r->loop_filter(r, s->mb_height - 1);
1431 if (s->pict_type == FF_B_TYPE || s->low_delay) {
1432 *pict= *(AVFrame*)s->current_picture_ptr;
1433 } else if (s->last_picture_ptr != NULL) {
1434 *pict= *(AVFrame*)s->last_picture_ptr;
1437 if(s->last_picture_ptr || s->low_delay){
1438 *data_size = sizeof(AVFrame);
1439 ff_print_debug_info(s, pict);
1441 s->current_picture_ptr= NULL; //so we can detect if frame_end wasnt called (find some nicer solution...)
1446 av_cold int ff_rv34_decode_end(AVCodecContext *avctx)
1448 RV34DecContext *r = avctx->priv_data;
1450 MPV_common_end(&r->s);
1452 av_freep(&r->intra_types_hist);
1453 r->intra_types = NULL;
1454 av_freep(&r->mb_type);
1455 av_freep(&r->cbp_luma);
1456 av_freep(&r->cbp_chroma);
1457 av_freep(&r->deblock_coefs);