opus_pvq: do not compile encoding/decoding code if the encoder/decoder is disabled
[ffmpeg.git] / libavcodec / opusenc_psy.c
1 /*
2  * Opus encoder
3  * Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 #include "opusenc_psy.h"
23 #include "opus_pvq.h"
24 #include "opustab.h"
25 #include "mdct15.h"
26 #include "libavutil/qsort.h"
27
28 static float pvq_band_cost(CeltPVQ *pvq, CeltFrame *f, OpusRangeCoder *rc, int band,
29                            float *bits, float lambda)
30 {
31     int i, b = 0;
32     uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 };
33     const int band_size = ff_celt_freq_range[band] << f->size;
34     float buf[176 * 2], lowband_scratch[176], norm1[176], norm2[176];
35     float dist, cost, err_x = 0.0f, err_y = 0.0f;
36     float *X = buf;
37     float *X_orig = f->block[0].coeffs + (ff_celt_freq_bands[band] << f->size);
38     float *Y = (f->channels == 2) ? &buf[176] : NULL;
39     float *Y_orig = f->block[1].coeffs + (ff_celt_freq_bands[band] << f->size);
40     OPUS_RC_CHECKPOINT_SPAWN(rc);
41
42     memcpy(X, X_orig, band_size*sizeof(float));
43     if (Y)
44         memcpy(Y, Y_orig, band_size*sizeof(float));
45
46     f->remaining2 = ((f->framebits << 3) - f->anticollapse_needed) - opus_rc_tell_frac(rc) - 1;
47     if (band <= f->coded_bands - 1) {
48         int curr_balance = f->remaining / FFMIN(3, f->coded_bands - band);
49         b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[band] + curr_balance), 14);
50     }
51
52     if (f->dual_stereo) {
53         pvq->quant_band(pvq, f, rc, band, X, NULL, band_size, b / 2, f->blocks, NULL,
54                         f->size, norm1, 0, 1.0f, lowband_scratch, cm[0]);
55
56         pvq->quant_band(pvq, f, rc, band, Y, NULL, band_size, b / 2, f->blocks, NULL,
57                         f->size, norm2, 0, 1.0f, lowband_scratch, cm[1]);
58     } else {
59         pvq->quant_band(pvq, f, rc, band, X, Y, band_size, b, f->blocks, NULL, f->size,
60                         norm1, 0, 1.0f, lowband_scratch, cm[0] | cm[1]);
61     }
62
63     for (i = 0; i < band_size; i++) {
64         err_x += (X[i] - X_orig[i])*(X[i] - X_orig[i]);
65         if (Y)
66             err_y += (Y[i] - Y_orig[i])*(Y[i] - Y_orig[i]);
67     }
68
69     dist = sqrtf(err_x) + sqrtf(err_y);
70     cost = OPUS_RC_CHECKPOINT_BITS(rc)/8.0f;
71     *bits += cost;
72
73     OPUS_RC_CHECKPOINT_ROLLBACK(rc);
74
75     return lambda*dist*cost;
76 }
77
78 /* Populate metrics without taking into consideration neighbouring steps */
79 static void step_collect_psy_metrics(OpusPsyContext *s, int index)
80 {
81     int silence = 0, ch, i, j;
82     OpusPsyStep *st = s->steps[index];
83
84     st->index = index;
85
86     for (ch = 0; ch < s->avctx->channels; ch++) {
87         const int lap_size = (1 << s->bsize_analysis);
88         for (i = 1; i <= FFMIN(lap_size, index); i++) {
89             const int offset = i*120;
90             AVFrame *cur = ff_bufqueue_peek(s->bufqueue, index - i);
91             memcpy(&s->scratch[offset], cur->extended_data[ch], cur->nb_samples*sizeof(float));
92         }
93         for (i = 0; i < lap_size; i++) {
94             const int offset = i*120 + lap_size;
95             AVFrame *cur = ff_bufqueue_peek(s->bufqueue, index + i);
96             memcpy(&s->scratch[offset], cur->extended_data[ch], cur->nb_samples*sizeof(float));
97         }
98
99         s->dsp->vector_fmul(s->scratch, s->scratch, s->window[s->bsize_analysis],
100                             (OPUS_BLOCK_SIZE(s->bsize_analysis) << 1));
101
102         s->mdct[s->bsize_analysis]->mdct(s->mdct[s->bsize_analysis], st->coeffs[ch], s->scratch, 1);
103
104         for (i = 0; i < CELT_MAX_BANDS; i++)
105             st->bands[ch][i] = &st->coeffs[ch][ff_celt_freq_bands[i] << s->bsize_analysis];
106     }
107
108     for (ch = 0; ch < s->avctx->channels; ch++) {
109         for (i = 0; i < CELT_MAX_BANDS; i++) {
110             float avg_c_s, energy = 0.0f, dist_dev = 0.0f;
111             const int range = ff_celt_freq_range[i] << s->bsize_analysis;
112             const float *coeffs = st->bands[ch][i];
113             for (j = 0; j < range; j++)
114                 energy += coeffs[j]*coeffs[j];
115
116             st->energy[ch][i] += sqrtf(energy);
117             silence |= !!st->energy[ch][i];
118             avg_c_s = energy / range;
119
120             for (j = 0; j < range; j++) {
121                 const float c_s = coeffs[j]*coeffs[j];
122                 dist_dev = (avg_c_s - c_s)*(avg_c_s - c_s);
123             }
124
125             st->tone[ch][i] += sqrtf(dist_dev);
126         }
127     }
128
129     st->silence = !silence;
130
131     if (s->avctx->channels > 1) {
132         for (i = 0; i < CELT_MAX_BANDS; i++) {
133             float incompat = 0.0f;
134             const float *coeffs1 = st->bands[0][i];
135             const float *coeffs2 = st->bands[1][i];
136             const int range = ff_celt_freq_range[i] << s->bsize_analysis;
137             for (j = 0; j < range; j++)
138                 incompat += (coeffs1[j] - coeffs2[j])*(coeffs1[j] - coeffs2[j]);
139             st->stereo[i] = sqrtf(incompat);
140         }
141     }
142
143     for (ch = 0; ch < s->avctx->channels; ch++) {
144         for (i = 0; i < CELT_MAX_BANDS; i++) {
145             OpusBandExcitation *ex = &s->ex[ch][i];
146             float bp_e = bessel_filter(&s->bfilter_lo[ch][i], st->energy[ch][i]);
147             bp_e = bessel_filter(&s->bfilter_hi[ch][i], bp_e);
148             bp_e *= bp_e;
149             if (bp_e > ex->excitation) {
150                 st->change_amp[ch][i] = bp_e - ex->excitation;
151                 st->total_change += st->change_amp[ch][i];
152                 ex->excitation = ex->excitation_init = bp_e;
153                 ex->excitation_dist = 0.0f;
154             }
155             if (ex->excitation > 0.0f) {
156                 ex->excitation -= av_clipf((1/expf(ex->excitation_dist)), ex->excitation_init/20, ex->excitation_init/1.09);
157                 ex->excitation = FFMAX(ex->excitation, 0.0f);
158                 ex->excitation_dist += 1.0f;
159             }
160         }
161     }
162 }
163
164 static void search_for_change_points(OpusPsyContext *s, float tgt_change,
165                                      int offset_s, int offset_e, int resolution,
166                                      int level)
167 {
168     int i;
169     float c_change = 0.0f;
170     if ((offset_e - offset_s) <= resolution)
171         return;
172     for (i = offset_s; i < offset_e; i++) {
173         c_change += s->steps[i]->total_change;
174         if (c_change > tgt_change)
175             break;
176     }
177     if (i == offset_e)
178         return;
179     search_for_change_points(s, tgt_change / 2.0f, offset_s, i + 0, resolution, level + 1);
180     s->inflection_points[s->inflection_points_count++] = i;
181     search_for_change_points(s, tgt_change / 2.0f, i + 1, offset_e, resolution, level + 1);
182 }
183
184 static int flush_silent_frames(OpusPsyContext *s)
185 {
186     int fsize, silent_frames;
187
188     for (silent_frames = 0; silent_frames < s->buffered_steps; silent_frames++)
189         if (!s->steps[silent_frames]->silence)
190             break;
191     if (--silent_frames < 0)
192         return 0;
193
194     for (fsize = CELT_BLOCK_960; fsize > CELT_BLOCK_120; fsize--) {
195         if ((1 << fsize) > silent_frames)
196             continue;
197         s->p.frames = FFMIN(silent_frames / (1 << fsize), 48 >> fsize);
198         s->p.framesize = fsize;
199         return 1;
200     }
201
202     return 0;
203 }
204
205 /* Main function which decides frame size and frames per current packet */
206 static void psy_output_groups(OpusPsyContext *s)
207 {
208     int max_delay_samples = (s->options->max_delay_ms*s->avctx->sample_rate)/1000;
209     int max_bsize = FFMIN(OPUS_SAMPLES_TO_BLOCK_SIZE(max_delay_samples), CELT_BLOCK_960);
210
211     /* These don't change for now */
212     s->p.mode      = OPUS_MODE_CELT;
213     s->p.bandwidth = OPUS_BANDWIDTH_FULLBAND;
214
215     /* Flush silent frames ASAP */
216     if (s->steps[0]->silence && flush_silent_frames(s))
217         return;
218
219     s->p.framesize = FFMIN(max_bsize, CELT_BLOCK_960);
220     s->p.frames    = 1;
221 }
222
223 int ff_opus_psy_process(OpusPsyContext *s, OpusPacketInfo *p)
224 {
225     int i;
226     float total_energy_change = 0.0f;
227
228     if (s->buffered_steps < s->max_steps && !s->eof) {
229         const int awin = (1 << s->bsize_analysis);
230         if (++s->steps_to_process >= awin) {
231             step_collect_psy_metrics(s, s->buffered_steps - awin + 1);
232             s->steps_to_process = 0;
233         }
234         if ((++s->buffered_steps) < s->max_steps)
235             return 1;
236     }
237
238     for (i = 0; i < s->buffered_steps; i++)
239         total_energy_change += s->steps[i]->total_change;
240
241     search_for_change_points(s, total_energy_change / 2.0f, 0,
242                              s->buffered_steps, 1, 0);
243
244     psy_output_groups(s);
245
246     p->frames    = s->p.frames;
247     p->framesize = s->p.framesize;
248     p->mode      = s->p.mode;
249     p->bandwidth = s->p.bandwidth;
250
251     return 0;
252 }
253
254 void ff_opus_psy_celt_frame_init(OpusPsyContext *s, CeltFrame *f, int index)
255 {
256     int i, neighbouring_points = 0, start_offset = 0;
257     int radius = (1 << s->p.framesize), step_offset = radius*index;
258     int silence = 1;
259
260     f->start_band = (s->p.mode == OPUS_MODE_HYBRID) ? 17 : 0;
261     f->end_band   = ff_celt_band_end[s->p.bandwidth];
262     f->channels   = s->avctx->channels;
263     f->size       = s->p.framesize;
264
265     for (i = 0; i < (1 << f->size); i++)
266         silence &= s->steps[index*(1 << f->size) + i]->silence;
267
268     f->silence = silence;
269     if (f->silence) {
270         f->framebits = 0; /* Otherwise the silence flag eats up 16(!) bits */
271         return;
272     }
273
274     for (i = 0; i < s->inflection_points_count; i++) {
275         if (s->inflection_points[i] >= step_offset) {
276             start_offset = i;
277             break;
278         }
279     }
280
281     for (i = start_offset; i < FFMIN(radius, s->inflection_points_count - start_offset); i++) {
282         if (s->inflection_points[i] < (step_offset + radius)) {
283             neighbouring_points++;
284         }
285     }
286
287     /* Transient flagging */
288     f->transient = neighbouring_points > 0;
289     f->blocks = f->transient ? OPUS_BLOCK_SIZE(s->p.framesize)/CELT_OVERLAP : 1;
290
291     /* Some sane defaults */
292     f->pfilter   = 0;
293     f->pf_gain   = 0.5f;
294     f->pf_octave = 2;
295     f->pf_period = 1;
296     f->pf_tapset = 2;
297
298     /* More sane defaults */
299     f->tf_select = 0;
300     f->anticollapse = 1;
301     f->alloc_trim = 5;
302     f->skip_band_floor = f->end_band;
303     f->intensity_stereo = f->end_band;
304     f->dual_stereo = 0;
305     f->spread = CELT_SPREAD_NORMAL;
306     memset(f->tf_change, 0, sizeof(int)*CELT_MAX_BANDS);
307     memset(f->alloc_boost, 0, sizeof(int)*CELT_MAX_BANDS);
308 }
309
310 static void celt_gauge_psy_weight(OpusPsyContext *s, OpusPsyStep **start,
311                                   CeltFrame *f_out)
312 {
313     int i, f, ch;
314     int frame_size = OPUS_BLOCK_SIZE(s->p.framesize);
315     float rate, frame_bits = 0;
316
317     /* Used for the global ROTATE flag */
318     float tonal = 0.0f;
319
320     /* Pseudo-weights */
321     float band_score[CELT_MAX_BANDS] = { 0 };
322     float max_score = 1.0f;
323
324     /* Pass one - one loop around each band, computing unquant stuff */
325     for (i = 0; i < CELT_MAX_BANDS; i++) {
326         float weight = 0.0f;
327         float tonal_contrib = 0.0f;
328         for (f = 0; f < (1 << s->p.framesize); f++) {
329             weight = start[f]->stereo[i];
330             for (ch = 0; ch < s->avctx->channels; ch++) {
331                 weight += start[f]->change_amp[ch][i] + start[f]->tone[ch][i] + start[f]->energy[ch][i];
332                 tonal_contrib += start[f]->tone[ch][i];
333             }
334         }
335         tonal += tonal_contrib;
336         band_score[i] = weight;
337     }
338
339     tonal /= (float)CELT_MAX_BANDS;
340
341     for (i = 0; i < CELT_MAX_BANDS; i++) {
342         if (band_score[i] > max_score)
343             max_score = band_score[i];
344     }
345
346     for (i = 0; i < CELT_MAX_BANDS; i++) {
347         f_out->alloc_boost[i] = (int)((band_score[i]/max_score)*3.0f);
348         frame_bits += band_score[i]*8.0f;
349     }
350
351     tonal /= 1333136.0f;
352     f_out->spread = av_clip_uintp2(lrintf(tonal), 2);
353
354     rate = ((float)s->avctx->bit_rate) + frame_bits*frame_size*16;
355     rate *= s->lambda;
356     rate /= s->avctx->sample_rate/frame_size;
357
358     f_out->framebits = lrintf(rate);
359     f_out->framebits = FFMIN(f_out->framebits, OPUS_MAX_PACKET_SIZE*8);
360     f_out->framebits = FFALIGN(f_out->framebits, 8);
361 }
362
363 static int bands_dist(OpusPsyContext *s, CeltFrame *f, float *total_dist)
364 {
365     int i, tdist = 0.0f;
366     OpusRangeCoder dump;
367
368     ff_opus_rc_enc_init(&dump);
369     ff_celt_enc_bitalloc(f, &dump);
370
371     for (i = 0; i < CELT_MAX_BANDS; i++) {
372         float bits = 0.0f;
373         float dist = pvq_band_cost(f->pvq, f, &dump, i, &bits, s->lambda);
374         tdist += dist;
375     }
376
377     *total_dist = tdist;
378
379     return 0;
380 }
381
382 static void celt_search_for_dual_stereo(OpusPsyContext *s, CeltFrame *f)
383 {
384     float td1, td2;
385     f->dual_stereo = 0;
386     bands_dist(s, f, &td1);
387     f->dual_stereo = 1;
388     bands_dist(s, f, &td2);
389
390     f->dual_stereo = td2 < td1;
391     s->dual_stereo_used += td2 < td1;
392 }
393
394 static void celt_search_for_intensity(OpusPsyContext *s, CeltFrame *f)
395 {
396     int i, best_band = CELT_MAX_BANDS - 1;
397     float dist, best_dist = FLT_MAX;
398
399     /* TODO: fix, make some heuristic up here using the lambda value */
400     float end_band = 0;
401
402     for (i = f->end_band; i >= end_band; i--) {
403         f->intensity_stereo = i;
404         bands_dist(s, f, &dist);
405         if (best_dist > dist) {
406             best_dist = dist;
407             best_band = i;
408         }
409     }
410
411     f->intensity_stereo = best_band;
412     s->avg_is_band = (s->avg_is_band + f->intensity_stereo)/2.0f;
413 }
414
415 static int celt_search_for_tf(OpusPsyContext *s, OpusPsyStep **start, CeltFrame *f)
416 {
417     int i, j, k, cway, config[2][CELT_MAX_BANDS] = { { 0 } };
418     float score[2] = { 0 };
419
420     for (cway = 0; cway < 2; cway++) {
421         int mag[2];
422         int base = f->transient ? 120 : 960;
423
424         for (i = 0; i < 2; i++) {
425             int c = ff_celt_tf_select[f->size][f->transient][cway][i];
426             mag[i] = c < 0 ? base >> FFABS(c) : base << FFABS(c);
427         }
428
429         for (i = 0; i < CELT_MAX_BANDS; i++) {
430             float iscore0 = 0.0f;
431             float iscore1 = 0.0f;
432             for (j = 0; j < (1 << f->size); j++) {
433                 for (k = 0; k < s->avctx->channels; k++) {
434                     iscore0 += start[j]->tone[k][i]*start[j]->change_amp[k][i]/mag[0];
435                     iscore1 += start[j]->tone[k][i]*start[j]->change_amp[k][i]/mag[1];
436                 }
437             }
438             config[cway][i] = FFABS(iscore0 - 1.0f) < FFABS(iscore1 - 1.0f);
439             score[cway] += config[cway][i] ? iscore1 : iscore0;
440         }
441     }
442
443     f->tf_select = score[0] < score[1];
444     memcpy(f->tf_change, config[f->tf_select], sizeof(int)*CELT_MAX_BANDS);
445
446     return 0;
447 }
448
449 int ff_opus_psy_celt_frame_process(OpusPsyContext *s, CeltFrame *f, int index)
450 {
451     int start_transient_flag = f->transient;
452     OpusPsyStep **start = &s->steps[index * (1 << s->p.framesize)];
453
454     if (f->silence)
455         return 0;
456
457     celt_gauge_psy_weight(s, start, f);
458     celt_search_for_intensity(s, f);
459     celt_search_for_dual_stereo(s, f);
460     celt_search_for_tf(s, start, f);
461
462     if (f->transient != start_transient_flag) {
463         f->blocks = f->transient ? OPUS_BLOCK_SIZE(s->p.framesize)/CELT_OVERLAP : 1;
464         s->redo_analysis = 1;
465         return 1;
466     }
467
468     s->redo_analysis = 0;
469
470     return 0;
471 }
472
473 void ff_opus_psy_postencode_update(OpusPsyContext *s, CeltFrame *f, OpusRangeCoder *rc)
474 {
475     int i, frame_size = OPUS_BLOCK_SIZE(s->p.framesize);
476     int steps_out = s->p.frames*(frame_size/120);
477     void *tmp[FF_BUFQUEUE_SIZE];
478     float ideal_fbits;
479
480     for (i = 0; i < steps_out; i++)
481         memset(s->steps[i], 0, sizeof(OpusPsyStep));
482
483     for (i = 0; i < s->max_steps; i++)
484         tmp[i] = s->steps[i];
485
486     for (i = 0; i < s->max_steps; i++) {
487         const int i_new = i - steps_out;
488         s->steps[i_new < 0 ? s->max_steps + i_new : i_new] = tmp[i];
489     }
490
491     for (i = steps_out; i < s->buffered_steps; i++)
492         s->steps[i]->index -= steps_out;
493
494     ideal_fbits = s->avctx->bit_rate/(s->avctx->sample_rate/frame_size);
495
496     for (i = 0; i < s->p.frames; i++) {
497         s->avg_is_band += f[i].intensity_stereo;
498         s->lambda *= ideal_fbits / f[i].framebits;
499     }
500
501     s->avg_is_band /= (s->p.frames + 1);
502
503     s->cs_num = 0;
504     s->steps_to_process = 0;
505     s->buffered_steps -= steps_out;
506     s->total_packets_out += s->p.frames;
507     s->inflection_points_count = 0;
508 }
509
510 av_cold int ff_opus_psy_init(OpusPsyContext *s, AVCodecContext *avctx,
511                              struct FFBufQueue *bufqueue, OpusEncOptions *options)
512 {
513     int i, ch, ret;
514
515     s->redo_analysis = 0;
516     s->lambda = 1.0f;
517     s->options = options;
518     s->avctx = avctx;
519     s->bufqueue = bufqueue;
520     s->max_steps = ceilf(s->options->max_delay_ms/2.5f);
521     s->bsize_analysis = CELT_BLOCK_960;
522     s->avg_is_band = CELT_MAX_BANDS - 1;
523     s->inflection_points_count = 0;
524
525     s->inflection_points = av_mallocz(sizeof(*s->inflection_points)*s->max_steps);
526     if (!s->inflection_points) {
527         ret = AVERROR(ENOMEM);
528         goto fail;
529     }
530
531     s->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
532     if (!s->dsp) {
533         ret = AVERROR(ENOMEM);
534         goto fail;
535     }
536
537     for (ch = 0; ch < s->avctx->channels; ch++) {
538         for (i = 0; i < CELT_MAX_BANDS; i++) {
539             bessel_init(&s->bfilter_hi[ch][i], 1.0f, 19.0f, 100.0f, 1);
540             bessel_init(&s->bfilter_lo[ch][i], 1.0f, 20.0f, 100.0f, 0);
541         }
542     }
543
544     for (i = 0; i < s->max_steps; i++) {
545         s->steps[i] = av_mallocz(sizeof(OpusPsyStep));
546         if (!s->steps[i]) {
547             ret = AVERROR(ENOMEM);
548             goto fail;
549         }
550     }
551
552     for (i = 0; i < CELT_BLOCK_NB; i++) {
553         float tmp;
554         const int len = OPUS_BLOCK_SIZE(i);
555         s->window[i] = av_malloc(2*len*sizeof(float));
556         if (!s->window[i]) {
557             ret = AVERROR(ENOMEM);
558             goto fail;
559         }
560         generate_window_func(s->window[i], 2*len, WFUNC_SINE, &tmp);
561         if ((ret = ff_mdct15_init(&s->mdct[i], 0, i + 3, 68 << (CELT_BLOCK_NB - 1 - i))))
562             goto fail;
563     }
564
565     return 0;
566
567 fail:
568     av_freep(&s->inflection_points);
569     av_freep(&s->dsp);
570
571     for (i = 0; i < CELT_BLOCK_NB; i++) {
572         ff_mdct15_uninit(&s->mdct[i]);
573         av_freep(&s->window[i]);
574     }
575
576     for (i = 0; i < s->max_steps; i++)
577         av_freep(&s->steps[i]);
578
579     return ret;
580 }
581
582 void ff_opus_psy_signal_eof(OpusPsyContext *s)
583 {
584     s->eof = 1;
585 }
586
587 av_cold int ff_opus_psy_end(OpusPsyContext *s)
588 {
589     int i;
590
591     av_freep(&s->inflection_points);
592     av_freep(&s->dsp);
593
594     for (i = 0; i < CELT_BLOCK_NB; i++) {
595         ff_mdct15_uninit(&s->mdct[i]);
596         av_freep(&s->window[i]);
597     }
598
599     for (i = 0; i < s->max_steps; i++)
600         av_freep(&s->steps[i]);
601
602     av_log(s->avctx, AV_LOG_INFO, "Average Intensity Stereo band: %0.1f\n", s->avg_is_band);
603     av_log(s->avctx, AV_LOG_INFO, "Dual Stereo used: %0.2f%%\n", ((float)s->dual_stereo_used/s->total_packets_out)*100.0f);
604
605     return 0;
606 }