opus: merge encoder and decoder bitallocation functions into one
[ffmpeg.git] / libavcodec / opus.c
1 /*
2  * Copyright (c) 2012 Andrew D'Addesio
3  * Copyright (c) 2013-2014 Mozilla Corporation
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 /**
23  * @file
24  * Opus decoder/parser shared code
25  */
26
27 #include <stdint.h>
28
29 #include "libavutil/error.h"
30 #include "libavutil/ffmath.h"
31
32 #include "opus_celt.h"
33 #include "opustab.h"
34 #include "vorbis.h"
35
36 static const uint16_t opus_frame_duration[32] = {
37     480, 960, 1920, 2880,
38     480, 960, 1920, 2880,
39     480, 960, 1920, 2880,
40     480, 960,
41     480, 960,
42     120, 240,  480,  960,
43     120, 240,  480,  960,
44     120, 240,  480,  960,
45     120, 240,  480,  960,
46 };
47
48 /**
49  * Read a 1- or 2-byte frame length
50  */
51 static inline int xiph_lacing_16bit(const uint8_t **ptr, const uint8_t *end)
52 {
53     int val;
54
55     if (*ptr >= end)
56         return AVERROR_INVALIDDATA;
57     val = *(*ptr)++;
58     if (val >= 252) {
59         if (*ptr >= end)
60             return AVERROR_INVALIDDATA;
61         val += 4 * *(*ptr)++;
62     }
63     return val;
64 }
65
66 /**
67  * Read a multi-byte length (used for code 3 packet padding size)
68  */
69 static inline int xiph_lacing_full(const uint8_t **ptr, const uint8_t *end)
70 {
71     int val = 0;
72     int next;
73
74     while (1) {
75         if (*ptr >= end || val > INT_MAX - 254)
76             return AVERROR_INVALIDDATA;
77         next = *(*ptr)++;
78         val += next;
79         if (next < 255)
80             break;
81         else
82             val--;
83     }
84     return val;
85 }
86
87 /**
88  * Parse Opus packet info from raw packet data
89  */
90 int ff_opus_parse_packet(OpusPacket *pkt, const uint8_t *buf, int buf_size,
91                          int self_delimiting)
92 {
93     const uint8_t *ptr = buf;
94     const uint8_t *end = buf + buf_size;
95     int padding = 0;
96     int frame_bytes, i;
97
98     if (buf_size < 1)
99         goto fail;
100
101     /* TOC byte */
102     i = *ptr++;
103     pkt->code   = (i     ) & 0x3;
104     pkt->stereo = (i >> 2) & 0x1;
105     pkt->config = (i >> 3) & 0x1F;
106
107     /* code 2 and code 3 packets have at least 1 byte after the TOC */
108     if (pkt->code >= 2 && buf_size < 2)
109         goto fail;
110
111     switch (pkt->code) {
112     case 0:
113         /* 1 frame */
114         pkt->frame_count = 1;
115         pkt->vbr         = 0;
116
117         if (self_delimiting) {
118             int len = xiph_lacing_16bit(&ptr, end);
119             if (len < 0 || len > end - ptr)
120                 goto fail;
121             end      = ptr + len;
122             buf_size = end - buf;
123         }
124
125         frame_bytes = end - ptr;
126         if (frame_bytes > MAX_FRAME_SIZE)
127             goto fail;
128         pkt->frame_offset[0] = ptr - buf;
129         pkt->frame_size[0]   = frame_bytes;
130         break;
131     case 1:
132         /* 2 frames, equal size */
133         pkt->frame_count = 2;
134         pkt->vbr         = 0;
135
136         if (self_delimiting) {
137             int len = xiph_lacing_16bit(&ptr, end);
138             if (len < 0 || 2 * len > end - ptr)
139                 goto fail;
140             end      = ptr + 2 * len;
141             buf_size = end - buf;
142         }
143
144         frame_bytes = end - ptr;
145         if (frame_bytes & 1 || frame_bytes >> 1 > MAX_FRAME_SIZE)
146             goto fail;
147         pkt->frame_offset[0] = ptr - buf;
148         pkt->frame_size[0]   = frame_bytes >> 1;
149         pkt->frame_offset[1] = pkt->frame_offset[0] + pkt->frame_size[0];
150         pkt->frame_size[1]   = frame_bytes >> 1;
151         break;
152     case 2:
153         /* 2 frames, different sizes */
154         pkt->frame_count = 2;
155         pkt->vbr         = 1;
156
157         /* read 1st frame size */
158         frame_bytes = xiph_lacing_16bit(&ptr, end);
159         if (frame_bytes < 0)
160             goto fail;
161
162         if (self_delimiting) {
163             int len = xiph_lacing_16bit(&ptr, end);
164             if (len < 0 || len + frame_bytes > end - ptr)
165                 goto fail;
166             end      = ptr + frame_bytes + len;
167             buf_size = end - buf;
168         }
169
170         pkt->frame_offset[0] = ptr - buf;
171         pkt->frame_size[0]   = frame_bytes;
172
173         /* calculate 2nd frame size */
174         frame_bytes = end - ptr - pkt->frame_size[0];
175         if (frame_bytes < 0 || frame_bytes > MAX_FRAME_SIZE)
176             goto fail;
177         pkt->frame_offset[1] = pkt->frame_offset[0] + pkt->frame_size[0];
178         pkt->frame_size[1]   = frame_bytes;
179         break;
180     case 3:
181         /* 1 to 48 frames, can be different sizes */
182         i = *ptr++;
183         pkt->frame_count = (i     ) & 0x3F;
184         padding          = (i >> 6) & 0x01;
185         pkt->vbr         = (i >> 7) & 0x01;
186
187         if (pkt->frame_count == 0 || pkt->frame_count > MAX_FRAMES)
188             goto fail;
189
190         /* read padding size */
191         if (padding) {
192             padding = xiph_lacing_full(&ptr, end);
193             if (padding < 0)
194                 goto fail;
195         }
196
197         /* read frame sizes */
198         if (pkt->vbr) {
199             /* for VBR, all frames except the final one have their size coded
200                in the bitstream. the last frame size is implicit. */
201             int total_bytes = 0;
202             for (i = 0; i < pkt->frame_count - 1; i++) {
203                 frame_bytes = xiph_lacing_16bit(&ptr, end);
204                 if (frame_bytes < 0)
205                     goto fail;
206                 pkt->frame_size[i] = frame_bytes;
207                 total_bytes += frame_bytes;
208             }
209
210             if (self_delimiting) {
211                 int len = xiph_lacing_16bit(&ptr, end);
212                 if (len < 0 || len + total_bytes + padding > end - ptr)
213                     goto fail;
214                 end      = ptr + total_bytes + len + padding;
215                 buf_size = end - buf;
216             }
217
218             frame_bytes = end - ptr - padding;
219             if (total_bytes > frame_bytes)
220                 goto fail;
221             pkt->frame_offset[0] = ptr - buf;
222             for (i = 1; i < pkt->frame_count; i++)
223                 pkt->frame_offset[i] = pkt->frame_offset[i-1] + pkt->frame_size[i-1];
224             pkt->frame_size[pkt->frame_count-1] = frame_bytes - total_bytes;
225         } else {
226             /* for CBR, the remaining packet bytes are divided evenly between
227                the frames */
228             if (self_delimiting) {
229                 frame_bytes = xiph_lacing_16bit(&ptr, end);
230                 if (frame_bytes < 0 || pkt->frame_count * frame_bytes + padding > end - ptr)
231                     goto fail;
232                 end      = ptr + pkt->frame_count * frame_bytes + padding;
233                 buf_size = end - buf;
234             } else {
235                 frame_bytes = end - ptr - padding;
236                 if (frame_bytes % pkt->frame_count ||
237                     frame_bytes / pkt->frame_count > MAX_FRAME_SIZE)
238                     goto fail;
239                 frame_bytes /= pkt->frame_count;
240             }
241
242             pkt->frame_offset[0] = ptr - buf;
243             pkt->frame_size[0]   = frame_bytes;
244             for (i = 1; i < pkt->frame_count; i++) {
245                 pkt->frame_offset[i] = pkt->frame_offset[i-1] + pkt->frame_size[i-1];
246                 pkt->frame_size[i]   = frame_bytes;
247             }
248         }
249     }
250
251     pkt->packet_size = buf_size;
252     pkt->data_size   = pkt->packet_size - padding;
253
254     /* total packet duration cannot be larger than 120ms */
255     pkt->frame_duration = opus_frame_duration[pkt->config];
256     if (pkt->frame_duration * pkt->frame_count > MAX_PACKET_DUR)
257         goto fail;
258
259     /* set mode and bandwidth */
260     if (pkt->config < 12) {
261         pkt->mode = OPUS_MODE_SILK;
262         pkt->bandwidth = pkt->config >> 2;
263     } else if (pkt->config < 16) {
264         pkt->mode = OPUS_MODE_HYBRID;
265         pkt->bandwidth = OPUS_BANDWIDTH_SUPERWIDEBAND + (pkt->config >= 14);
266     } else {
267         pkt->mode = OPUS_MODE_CELT;
268         pkt->bandwidth = (pkt->config - 16) >> 2;
269         /* skip medium band */
270         if (pkt->bandwidth)
271             pkt->bandwidth++;
272     }
273
274     return 0;
275
276 fail:
277     memset(pkt, 0, sizeof(*pkt));
278     return AVERROR_INVALIDDATA;
279 }
280
281 static int channel_reorder_vorbis(int nb_channels, int channel_idx)
282 {
283     return ff_vorbis_channel_layout_offsets[nb_channels - 1][channel_idx];
284 }
285
286 static int channel_reorder_unknown(int nb_channels, int channel_idx)
287 {
288     return channel_idx;
289 }
290
291 av_cold int ff_opus_parse_extradata(AVCodecContext *avctx,
292                                     OpusContext *s)
293 {
294     static const uint8_t default_channel_map[2] = { 0, 1 };
295
296     int (*channel_reorder)(int, int) = channel_reorder_unknown;
297
298     const uint8_t *extradata, *channel_map;
299     int extradata_size;
300     int version, channels, map_type, streams, stereo_streams, i, j;
301     uint64_t layout;
302
303     if (!avctx->extradata) {
304         if (avctx->channels > 2) {
305             av_log(avctx, AV_LOG_ERROR,
306                    "Multichannel configuration without extradata.\n");
307             return AVERROR(EINVAL);
308         }
309         extradata      = opus_default_extradata;
310         extradata_size = sizeof(opus_default_extradata);
311     } else {
312         extradata = avctx->extradata;
313         extradata_size = avctx->extradata_size;
314     }
315
316     if (extradata_size < 19) {
317         av_log(avctx, AV_LOG_ERROR, "Invalid extradata size: %d\n",
318                extradata_size);
319         return AVERROR_INVALIDDATA;
320     }
321
322     version = extradata[8];
323     if (version > 15) {
324         avpriv_request_sample(avctx, "Extradata version %d", version);
325         return AVERROR_PATCHWELCOME;
326     }
327
328     avctx->delay = AV_RL16(extradata + 10);
329
330     channels = avctx->extradata ? extradata[9] : (avctx->channels == 1) ? 1 : 2;
331     if (!channels) {
332         av_log(avctx, AV_LOG_ERROR, "Zero channel count specified in the extradata\n");
333         return AVERROR_INVALIDDATA;
334     }
335
336     s->gain_i = AV_RL16(extradata + 16);
337     if (s->gain_i)
338         s->gain = ff_exp10(s->gain_i / (20.0 * 256));
339
340     map_type = extradata[18];
341     if (!map_type) {
342         if (channels > 2) {
343             av_log(avctx, AV_LOG_ERROR,
344                    "Channel mapping 0 is only specified for up to 2 channels\n");
345             return AVERROR_INVALIDDATA;
346         }
347         layout         = (channels == 1) ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
348         streams        = 1;
349         stereo_streams = channels - 1;
350         channel_map    = default_channel_map;
351     } else if (map_type == 1 || map_type == 2 || map_type == 255) {
352         if (extradata_size < 21 + channels) {
353             av_log(avctx, AV_LOG_ERROR, "Invalid extradata size: %d\n",
354                    extradata_size);
355             return AVERROR_INVALIDDATA;
356         }
357
358         streams        = extradata[19];
359         stereo_streams = extradata[20];
360         if (!streams || stereo_streams > streams ||
361             streams + stereo_streams > 255) {
362             av_log(avctx, AV_LOG_ERROR,
363                    "Invalid stream/stereo stream count: %d/%d\n", streams, stereo_streams);
364             return AVERROR_INVALIDDATA;
365         }
366
367         if (map_type == 1) {
368             if (channels > 8) {
369                 av_log(avctx, AV_LOG_ERROR,
370                        "Channel mapping 1 is only specified for up to 8 channels\n");
371                 return AVERROR_INVALIDDATA;
372             }
373             layout = ff_vorbis_channel_layouts[channels - 1];
374             channel_reorder = channel_reorder_vorbis;
375         } else if (map_type == 2) {
376             int ambisonic_order = ff_sqrt(channels) - 1;
377             if (channels != ((ambisonic_order + 1) * (ambisonic_order + 1)) &&
378                 channels != ((ambisonic_order + 1) * (ambisonic_order + 1) + 2)) {
379                 av_log(avctx, AV_LOG_ERROR,
380                        "Channel mapping 2 is only specified for channel counts"
381                        " which can be written as (n + 1)^2 or (n + 1)^2 + 2"
382                        " for nonnegative integer n\n");
383                 return AVERROR_INVALIDDATA;
384             }
385             if (channels > 227) {
386                 av_log(avctx, AV_LOG_ERROR, "Too many channels\n");
387                 return AVERROR_INVALIDDATA;
388             }
389             layout = 0;
390         } else
391             layout = 0;
392
393         channel_map = extradata + 21;
394     } else {
395         avpriv_request_sample(avctx, "Mapping type %d", map_type);
396         return AVERROR_PATCHWELCOME;
397     }
398
399     s->channel_maps = av_mallocz_array(channels, sizeof(*s->channel_maps));
400     if (!s->channel_maps)
401         return AVERROR(ENOMEM);
402
403     for (i = 0; i < channels; i++) {
404         ChannelMap *map = &s->channel_maps[i];
405         uint8_t     idx = channel_map[channel_reorder(channels, i)];
406
407         if (idx == 255) {
408             map->silence = 1;
409             continue;
410         } else if (idx >= streams + stereo_streams) {
411             av_log(avctx, AV_LOG_ERROR,
412                    "Invalid channel map for output channel %d: %d\n", i, idx);
413             av_freep(&s->channel_maps);
414             return AVERROR_INVALIDDATA;
415         }
416
417         /* check that we did not see this index yet */
418         map->copy = 0;
419         for (j = 0; j < i; j++)
420             if (channel_map[channel_reorder(channels, j)] == idx) {
421                 map->copy     = 1;
422                 map->copy_idx = j;
423                 break;
424             }
425
426         if (idx < 2 * stereo_streams) {
427             map->stream_idx  = idx / 2;
428             map->channel_idx = idx & 1;
429         } else {
430             map->stream_idx  = idx - stereo_streams;
431             map->channel_idx = 0;
432         }
433     }
434
435     avctx->channels       = channels;
436     avctx->channel_layout = layout;
437     s->nb_streams         = streams;
438     s->nb_stereo_streams  = stereo_streams;
439
440     return 0;
441 }
442
443 void ff_celt_quant_bands(CeltFrame *f, OpusRangeCoder *rc)
444 {
445     float lowband_scratch[8 * 22];
446     float norm1[2 * 8 * 100];
447     float *norm2 = norm1 + 8 * 100;
448
449     int totalbits = (f->framebits << 3) - f->anticollapse_needed;
450
451     int update_lowband = 1;
452     int lowband_offset = 0;
453
454     int i, j;
455
456     for (i = f->start_band; i < f->end_band; i++) {
457         uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 };
458         int band_offset = ff_celt_freq_bands[i] << f->size;
459         int band_size   = ff_celt_freq_range[i] << f->size;
460         float *X = f->block[0].coeffs + band_offset;
461         float *Y = (f->channels == 2) ? f->block[1].coeffs + band_offset : NULL;
462         float *norm_loc1, *norm_loc2;
463
464         int consumed = opus_rc_tell_frac(rc);
465         int effective_lowband = -1;
466         int b = 0;
467
468         /* Compute how many bits we want to allocate to this band */
469         if (i != f->start_band)
470             f->remaining -= consumed;
471         f->remaining2 = totalbits - consumed - 1;
472         if (i <= f->coded_bands - 1) {
473             int curr_balance = f->remaining / FFMIN(3, f->coded_bands-i);
474             b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[i] + curr_balance), 14);
475         }
476
477         if ((ff_celt_freq_bands[i] - ff_celt_freq_range[i] >= ff_celt_freq_bands[f->start_band] ||
478             i == f->start_band + 1) && (update_lowband || lowband_offset == 0))
479             lowband_offset = i;
480
481         if (i == f->start_band + 1) {
482             /* Special Hybrid Folding (RFC 8251 section 9). Copy the first band into
483             the second to ensure the second band never has to use the LCG. */
484             int count = (ff_celt_freq_range[i] - ff_celt_freq_range[i-1]) << f->size;
485
486             memcpy(&norm1[band_offset], &norm1[band_offset - count], count * sizeof(float));
487
488             if (f->channels == 2)
489                 memcpy(&norm2[band_offset], &norm2[band_offset - count], count * sizeof(float));
490         }
491
492         /* Get a conservative estimate of the collapse_mask's for the bands we're
493            going to be folding from. */
494         if (lowband_offset != 0 && (f->spread != CELT_SPREAD_AGGRESSIVE ||
495                                     f->blocks > 1 || f->tf_change[i] < 0)) {
496             int foldstart, foldend;
497
498             /* This ensures we never repeat spectral content within one band */
499             effective_lowband = FFMAX(ff_celt_freq_bands[f->start_band],
500                                       ff_celt_freq_bands[lowband_offset] - ff_celt_freq_range[i]);
501             foldstart = lowband_offset;
502             while (ff_celt_freq_bands[--foldstart] > effective_lowband);
503             foldend = lowband_offset - 1;
504             while (++foldend < i && ff_celt_freq_bands[foldend] < effective_lowband + ff_celt_freq_range[i]);
505
506             cm[0] = cm[1] = 0;
507             for (j = foldstart; j < foldend; j++) {
508                 cm[0] |= f->block[0].collapse_masks[j];
509                 cm[1] |= f->block[f->channels - 1].collapse_masks[j];
510             }
511         }
512
513         if (f->dual_stereo && i == f->intensity_stereo) {
514             /* Switch off dual stereo to do intensity */
515             f->dual_stereo = 0;
516             for (j = ff_celt_freq_bands[f->start_band] << f->size; j < band_offset; j++)
517                 norm1[j] = (norm1[j] + norm2[j]) / 2;
518         }
519
520         norm_loc1 = effective_lowband != -1 ? norm1 + (effective_lowband << f->size) : NULL;
521         norm_loc2 = effective_lowband != -1 ? norm2 + (effective_lowband << f->size) : NULL;
522
523         if (f->dual_stereo) {
524             cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X, NULL, band_size, b >> 1,
525                                        f->blocks, norm_loc1, f->size,
526                                        norm1 + band_offset, 0, 1.0f,
527                                        lowband_scratch, cm[0]);
528
529             cm[1] = f->pvq->quant_band(f->pvq, f, rc, i, Y, NULL, band_size, b >> 1,
530                                        f->blocks, norm_loc2, f->size,
531                                        norm2 + band_offset, 0, 1.0f,
532                                        lowband_scratch, cm[1]);
533         } else {
534             cm[0] = f->pvq->quant_band(f->pvq, f, rc, i, X,    Y, band_size, b >> 0,
535                                        f->blocks, norm_loc1, f->size,
536                                        norm1 + band_offset, 0, 1.0f,
537                                        lowband_scratch, cm[0] | cm[1]);
538             cm[1] = cm[0];
539         }
540
541         f->block[0].collapse_masks[i]               = (uint8_t)cm[0];
542         f->block[f->channels - 1].collapse_masks[i] = (uint8_t)cm[1];
543         f->remaining += f->pulses[i] + consumed;
544
545         /* Update the folding position only as long as we have 1 bit/sample depth */
546         update_lowband = (b > band_size << 3);
547     }
548 }
549
550 #define NORMC(bits) ((bits) << (f->channels - 1) << f->size >> 2)
551
552 void ff_celt_bitalloc(CeltFrame *f, OpusRangeCoder *rc, int encode)
553 {
554     int i, j, low, high, total, done, bandbits, remaining, tbits_8ths;
555     int skip_startband      = f->start_band;
556     int skip_bit            = 0;
557     int intensitystereo_bit = 0;
558     int dualstereo_bit      = 0;
559     int dynalloc            = 6;
560     int extrabits           = 0;
561
562     int boost[CELT_MAX_BANDS] = { 0 };
563     int trim_offset[CELT_MAX_BANDS];
564     int threshold[CELT_MAX_BANDS];
565     int bits1[CELT_MAX_BANDS];
566     int bits2[CELT_MAX_BANDS];
567
568     /* Spread */
569     if (opus_rc_tell(rc) + 4 <= f->framebits)
570         if (encode)
571             ff_opus_rc_enc_cdf(rc, f->spread, ff_celt_model_spread);
572         else
573             f->spread = ff_opus_rc_dec_cdf(rc, ff_celt_model_spread);
574     else
575         f->spread = CELT_SPREAD_NORMAL;
576
577     /* Initialize static allocation caps */
578     for (i = 0; i < CELT_MAX_BANDS; i++)
579         f->caps[i] = NORMC((ff_celt_static_caps[f->size][f->channels - 1][i] + 64) * ff_celt_freq_range[i]);
580
581     /* Band boosts */
582     tbits_8ths = f->framebits << 3;
583     for (i = f->start_band; i < f->end_band; i++) {
584         int quanta = ff_celt_freq_range[i] << (f->channels - 1) << f->size;
585         int b_dynalloc = dynalloc;
586         int boost_amount = f->alloc_boost[i];
587         quanta = FFMIN(quanta << 3, FFMAX(6 << 3, quanta));
588
589         while (opus_rc_tell_frac(rc) + (b_dynalloc << 3) < tbits_8ths && boost[i] < f->caps[i]) {
590             int is_boost;
591             if (encode) {
592                 is_boost = boost_amount--;
593                 ff_opus_rc_enc_log(rc, is_boost, b_dynalloc);
594             } else {
595                 is_boost = ff_opus_rc_dec_log(rc, b_dynalloc);
596             }
597
598             if (!is_boost)
599                 break;
600
601             boost[i]   += quanta;
602             tbits_8ths -= quanta;
603
604             b_dynalloc = 1;
605         }
606
607         if (boost[i])
608             dynalloc = FFMAX(dynalloc - 1, 2);
609     }
610
611     /* Allocation trim */
612     if (opus_rc_tell_frac(rc) + (6 << 3) <= tbits_8ths)
613         if (encode)
614             ff_opus_rc_enc_cdf(rc, f->alloc_trim, ff_celt_model_alloc_trim);
615         else
616             f->alloc_trim = ff_opus_rc_dec_cdf(rc, ff_celt_model_alloc_trim);
617
618     /* Anti-collapse bit reservation */
619     tbits_8ths = (f->framebits << 3) - opus_rc_tell_frac(rc) - 1;
620     f->anticollapse_needed = 0;
621     if (f->transient && f->size >= 2 && tbits_8ths >= ((f->size + 2) << 3))
622         f->anticollapse_needed = 1 << 3;
623     tbits_8ths -= f->anticollapse_needed;
624
625     /* Band skip bit reservation */
626     if (tbits_8ths >= 1 << 3)
627         skip_bit = 1 << 3;
628     tbits_8ths -= skip_bit;
629
630     /* Intensity/dual stereo bit reservation */
631     if (f->channels == 2) {
632         intensitystereo_bit = ff_celt_log2_frac[f->end_band - f->start_band];
633         if (intensitystereo_bit <= tbits_8ths) {
634             tbits_8ths -= intensitystereo_bit;
635             if (tbits_8ths >= 1 << 3) {
636                 dualstereo_bit = 1 << 3;
637                 tbits_8ths -= 1 << 3;
638             }
639         } else {
640             intensitystereo_bit = 0;
641         }
642     }
643
644     /* Trim offsets */
645     for (i = f->start_band; i < f->end_band; i++) {
646         int trim     = f->alloc_trim - 5 - f->size;
647         int band     = ff_celt_freq_range[i] * (f->end_band - i - 1);
648         int duration = f->size + 3;
649         int scale    = duration + f->channels - 1;
650
651         /* PVQ minimum allocation threshold, below this value the band is
652          * skipped */
653         threshold[i] = FFMAX(3 * ff_celt_freq_range[i] << duration >> 4,
654                              f->channels << 3);
655
656         trim_offset[i] = trim * (band << scale) >> 6;
657
658         if (ff_celt_freq_range[i] << f->size == 1)
659             trim_offset[i] -= f->channels << 3;
660     }
661
662     /* Bisection */
663     low  = 1;
664     high = CELT_VECTORS - 1;
665     while (low <= high) {
666         int center = (low + high) >> 1;
667         done = total = 0;
668
669         for (i = f->end_band - 1; i >= f->start_band; i--) {
670             bandbits = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[center][i]);
671
672             if (bandbits)
673                 bandbits = FFMAX(bandbits + trim_offset[i], 0);
674             bandbits += boost[i];
675
676             if (bandbits >= threshold[i] || done) {
677                 done = 1;
678                 total += FFMIN(bandbits, f->caps[i]);
679             } else if (bandbits >= f->channels << 3) {
680                 total += f->channels << 3;
681             }
682         }
683
684         if (total > tbits_8ths)
685             high = center - 1;
686         else
687             low = center + 1;
688     }
689     high = low--;
690
691     /* Bisection */
692     for (i = f->start_band; i < f->end_band; i++) {
693         bits1[i] = NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[low][i]);
694         bits2[i] = high >= CELT_VECTORS ? f->caps[i] :
695                    NORMC(ff_celt_freq_range[i] * ff_celt_static_alloc[high][i]);
696
697         if (bits1[i])
698             bits1[i] = FFMAX(bits1[i] + trim_offset[i], 0);
699         if (bits2[i])
700             bits2[i] = FFMAX(bits2[i] + trim_offset[i], 0);
701
702         if (low)
703             bits1[i] += boost[i];
704         bits2[i] += boost[i];
705
706         if (boost[i])
707             skip_startband = i;
708         bits2[i] = FFMAX(bits2[i] - bits1[i], 0);
709     }
710
711     /* Bisection */
712     low  = 0;
713     high = 1 << CELT_ALLOC_STEPS;
714     for (i = 0; i < CELT_ALLOC_STEPS; i++) {
715         int center = (low + high) >> 1;
716         done = total = 0;
717
718         for (j = f->end_band - 1; j >= f->start_band; j--) {
719             bandbits = bits1[j] + (center * bits2[j] >> CELT_ALLOC_STEPS);
720
721             if (bandbits >= threshold[j] || done) {
722                 done = 1;
723                 total += FFMIN(bandbits, f->caps[j]);
724             } else if (bandbits >= f->channels << 3)
725                 total += f->channels << 3;
726         }
727         if (total > tbits_8ths)
728             high = center;
729         else
730             low = center;
731     }
732
733     /* Bisection */
734     done = total = 0;
735     for (i = f->end_band - 1; i >= f->start_band; i--) {
736         bandbits = bits1[i] + (low * bits2[i] >> CELT_ALLOC_STEPS);
737
738         if (bandbits >= threshold[i] || done)
739             done = 1;
740         else
741             bandbits = (bandbits >= f->channels << 3) ?
742             f->channels << 3 : 0;
743
744         bandbits     = FFMIN(bandbits, f->caps[i]);
745         f->pulses[i] = bandbits;
746         total      += bandbits;
747     }
748
749     /* Band skipping */
750     for (f->coded_bands = f->end_band; ; f->coded_bands--) {
751         int allocation;
752         j = f->coded_bands - 1;
753
754         if (j == skip_startband) {
755             /* all remaining bands are not skipped */
756             tbits_8ths += skip_bit;
757             break;
758         }
759
760         /* determine the number of bits available for coding "do not skip" markers */
761         remaining   = tbits_8ths - total;
762         bandbits    = remaining / (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
763         remaining  -= bandbits  * (ff_celt_freq_bands[j+1] - ff_celt_freq_bands[f->start_band]);
764         allocation  = f->pulses[j] + bandbits * ff_celt_freq_range[j];
765         allocation += FFMAX(remaining - (ff_celt_freq_bands[j] - ff_celt_freq_bands[f->start_band]), 0);
766
767         /* a "do not skip" marker is only coded if the allocation is
768          * above the chosen threshold */
769         if (allocation >= FFMAX(threshold[j], (f->channels + 1) << 3)) {
770             int do_not_skip;
771             if (encode) {
772                 do_not_skip = f->coded_bands <= f->skip_band_floor;
773                 ff_opus_rc_enc_log(rc, do_not_skip, 1);
774             } else {
775                 do_not_skip = ff_opus_rc_dec_log(rc, 1);
776             }
777
778             if (do_not_skip)
779                 break;
780
781             total      += 1 << 3;
782             allocation -= 1 << 3;
783         }
784
785         /* the band is skipped, so reclaim its bits */
786         total -= f->pulses[j];
787         if (intensitystereo_bit) {
788             total -= intensitystereo_bit;
789             intensitystereo_bit = ff_celt_log2_frac[j - f->start_band];
790             total += intensitystereo_bit;
791         }
792
793         total += f->pulses[j] = (allocation >= f->channels << 3) ? f->channels << 3 : 0;
794     }
795
796     /* IS start band */
797     if (encode) {
798         if (intensitystereo_bit) {
799             f->intensity_stereo = FFMIN(f->intensity_stereo, f->coded_bands);
800             ff_opus_rc_enc_uint(rc, f->intensity_stereo, f->coded_bands + 1 - f->start_band);
801         }
802     } else {
803         f->intensity_stereo = f->dual_stereo = 0;
804         if (intensitystereo_bit)
805             f->intensity_stereo = f->start_band + ff_opus_rc_dec_uint(rc, f->coded_bands + 1 - f->start_band);
806     }
807
808     /* DS flag */
809     if (f->intensity_stereo <= f->start_band)
810         tbits_8ths += dualstereo_bit; /* no intensity stereo means no dual stereo */
811     else if (dualstereo_bit)
812         if (encode)
813             ff_opus_rc_enc_log(rc, f->dual_stereo, 1);
814         else
815             f->dual_stereo = ff_opus_rc_dec_log(rc, 1);
816
817     /* Supply the remaining bits in this frame to lower bands */
818     remaining = tbits_8ths - total;
819     bandbits  = remaining / (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
820     remaining -= bandbits * (ff_celt_freq_bands[f->coded_bands] - ff_celt_freq_bands[f->start_band]);
821     for (i = f->start_band; i < f->coded_bands; i++) {
822         const int bits = FFMIN(remaining, ff_celt_freq_range[i]);
823         f->pulses[i] += bits + bandbits * ff_celt_freq_range[i];
824         remaining    -= bits;
825     }
826
827     /* Finally determine the allocation */
828     for (i = f->start_band; i < f->coded_bands; i++) {
829         int N = ff_celt_freq_range[i] << f->size;
830         int prev_extra = extrabits;
831         f->pulses[i] += extrabits;
832
833         if (N > 1) {
834             int dof;        /* degrees of freedom */
835             int temp;       /* dof * channels * log(dof) */
836             int fine_bits;
837             int max_bits;
838             int offset;     /* fine energy quantization offset, i.e.
839                              * extra bits assigned over the standard
840                              * totalbits/dof */
841
842             extrabits = FFMAX(f->pulses[i] - f->caps[i], 0);
843             f->pulses[i] -= extrabits;
844
845             /* intensity stereo makes use of an extra degree of freedom */
846             dof = N * f->channels + (f->channels == 2 && N > 2 && !f->dual_stereo && i < f->intensity_stereo);
847             temp = dof * (ff_celt_log_freq_range[i] + (f->size << 3));
848             offset = (temp >> 1) - dof * CELT_FINE_OFFSET;
849             if (N == 2) /* dof=2 is the only case that doesn't fit the model */
850                 offset += dof << 1;
851
852             /* grant an additional bias for the first and second pulses */
853             if (f->pulses[i] + offset < 2 * (dof << 3))
854                 offset += temp >> 2;
855             else if (f->pulses[i] + offset < 3 * (dof << 3))
856                 offset += temp >> 3;
857
858             fine_bits = (f->pulses[i] + offset + (dof << 2)) / (dof << 3);
859             max_bits  = FFMIN((f->pulses[i] >> 3) >> (f->channels - 1), CELT_MAX_FINE_BITS);
860             max_bits  = FFMAX(max_bits, 0);
861             f->fine_bits[i] = av_clip(fine_bits, 0, max_bits);
862
863             /* If fine_bits was rounded down or capped,
864              * give priority for the final fine energy pass */
865             f->fine_priority[i] = (f->fine_bits[i] * (dof << 3) >= f->pulses[i] + offset);
866
867             /* the remaining bits are assigned to PVQ */
868             f->pulses[i] -= f->fine_bits[i] << (f->channels - 1) << 3;
869         } else {
870             /* all bits go to fine energy except for the sign bit */
871             extrabits = FFMAX(f->pulses[i] - (f->channels << 3), 0);
872             f->pulses[i] -= extrabits;
873             f->fine_bits[i] = 0;
874             f->fine_priority[i] = 1;
875         }
876
877         /* hand back a limited number of extra fine energy bits to this band */
878         if (extrabits > 0) {
879             int fineextra = FFMIN(extrabits >> (f->channels + 2),
880                                   CELT_MAX_FINE_BITS - f->fine_bits[i]);
881             f->fine_bits[i] += fineextra;
882
883             fineextra <<= f->channels + 2;
884             f->fine_priority[i] = (fineextra >= extrabits - prev_extra);
885             extrabits -= fineextra;
886         }
887     }
888     f->remaining = extrabits;
889
890     /* skipped bands dedicate all of their bits for fine energy */
891     for (; i < f->end_band; i++) {
892         f->fine_bits[i]     = f->pulses[i] >> (f->channels - 1) >> 3;
893         f->pulses[i]        = 0;
894         f->fine_priority[i] = f->fine_bits[i] < 1;
895     }
896 }