mp3on4: fail when the header check fails
[ffmpeg.git] / libavcodec / mpegaudiodec_template.c
1 /*
2  * MPEG Audio decoder
3  * Copyright (c) 2001, 2002 Fabrice Bellard
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 /**
23  * @file
24  * MPEG Audio decoder
25  */
26
27 #include "libavutil/attributes.h"
28 #include "libavutil/avassert.h"
29 #include "libavutil/channel_layout.h"
30 #include "libavutil/float_dsp.h"
31 #include "libavutil/libm.h"
32 #include "avcodec.h"
33 #include "get_bits.h"
34 #include "internal.h"
35 #include "mathops.h"
36 #include "mpegaudiodsp.h"
37
38 /*
39  * TODO:
40  *  - test lsf / mpeg25 extensively.
41  */
42
43 #include "mpegaudio.h"
44 #include "mpegaudiodecheader.h"
45
46 #define BACKSTEP_SIZE 512
47 #define EXTRABYTES 24
48 #define LAST_BUF_SIZE 2 * BACKSTEP_SIZE + EXTRABYTES
49
50 /* layer 3 "granule" */
51 typedef struct GranuleDef {
52     uint8_t scfsi;
53     int part2_3_length;
54     int big_values;
55     int global_gain;
56     int scalefac_compress;
57     uint8_t block_type;
58     uint8_t switch_point;
59     int table_select[3];
60     int subblock_gain[3];
61     uint8_t scalefac_scale;
62     uint8_t count1table_select;
63     int region_size[3]; /* number of huffman codes in each region */
64     int preflag;
65     int short_start, long_end; /* long/short band indexes */
66     uint8_t scale_factors[40];
67     DECLARE_ALIGNED(16, INTFLOAT, sb_hybrid)[SBLIMIT * 18]; /* 576 samples */
68 } GranuleDef;
69
70 typedef struct MPADecodeContext {
71     MPA_DECODE_HEADER
72     uint8_t last_buf[LAST_BUF_SIZE];
73     int last_buf_size;
74     /* next header (used in free format parsing) */
75     uint32_t free_format_next_header;
76     GetBitContext gb;
77     GetBitContext in_gb;
78     DECLARE_ALIGNED(32, MPA_INT, synth_buf)[MPA_MAX_CHANNELS][512 * 2];
79     int synth_buf_offset[MPA_MAX_CHANNELS];
80     DECLARE_ALIGNED(32, INTFLOAT, sb_samples)[MPA_MAX_CHANNELS][36][SBLIMIT];
81     INTFLOAT mdct_buf[MPA_MAX_CHANNELS][SBLIMIT * 18]; /* previous samples, for layer 3 MDCT */
82     GranuleDef granules[2][2]; /* Used in Layer 3 */
83     int adu_mode; ///< 0 for standard mp3, 1 for adu formatted mp3
84     int dither_state;
85     int err_recognition;
86     AVCodecContext* avctx;
87     MPADSPContext mpadsp;
88     AVFloatDSPContext fdsp;
89     AVFrame *frame;
90 } MPADecodeContext;
91
92 #define HEADER_SIZE 4
93
94 #include "mpegaudiodata.h"
95 #include "mpegaudiodectab.h"
96
97 /* vlc structure for decoding layer 3 huffman tables */
98 static VLC huff_vlc[16];
99 static VLC_TYPE huff_vlc_tables[
100     0 + 128 + 128 + 128 + 130 + 128 + 154 + 166 +
101   142 + 204 + 190 + 170 + 542 + 460 + 662 + 414
102   ][2];
103 static const int huff_vlc_tables_sizes[16] = {
104     0,  128,  128,  128,  130,  128,  154,  166,
105   142,  204,  190,  170,  542,  460,  662,  414
106 };
107 static VLC huff_quad_vlc[2];
108 static VLC_TYPE  huff_quad_vlc_tables[128+16][2];
109 static const int huff_quad_vlc_tables_sizes[2] = { 128, 16 };
110 /* computed from band_size_long */
111 static uint16_t band_index_long[9][23];
112 #include "mpegaudio_tablegen.h"
113 /* intensity stereo coef table */
114 static INTFLOAT is_table[2][16];
115 static INTFLOAT is_table_lsf[2][2][16];
116 static INTFLOAT csa_table[8][4];
117
118 static int16_t division_tab3[1<<6 ];
119 static int16_t division_tab5[1<<8 ];
120 static int16_t division_tab9[1<<11];
121
122 static int16_t * const division_tabs[4] = {
123     division_tab3, division_tab5, NULL, division_tab9
124 };
125
126 /* lower 2 bits: modulo 3, higher bits: shift */
127 static uint16_t scale_factor_modshift[64];
128 /* [i][j]:  2^(-j/3) * FRAC_ONE * 2^(i+2) / (2^(i+2) - 1) */
129 static int32_t scale_factor_mult[15][3];
130 /* mult table for layer 2 group quantization */
131
132 #define SCALE_GEN(v) \
133 { FIXR_OLD(1.0 * (v)), FIXR_OLD(0.7937005259 * (v)), FIXR_OLD(0.6299605249 * (v)) }
134
135 static const int32_t scale_factor_mult2[3][3] = {
136     SCALE_GEN(4.0 / 3.0), /* 3 steps */
137     SCALE_GEN(4.0 / 5.0), /* 5 steps */
138     SCALE_GEN(4.0 / 9.0), /* 9 steps */
139 };
140
141 /**
142  * Convert region offsets to region sizes and truncate
143  * size to big_values.
144  */
145 static void region_offset2size(GranuleDef *g)
146 {
147     int i, k, j = 0;
148     g->region_size[2] = 576 / 2;
149     for (i = 0; i < 3; i++) {
150         k = FFMIN(g->region_size[i], g->big_values);
151         g->region_size[i] = k - j;
152         j = k;
153     }
154 }
155
156 static void init_short_region(MPADecodeContext *s, GranuleDef *g)
157 {
158     if (g->block_type == 2) {
159         if (s->sample_rate_index != 8)
160             g->region_size[0] = (36 / 2);
161         else
162             g->region_size[0] = (72 / 2);
163     } else {
164         if (s->sample_rate_index <= 2)
165             g->region_size[0] = (36 / 2);
166         else if (s->sample_rate_index != 8)
167             g->region_size[0] = (54 / 2);
168         else
169             g->region_size[0] = (108 / 2);
170     }
171     g->region_size[1] = (576 / 2);
172 }
173
174 static void init_long_region(MPADecodeContext *s, GranuleDef *g,
175                              int ra1, int ra2)
176 {
177     int l;
178     g->region_size[0] = band_index_long[s->sample_rate_index][ra1 + 1] >> 1;
179     /* should not overflow */
180     l = FFMIN(ra1 + ra2 + 2, 22);
181     g->region_size[1] = band_index_long[s->sample_rate_index][      l] >> 1;
182 }
183
184 static void compute_band_indexes(MPADecodeContext *s, GranuleDef *g)
185 {
186     if (g->block_type == 2) {
187         if (g->switch_point) {
188             if(s->sample_rate_index == 8)
189                 avpriv_request_sample(s->avctx, "switch point in 8khz");
190             /* if switched mode, we handle the 36 first samples as
191                 long blocks.  For 8000Hz, we handle the 72 first
192                 exponents as long blocks */
193             if (s->sample_rate_index <= 2)
194                 g->long_end = 8;
195             else
196                 g->long_end = 6;
197
198             g->short_start = 3;
199         } else {
200             g->long_end    = 0;
201             g->short_start = 0;
202         }
203     } else {
204         g->short_start = 13;
205         g->long_end    = 22;
206     }
207 }
208
209 /* layer 1 unscaling */
210 /* n = number of bits of the mantissa minus 1 */
211 static inline int l1_unscale(int n, int mant, int scale_factor)
212 {
213     int shift, mod;
214     int64_t val;
215
216     shift   = scale_factor_modshift[scale_factor];
217     mod     = shift & 3;
218     shift >>= 2;
219     val     = MUL64(mant + (-1 << n) + 1, scale_factor_mult[n-1][mod]);
220     shift  += n;
221     /* NOTE: at this point, 1 <= shift >= 21 + 15 */
222     return (int)((val + (1LL << (shift - 1))) >> shift);
223 }
224
225 static inline int l2_unscale_group(int steps, int mant, int scale_factor)
226 {
227     int shift, mod, val;
228
229     shift   = scale_factor_modshift[scale_factor];
230     mod     = shift & 3;
231     shift >>= 2;
232
233     val = (mant - (steps >> 1)) * scale_factor_mult2[steps >> 2][mod];
234     /* NOTE: at this point, 0 <= shift <= 21 */
235     if (shift > 0)
236         val = (val + (1 << (shift - 1))) >> shift;
237     return val;
238 }
239
240 /* compute value^(4/3) * 2^(exponent/4). It normalized to FRAC_BITS */
241 static inline int l3_unscale(int value, int exponent)
242 {
243     unsigned int m;
244     int e;
245
246     e  = table_4_3_exp  [4 * value + (exponent & 3)];
247     m  = table_4_3_value[4 * value + (exponent & 3)];
248     e -= exponent >> 2;
249 #ifdef DEBUG
250     if(e < 1)
251         av_log(NULL, AV_LOG_WARNING, "l3_unscale: e is %d\n", e);
252 #endif
253     if (e > 31)
254         return 0;
255     m = (m + (1 << (e - 1))) >> e;
256
257     return m;
258 }
259
260 static av_cold void decode_init_static(void)
261 {
262     int i, j, k;
263     int offset;
264
265     /* scale factors table for layer 1/2 */
266     for (i = 0; i < 64; i++) {
267         int shift, mod;
268         /* 1.0 (i = 3) is normalized to 2 ^ FRAC_BITS */
269         shift = i / 3;
270         mod   = i % 3;
271         scale_factor_modshift[i] = mod | (shift << 2);
272     }
273
274     /* scale factor multiply for layer 1 */
275     for (i = 0; i < 15; i++) {
276         int n, norm;
277         n = i + 2;
278         norm = ((INT64_C(1) << n) * FRAC_ONE) / ((1 << n) - 1);
279         scale_factor_mult[i][0] = MULLx(norm, FIXR(1.0          * 2.0), FRAC_BITS);
280         scale_factor_mult[i][1] = MULLx(norm, FIXR(0.7937005259 * 2.0), FRAC_BITS);
281         scale_factor_mult[i][2] = MULLx(norm, FIXR(0.6299605249 * 2.0), FRAC_BITS);
282         av_dlog(NULL, "%d: norm=%x s=%x %x %x\n", i, norm,
283                 scale_factor_mult[i][0],
284                 scale_factor_mult[i][1],
285                 scale_factor_mult[i][2]);
286     }
287
288     RENAME(ff_mpa_synth_init)(RENAME(ff_mpa_synth_window));
289
290     /* huffman decode tables */
291     offset = 0;
292     for (i = 1; i < 16; i++) {
293         const HuffTable *h = &mpa_huff_tables[i];
294         int xsize, x, y;
295         uint8_t  tmp_bits [512] = { 0 };
296         uint16_t tmp_codes[512] = { 0 };
297
298         xsize = h->xsize;
299
300         j = 0;
301         for (x = 0; x < xsize; x++) {
302             for (y = 0; y < xsize; y++) {
303                 tmp_bits [(x << 5) | y | ((x&&y)<<4)]= h->bits [j  ];
304                 tmp_codes[(x << 5) | y | ((x&&y)<<4)]= h->codes[j++];
305             }
306         }
307
308         /* XXX: fail test */
309         huff_vlc[i].table = huff_vlc_tables+offset;
310         huff_vlc[i].table_allocated = huff_vlc_tables_sizes[i];
311         init_vlc(&huff_vlc[i], 7, 512,
312                  tmp_bits, 1, 1, tmp_codes, 2, 2,
313                  INIT_VLC_USE_NEW_STATIC);
314         offset += huff_vlc_tables_sizes[i];
315     }
316     av_assert0(offset == FF_ARRAY_ELEMS(huff_vlc_tables));
317
318     offset = 0;
319     for (i = 0; i < 2; i++) {
320         huff_quad_vlc[i].table = huff_quad_vlc_tables+offset;
321         huff_quad_vlc[i].table_allocated = huff_quad_vlc_tables_sizes[i];
322         init_vlc(&huff_quad_vlc[i], i == 0 ? 7 : 4, 16,
323                  mpa_quad_bits[i], 1, 1, mpa_quad_codes[i], 1, 1,
324                  INIT_VLC_USE_NEW_STATIC);
325         offset += huff_quad_vlc_tables_sizes[i];
326     }
327     av_assert0(offset == FF_ARRAY_ELEMS(huff_quad_vlc_tables));
328
329     for (i = 0; i < 9; i++) {
330         k = 0;
331         for (j = 0; j < 22; j++) {
332             band_index_long[i][j] = k;
333             k += band_size_long[i][j];
334         }
335         band_index_long[i][22] = k;
336     }
337
338     /* compute n ^ (4/3) and store it in mantissa/exp format */
339
340     mpegaudio_tableinit();
341
342     for (i = 0; i < 4; i++) {
343         if (ff_mpa_quant_bits[i] < 0) {
344             for (j = 0; j < (1 << (-ff_mpa_quant_bits[i]+1)); j++) {
345                 int val1, val2, val3, steps;
346                 int val = j;
347                 steps   = ff_mpa_quant_steps[i];
348                 val1    = val % steps;
349                 val    /= steps;
350                 val2    = val % steps;
351                 val3    = val / steps;
352                 division_tabs[i][j] = val1 + (val2 << 4) + (val3 << 8);
353             }
354         }
355     }
356
357
358     for (i = 0; i < 7; i++) {
359         float f;
360         INTFLOAT v;
361         if (i != 6) {
362             f = tan((double)i * M_PI / 12.0);
363             v = FIXR(f / (1.0 + f));
364         } else {
365             v = FIXR(1.0);
366         }
367         is_table[0][    i] = v;
368         is_table[1][6 - i] = v;
369     }
370     /* invalid values */
371     for (i = 7; i < 16; i++)
372         is_table[0][i] = is_table[1][i] = 0.0;
373
374     for (i = 0; i < 16; i++) {
375         double f;
376         int e, k;
377
378         for (j = 0; j < 2; j++) {
379             e = -(j + 1) * ((i + 1) >> 1);
380             f = exp2(e / 4.0);
381             k = i & 1;
382             is_table_lsf[j][k ^ 1][i] = FIXR(f);
383             is_table_lsf[j][k    ][i] = FIXR(1.0);
384             av_dlog(NULL, "is_table_lsf %d %d: %f %f\n",
385                     i, j, (float) is_table_lsf[j][0][i],
386                     (float) is_table_lsf[j][1][i]);
387         }
388     }
389
390     for (i = 0; i < 8; i++) {
391         float ci, cs, ca;
392         ci = ci_table[i];
393         cs = 1.0 / sqrt(1.0 + ci * ci);
394         ca = cs * ci;
395 #if !USE_FLOATS
396         csa_table[i][0] = FIXHR(cs/4);
397         csa_table[i][1] = FIXHR(ca/4);
398         csa_table[i][2] = FIXHR(ca/4) + FIXHR(cs/4);
399         csa_table[i][3] = FIXHR(ca/4) - FIXHR(cs/4);
400 #else
401         csa_table[i][0] = cs;
402         csa_table[i][1] = ca;
403         csa_table[i][2] = ca + cs;
404         csa_table[i][3] = ca - cs;
405 #endif
406     }
407 }
408
409 static av_cold int decode_init(AVCodecContext * avctx)
410 {
411     static int initialized_tables = 0;
412     MPADecodeContext *s = avctx->priv_data;
413
414     if (!initialized_tables) {
415         decode_init_static();
416         initialized_tables = 1;
417     }
418
419     s->avctx = avctx;
420
421     avpriv_float_dsp_init(&s->fdsp, avctx->flags & CODEC_FLAG_BITEXACT);
422     ff_mpadsp_init(&s->mpadsp);
423
424     if (avctx->request_sample_fmt == OUT_FMT &&
425         avctx->codec_id != AV_CODEC_ID_MP3ON4)
426         avctx->sample_fmt = OUT_FMT;
427     else
428         avctx->sample_fmt = OUT_FMT_P;
429     s->err_recognition = avctx->err_recognition;
430
431     if (avctx->codec_id == AV_CODEC_ID_MP3ADU)
432         s->adu_mode = 1;
433
434     return 0;
435 }
436
437 #define C3 FIXHR(0.86602540378443864676/2)
438 #define C4 FIXHR(0.70710678118654752439/2) //0.5 / cos(pi*(9)/36)
439 #define C5 FIXHR(0.51763809020504152469/2) //0.5 / cos(pi*(5)/36)
440 #define C6 FIXHR(1.93185165257813657349/4) //0.5 / cos(pi*(15)/36)
441
442 /* 12 points IMDCT. We compute it "by hand" by factorizing obvious
443    cases. */
444 static void imdct12(INTFLOAT *out, INTFLOAT *in)
445 {
446     INTFLOAT in0, in1, in2, in3, in4, in5, t1, t2;
447
448     in0  = in[0*3];
449     in1  = in[1*3] + in[0*3];
450     in2  = in[2*3] + in[1*3];
451     in3  = in[3*3] + in[2*3];
452     in4  = in[4*3] + in[3*3];
453     in5  = in[5*3] + in[4*3];
454     in5 += in3;
455     in3 += in1;
456
457     in2  = MULH3(in2, C3, 2);
458     in3  = MULH3(in3, C3, 4);
459
460     t1   = in0 - in4;
461     t2   = MULH3(in1 - in5, C4, 2);
462
463     out[ 7] =
464     out[10] = t1 + t2;
465     out[ 1] =
466     out[ 4] = t1 - t2;
467
468     in0    += SHR(in4, 1);
469     in4     = in0 + in2;
470     in5    += 2*in1;
471     in1     = MULH3(in5 + in3, C5, 1);
472     out[ 8] =
473     out[ 9] = in4 + in1;
474     out[ 2] =
475     out[ 3] = in4 - in1;
476
477     in0    -= in2;
478     in5     = MULH3(in5 - in3, C6, 2);
479     out[ 0] =
480     out[ 5] = in0 - in5;
481     out[ 6] =
482     out[11] = in0 + in5;
483 }
484
485 /* return the number of decoded frames */
486 static int mp_decode_layer1(MPADecodeContext *s)
487 {
488     int bound, i, v, n, ch, j, mant;
489     uint8_t allocation[MPA_MAX_CHANNELS][SBLIMIT];
490     uint8_t scale_factors[MPA_MAX_CHANNELS][SBLIMIT];
491
492     if (s->mode == MPA_JSTEREO)
493         bound = (s->mode_ext + 1) * 4;
494     else
495         bound = SBLIMIT;
496
497     /* allocation bits */
498     for (i = 0; i < bound; i++) {
499         for (ch = 0; ch < s->nb_channels; ch++) {
500             allocation[ch][i] = get_bits(&s->gb, 4);
501         }
502     }
503     for (i = bound; i < SBLIMIT; i++)
504         allocation[0][i] = get_bits(&s->gb, 4);
505
506     /* scale factors */
507     for (i = 0; i < bound; i++) {
508         for (ch = 0; ch < s->nb_channels; ch++) {
509             if (allocation[ch][i])
510                 scale_factors[ch][i] = get_bits(&s->gb, 6);
511         }
512     }
513     for (i = bound; i < SBLIMIT; i++) {
514         if (allocation[0][i]) {
515             scale_factors[0][i] = get_bits(&s->gb, 6);
516             scale_factors[1][i] = get_bits(&s->gb, 6);
517         }
518     }
519
520     /* compute samples */
521     for (j = 0; j < 12; j++) {
522         for (i = 0; i < bound; i++) {
523             for (ch = 0; ch < s->nb_channels; ch++) {
524                 n = allocation[ch][i];
525                 if (n) {
526                     mant = get_bits(&s->gb, n + 1);
527                     v = l1_unscale(n, mant, scale_factors[ch][i]);
528                 } else {
529                     v = 0;
530                 }
531                 s->sb_samples[ch][j][i] = v;
532             }
533         }
534         for (i = bound; i < SBLIMIT; i++) {
535             n = allocation[0][i];
536             if (n) {
537                 mant = get_bits(&s->gb, n + 1);
538                 v = l1_unscale(n, mant, scale_factors[0][i]);
539                 s->sb_samples[0][j][i] = v;
540                 v = l1_unscale(n, mant, scale_factors[1][i]);
541                 s->sb_samples[1][j][i] = v;
542             } else {
543                 s->sb_samples[0][j][i] = 0;
544                 s->sb_samples[1][j][i] = 0;
545             }
546         }
547     }
548     return 12;
549 }
550
551 static int mp_decode_layer2(MPADecodeContext *s)
552 {
553     int sblimit; /* number of used subbands */
554     const unsigned char *alloc_table;
555     int table, bit_alloc_bits, i, j, ch, bound, v;
556     unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
557     unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
558     unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3], *sf;
559     int scale, qindex, bits, steps, k, l, m, b;
560
561     /* select decoding table */
562     table = ff_mpa_l2_select_table(s->bit_rate / 1000, s->nb_channels,
563                                    s->sample_rate, s->lsf);
564     sblimit     = ff_mpa_sblimit_table[table];
565     alloc_table = ff_mpa_alloc_tables[table];
566
567     if (s->mode == MPA_JSTEREO)
568         bound = (s->mode_ext + 1) * 4;
569     else
570         bound = sblimit;
571
572     av_dlog(s->avctx, "bound=%d sblimit=%d\n", bound, sblimit);
573
574     /* sanity check */
575     if (bound > sblimit)
576         bound = sblimit;
577
578     /* parse bit allocation */
579     j = 0;
580     for (i = 0; i < bound; i++) {
581         bit_alloc_bits = alloc_table[j];
582         for (ch = 0; ch < s->nb_channels; ch++)
583             bit_alloc[ch][i] = get_bits(&s->gb, bit_alloc_bits);
584         j += 1 << bit_alloc_bits;
585     }
586     for (i = bound; i < sblimit; i++) {
587         bit_alloc_bits = alloc_table[j];
588         v = get_bits(&s->gb, bit_alloc_bits);
589         bit_alloc[0][i] = v;
590         bit_alloc[1][i] = v;
591         j += 1 << bit_alloc_bits;
592     }
593
594     /* scale codes */
595     for (i = 0; i < sblimit; i++) {
596         for (ch = 0; ch < s->nb_channels; ch++) {
597             if (bit_alloc[ch][i])
598                 scale_code[ch][i] = get_bits(&s->gb, 2);
599         }
600     }
601
602     /* scale factors */
603     for (i = 0; i < sblimit; i++) {
604         for (ch = 0; ch < s->nb_channels; ch++) {
605             if (bit_alloc[ch][i]) {
606                 sf = scale_factors[ch][i];
607                 switch (scale_code[ch][i]) {
608                 default:
609                 case 0:
610                     sf[0] = get_bits(&s->gb, 6);
611                     sf[1] = get_bits(&s->gb, 6);
612                     sf[2] = get_bits(&s->gb, 6);
613                     break;
614                 case 2:
615                     sf[0] = get_bits(&s->gb, 6);
616                     sf[1] = sf[0];
617                     sf[2] = sf[0];
618                     break;
619                 case 1:
620                     sf[0] = get_bits(&s->gb, 6);
621                     sf[2] = get_bits(&s->gb, 6);
622                     sf[1] = sf[0];
623                     break;
624                 case 3:
625                     sf[0] = get_bits(&s->gb, 6);
626                     sf[2] = get_bits(&s->gb, 6);
627                     sf[1] = sf[2];
628                     break;
629                 }
630             }
631         }
632     }
633
634     /* samples */
635     for (k = 0; k < 3; k++) {
636         for (l = 0; l < 12; l += 3) {
637             j = 0;
638             for (i = 0; i < bound; i++) {
639                 bit_alloc_bits = alloc_table[j];
640                 for (ch = 0; ch < s->nb_channels; ch++) {
641                     b = bit_alloc[ch][i];
642                     if (b) {
643                         scale = scale_factors[ch][i][k];
644                         qindex = alloc_table[j+b];
645                         bits = ff_mpa_quant_bits[qindex];
646                         if (bits < 0) {
647                             int v2;
648                             /* 3 values at the same time */
649                             v = get_bits(&s->gb, -bits);
650                             v2 = division_tabs[qindex][v];
651                             steps  = ff_mpa_quant_steps[qindex];
652
653                             s->sb_samples[ch][k * 12 + l + 0][i] =
654                                 l2_unscale_group(steps,  v2       & 15, scale);
655                             s->sb_samples[ch][k * 12 + l + 1][i] =
656                                 l2_unscale_group(steps, (v2 >> 4) & 15, scale);
657                             s->sb_samples[ch][k * 12 + l + 2][i] =
658                                 l2_unscale_group(steps,  v2 >> 8      , scale);
659                         } else {
660                             for (m = 0; m < 3; m++) {
661                                 v = get_bits(&s->gb, bits);
662                                 v = l1_unscale(bits - 1, v, scale);
663                                 s->sb_samples[ch][k * 12 + l + m][i] = v;
664                             }
665                         }
666                     } else {
667                         s->sb_samples[ch][k * 12 + l + 0][i] = 0;
668                         s->sb_samples[ch][k * 12 + l + 1][i] = 0;
669                         s->sb_samples[ch][k * 12 + l + 2][i] = 0;
670                     }
671                 }
672                 /* next subband in alloc table */
673                 j += 1 << bit_alloc_bits;
674             }
675             /* XXX: find a way to avoid this duplication of code */
676             for (i = bound; i < sblimit; i++) {
677                 bit_alloc_bits = alloc_table[j];
678                 b = bit_alloc[0][i];
679                 if (b) {
680                     int mant, scale0, scale1;
681                     scale0 = scale_factors[0][i][k];
682                     scale1 = scale_factors[1][i][k];
683                     qindex = alloc_table[j+b];
684                     bits = ff_mpa_quant_bits[qindex];
685                     if (bits < 0) {
686                         /* 3 values at the same time */
687                         v = get_bits(&s->gb, -bits);
688                         steps = ff_mpa_quant_steps[qindex];
689                         mant = v % steps;
690                         v = v / steps;
691                         s->sb_samples[0][k * 12 + l + 0][i] =
692                             l2_unscale_group(steps, mant, scale0);
693                         s->sb_samples[1][k * 12 + l + 0][i] =
694                             l2_unscale_group(steps, mant, scale1);
695                         mant = v % steps;
696                         v = v / steps;
697                         s->sb_samples[0][k * 12 + l + 1][i] =
698                             l2_unscale_group(steps, mant, scale0);
699                         s->sb_samples[1][k * 12 + l + 1][i] =
700                             l2_unscale_group(steps, mant, scale1);
701                         s->sb_samples[0][k * 12 + l + 2][i] =
702                             l2_unscale_group(steps, v, scale0);
703                         s->sb_samples[1][k * 12 + l + 2][i] =
704                             l2_unscale_group(steps, v, scale1);
705                     } else {
706                         for (m = 0; m < 3; m++) {
707                             mant = get_bits(&s->gb, bits);
708                             s->sb_samples[0][k * 12 + l + m][i] =
709                                 l1_unscale(bits - 1, mant, scale0);
710                             s->sb_samples[1][k * 12 + l + m][i] =
711                                 l1_unscale(bits - 1, mant, scale1);
712                         }
713                     }
714                 } else {
715                     s->sb_samples[0][k * 12 + l + 0][i] = 0;
716                     s->sb_samples[0][k * 12 + l + 1][i] = 0;
717                     s->sb_samples[0][k * 12 + l + 2][i] = 0;
718                     s->sb_samples[1][k * 12 + l + 0][i] = 0;
719                     s->sb_samples[1][k * 12 + l + 1][i] = 0;
720                     s->sb_samples[1][k * 12 + l + 2][i] = 0;
721                 }
722                 /* next subband in alloc table */
723                 j += 1 << bit_alloc_bits;
724             }
725             /* fill remaining samples to zero */
726             for (i = sblimit; i < SBLIMIT; i++) {
727                 for (ch = 0; ch < s->nb_channels; ch++) {
728                     s->sb_samples[ch][k * 12 + l + 0][i] = 0;
729                     s->sb_samples[ch][k * 12 + l + 1][i] = 0;
730                     s->sb_samples[ch][k * 12 + l + 2][i] = 0;
731                 }
732             }
733         }
734     }
735     return 3 * 12;
736 }
737
738 #define SPLIT(dst,sf,n)             \
739     if (n == 3) {                   \
740         int m = (sf * 171) >> 9;    \
741         dst   = sf - 3 * m;         \
742         sf    = m;                  \
743     } else if (n == 4) {            \
744         dst  = sf & 3;              \
745         sf >>= 2;                   \
746     } else if (n == 5) {            \
747         int m = (sf * 205) >> 10;   \
748         dst   = sf - 5 * m;         \
749         sf    = m;                  \
750     } else if (n == 6) {            \
751         int m = (sf * 171) >> 10;   \
752         dst   = sf - 6 * m;         \
753         sf    = m;                  \
754     } else {                        \
755         dst = 0;                    \
756     }
757
758 static av_always_inline void lsf_sf_expand(int *slen, int sf, int n1, int n2,
759                                            int n3)
760 {
761     SPLIT(slen[3], sf, n3)
762     SPLIT(slen[2], sf, n2)
763     SPLIT(slen[1], sf, n1)
764     slen[0] = sf;
765 }
766
767 static void exponents_from_scale_factors(MPADecodeContext *s, GranuleDef *g,
768                                          int16_t *exponents)
769 {
770     const uint8_t *bstab, *pretab;
771     int len, i, j, k, l, v0, shift, gain, gains[3];
772     int16_t *exp_ptr;
773
774     exp_ptr = exponents;
775     gain    = g->global_gain - 210;
776     shift   = g->scalefac_scale + 1;
777
778     bstab  = band_size_long[s->sample_rate_index];
779     pretab = mpa_pretab[g->preflag];
780     for (i = 0; i < g->long_end; i++) {
781         v0 = gain - ((g->scale_factors[i] + pretab[i]) << shift) + 400;
782         len = bstab[i];
783         for (j = len; j > 0; j--)
784             *exp_ptr++ = v0;
785     }
786
787     if (g->short_start < 13) {
788         bstab    = band_size_short[s->sample_rate_index];
789         gains[0] = gain - (g->subblock_gain[0] << 3);
790         gains[1] = gain - (g->subblock_gain[1] << 3);
791         gains[2] = gain - (g->subblock_gain[2] << 3);
792         k        = g->long_end;
793         for (i = g->short_start; i < 13; i++) {
794             len = bstab[i];
795             for (l = 0; l < 3; l++) {
796                 v0 = gains[l] - (g->scale_factors[k++] << shift) + 400;
797                 for (j = len; j > 0; j--)
798                     *exp_ptr++ = v0;
799             }
800         }
801     }
802 }
803
804 /* handle n = 0 too */
805 static inline int get_bitsz(GetBitContext *s, int n)
806 {
807     return n ? get_bits(s, n) : 0;
808 }
809
810
811 static void switch_buffer(MPADecodeContext *s, int *pos, int *end_pos,
812                           int *end_pos2)
813 {
814     if (s->in_gb.buffer && *pos >= s->gb.size_in_bits) {
815         s->gb           = s->in_gb;
816         s->in_gb.buffer = NULL;
817         av_assert2((get_bits_count(&s->gb) & 7) == 0);
818         skip_bits_long(&s->gb, *pos - *end_pos);
819         *end_pos2 =
820         *end_pos  = *end_pos2 + get_bits_count(&s->gb) - *pos;
821         *pos      = get_bits_count(&s->gb);
822     }
823 }
824
825 /* Following is a optimized code for
826             INTFLOAT v = *src
827             if(get_bits1(&s->gb))
828                 v = -v;
829             *dst = v;
830 */
831 #if USE_FLOATS
832 #define READ_FLIP_SIGN(dst,src)                     \
833     v = AV_RN32A(src) ^ (get_bits1(&s->gb) << 31);  \
834     AV_WN32A(dst, v);
835 #else
836 #define READ_FLIP_SIGN(dst,src)     \
837     v      = -get_bits1(&s->gb);    \
838     *(dst) = (*(src) ^ v) - v;
839 #endif
840
841 static int huffman_decode(MPADecodeContext *s, GranuleDef *g,
842                           int16_t *exponents, int end_pos2)
843 {
844     int s_index;
845     int i;
846     int last_pos, bits_left;
847     VLC *vlc;
848     int end_pos = FFMIN(end_pos2, s->gb.size_in_bits);
849
850     /* low frequencies (called big values) */
851     s_index = 0;
852     for (i = 0; i < 3; i++) {
853         int j, k, l, linbits;
854         j = g->region_size[i];
855         if (j == 0)
856             continue;
857         /* select vlc table */
858         k       = g->table_select[i];
859         l       = mpa_huff_data[k][0];
860         linbits = mpa_huff_data[k][1];
861         vlc     = &huff_vlc[l];
862
863         if (!l) {
864             memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * 2 * j);
865             s_index += 2 * j;
866             continue;
867         }
868
869         /* read huffcode and compute each couple */
870         for (; j > 0; j--) {
871             int exponent, x, y;
872             int v;
873             int pos = get_bits_count(&s->gb);
874
875             if (pos >= end_pos){
876                 switch_buffer(s, &pos, &end_pos, &end_pos2);
877                 if (pos >= end_pos)
878                     break;
879             }
880             y = get_vlc2(&s->gb, vlc->table, 7, 3);
881
882             if (!y) {
883                 g->sb_hybrid[s_index  ] =
884                 g->sb_hybrid[s_index+1] = 0;
885                 s_index += 2;
886                 continue;
887             }
888
889             exponent= exponents[s_index];
890
891             av_dlog(s->avctx, "region=%d n=%d x=%d y=%d exp=%d\n",
892                     i, g->region_size[i] - j, x, y, exponent);
893             if (y & 16) {
894                 x = y >> 5;
895                 y = y & 0x0f;
896                 if (x < 15) {
897                     READ_FLIP_SIGN(g->sb_hybrid + s_index, RENAME(expval_table)[exponent] + x)
898                 } else {
899                     x += get_bitsz(&s->gb, linbits);
900                     v  = l3_unscale(x, exponent);
901                     if (get_bits1(&s->gb))
902                         v = -v;
903                     g->sb_hybrid[s_index] = v;
904                 }
905                 if (y < 15) {
906                     READ_FLIP_SIGN(g->sb_hybrid + s_index + 1, RENAME(expval_table)[exponent] + y)
907                 } else {
908                     y += get_bitsz(&s->gb, linbits);
909                     v  = l3_unscale(y, exponent);
910                     if (get_bits1(&s->gb))
911                         v = -v;
912                     g->sb_hybrid[s_index+1] = v;
913                 }
914             } else {
915                 x = y >> 5;
916                 y = y & 0x0f;
917                 x += y;
918                 if (x < 15) {
919                     READ_FLIP_SIGN(g->sb_hybrid + s_index + !!y, RENAME(expval_table)[exponent] + x)
920                 } else {
921                     x += get_bitsz(&s->gb, linbits);
922                     v  = l3_unscale(x, exponent);
923                     if (get_bits1(&s->gb))
924                         v = -v;
925                     g->sb_hybrid[s_index+!!y] = v;
926                 }
927                 g->sb_hybrid[s_index + !y] = 0;
928             }
929             s_index += 2;
930         }
931     }
932
933     /* high frequencies */
934     vlc = &huff_quad_vlc[g->count1table_select];
935     last_pos = 0;
936     while (s_index <= 572) {
937         int pos, code;
938         pos = get_bits_count(&s->gb);
939         if (pos >= end_pos) {
940             if (pos > end_pos2 && last_pos) {
941                 /* some encoders generate an incorrect size for this
942                    part. We must go back into the data */
943                 s_index -= 4;
944                 skip_bits_long(&s->gb, last_pos - pos);
945                 av_log(s->avctx, AV_LOG_INFO, "overread, skip %d enddists: %d %d\n", last_pos - pos, end_pos-pos, end_pos2-pos);
946                 if(s->err_recognition & (AV_EF_BITSTREAM|AV_EF_COMPLIANT))
947                     s_index=0;
948                 break;
949             }
950             switch_buffer(s, &pos, &end_pos, &end_pos2);
951             if (pos >= end_pos)
952                 break;
953         }
954         last_pos = pos;
955
956         code = get_vlc2(&s->gb, vlc->table, vlc->bits, 1);
957         av_dlog(s->avctx, "t=%d code=%d\n", g->count1table_select, code);
958         g->sb_hybrid[s_index+0] =
959         g->sb_hybrid[s_index+1] =
960         g->sb_hybrid[s_index+2] =
961         g->sb_hybrid[s_index+3] = 0;
962         while (code) {
963             static const int idxtab[16] = { 3,3,2,2,1,1,1,1,0,0,0,0,0,0,0,0 };
964             int v;
965             int pos = s_index + idxtab[code];
966             code   ^= 8 >> idxtab[code];
967             READ_FLIP_SIGN(g->sb_hybrid + pos, RENAME(exp_table)+exponents[pos])
968         }
969         s_index += 4;
970     }
971     /* skip extension bits */
972     bits_left = end_pos2 - get_bits_count(&s->gb);
973     if (bits_left < 0 && (s->err_recognition & (AV_EF_BUFFER|AV_EF_COMPLIANT))) {
974         av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
975         s_index=0;
976     } else if (bits_left > 0 && (s->err_recognition & (AV_EF_BUFFER|AV_EF_AGGRESSIVE))) {
977         av_log(s->avctx, AV_LOG_ERROR, "bits_left=%d\n", bits_left);
978         s_index = 0;
979     }
980     memset(&g->sb_hybrid[s_index], 0, sizeof(*g->sb_hybrid) * (576 - s_index));
981     skip_bits_long(&s->gb, bits_left);
982
983     i = get_bits_count(&s->gb);
984     switch_buffer(s, &i, &end_pos, &end_pos2);
985
986     return 0;
987 }
988
989 /* Reorder short blocks from bitstream order to interleaved order. It
990    would be faster to do it in parsing, but the code would be far more
991    complicated */
992 static void reorder_block(MPADecodeContext *s, GranuleDef *g)
993 {
994     int i, j, len;
995     INTFLOAT *ptr, *dst, *ptr1;
996     INTFLOAT tmp[576];
997
998     if (g->block_type != 2)
999         return;
1000
1001     if (g->switch_point) {
1002         if (s->sample_rate_index != 8)
1003             ptr = g->sb_hybrid + 36;
1004         else
1005             ptr = g->sb_hybrid + 72;
1006     } else {
1007         ptr = g->sb_hybrid;
1008     }
1009
1010     for (i = g->short_start; i < 13; i++) {
1011         len  = band_size_short[s->sample_rate_index][i];
1012         ptr1 = ptr;
1013         dst  = tmp;
1014         for (j = len; j > 0; j--) {
1015             *dst++ = ptr[0*len];
1016             *dst++ = ptr[1*len];
1017             *dst++ = ptr[2*len];
1018             ptr++;
1019         }
1020         ptr += 2 * len;
1021         memcpy(ptr1, tmp, len * 3 * sizeof(*ptr1));
1022     }
1023 }
1024
1025 #define ISQRT2 FIXR(0.70710678118654752440)
1026
1027 static void compute_stereo(MPADecodeContext *s, GranuleDef *g0, GranuleDef *g1)
1028 {
1029     int i, j, k, l;
1030     int sf_max, sf, len, non_zero_found;
1031     INTFLOAT (*is_tab)[16], *tab0, *tab1, tmp0, tmp1, v1, v2;
1032     int non_zero_found_short[3];
1033
1034     /* intensity stereo */
1035     if (s->mode_ext & MODE_EXT_I_STEREO) {
1036         if (!s->lsf) {
1037             is_tab = is_table;
1038             sf_max = 7;
1039         } else {
1040             is_tab = is_table_lsf[g1->scalefac_compress & 1];
1041             sf_max = 16;
1042         }
1043
1044         tab0 = g0->sb_hybrid + 576;
1045         tab1 = g1->sb_hybrid + 576;
1046
1047         non_zero_found_short[0] = 0;
1048         non_zero_found_short[1] = 0;
1049         non_zero_found_short[2] = 0;
1050         k = (13 - g1->short_start) * 3 + g1->long_end - 3;
1051         for (i = 12; i >= g1->short_start; i--) {
1052             /* for last band, use previous scale factor */
1053             if (i != 11)
1054                 k -= 3;
1055             len = band_size_short[s->sample_rate_index][i];
1056             for (l = 2; l >= 0; l--) {
1057                 tab0 -= len;
1058                 tab1 -= len;
1059                 if (!non_zero_found_short[l]) {
1060                     /* test if non zero band. if so, stop doing i-stereo */
1061                     for (j = 0; j < len; j++) {
1062                         if (tab1[j] != 0) {
1063                             non_zero_found_short[l] = 1;
1064                             goto found1;
1065                         }
1066                     }
1067                     sf = g1->scale_factors[k + l];
1068                     if (sf >= sf_max)
1069                         goto found1;
1070
1071                     v1 = is_tab[0][sf];
1072                     v2 = is_tab[1][sf];
1073                     for (j = 0; j < len; j++) {
1074                         tmp0    = tab0[j];
1075                         tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
1076                         tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
1077                     }
1078                 } else {
1079 found1:
1080                     if (s->mode_ext & MODE_EXT_MS_STEREO) {
1081                         /* lower part of the spectrum : do ms stereo
1082                            if enabled */
1083                         for (j = 0; j < len; j++) {
1084                             tmp0    = tab0[j];
1085                             tmp1    = tab1[j];
1086                             tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
1087                             tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
1088                         }
1089                     }
1090                 }
1091             }
1092         }
1093
1094         non_zero_found = non_zero_found_short[0] |
1095                          non_zero_found_short[1] |
1096                          non_zero_found_short[2];
1097
1098         for (i = g1->long_end - 1;i >= 0;i--) {
1099             len   = band_size_long[s->sample_rate_index][i];
1100             tab0 -= len;
1101             tab1 -= len;
1102             /* test if non zero band. if so, stop doing i-stereo */
1103             if (!non_zero_found) {
1104                 for (j = 0; j < len; j++) {
1105                     if (tab1[j] != 0) {
1106                         non_zero_found = 1;
1107                         goto found2;
1108                     }
1109                 }
1110                 /* for last band, use previous scale factor */
1111                 k  = (i == 21) ? 20 : i;
1112                 sf = g1->scale_factors[k];
1113                 if (sf >= sf_max)
1114                     goto found2;
1115                 v1 = is_tab[0][sf];
1116                 v2 = is_tab[1][sf];
1117                 for (j = 0; j < len; j++) {
1118                     tmp0    = tab0[j];
1119                     tab0[j] = MULLx(tmp0, v1, FRAC_BITS);
1120                     tab1[j] = MULLx(tmp0, v2, FRAC_BITS);
1121                 }
1122             } else {
1123 found2:
1124                 if (s->mode_ext & MODE_EXT_MS_STEREO) {
1125                     /* lower part of the spectrum : do ms stereo
1126                        if enabled */
1127                     for (j = 0; j < len; j++) {
1128                         tmp0    = tab0[j];
1129                         tmp1    = tab1[j];
1130                         tab0[j] = MULLx(tmp0 + tmp1, ISQRT2, FRAC_BITS);
1131                         tab1[j] = MULLx(tmp0 - tmp1, ISQRT2, FRAC_BITS);
1132                     }
1133                 }
1134             }
1135         }
1136     } else if (s->mode_ext & MODE_EXT_MS_STEREO) {
1137         /* ms stereo ONLY */
1138         /* NOTE: the 1/sqrt(2) normalization factor is included in the
1139            global gain */
1140 #if USE_FLOATS
1141        s->fdsp.butterflies_float(g0->sb_hybrid, g1->sb_hybrid, 576);
1142 #else
1143         tab0 = g0->sb_hybrid;
1144         tab1 = g1->sb_hybrid;
1145         for (i = 0; i < 576; i++) {
1146             tmp0    = tab0[i];
1147             tmp1    = tab1[i];
1148             tab0[i] = tmp0 + tmp1;
1149             tab1[i] = tmp0 - tmp1;
1150         }
1151 #endif
1152     }
1153 }
1154
1155 #if USE_FLOATS
1156 #if HAVE_MIPSFPU
1157 #   include "mips/compute_antialias_float.h"
1158 #endif /* HAVE_MIPSFPU */
1159 #else
1160 #if HAVE_MIPSDSPR1
1161 #   include "mips/compute_antialias_fixed.h"
1162 #endif /* HAVE_MIPSDSPR1 */
1163 #endif /* USE_FLOATS */
1164
1165 #ifndef compute_antialias
1166 #if USE_FLOATS
1167 #define AA(j) do {                                                      \
1168         float tmp0 = ptr[-1-j];                                         \
1169         float tmp1 = ptr[   j];                                         \
1170         ptr[-1-j] = tmp0 * csa_table[j][0] - tmp1 * csa_table[j][1];    \
1171         ptr[   j] = tmp0 * csa_table[j][1] + tmp1 * csa_table[j][0];    \
1172     } while (0)
1173 #else
1174 #define AA(j) do {                                              \
1175         int tmp0 = ptr[-1-j];                                   \
1176         int tmp1 = ptr[   j];                                   \
1177         int tmp2 = MULH(tmp0 + tmp1, csa_table[j][0]);          \
1178         ptr[-1-j] = 4 * (tmp2 - MULH(tmp1, csa_table[j][2]));   \
1179         ptr[   j] = 4 * (tmp2 + MULH(tmp0, csa_table[j][3]));   \
1180     } while (0)
1181 #endif
1182
1183 static void compute_antialias(MPADecodeContext *s, GranuleDef *g)
1184 {
1185     INTFLOAT *ptr;
1186     int n, i;
1187
1188     /* we antialias only "long" bands */
1189     if (g->block_type == 2) {
1190         if (!g->switch_point)
1191             return;
1192         /* XXX: check this for 8000Hz case */
1193         n = 1;
1194     } else {
1195         n = SBLIMIT - 1;
1196     }
1197
1198     ptr = g->sb_hybrid + 18;
1199     for (i = n; i > 0; i--) {
1200         AA(0);
1201         AA(1);
1202         AA(2);
1203         AA(3);
1204         AA(4);
1205         AA(5);
1206         AA(6);
1207         AA(7);
1208
1209         ptr += 18;
1210     }
1211 }
1212 #endif /* compute_antialias */
1213
1214 static void compute_imdct(MPADecodeContext *s, GranuleDef *g,
1215                           INTFLOAT *sb_samples, INTFLOAT *mdct_buf)
1216 {
1217     INTFLOAT *win, *out_ptr, *ptr, *buf, *ptr1;
1218     INTFLOAT out2[12];
1219     int i, j, mdct_long_end, sblimit;
1220
1221     /* find last non zero block */
1222     ptr  = g->sb_hybrid + 576;
1223     ptr1 = g->sb_hybrid + 2 * 18;
1224     while (ptr >= ptr1) {
1225         int32_t *p;
1226         ptr -= 6;
1227         p    = (int32_t*)ptr;
1228         if (p[0] | p[1] | p[2] | p[3] | p[4] | p[5])
1229             break;
1230     }
1231     sblimit = ((ptr - g->sb_hybrid) / 18) + 1;
1232
1233     if (g->block_type == 2) {
1234         /* XXX: check for 8000 Hz */
1235         if (g->switch_point)
1236             mdct_long_end = 2;
1237         else
1238             mdct_long_end = 0;
1239     } else {
1240         mdct_long_end = sblimit;
1241     }
1242
1243     s->mpadsp.RENAME(imdct36_blocks)(sb_samples, mdct_buf, g->sb_hybrid,
1244                                      mdct_long_end, g->switch_point,
1245                                      g->block_type);
1246
1247     buf = mdct_buf + 4*18*(mdct_long_end >> 2) + (mdct_long_end & 3);
1248     ptr = g->sb_hybrid + 18 * mdct_long_end;
1249
1250     for (j = mdct_long_end; j < sblimit; j++) {
1251         /* select frequency inversion */
1252         win     = RENAME(ff_mdct_win)[2 + (4  & -(j & 1))];
1253         out_ptr = sb_samples + j;
1254
1255         for (i = 0; i < 6; i++) {
1256             *out_ptr = buf[4*i];
1257             out_ptr += SBLIMIT;
1258         }
1259         imdct12(out2, ptr + 0);
1260         for (i = 0; i < 6; i++) {
1261             *out_ptr     = MULH3(out2[i    ], win[i    ], 1) + buf[4*(i + 6*1)];
1262             buf[4*(i + 6*2)] = MULH3(out2[i + 6], win[i + 6], 1);
1263             out_ptr += SBLIMIT;
1264         }
1265         imdct12(out2, ptr + 1);
1266         for (i = 0; i < 6; i++) {
1267             *out_ptr     = MULH3(out2[i    ], win[i    ], 1) + buf[4*(i + 6*2)];
1268             buf[4*(i + 6*0)] = MULH3(out2[i + 6], win[i + 6], 1);
1269             out_ptr += SBLIMIT;
1270         }
1271         imdct12(out2, ptr + 2);
1272         for (i = 0; i < 6; i++) {
1273             buf[4*(i + 6*0)] = MULH3(out2[i    ], win[i    ], 1) + buf[4*(i + 6*0)];
1274             buf[4*(i + 6*1)] = MULH3(out2[i + 6], win[i + 6], 1);
1275             buf[4*(i + 6*2)] = 0;
1276         }
1277         ptr += 18;
1278         buf += (j&3) != 3 ? 1 : (4*18-3);
1279     }
1280     /* zero bands */
1281     for (j = sblimit; j < SBLIMIT; j++) {
1282         /* overlap */
1283         out_ptr = sb_samples + j;
1284         for (i = 0; i < 18; i++) {
1285             *out_ptr = buf[4*i];
1286             buf[4*i]   = 0;
1287             out_ptr += SBLIMIT;
1288         }
1289         buf += (j&3) != 3 ? 1 : (4*18-3);
1290     }
1291 }
1292
1293 /* main layer3 decoding function */
1294 static int mp_decode_layer3(MPADecodeContext *s)
1295 {
1296     int nb_granules, main_data_begin;
1297     int gr, ch, blocksplit_flag, i, j, k, n, bits_pos;
1298     GranuleDef *g;
1299     int16_t exponents[576]; //FIXME try INTFLOAT
1300
1301     /* read side info */
1302     if (s->lsf) {
1303         main_data_begin = get_bits(&s->gb, 8);
1304         skip_bits(&s->gb, s->nb_channels);
1305         nb_granules = 1;
1306     } else {
1307         main_data_begin = get_bits(&s->gb, 9);
1308         if (s->nb_channels == 2)
1309             skip_bits(&s->gb, 3);
1310         else
1311             skip_bits(&s->gb, 5);
1312         nb_granules = 2;
1313         for (ch = 0; ch < s->nb_channels; ch++) {
1314             s->granules[ch][0].scfsi = 0;/* all scale factors are transmitted */
1315             s->granules[ch][1].scfsi = get_bits(&s->gb, 4);
1316         }
1317     }
1318
1319     for (gr = 0; gr < nb_granules; gr++) {
1320         for (ch = 0; ch < s->nb_channels; ch++) {
1321             av_dlog(s->avctx, "gr=%d ch=%d: side_info\n", gr, ch);
1322             g = &s->granules[ch][gr];
1323             g->part2_3_length = get_bits(&s->gb, 12);
1324             g->big_values     = get_bits(&s->gb,  9);
1325             if (g->big_values > 288) {
1326                 av_log(s->avctx, AV_LOG_ERROR, "big_values too big\n");
1327                 return AVERROR_INVALIDDATA;
1328             }
1329
1330             g->global_gain = get_bits(&s->gb, 8);
1331             /* if MS stereo only is selected, we precompute the
1332                1/sqrt(2) renormalization factor */
1333             if ((s->mode_ext & (MODE_EXT_MS_STEREO | MODE_EXT_I_STEREO)) ==
1334                 MODE_EXT_MS_STEREO)
1335                 g->global_gain -= 2;
1336             if (s->lsf)
1337                 g->scalefac_compress = get_bits(&s->gb, 9);
1338             else
1339                 g->scalefac_compress = get_bits(&s->gb, 4);
1340             blocksplit_flag = get_bits1(&s->gb);
1341             if (blocksplit_flag) {
1342                 g->block_type = get_bits(&s->gb, 2);
1343                 if (g->block_type == 0) {
1344                     av_log(s->avctx, AV_LOG_ERROR, "invalid block type\n");
1345                     return AVERROR_INVALIDDATA;
1346                 }
1347                 g->switch_point = get_bits1(&s->gb);
1348                 for (i = 0; i < 2; i++)
1349                     g->table_select[i] = get_bits(&s->gb, 5);
1350                 for (i = 0; i < 3; i++)
1351                     g->subblock_gain[i] = get_bits(&s->gb, 3);
1352                 init_short_region(s, g);
1353             } else {
1354                 int region_address1, region_address2;
1355                 g->block_type = 0;
1356                 g->switch_point = 0;
1357                 for (i = 0; i < 3; i++)
1358                     g->table_select[i] = get_bits(&s->gb, 5);
1359                 /* compute huffman coded region sizes */
1360                 region_address1 = get_bits(&s->gb, 4);
1361                 region_address2 = get_bits(&s->gb, 3);
1362                 av_dlog(s->avctx, "region1=%d region2=%d\n",
1363                         region_address1, region_address2);
1364                 init_long_region(s, g, region_address1, region_address2);
1365             }
1366             region_offset2size(g);
1367             compute_band_indexes(s, g);
1368
1369             g->preflag = 0;
1370             if (!s->lsf)
1371                 g->preflag = get_bits1(&s->gb);
1372             g->scalefac_scale     = get_bits1(&s->gb);
1373             g->count1table_select = get_bits1(&s->gb);
1374             av_dlog(s->avctx, "block_type=%d switch_point=%d\n",
1375                     g->block_type, g->switch_point);
1376         }
1377     }
1378
1379     if (!s->adu_mode) {
1380         int skip;
1381         const uint8_t *ptr = s->gb.buffer + (get_bits_count(&s->gb)>>3);
1382         int extrasize = av_clip(get_bits_left(&s->gb) >> 3, 0, EXTRABYTES);
1383         av_assert1((get_bits_count(&s->gb) & 7) == 0);
1384         /* now we get bits from the main_data_begin offset */
1385         av_dlog(s->avctx, "seekback:%d, lastbuf:%d\n",
1386                 main_data_begin, s->last_buf_size);
1387
1388         memcpy(s->last_buf + s->last_buf_size, ptr, extrasize);
1389         s->in_gb = s->gb;
1390         init_get_bits(&s->gb, s->last_buf, s->last_buf_size*8);
1391 #if !UNCHECKED_BITSTREAM_READER
1392         s->gb.size_in_bits_plus8 += FFMAX(extrasize, LAST_BUF_SIZE - s->last_buf_size) * 8;
1393 #endif
1394         s->last_buf_size <<= 3;
1395         for (gr = 0; gr < nb_granules && (s->last_buf_size >> 3) < main_data_begin; gr++) {
1396             for (ch = 0; ch < s->nb_channels; ch++) {
1397                 g = &s->granules[ch][gr];
1398                 s->last_buf_size += g->part2_3_length;
1399                 memset(g->sb_hybrid, 0, sizeof(g->sb_hybrid));
1400                 compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
1401             }
1402         }
1403         skip = s->last_buf_size - 8 * main_data_begin;
1404         if (skip >= s->gb.size_in_bits && s->in_gb.buffer) {
1405             skip_bits_long(&s->in_gb, skip - s->gb.size_in_bits);
1406             s->gb           = s->in_gb;
1407             s->in_gb.buffer = NULL;
1408         } else {
1409             skip_bits_long(&s->gb, skip);
1410         }
1411     } else {
1412         gr = 0;
1413     }
1414
1415     for (; gr < nb_granules; gr++) {
1416         for (ch = 0; ch < s->nb_channels; ch++) {
1417             g = &s->granules[ch][gr];
1418             bits_pos = get_bits_count(&s->gb);
1419
1420             if (!s->lsf) {
1421                 uint8_t *sc;
1422                 int slen, slen1, slen2;
1423
1424                 /* MPEG1 scale factors */
1425                 slen1 = slen_table[0][g->scalefac_compress];
1426                 slen2 = slen_table[1][g->scalefac_compress];
1427                 av_dlog(s->avctx, "slen1=%d slen2=%d\n", slen1, slen2);
1428                 if (g->block_type == 2) {
1429                     n = g->switch_point ? 17 : 18;
1430                     j = 0;
1431                     if (slen1) {
1432                         for (i = 0; i < n; i++)
1433                             g->scale_factors[j++] = get_bits(&s->gb, slen1);
1434                     } else {
1435                         for (i = 0; i < n; i++)
1436                             g->scale_factors[j++] = 0;
1437                     }
1438                     if (slen2) {
1439                         for (i = 0; i < 18; i++)
1440                             g->scale_factors[j++] = get_bits(&s->gb, slen2);
1441                         for (i = 0; i < 3; i++)
1442                             g->scale_factors[j++] = 0;
1443                     } else {
1444                         for (i = 0; i < 21; i++)
1445                             g->scale_factors[j++] = 0;
1446                     }
1447                 } else {
1448                     sc = s->granules[ch][0].scale_factors;
1449                     j = 0;
1450                     for (k = 0; k < 4; k++) {
1451                         n = k == 0 ? 6 : 5;
1452                         if ((g->scfsi & (0x8 >> k)) == 0) {
1453                             slen = (k < 2) ? slen1 : slen2;
1454                             if (slen) {
1455                                 for (i = 0; i < n; i++)
1456                                     g->scale_factors[j++] = get_bits(&s->gb, slen);
1457                             } else {
1458                                 for (i = 0; i < n; i++)
1459                                     g->scale_factors[j++] = 0;
1460                             }
1461                         } else {
1462                             /* simply copy from last granule */
1463                             for (i = 0; i < n; i++) {
1464                                 g->scale_factors[j] = sc[j];
1465                                 j++;
1466                             }
1467                         }
1468                     }
1469                     g->scale_factors[j++] = 0;
1470                 }
1471             } else {
1472                 int tindex, tindex2, slen[4], sl, sf;
1473
1474                 /* LSF scale factors */
1475                 if (g->block_type == 2)
1476                     tindex = g->switch_point ? 2 : 1;
1477                 else
1478                     tindex = 0;
1479
1480                 sf = g->scalefac_compress;
1481                 if ((s->mode_ext & MODE_EXT_I_STEREO) && ch == 1) {
1482                     /* intensity stereo case */
1483                     sf >>= 1;
1484                     if (sf < 180) {
1485                         lsf_sf_expand(slen, sf, 6, 6, 0);
1486                         tindex2 = 3;
1487                     } else if (sf < 244) {
1488                         lsf_sf_expand(slen, sf - 180, 4, 4, 0);
1489                         tindex2 = 4;
1490                     } else {
1491                         lsf_sf_expand(slen, sf - 244, 3, 0, 0);
1492                         tindex2 = 5;
1493                     }
1494                 } else {
1495                     /* normal case */
1496                     if (sf < 400) {
1497                         lsf_sf_expand(slen, sf, 5, 4, 4);
1498                         tindex2 = 0;
1499                     } else if (sf < 500) {
1500                         lsf_sf_expand(slen, sf - 400, 5, 4, 0);
1501                         tindex2 = 1;
1502                     } else {
1503                         lsf_sf_expand(slen, sf - 500, 3, 0, 0);
1504                         tindex2 = 2;
1505                         g->preflag = 1;
1506                     }
1507                 }
1508
1509                 j = 0;
1510                 for (k = 0; k < 4; k++) {
1511                     n  = lsf_nsf_table[tindex2][tindex][k];
1512                     sl = slen[k];
1513                     if (sl) {
1514                         for (i = 0; i < n; i++)
1515                             g->scale_factors[j++] = get_bits(&s->gb, sl);
1516                     } else {
1517                         for (i = 0; i < n; i++)
1518                             g->scale_factors[j++] = 0;
1519                     }
1520                 }
1521                 /* XXX: should compute exact size */
1522                 for (; j < 40; j++)
1523                     g->scale_factors[j] = 0;
1524             }
1525
1526             exponents_from_scale_factors(s, g, exponents);
1527
1528             /* read Huffman coded residue */
1529             huffman_decode(s, g, exponents, bits_pos + g->part2_3_length);
1530         } /* ch */
1531
1532         if (s->mode == MPA_JSTEREO)
1533             compute_stereo(s, &s->granules[0][gr], &s->granules[1][gr]);
1534
1535         for (ch = 0; ch < s->nb_channels; ch++) {
1536             g = &s->granules[ch][gr];
1537
1538             reorder_block(s, g);
1539             compute_antialias(s, g);
1540             compute_imdct(s, g, &s->sb_samples[ch][18 * gr][0], s->mdct_buf[ch]);
1541         }
1542     } /* gr */
1543     if (get_bits_count(&s->gb) < 0)
1544         skip_bits_long(&s->gb, -get_bits_count(&s->gb));
1545     return nb_granules * 18;
1546 }
1547
1548 static int mp_decode_frame(MPADecodeContext *s, OUT_INT **samples,
1549                            const uint8_t *buf, int buf_size)
1550 {
1551     int i, nb_frames, ch, ret;
1552     OUT_INT *samples_ptr;
1553
1554     init_get_bits(&s->gb, buf + HEADER_SIZE, (buf_size - HEADER_SIZE) * 8);
1555
1556     /* skip error protection field */
1557     if (s->error_protection)
1558         skip_bits(&s->gb, 16);
1559
1560     switch(s->layer) {
1561     case 1:
1562         s->avctx->frame_size = 384;
1563         nb_frames = mp_decode_layer1(s);
1564         break;
1565     case 2:
1566         s->avctx->frame_size = 1152;
1567         nb_frames = mp_decode_layer2(s);
1568         break;
1569     case 3:
1570         s->avctx->frame_size = s->lsf ? 576 : 1152;
1571     default:
1572         nb_frames = mp_decode_layer3(s);
1573
1574         s->last_buf_size=0;
1575         if (s->in_gb.buffer) {
1576             align_get_bits(&s->gb);
1577             i = get_bits_left(&s->gb)>>3;
1578             if (i >= 0 && i <= BACKSTEP_SIZE) {
1579                 memmove(s->last_buf, s->gb.buffer + (get_bits_count(&s->gb)>>3), i);
1580                 s->last_buf_size=i;
1581             } else
1582                 av_log(s->avctx, AV_LOG_ERROR, "invalid old backstep %d\n", i);
1583             s->gb           = s->in_gb;
1584             s->in_gb.buffer = NULL;
1585         }
1586
1587         align_get_bits(&s->gb);
1588         av_assert1((get_bits_count(&s->gb) & 7) == 0);
1589         i = get_bits_left(&s->gb) >> 3;
1590
1591         if (i < 0 || i > BACKSTEP_SIZE || nb_frames < 0) {
1592             if (i < 0)
1593                 av_log(s->avctx, AV_LOG_ERROR, "invalid new backstep %d\n", i);
1594             i = FFMIN(BACKSTEP_SIZE, buf_size - HEADER_SIZE);
1595         }
1596         av_assert1(i <= buf_size - HEADER_SIZE && i >= 0);
1597         memcpy(s->last_buf + s->last_buf_size, s->gb.buffer + buf_size - HEADER_SIZE - i, i);
1598         s->last_buf_size += i;
1599     }
1600
1601     if(nb_frames < 0)
1602         return nb_frames;
1603
1604     /* get output buffer */
1605     if (!samples) {
1606         av_assert0(s->frame != NULL);
1607         s->frame->nb_samples = s->avctx->frame_size;
1608         if ((ret = ff_get_buffer(s->avctx, s->frame, 0)) < 0)
1609             return ret;
1610         samples = (OUT_INT **)s->frame->extended_data;
1611     }
1612
1613     /* apply the synthesis filter */
1614     for (ch = 0; ch < s->nb_channels; ch++) {
1615         int sample_stride;
1616         if (s->avctx->sample_fmt == OUT_FMT_P) {
1617             samples_ptr   = samples[ch];
1618             sample_stride = 1;
1619         } else {
1620             samples_ptr   = samples[0] + ch;
1621             sample_stride = s->nb_channels;
1622         }
1623         for (i = 0; i < nb_frames; i++) {
1624             RENAME(ff_mpa_synth_filter)(&s->mpadsp, s->synth_buf[ch],
1625                                         &(s->synth_buf_offset[ch]),
1626                                         RENAME(ff_mpa_synth_window),
1627                                         &s->dither_state, samples_ptr,
1628                                         sample_stride, s->sb_samples[ch][i]);
1629             samples_ptr += 32 * sample_stride;
1630         }
1631     }
1632
1633     return nb_frames * 32 * sizeof(OUT_INT) * s->nb_channels;
1634 }
1635
1636 static int decode_frame(AVCodecContext * avctx, void *data, int *got_frame_ptr,
1637                         AVPacket *avpkt)
1638 {
1639     const uint8_t *buf  = avpkt->data;
1640     int buf_size        = avpkt->size;
1641     MPADecodeContext *s = avctx->priv_data;
1642     uint32_t header;
1643     int ret;
1644
1645     while(buf_size && !*buf){
1646         buf++;
1647         buf_size--;
1648     }
1649
1650     if (buf_size < HEADER_SIZE)
1651         return AVERROR_INVALIDDATA;
1652
1653     header = AV_RB32(buf);
1654     if (header>>8 == AV_RB32("TAG")>>8) {
1655         av_log(avctx, AV_LOG_DEBUG, "discarding ID3 tag\n");
1656         return buf_size;
1657     }
1658     if (ff_mpa_check_header(header) < 0) {
1659         av_log(avctx, AV_LOG_ERROR, "Header missing\n");
1660         return AVERROR_INVALIDDATA;
1661     }
1662
1663     if (avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header) == 1) {
1664         /* free format: prepare to compute frame size */
1665         s->frame_size = -1;
1666         return AVERROR_INVALIDDATA;
1667     }
1668     /* update codec info */
1669     avctx->channels       = s->nb_channels;
1670     avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
1671     if (!avctx->bit_rate)
1672         avctx->bit_rate = s->bit_rate;
1673
1674     if (s->frame_size <= 0 || s->frame_size > buf_size) {
1675         av_log(avctx, AV_LOG_ERROR, "incomplete frame\n");
1676         return AVERROR_INVALIDDATA;
1677     } else if (s->frame_size < buf_size) {
1678         av_log(avctx, AV_LOG_DEBUG, "incorrect frame size - multiple frames in buffer?\n");
1679         buf_size= s->frame_size;
1680     }
1681
1682     s->frame = data;
1683
1684     ret = mp_decode_frame(s, NULL, buf, buf_size);
1685     if (ret >= 0) {
1686         s->frame->nb_samples = avctx->frame_size;
1687         *got_frame_ptr       = 1;
1688         avctx->sample_rate   = s->sample_rate;
1689         //FIXME maybe move the other codec info stuff from above here too
1690     } else {
1691         av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
1692         /* Only return an error if the bad frame makes up the whole packet or
1693          * the error is related to buffer management.
1694          * If there is more data in the packet, just consume the bad frame
1695          * instead of returning an error, which would discard the whole
1696          * packet. */
1697         *got_frame_ptr = 0;
1698         if (buf_size == avpkt->size || ret != AVERROR_INVALIDDATA)
1699             return ret;
1700     }
1701     s->frame_size = 0;
1702     return buf_size;
1703 }
1704
1705 static void mp_flush(MPADecodeContext *ctx)
1706 {
1707     memset(ctx->synth_buf, 0, sizeof(ctx->synth_buf));
1708     ctx->last_buf_size = 0;
1709 }
1710
1711 static void flush(AVCodecContext *avctx)
1712 {
1713     mp_flush(avctx->priv_data);
1714 }
1715
1716 #if CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER
1717 static int decode_frame_adu(AVCodecContext *avctx, void *data,
1718                             int *got_frame_ptr, AVPacket *avpkt)
1719 {
1720     const uint8_t *buf  = avpkt->data;
1721     int buf_size        = avpkt->size;
1722     MPADecodeContext *s = avctx->priv_data;
1723     uint32_t header;
1724     int len, ret;
1725     int av_unused out_size;
1726
1727     len = buf_size;
1728
1729     // Discard too short frames
1730     if (buf_size < HEADER_SIZE) {
1731         av_log(avctx, AV_LOG_ERROR, "Packet is too small\n");
1732         return AVERROR_INVALIDDATA;
1733     }
1734
1735
1736     if (len > MPA_MAX_CODED_FRAME_SIZE)
1737         len = MPA_MAX_CODED_FRAME_SIZE;
1738
1739     // Get header and restore sync word
1740     header = AV_RB32(buf) | 0xffe00000;
1741
1742     if (ff_mpa_check_header(header) < 0) { // Bad header, discard frame
1743         av_log(avctx, AV_LOG_ERROR, "Invalid frame header\n");
1744         return AVERROR_INVALIDDATA;
1745     }
1746
1747     avpriv_mpegaudio_decode_header((MPADecodeHeader *)s, header);
1748     /* update codec info */
1749     avctx->sample_rate = s->sample_rate;
1750     avctx->channels    = s->nb_channels;
1751     avctx->channel_layout = s->nb_channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
1752     if (!avctx->bit_rate)
1753         avctx->bit_rate = s->bit_rate;
1754
1755     s->frame_size = len;
1756
1757     s->frame = data;
1758
1759     ret = mp_decode_frame(s, NULL, buf, buf_size);
1760     if (ret < 0) {
1761         av_log(avctx, AV_LOG_ERROR, "Error while decoding MPEG audio frame.\n");
1762         return ret;
1763     }
1764
1765     *got_frame_ptr = 1;
1766
1767     return buf_size;
1768 }
1769 #endif /* CONFIG_MP3ADU_DECODER || CONFIG_MP3ADUFLOAT_DECODER */
1770
1771 #if CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER
1772
1773 /**
1774  * Context for MP3On4 decoder
1775  */
1776 typedef struct MP3On4DecodeContext {
1777     int frames;                     ///< number of mp3 frames per block (number of mp3 decoder instances)
1778     int syncword;                   ///< syncword patch
1779     const uint8_t *coff;            ///< channel offsets in output buffer
1780     MPADecodeContext *mp3decctx[5]; ///< MPADecodeContext for every decoder instance
1781 } MP3On4DecodeContext;
1782
1783 #include "mpeg4audio.h"
1784
1785 /* Next 3 arrays are indexed by channel config number (passed via codecdata) */
1786
1787 /* number of mp3 decoder instances */
1788 static const uint8_t mp3Frames[8] = { 0, 1, 1, 2, 3, 3, 4, 5 };
1789
1790 /* offsets into output buffer, assume output order is FL FR C LFE BL BR SL SR */
1791 static const uint8_t chan_offset[8][5] = {
1792     { 0             },
1793     { 0             },  // C
1794     { 0             },  // FLR
1795     { 2, 0          },  // C FLR
1796     { 2, 0, 3       },  // C FLR BS
1797     { 2, 0, 3       },  // C FLR BLRS
1798     { 2, 0, 4, 3    },  // C FLR BLRS LFE
1799     { 2, 0, 6, 4, 3 },  // C FLR BLRS BLR LFE
1800 };
1801
1802 /* mp3on4 channel layouts */
1803 static const int16_t chan_layout[8] = {
1804     0,
1805     AV_CH_LAYOUT_MONO,
1806     AV_CH_LAYOUT_STEREO,
1807     AV_CH_LAYOUT_SURROUND,
1808     AV_CH_LAYOUT_4POINT0,
1809     AV_CH_LAYOUT_5POINT0,
1810     AV_CH_LAYOUT_5POINT1,
1811     AV_CH_LAYOUT_7POINT1
1812 };
1813
1814 static av_cold int decode_close_mp3on4(AVCodecContext * avctx)
1815 {
1816     MP3On4DecodeContext *s = avctx->priv_data;
1817     int i;
1818
1819     for (i = 0; i < s->frames; i++)
1820         av_free(s->mp3decctx[i]);
1821
1822     return 0;
1823 }
1824
1825
1826 static av_cold int decode_init_mp3on4(AVCodecContext * avctx)
1827 {
1828     MP3On4DecodeContext *s = avctx->priv_data;
1829     MPEG4AudioConfig cfg;
1830     int i;
1831
1832     if ((avctx->extradata_size < 2) || (avctx->extradata == NULL)) {
1833         av_log(avctx, AV_LOG_ERROR, "Codec extradata missing or too short.\n");
1834         return AVERROR_INVALIDDATA;
1835     }
1836
1837     avpriv_mpeg4audio_get_config(&cfg, avctx->extradata,
1838                                  avctx->extradata_size * 8, 1);
1839     if (!cfg.chan_config || cfg.chan_config > 7) {
1840         av_log(avctx, AV_LOG_ERROR, "Invalid channel config number.\n");
1841         return AVERROR_INVALIDDATA;
1842     }
1843     s->frames             = mp3Frames[cfg.chan_config];
1844     s->coff               = chan_offset[cfg.chan_config];
1845     avctx->channels       = ff_mpeg4audio_channels[cfg.chan_config];
1846     avctx->channel_layout = chan_layout[cfg.chan_config];
1847
1848     if (cfg.sample_rate < 16000)
1849         s->syncword = 0xffe00000;
1850     else
1851         s->syncword = 0xfff00000;
1852
1853     /* Init the first mp3 decoder in standard way, so that all tables get builded
1854      * We replace avctx->priv_data with the context of the first decoder so that
1855      * decode_init() does not have to be changed.
1856      * Other decoders will be initialized here copying data from the first context
1857      */
1858     // Allocate zeroed memory for the first decoder context
1859     s->mp3decctx[0] = av_mallocz(sizeof(MPADecodeContext));
1860     if (!s->mp3decctx[0])
1861         goto alloc_fail;
1862     // Put decoder context in place to make init_decode() happy
1863     avctx->priv_data = s->mp3decctx[0];
1864     decode_init(avctx);
1865     // Restore mp3on4 context pointer
1866     avctx->priv_data = s;
1867     s->mp3decctx[0]->adu_mode = 1; // Set adu mode
1868
1869     /* Create a separate codec/context for each frame (first is already ok).
1870      * Each frame is 1 or 2 channels - up to 5 frames allowed
1871      */
1872     for (i = 1; i < s->frames; i++) {
1873         s->mp3decctx[i] = av_mallocz(sizeof(MPADecodeContext));
1874         if (!s->mp3decctx[i])
1875             goto alloc_fail;
1876         s->mp3decctx[i]->adu_mode = 1;
1877         s->mp3decctx[i]->avctx = avctx;
1878         s->mp3decctx[i]->mpadsp = s->mp3decctx[0]->mpadsp;
1879     }
1880
1881     return 0;
1882 alloc_fail:
1883     decode_close_mp3on4(avctx);
1884     return AVERROR(ENOMEM);
1885 }
1886
1887
1888 static void flush_mp3on4(AVCodecContext *avctx)
1889 {
1890     int i;
1891     MP3On4DecodeContext *s = avctx->priv_data;
1892
1893     for (i = 0; i < s->frames; i++)
1894         mp_flush(s->mp3decctx[i]);
1895 }
1896
1897
1898 static int decode_frame_mp3on4(AVCodecContext *avctx, void *data,
1899                                int *got_frame_ptr, AVPacket *avpkt)
1900 {
1901     AVFrame *frame         = data;
1902     const uint8_t *buf     = avpkt->data;
1903     int buf_size           = avpkt->size;
1904     MP3On4DecodeContext *s = avctx->priv_data;
1905     MPADecodeContext *m;
1906     int fsize, len = buf_size, out_size = 0;
1907     uint32_t header;
1908     OUT_INT **out_samples;
1909     OUT_INT *outptr[2];
1910     int fr, ch, ret;
1911
1912     /* get output buffer */
1913     frame->nb_samples = MPA_FRAME_SIZE;
1914     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1915         return ret;
1916     out_samples = (OUT_INT **)frame->extended_data;
1917
1918     // Discard too short frames
1919     if (buf_size < HEADER_SIZE)
1920         return AVERROR_INVALIDDATA;
1921
1922     avctx->bit_rate = 0;
1923
1924     ch = 0;
1925     for (fr = 0; fr < s->frames; fr++) {
1926         fsize = AV_RB16(buf) >> 4;
1927         fsize = FFMIN3(fsize, len, MPA_MAX_CODED_FRAME_SIZE);
1928         m     = s->mp3decctx[fr];
1929         av_assert1(m);
1930
1931         if (fsize < HEADER_SIZE) {
1932             av_log(avctx, AV_LOG_ERROR, "Frame size smaller than header size\n");
1933             return AVERROR_INVALIDDATA;
1934         }
1935         header = (AV_RB32(buf) & 0x000fffff) | s->syncword; // patch header
1936
1937         if (ff_mpa_check_header(header) < 0) {
1938             av_log(avctx, AV_LOG_ERROR, "Bad header, discard block\n");
1939             return AVERROR_INVALIDDATA;
1940         }
1941
1942         avpriv_mpegaudio_decode_header((MPADecodeHeader *)m, header);
1943
1944         if (ch + m->nb_channels > avctx->channels ||
1945             s->coff[fr] + m->nb_channels > avctx->channels) {
1946             av_log(avctx, AV_LOG_ERROR, "frame channel count exceeds codec "
1947                                         "channel count\n");
1948             return AVERROR_INVALIDDATA;
1949         }
1950         ch += m->nb_channels;
1951
1952         outptr[0] = out_samples[s->coff[fr]];
1953         if (m->nb_channels > 1)
1954             outptr[1] = out_samples[s->coff[fr] + 1];
1955
1956         if ((ret = mp_decode_frame(m, outptr, buf, fsize)) < 0)
1957             return ret;
1958
1959         out_size += ret;
1960         buf      += fsize;
1961         len      -= fsize;
1962
1963         avctx->bit_rate += m->bit_rate;
1964     }
1965
1966     /* update codec info */
1967     avctx->sample_rate = s->mp3decctx[0]->sample_rate;
1968
1969     frame->nb_samples = out_size / (avctx->channels * sizeof(OUT_INT));
1970     *got_frame_ptr    = 1;
1971
1972     return buf_size;
1973 }
1974 #endif /* CONFIG_MP3ON4_DECODER || CONFIG_MP3ON4FLOAT_DECODER */