Merge commit 'a6a750c7ef240b72ce01e9653343a0ddf247d196'
[ffmpeg.git] / libavcodec / mips / vp8_idct_msa.c
1 /*
2  * Copyright (c) 2015 Manojkumar Bhosale (Manojkumar.Bhosale@imgtec.com)
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20
21 #include <string.h>
22 #include "libavcodec/vp8dsp.h"
23 #include "libavutil/mips/generic_macros_msa.h"
24 #include "vp8dsp_mips.h"
25
26 static const int cospi8sqrt2minus1 = 20091;
27 static const int sinpi8sqrt2 = 35468;
28
29 #define VP8_IDCT_1D_W(in0, in1, in2, in3, out0, out1, out2, out3)    \
30 {                                                                    \
31     v4i32 a1_m, b1_m, c1_m, d1_m;                                    \
32     v4i32 c_tmp1_m, c_tmp2_m, d_tmp1_m, d_tmp2_m;                    \
33     v4i32 const_cospi8sqrt2minus1_m, sinpi8_sqrt2_m;                 \
34                                                                      \
35     const_cospi8sqrt2minus1_m = __msa_fill_w(cospi8sqrt2minus1);     \
36     sinpi8_sqrt2_m = __msa_fill_w(sinpi8sqrt2);                      \
37     a1_m = in0 + in2;                                                \
38     b1_m = in0 - in2;                                                \
39     c_tmp1_m = ((in1) * sinpi8_sqrt2_m) >> 16;                       \
40     c_tmp2_m = in3 + (((in3) * const_cospi8sqrt2minus1_m) >> 16);    \
41     c1_m = c_tmp1_m - c_tmp2_m;                                      \
42     d_tmp1_m = (in1) + (((in1) * const_cospi8sqrt2minus1_m) >> 16);  \
43     d_tmp2_m = ((in3) * sinpi8_sqrt2_m) >> 16;                       \
44     d1_m = d_tmp1_m + d_tmp2_m;                                      \
45     BUTTERFLY_4(a1_m, b1_m, c1_m, d1_m, out0, out1, out2, out3);     \
46 }
47
48 void ff_vp8_idct_add_msa(uint8_t *dst, int16_t input[16], ptrdiff_t stride)
49 {
50     v8i16 input0, input1;
51     v4i32 in0, in1, in2, in3, hz0, hz1, hz2, hz3, vt0, vt1, vt2, vt3;
52     v4i32 res0, res1, res2, res3;
53     v16i8 zero = { 0 };
54     v16i8 pred0, pred1, pred2, pred3, dest0, dest1;
55     v16i8 mask = { 0, 4, 8, 12, 16, 20, 24, 28, 0, 0, 0, 0, 0, 0, 0, 0 };
56
57     /* load short vector elements of 4x4 block */
58     LD_SH2(input, 8, input0, input1);
59     UNPCK_SH_SW(input0, in0, in1);
60     UNPCK_SH_SW(input1, in2, in3);
61     VP8_IDCT_1D_W(in0, in1, in2, in3, hz0, hz1, hz2, hz3);
62     /* transpose the block */
63     TRANSPOSE4x4_SW_SW(hz0, hz1, hz2, hz3, hz0, hz1, hz2, hz3);
64     VP8_IDCT_1D_W(hz0, hz1, hz2, hz3, vt0, vt1, vt2, vt3);
65     SRARI_W4_SW(vt0, vt1, vt2, vt3, 3);
66     /* transpose the block */
67     TRANSPOSE4x4_SW_SW(vt0, vt1, vt2, vt3, vt0, vt1, vt2, vt3);
68     LD_SB4(dst, stride, pred0, pred1, pred2, pred3);
69     ILVR_B4_SW(zero, pred0, zero, pred1, zero, pred2, zero, pred3,
70                res0, res1, res2, res3);
71     ILVR_H4_SW(zero, res0, zero, res1, zero, res2, zero, res3,
72                res0, res1, res2, res3);
73     ADD4(res0, vt0, res1, vt1, res2, vt2, res3, vt3, res0, res1, res2, res3);
74     res0 = CLIP_SW_0_255(res0);
75     res1 = CLIP_SW_0_255(res1);
76     res2 = CLIP_SW_0_255(res2);
77     res3 = CLIP_SW_0_255(res3);
78     VSHF_B2_SB(res0, res1, res2, res3, mask, mask, dest0, dest1);
79     ST4x4_UB(dest0, dest1, 0, 1, 0, 1, dst, stride);
80
81     memset(input, 0, 4 * 4 * sizeof(*input));
82 }
83
84 void ff_vp8_idct_dc_add_msa(uint8_t *dst, int16_t in_dc[16], ptrdiff_t stride)
85 {
86     v8i16 vec;
87     v8i16 res0, res1, res2, res3;
88     v16i8 zero = { 0 };
89     v16i8 pred0, pred1, pred2, pred3, dest0, dest1;
90     v16i8 mask = { 0, 2, 4, 6, 16, 18, 20, 22, 0, 0, 0, 0, 0, 0, 0, 0 };
91
92     vec = __msa_fill_h(in_dc[0]);
93     vec = __msa_srari_h(vec, 3);
94     LD_SB4(dst, stride, pred0, pred1, pred2, pred3);
95     ILVR_B4_SH(zero, pred0, zero, pred1, zero, pred2, zero, pred3,
96                res0, res1, res2, res3);
97     ADD4(res0, vec, res1, vec, res2, vec, res3, vec, res0, res1, res2, res3);
98     CLIP_SH4_0_255(res0, res1, res2, res3);
99     VSHF_B2_SB(res0, res1, res2, res3, mask, mask, dest0, dest1);
100     ST4x4_UB(dest0, dest1, 0, 1, 0, 1, dst, stride);
101
102     in_dc[0] = 0;
103 }
104
105 void ff_vp8_luma_dc_wht_msa(int16_t block[4][4][16], int16_t input[16])
106 {
107     int16_t *mb_dq_coeff = &block[0][0][0];
108     v8i16 input0, input1;
109     v4i32 in0, in1, in2, in3, a1, b1, c1, d1;
110     v4i32 hz0, hz1, hz2, hz3, vt0, vt1, vt2, vt3;
111
112     /* load short vector elements of 4x4 block */
113     LD_SH2(input, 8, input0, input1);
114     UNPCK_SH_SW(input0, in0, in1);
115     UNPCK_SH_SW(input1, in2, in3);
116     BUTTERFLY_4(in0, in1, in2, in3, a1, b1, c1, d1);
117     BUTTERFLY_4(a1, d1, c1, b1, hz0, hz1, hz3, hz2);
118     /* transpose the block */
119     TRANSPOSE4x4_SW_SW(hz0, hz1, hz2, hz3, hz0, hz1, hz2, hz3);
120     BUTTERFLY_4(hz0, hz1, hz2, hz3, a1, b1, c1, d1);
121     BUTTERFLY_4(a1, d1, c1, b1, vt0, vt1, vt3, vt2);
122     ADD4(vt0, 3, vt1, 3, vt2, 3, vt3, 3, vt0, vt1, vt2, vt3);
123     SRA_4V(vt0, vt1, vt2, vt3, 3);
124     mb_dq_coeff[0] = __msa_copy_s_h((v8i16) vt0, 0);
125     mb_dq_coeff[16] = __msa_copy_s_h((v8i16) vt1, 0);
126     mb_dq_coeff[32] = __msa_copy_s_h((v8i16) vt2, 0);
127     mb_dq_coeff[48] = __msa_copy_s_h((v8i16) vt3, 0);
128     mb_dq_coeff[64] = __msa_copy_s_h((v8i16) vt0, 2);
129     mb_dq_coeff[80] = __msa_copy_s_h((v8i16) vt1, 2);
130     mb_dq_coeff[96] = __msa_copy_s_h((v8i16) vt2, 2);
131     mb_dq_coeff[112] = __msa_copy_s_h((v8i16) vt3, 2);
132     mb_dq_coeff[128] = __msa_copy_s_h((v8i16) vt0, 4);
133     mb_dq_coeff[144] = __msa_copy_s_h((v8i16) vt1, 4);
134     mb_dq_coeff[160] = __msa_copy_s_h((v8i16) vt2, 4);
135     mb_dq_coeff[176] = __msa_copy_s_h((v8i16) vt3, 4);
136     mb_dq_coeff[192] = __msa_copy_s_h((v8i16) vt0, 6);
137     mb_dq_coeff[208] = __msa_copy_s_h((v8i16) vt1, 6);
138     mb_dq_coeff[224] = __msa_copy_s_h((v8i16) vt2, 6);
139     mb_dq_coeff[240] = __msa_copy_s_h((v8i16) vt3, 6);
140
141     memset(input, 0, 4 * 4 * sizeof(int16_t));
142 }
143
144 void ff_vp8_idct_dc_add4y_msa(uint8_t *dst, int16_t block[4][16],
145                               ptrdiff_t stride)
146 {
147     ff_vp8_idct_dc_add_msa(dst, &block[0][0], stride);
148     ff_vp8_idct_dc_add_msa(dst + 4, &block[1][0], stride);
149     ff_vp8_idct_dc_add_msa(dst + 8, &block[2][0], stride);
150     ff_vp8_idct_dc_add_msa(dst + 12, &block[3][0], stride);
151 }
152
153 void ff_vp8_idct_dc_add4uv_msa(uint8_t *dst, int16_t block[4][16],
154                                ptrdiff_t stride)
155 {
156     ff_vp8_idct_dc_add_msa(dst, &block[0][0], stride);
157     ff_vp8_idct_dc_add_msa(dst + 4, &block[1][0], stride);
158     ff_vp8_idct_dc_add_msa(dst + stride * 4, &block[2][0], stride);
159     ff_vp8_idct_dc_add_msa(dst + stride * 4 + 4, &block[3][0], stride);
160 }