cosmetics: Remove pointless period after copyright statement non-sentences.
[ffmpeg.git] / libavcodec / mdct.c
1 /*
2  * MDCT/IMDCT transforms
3  * Copyright (c) 2002 Fabrice Bellard
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 #include "dsputil.h"
22
23 /**
24  * @file mdct.c
25  * MDCT/IMDCT transforms.
26  */
27
28 // Generate a Kaiser-Bessel Derived Window.
29 #define BESSEL_I0_ITER 50 // default: 50 iterations of Bessel I0 approximation
30 void ff_kbd_window_init(float *window, float alpha, int n)
31 {
32    int i, j;
33    double sum = 0.0, bessel, tmp;
34    double local_window[n];
35    double alpha2 = (alpha * M_PI / n) * (alpha * M_PI / n);
36
37    for (i = 0; i < n; i++) {
38        tmp = i * (n - i) * alpha2;
39        bessel = 1.0;
40        for (j = BESSEL_I0_ITER; j > 0; j--)
41            bessel = bessel * tmp / (j * j) + 1;
42        sum += bessel;
43        local_window[i] = sum;
44    }
45
46    sum++;
47    for (i = 0; i < n; i++)
48        window[i] = sqrt(local_window[i] / sum);
49 }
50
51 DECLARE_ALIGNED(16, float, ff_sine_128 [ 128]);
52 DECLARE_ALIGNED(16, float, ff_sine_256 [ 256]);
53 DECLARE_ALIGNED(16, float, ff_sine_512 [ 512]);
54 DECLARE_ALIGNED(16, float, ff_sine_1024[1024]);
55 DECLARE_ALIGNED(16, float, ff_sine_2048[2048]);
56 DECLARE_ALIGNED(16, float, ff_sine_4096[4096]);
57 float *ff_sine_windows[6] = {
58     ff_sine_128, ff_sine_256, ff_sine_512, ff_sine_1024, ff_sine_2048, ff_sine_4096
59 };
60
61 // Generate a sine window.
62 void ff_sine_window_init(float *window, int n) {
63     int i;
64     for(i = 0; i < n; i++)
65         window[i] = sinf((i + 0.5) * (M_PI / (2.0 * n)));
66 }
67
68 /**
69  * init MDCT or IMDCT computation.
70  */
71 int ff_mdct_init(MDCTContext *s, int nbits, int inverse)
72 {
73     int n, n4, i;
74     double alpha;
75
76     memset(s, 0, sizeof(*s));
77     n = 1 << nbits;
78     s->nbits = nbits;
79     s->n = n;
80     n4 = n >> 2;
81     s->tcos = av_malloc(n4 * sizeof(FFTSample));
82     if (!s->tcos)
83         goto fail;
84     s->tsin = av_malloc(n4 * sizeof(FFTSample));
85     if (!s->tsin)
86         goto fail;
87
88     for(i=0;i<n4;i++) {
89         alpha = 2 * M_PI * (i + 1.0 / 8.0) / n;
90         s->tcos[i] = -cos(alpha);
91         s->tsin[i] = -sin(alpha);
92     }
93     if (ff_fft_init(&s->fft, s->nbits - 2, inverse) < 0)
94         goto fail;
95     return 0;
96  fail:
97     av_freep(&s->tcos);
98     av_freep(&s->tsin);
99     return -1;
100 }
101
102 /* complex multiplication: p = a * b */
103 #define CMUL(pre, pim, are, aim, bre, bim) \
104 {\
105     FFTSample _are = (are);\
106     FFTSample _aim = (aim);\
107     FFTSample _bre = (bre);\
108     FFTSample _bim = (bim);\
109     (pre) = _are * _bre - _aim * _bim;\
110     (pim) = _are * _bim + _aim * _bre;\
111 }
112
113 /**
114  * Compute the middle half of the inverse MDCT of size N = 2^nbits,
115  * thus excluding the parts that can be derived by symmetry
116  * @param output N/2 samples
117  * @param input N/2 samples
118  */
119 void ff_imdct_half_c(MDCTContext *s, FFTSample *output, const FFTSample *input)
120 {
121     int k, n8, n4, n2, n, j;
122     const uint16_t *revtab = s->fft.revtab;
123     const FFTSample *tcos = s->tcos;
124     const FFTSample *tsin = s->tsin;
125     const FFTSample *in1, *in2;
126     FFTComplex *z = (FFTComplex *)output;
127
128     n = 1 << s->nbits;
129     n2 = n >> 1;
130     n4 = n >> 2;
131     n8 = n >> 3;
132
133     /* pre rotation */
134     in1 = input;
135     in2 = input + n2 - 1;
136     for(k = 0; k < n4; k++) {
137         j=revtab[k];
138         CMUL(z[j].re, z[j].im, *in2, *in1, tcos[k], tsin[k]);
139         in1 += 2;
140         in2 -= 2;
141     }
142     ff_fft_calc(&s->fft, z);
143
144     /* post rotation + reordering */
145     output += n4;
146     for(k = 0; k < n8; k++) {
147         FFTSample r0, i0, r1, i1;
148         CMUL(r0, i1, z[n8-k-1].im, z[n8-k-1].re, tsin[n8-k-1], tcos[n8-k-1]);
149         CMUL(r1, i0, z[n8+k  ].im, z[n8+k  ].re, tsin[n8+k  ], tcos[n8+k  ]);
150         z[n8-k-1].re = r0;
151         z[n8-k-1].im = i0;
152         z[n8+k  ].re = r1;
153         z[n8+k  ].im = i1;
154     }
155 }
156
157 /**
158  * Compute inverse MDCT of size N = 2^nbits
159  * @param output N samples
160  * @param input N/2 samples
161  * @param tmp N/2 samples
162  */
163 void ff_imdct_calc_c(MDCTContext *s, FFTSample *output, const FFTSample *input)
164 {
165     int k;
166     int n = 1 << s->nbits;
167     int n2 = n >> 1;
168     int n4 = n >> 2;
169
170     ff_imdct_half_c(s, output+n4, input);
171
172     for(k = 0; k < n4; k++) {
173         output[k] = -output[n2-k-1];
174         output[n-k-1] = output[n2+k];
175     }
176 }
177
178 /**
179  * Compute MDCT of size N = 2^nbits
180  * @param input N samples
181  * @param out N/2 samples
182  * @param tmp temporary storage of N/2 samples
183  */
184 void ff_mdct_calc(MDCTContext *s, FFTSample *out, const FFTSample *input)
185 {
186     int i, j, n, n8, n4, n2, n3;
187     FFTSample re, im;
188     const uint16_t *revtab = s->fft.revtab;
189     const FFTSample *tcos = s->tcos;
190     const FFTSample *tsin = s->tsin;
191     FFTComplex *x = (FFTComplex *)out;
192
193     n = 1 << s->nbits;
194     n2 = n >> 1;
195     n4 = n >> 2;
196     n8 = n >> 3;
197     n3 = 3 * n4;
198
199     /* pre rotation */
200     for(i=0;i<n8;i++) {
201         re = -input[2*i+3*n4] - input[n3-1-2*i];
202         im = -input[n4+2*i] + input[n4-1-2*i];
203         j = revtab[i];
204         CMUL(x[j].re, x[j].im, re, im, -tcos[i], tsin[i]);
205
206         re = input[2*i] - input[n2-1-2*i];
207         im = -(input[n2+2*i] + input[n-1-2*i]);
208         j = revtab[n8 + i];
209         CMUL(x[j].re, x[j].im, re, im, -tcos[n8 + i], tsin[n8 + i]);
210     }
211
212     ff_fft_calc(&s->fft, x);
213
214     /* post rotation */
215     for(i=0;i<n8;i++) {
216         FFTSample r0, i0, r1, i1;
217         CMUL(i1, r0, x[n8-i-1].re, x[n8-i-1].im, -tsin[n8-i-1], -tcos[n8-i-1]);
218         CMUL(i0, r1, x[n8+i  ].re, x[n8+i  ].im, -tsin[n8+i  ], -tcos[n8+i  ]);
219         x[n8-i-1].re = r0;
220         x[n8-i-1].im = i0;
221         x[n8+i  ].re = r1;
222         x[n8+i  ].im = i1;
223     }
224 }
225
226 void ff_mdct_end(MDCTContext *s)
227 {
228     av_freep(&s->tcos);
229     av_freep(&s->tsin);
230     ff_fft_end(&s->fft);
231 }