9b3d339a30392afe620a057f3ec6e3fccfec1003
[ffmpeg.git] / libavcodec / hevc.c
1 /*
2  * HEVC video decoder
3  *
4  * Copyright (C) 2012 - 2013 Guillaume Martres
5  * Copyright (C) 2012 - 2013 Mickael Raulet
6  * Copyright (C) 2012 - 2013 Gildas Cocherel
7  * Copyright (C) 2012 - 2013 Wassim Hamidouche
8  *
9  * This file is part of Libav.
10  *
11  * Libav is free software; you can redistribute it and/or
12  * modify it under the terms of the GNU Lesser General Public
13  * License as published by the Free Software Foundation; either
14  * version 2.1 of the License, or (at your option) any later version.
15  *
16  * Libav is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * Lesser General Public License for more details.
20  *
21  * You should have received a copy of the GNU Lesser General Public
22  * License along with Libav; if not, write to the Free Software
23  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24  */
25
26 #include "libavutil/attributes.h"
27 #include "libavutil/common.h"
28 #include "libavutil/display.h"
29 #include "libavutil/internal.h"
30 #include "libavutil/md5.h"
31 #include "libavutil/opt.h"
32 #include "libavutil/pixdesc.h"
33 #include "libavutil/stereo3d.h"
34
35 #include "bswapdsp.h"
36 #include "bytestream.h"
37 #include "cabac_functions.h"
38 #include "golomb.h"
39 #include "hevc.h"
40
41 const uint8_t ff_hevc_qpel_extra_before[4] = { 0, 3, 3, 2 };
42 const uint8_t ff_hevc_qpel_extra_after[4]  = { 0, 3, 4, 4 };
43 const uint8_t ff_hevc_qpel_extra[4]        = { 0, 6, 7, 6 };
44
45 static const uint8_t scan_1x1[1] = { 0 };
46
47 static const uint8_t horiz_scan2x2_x[4] = { 0, 1, 0, 1 };
48
49 static const uint8_t horiz_scan2x2_y[4] = { 0, 0, 1, 1 };
50
51 static const uint8_t horiz_scan4x4_x[16] = {
52     0, 1, 2, 3,
53     0, 1, 2, 3,
54     0, 1, 2, 3,
55     0, 1, 2, 3,
56 };
57
58 static const uint8_t horiz_scan4x4_y[16] = {
59     0, 0, 0, 0,
60     1, 1, 1, 1,
61     2, 2, 2, 2,
62     3, 3, 3, 3,
63 };
64
65 static const uint8_t horiz_scan8x8_inv[8][8] = {
66     {  0,  1,  2,  3, 16, 17, 18, 19, },
67     {  4,  5,  6,  7, 20, 21, 22, 23, },
68     {  8,  9, 10, 11, 24, 25, 26, 27, },
69     { 12, 13, 14, 15, 28, 29, 30, 31, },
70     { 32, 33, 34, 35, 48, 49, 50, 51, },
71     { 36, 37, 38, 39, 52, 53, 54, 55, },
72     { 40, 41, 42, 43, 56, 57, 58, 59, },
73     { 44, 45, 46, 47, 60, 61, 62, 63, },
74 };
75
76 static const uint8_t diag_scan2x2_x[4] = { 0, 0, 1, 1 };
77
78 static const uint8_t diag_scan2x2_y[4] = { 0, 1, 0, 1 };
79
80 static const uint8_t diag_scan2x2_inv[2][2] = {
81     { 0, 2, },
82     { 1, 3, },
83 };
84
85 const uint8_t ff_hevc_diag_scan4x4_x[16] = {
86     0, 0, 1, 0,
87     1, 2, 0, 1,
88     2, 3, 1, 2,
89     3, 2, 3, 3,
90 };
91
92 const uint8_t ff_hevc_diag_scan4x4_y[16] = {
93     0, 1, 0, 2,
94     1, 0, 3, 2,
95     1, 0, 3, 2,
96     1, 3, 2, 3,
97 };
98
99 static const uint8_t diag_scan4x4_inv[4][4] = {
100     { 0,  2,  5,  9, },
101     { 1,  4,  8, 12, },
102     { 3,  7, 11, 14, },
103     { 6, 10, 13, 15, },
104 };
105
106 const uint8_t ff_hevc_diag_scan8x8_x[64] = {
107     0, 0, 1, 0,
108     1, 2, 0, 1,
109     2, 3, 0, 1,
110     2, 3, 4, 0,
111     1, 2, 3, 4,
112     5, 0, 1, 2,
113     3, 4, 5, 6,
114     0, 1, 2, 3,
115     4, 5, 6, 7,
116     1, 2, 3, 4,
117     5, 6, 7, 2,
118     3, 4, 5, 6,
119     7, 3, 4, 5,
120     6, 7, 4, 5,
121     6, 7, 5, 6,
122     7, 6, 7, 7,
123 };
124
125 const uint8_t ff_hevc_diag_scan8x8_y[64] = {
126     0, 1, 0, 2,
127     1, 0, 3, 2,
128     1, 0, 4, 3,
129     2, 1, 0, 5,
130     4, 3, 2, 1,
131     0, 6, 5, 4,
132     3, 2, 1, 0,
133     7, 6, 5, 4,
134     3, 2, 1, 0,
135     7, 6, 5, 4,
136     3, 2, 1, 7,
137     6, 5, 4, 3,
138     2, 7, 6, 5,
139     4, 3, 7, 6,
140     5, 4, 7, 6,
141     5, 7, 6, 7,
142 };
143
144 static const uint8_t diag_scan8x8_inv[8][8] = {
145     {  0,  2,  5,  9, 14, 20, 27, 35, },
146     {  1,  4,  8, 13, 19, 26, 34, 42, },
147     {  3,  7, 12, 18, 25, 33, 41, 48, },
148     {  6, 11, 17, 24, 32, 40, 47, 53, },
149     { 10, 16, 23, 31, 39, 46, 52, 57, },
150     { 15, 22, 30, 38, 45, 51, 56, 60, },
151     { 21, 29, 37, 44, 50, 55, 59, 62, },
152     { 28, 36, 43, 49, 54, 58, 61, 63, },
153 };
154
155 /**
156  * NOTE: Each function hls_foo correspond to the function foo in the
157  * specification (HLS stands for High Level Syntax).
158  */
159
160 /**
161  * Section 5.7
162  */
163
164 /* free everything allocated  by pic_arrays_init() */
165 static void pic_arrays_free(HEVCContext *s)
166 {
167     av_freep(&s->sao);
168     av_freep(&s->deblock);
169
170     av_freep(&s->skip_flag);
171     av_freep(&s->tab_ct_depth);
172
173     av_freep(&s->tab_ipm);
174     av_freep(&s->cbf_luma);
175     av_freep(&s->is_pcm);
176
177     av_freep(&s->qp_y_tab);
178     av_freep(&s->tab_slice_address);
179     av_freep(&s->filter_slice_edges);
180
181     av_freep(&s->horizontal_bs);
182     av_freep(&s->vertical_bs);
183
184     av_buffer_pool_uninit(&s->tab_mvf_pool);
185     av_buffer_pool_uninit(&s->rpl_tab_pool);
186 }
187
188 /* allocate arrays that depend on frame dimensions */
189 static int pic_arrays_init(HEVCContext *s, const HEVCSPS *sps)
190 {
191     int log2_min_cb_size = sps->log2_min_cb_size;
192     int width            = sps->width;
193     int height           = sps->height;
194     int pic_size_in_ctb  = ((width  >> log2_min_cb_size) + 1) *
195                            ((height >> log2_min_cb_size) + 1);
196     int ctb_count        = sps->ctb_width * sps->ctb_height;
197     int min_pu_size      = sps->min_pu_width * sps->min_pu_height;
198
199     s->bs_width  = width  >> 3;
200     s->bs_height = height >> 3;
201
202     s->sao           = av_mallocz_array(ctb_count, sizeof(*s->sao));
203     s->deblock       = av_mallocz_array(ctb_count, sizeof(*s->deblock));
204     if (!s->sao || !s->deblock)
205         goto fail;
206
207     s->skip_flag    = av_malloc(pic_size_in_ctb);
208     s->tab_ct_depth = av_malloc(sps->min_cb_height * sps->min_cb_width);
209     if (!s->skip_flag || !s->tab_ct_depth)
210         goto fail;
211
212     s->cbf_luma = av_malloc(sps->min_tb_width * sps->min_tb_height);
213     s->tab_ipm  = av_mallocz(min_pu_size);
214     s->is_pcm   = av_malloc(min_pu_size);
215     if (!s->tab_ipm || !s->cbf_luma || !s->is_pcm)
216         goto fail;
217
218     s->filter_slice_edges = av_malloc(ctb_count);
219     s->tab_slice_address  = av_malloc(pic_size_in_ctb *
220                                       sizeof(*s->tab_slice_address));
221     s->qp_y_tab           = av_malloc(pic_size_in_ctb *
222                                       sizeof(*s->qp_y_tab));
223     if (!s->qp_y_tab || !s->filter_slice_edges || !s->tab_slice_address)
224         goto fail;
225
226     s->horizontal_bs = av_mallocz(2 * s->bs_width * (s->bs_height + 1));
227     s->vertical_bs   = av_mallocz(2 * s->bs_width * (s->bs_height + 1));
228     if (!s->horizontal_bs || !s->vertical_bs)
229         goto fail;
230
231     s->tab_mvf_pool = av_buffer_pool_init(min_pu_size * sizeof(MvField),
232                                           av_buffer_alloc);
233     s->rpl_tab_pool = av_buffer_pool_init(ctb_count * sizeof(RefPicListTab),
234                                           av_buffer_allocz);
235     if (!s->tab_mvf_pool || !s->rpl_tab_pool)
236         goto fail;
237
238     return 0;
239
240 fail:
241     pic_arrays_free(s);
242     return AVERROR(ENOMEM);
243 }
244
245 static void pred_weight_table(HEVCContext *s, GetBitContext *gb)
246 {
247     int i = 0;
248     int j = 0;
249     uint8_t luma_weight_l0_flag[16];
250     uint8_t chroma_weight_l0_flag[16];
251     uint8_t luma_weight_l1_flag[16];
252     uint8_t chroma_weight_l1_flag[16];
253
254     s->sh.luma_log2_weight_denom = get_ue_golomb_long(gb);
255     if (s->sps->chroma_format_idc != 0) {
256         int delta = get_se_golomb(gb);
257         s->sh.chroma_log2_weight_denom = av_clip_c(s->sh.luma_log2_weight_denom + delta, 0, 7);
258     }
259
260     for (i = 0; i < s->sh.nb_refs[L0]; i++) {
261         luma_weight_l0_flag[i] = get_bits1(gb);
262         if (!luma_weight_l0_flag[i]) {
263             s->sh.luma_weight_l0[i] = 1 << s->sh.luma_log2_weight_denom;
264             s->sh.luma_offset_l0[i] = 0;
265         }
266     }
267     if (s->sps->chroma_format_idc != 0) { // FIXME: invert "if" and "for"
268         for (i = 0; i < s->sh.nb_refs[L0]; i++)
269             chroma_weight_l0_flag[i] = get_bits1(gb);
270     } else {
271         for (i = 0; i < s->sh.nb_refs[L0]; i++)
272             chroma_weight_l0_flag[i] = 0;
273     }
274     for (i = 0; i < s->sh.nb_refs[L0]; i++) {
275         if (luma_weight_l0_flag[i]) {
276             int delta_luma_weight_l0 = get_se_golomb(gb);
277             s->sh.luma_weight_l0[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l0;
278             s->sh.luma_offset_l0[i] = get_se_golomb(gb);
279         }
280         if (chroma_weight_l0_flag[i]) {
281             for (j = 0; j < 2; j++) {
282                 int delta_chroma_weight_l0 = get_se_golomb(gb);
283                 int delta_chroma_offset_l0 = get_se_golomb(gb);
284                 s->sh.chroma_weight_l0[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l0;
285                 s->sh.chroma_offset_l0[i][j] = av_clip_c((delta_chroma_offset_l0 - ((128 * s->sh.chroma_weight_l0[i][j])
286                                                                                     >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
287             }
288         } else {
289             s->sh.chroma_weight_l0[i][0] = 1 << s->sh.chroma_log2_weight_denom;
290             s->sh.chroma_offset_l0[i][0] = 0;
291             s->sh.chroma_weight_l0[i][1] = 1 << s->sh.chroma_log2_weight_denom;
292             s->sh.chroma_offset_l0[i][1] = 0;
293         }
294     }
295     if (s->sh.slice_type == B_SLICE) {
296         for (i = 0; i < s->sh.nb_refs[L1]; i++) {
297             luma_weight_l1_flag[i] = get_bits1(gb);
298             if (!luma_weight_l1_flag[i]) {
299                 s->sh.luma_weight_l1[i] = 1 << s->sh.luma_log2_weight_denom;
300                 s->sh.luma_offset_l1[i] = 0;
301             }
302         }
303         if (s->sps->chroma_format_idc != 0) {
304             for (i = 0; i < s->sh.nb_refs[L1]; i++)
305                 chroma_weight_l1_flag[i] = get_bits1(gb);
306         } else {
307             for (i = 0; i < s->sh.nb_refs[L1]; i++)
308                 chroma_weight_l1_flag[i] = 0;
309         }
310         for (i = 0; i < s->sh.nb_refs[L1]; i++) {
311             if (luma_weight_l1_flag[i]) {
312                 int delta_luma_weight_l1 = get_se_golomb(gb);
313                 s->sh.luma_weight_l1[i] = (1 << s->sh.luma_log2_weight_denom) + delta_luma_weight_l1;
314                 s->sh.luma_offset_l1[i] = get_se_golomb(gb);
315             }
316             if (chroma_weight_l1_flag[i]) {
317                 for (j = 0; j < 2; j++) {
318                     int delta_chroma_weight_l1 = get_se_golomb(gb);
319                     int delta_chroma_offset_l1 = get_se_golomb(gb);
320                     s->sh.chroma_weight_l1[i][j] = (1 << s->sh.chroma_log2_weight_denom) + delta_chroma_weight_l1;
321                     s->sh.chroma_offset_l1[i][j] = av_clip_c((delta_chroma_offset_l1 - ((128 * s->sh.chroma_weight_l1[i][j])
322                                                                                         >> s->sh.chroma_log2_weight_denom) + 128), -128, 127);
323                 }
324             } else {
325                 s->sh.chroma_weight_l1[i][0] = 1 << s->sh.chroma_log2_weight_denom;
326                 s->sh.chroma_offset_l1[i][0] = 0;
327                 s->sh.chroma_weight_l1[i][1] = 1 << s->sh.chroma_log2_weight_denom;
328                 s->sh.chroma_offset_l1[i][1] = 0;
329             }
330         }
331     }
332 }
333
334 static int decode_lt_rps(HEVCContext *s, LongTermRPS *rps, GetBitContext *gb)
335 {
336     const HEVCSPS *sps = s->sps;
337     int max_poc_lsb    = 1 << sps->log2_max_poc_lsb;
338     int prev_delta_msb = 0;
339     unsigned int nb_sps = 0, nb_sh;
340     int i;
341
342     rps->nb_refs = 0;
343     if (!sps->long_term_ref_pics_present_flag)
344         return 0;
345
346     if (sps->num_long_term_ref_pics_sps > 0)
347         nb_sps = get_ue_golomb_long(gb);
348     nb_sh = get_ue_golomb_long(gb);
349
350     if (nb_sh + nb_sps > FF_ARRAY_ELEMS(rps->poc))
351         return AVERROR_INVALIDDATA;
352
353     rps->nb_refs = nb_sh + nb_sps;
354
355     for (i = 0; i < rps->nb_refs; i++) {
356         uint8_t delta_poc_msb_present;
357
358         if (i < nb_sps) {
359             uint8_t lt_idx_sps = 0;
360
361             if (sps->num_long_term_ref_pics_sps > 1)
362                 lt_idx_sps = get_bits(gb, av_ceil_log2(sps->num_long_term_ref_pics_sps));
363
364             rps->poc[i]  = sps->lt_ref_pic_poc_lsb_sps[lt_idx_sps];
365             rps->used[i] = sps->used_by_curr_pic_lt_sps_flag[lt_idx_sps];
366         } else {
367             rps->poc[i]  = get_bits(gb, sps->log2_max_poc_lsb);
368             rps->used[i] = get_bits1(gb);
369         }
370
371         delta_poc_msb_present = get_bits1(gb);
372         if (delta_poc_msb_present) {
373             int delta = get_ue_golomb_long(gb);
374
375             if (i && i != nb_sps)
376                 delta += prev_delta_msb;
377
378             rps->poc[i] += s->poc - delta * max_poc_lsb - s->sh.pic_order_cnt_lsb;
379             prev_delta_msb = delta;
380         }
381     }
382
383     return 0;
384 }
385
386 static int set_sps(HEVCContext *s, const HEVCSPS *sps)
387 {
388     int ret;
389     unsigned int num = 0, den = 0;
390
391     pic_arrays_free(s);
392     ret = pic_arrays_init(s, sps);
393     if (ret < 0)
394         goto fail;
395
396     s->avctx->coded_width         = sps->width;
397     s->avctx->coded_height        = sps->height;
398     s->avctx->width               = sps->output_width;
399     s->avctx->height              = sps->output_height;
400     s->avctx->pix_fmt             = sps->pix_fmt;
401     s->avctx->has_b_frames        = sps->temporal_layer[sps->max_sub_layers - 1].num_reorder_pics;
402
403     ff_set_sar(s->avctx, sps->vui.sar);
404
405     if (sps->vui.video_signal_type_present_flag)
406         s->avctx->color_range = sps->vui.video_full_range_flag ? AVCOL_RANGE_JPEG
407                                                                : AVCOL_RANGE_MPEG;
408     else
409         s->avctx->color_range = AVCOL_RANGE_MPEG;
410
411     if (sps->vui.colour_description_present_flag) {
412         s->avctx->color_primaries = sps->vui.colour_primaries;
413         s->avctx->color_trc       = sps->vui.transfer_characteristic;
414         s->avctx->colorspace      = sps->vui.matrix_coeffs;
415     } else {
416         s->avctx->color_primaries = AVCOL_PRI_UNSPECIFIED;
417         s->avctx->color_trc       = AVCOL_TRC_UNSPECIFIED;
418         s->avctx->colorspace      = AVCOL_SPC_UNSPECIFIED;
419     }
420
421     ff_hevc_pred_init(&s->hpc,     sps->bit_depth);
422     ff_hevc_dsp_init (&s->hevcdsp, sps->bit_depth);
423     ff_videodsp_init (&s->vdsp,    sps->bit_depth);
424
425     if (sps->sao_enabled) {
426         av_frame_unref(s->tmp_frame);
427         ret = ff_get_buffer(s->avctx, s->tmp_frame, AV_GET_BUFFER_FLAG_REF);
428         if (ret < 0)
429             goto fail;
430         s->frame = s->tmp_frame;
431     }
432
433     s->sps = sps;
434     s->vps = (HEVCVPS*) s->vps_list[s->sps->vps_id]->data;
435
436     if (s->vps->vps_timing_info_present_flag) {
437         num = s->vps->vps_num_units_in_tick;
438         den = s->vps->vps_time_scale;
439     } else if (sps->vui.vui_timing_info_present_flag) {
440         num = sps->vui.vui_num_units_in_tick;
441         den = sps->vui.vui_time_scale;
442     }
443
444     if (num != 0 && den != 0)
445         av_reduce(&s->avctx->framerate.den, &s->avctx->framerate.num,
446                   num, den, 1 << 30);
447
448     return 0;
449
450 fail:
451     pic_arrays_free(s);
452     s->sps = NULL;
453     return ret;
454 }
455
456 static int hls_slice_header(HEVCContext *s)
457 {
458     GetBitContext *gb = &s->HEVClc.gb;
459     SliceHeader *sh   = &s->sh;
460     int i, ret;
461
462     // Coded parameters
463     sh->first_slice_in_pic_flag = get_bits1(gb);
464     if ((IS_IDR(s) || IS_BLA(s)) && sh->first_slice_in_pic_flag) {
465         s->seq_decode = (s->seq_decode + 1) & 0xff;
466         s->max_ra     = INT_MAX;
467         if (IS_IDR(s))
468             ff_hevc_clear_refs(s);
469     }
470     if (IS_IRAP(s))
471         sh->no_output_of_prior_pics_flag = get_bits1(gb);
472
473     sh->pps_id = get_ue_golomb_long(gb);
474     if (sh->pps_id >= MAX_PPS_COUNT || !s->pps_list[sh->pps_id]) {
475         av_log(s->avctx, AV_LOG_ERROR, "PPS id out of range: %d\n", sh->pps_id);
476         return AVERROR_INVALIDDATA;
477     }
478     if (!sh->first_slice_in_pic_flag &&
479         s->pps != (HEVCPPS*)s->pps_list[sh->pps_id]->data) {
480         av_log(s->avctx, AV_LOG_ERROR, "PPS changed between slices.\n");
481         return AVERROR_INVALIDDATA;
482     }
483     s->pps = (HEVCPPS*)s->pps_list[sh->pps_id]->data;
484
485     if (s->sps != (HEVCSPS*)s->sps_list[s->pps->sps_id]->data) {
486         s->sps = (HEVCSPS*)s->sps_list[s->pps->sps_id]->data;
487
488         ff_hevc_clear_refs(s);
489         ret = set_sps(s, s->sps);
490         if (ret < 0)
491             return ret;
492
493         s->seq_decode = (s->seq_decode + 1) & 0xff;
494         s->max_ra     = INT_MAX;
495     }
496
497     s->avctx->profile = s->sps->ptl.general_ptl.profile_idc;
498     s->avctx->level   = s->sps->ptl.general_ptl.level_idc;
499
500     sh->dependent_slice_segment_flag = 0;
501     if (!sh->first_slice_in_pic_flag) {
502         int slice_address_length;
503
504         if (s->pps->dependent_slice_segments_enabled_flag)
505             sh->dependent_slice_segment_flag = get_bits1(gb);
506
507         slice_address_length = av_ceil_log2(s->sps->ctb_width *
508                                             s->sps->ctb_height);
509         sh->slice_segment_addr = get_bits(gb, slice_address_length);
510         if (sh->slice_segment_addr >= s->sps->ctb_width * s->sps->ctb_height) {
511             av_log(s->avctx, AV_LOG_ERROR,
512                    "Invalid slice segment address: %u.\n",
513                    sh->slice_segment_addr);
514             return AVERROR_INVALIDDATA;
515         }
516
517         if (!sh->dependent_slice_segment_flag) {
518             sh->slice_addr = sh->slice_segment_addr;
519             s->slice_idx++;
520         }
521     } else {
522         sh->slice_segment_addr = sh->slice_addr = 0;
523         s->slice_idx           = 0;
524         s->slice_initialized   = 0;
525     }
526
527     if (!sh->dependent_slice_segment_flag) {
528         s->slice_initialized = 0;
529
530         for (i = 0; i < s->pps->num_extra_slice_header_bits; i++)
531             skip_bits(gb, 1);  // slice_reserved_undetermined_flag[]
532
533         sh->slice_type = get_ue_golomb_long(gb);
534         if (!(sh->slice_type == I_SLICE ||
535               sh->slice_type == P_SLICE ||
536               sh->slice_type == B_SLICE)) {
537             av_log(s->avctx, AV_LOG_ERROR, "Unknown slice type: %d.\n",
538                    sh->slice_type);
539             return AVERROR_INVALIDDATA;
540         }
541         if (IS_IRAP(s) && sh->slice_type != I_SLICE) {
542             av_log(s->avctx, AV_LOG_ERROR, "Inter slices in an IRAP frame.\n");
543             return AVERROR_INVALIDDATA;
544         }
545
546         // when flag is not present, picture is inferred to be output
547         sh->pic_output_flag = 1;
548         if (s->pps->output_flag_present_flag)
549             sh->pic_output_flag = get_bits1(gb);
550
551         if (s->sps->separate_colour_plane_flag)
552             sh->colour_plane_id = get_bits(gb, 2);
553
554         if (!IS_IDR(s)) {
555             int short_term_ref_pic_set_sps_flag, poc;
556
557             sh->pic_order_cnt_lsb = get_bits(gb, s->sps->log2_max_poc_lsb);
558             poc = ff_hevc_compute_poc(s, sh->pic_order_cnt_lsb);
559             if (!sh->first_slice_in_pic_flag && poc != s->poc) {
560                 av_log(s->avctx, AV_LOG_WARNING,
561                        "Ignoring POC change between slices: %d -> %d\n", s->poc, poc);
562                 if (s->avctx->err_recognition & AV_EF_EXPLODE)
563                     return AVERROR_INVALIDDATA;
564                 poc = s->poc;
565             }
566             s->poc = poc;
567
568             short_term_ref_pic_set_sps_flag = get_bits1(gb);
569             if (!short_term_ref_pic_set_sps_flag) {
570                 ret = ff_hevc_decode_short_term_rps(s, &sh->slice_rps, s->sps, 1);
571                 if (ret < 0)
572                     return ret;
573
574                 sh->short_term_rps = &sh->slice_rps;
575             } else {
576                 int numbits, rps_idx;
577
578                 if (!s->sps->nb_st_rps) {
579                     av_log(s->avctx, AV_LOG_ERROR, "No ref lists in the SPS.\n");
580                     return AVERROR_INVALIDDATA;
581                 }
582
583                 numbits = av_ceil_log2(s->sps->nb_st_rps);
584                 rps_idx = numbits > 0 ? get_bits(gb, numbits) : 0;
585                 sh->short_term_rps = &s->sps->st_rps[rps_idx];
586             }
587
588             ret = decode_lt_rps(s, &sh->long_term_rps, gb);
589             if (ret < 0) {
590                 av_log(s->avctx, AV_LOG_WARNING, "Invalid long term RPS.\n");
591                 if (s->avctx->err_recognition & AV_EF_EXPLODE)
592                     return AVERROR_INVALIDDATA;
593             }
594
595             if (s->sps->sps_temporal_mvp_enabled_flag)
596                 sh->slice_temporal_mvp_enabled_flag = get_bits1(gb);
597             else
598                 sh->slice_temporal_mvp_enabled_flag = 0;
599         } else {
600             s->sh.short_term_rps = NULL;
601             s->poc               = 0;
602         }
603
604         /* 8.3.1 */
605         if (s->temporal_id == 0 &&
606             s->nal_unit_type != NAL_TRAIL_N &&
607             s->nal_unit_type != NAL_TSA_N   &&
608             s->nal_unit_type != NAL_STSA_N  &&
609             s->nal_unit_type != NAL_RADL_N  &&
610             s->nal_unit_type != NAL_RADL_R  &&
611             s->nal_unit_type != NAL_RASL_N  &&
612             s->nal_unit_type != NAL_RASL_R)
613             s->pocTid0 = s->poc;
614
615         if (s->sps->sao_enabled) {
616             sh->slice_sample_adaptive_offset_flag[0] = get_bits1(gb);
617             sh->slice_sample_adaptive_offset_flag[1] =
618             sh->slice_sample_adaptive_offset_flag[2] = get_bits1(gb);
619         } else {
620             sh->slice_sample_adaptive_offset_flag[0] = 0;
621             sh->slice_sample_adaptive_offset_flag[1] = 0;
622             sh->slice_sample_adaptive_offset_flag[2] = 0;
623         }
624
625         sh->nb_refs[L0] = sh->nb_refs[L1] = 0;
626         if (sh->slice_type == P_SLICE || sh->slice_type == B_SLICE) {
627             int nb_refs;
628
629             sh->nb_refs[L0] = s->pps->num_ref_idx_l0_default_active;
630             if (sh->slice_type == B_SLICE)
631                 sh->nb_refs[L1] = s->pps->num_ref_idx_l1_default_active;
632
633             if (get_bits1(gb)) { // num_ref_idx_active_override_flag
634                 sh->nb_refs[L0] = get_ue_golomb_long(gb) + 1;
635                 if (sh->slice_type == B_SLICE)
636                     sh->nb_refs[L1] = get_ue_golomb_long(gb) + 1;
637             }
638             if (sh->nb_refs[L0] > MAX_REFS || sh->nb_refs[L1] > MAX_REFS) {
639                 av_log(s->avctx, AV_LOG_ERROR, "Too many refs: %d/%d.\n",
640                        sh->nb_refs[L0], sh->nb_refs[L1]);
641                 return AVERROR_INVALIDDATA;
642             }
643
644             sh->rpl_modification_flag[0] = 0;
645             sh->rpl_modification_flag[1] = 0;
646             nb_refs = ff_hevc_frame_nb_refs(s);
647             if (!nb_refs) {
648                 av_log(s->avctx, AV_LOG_ERROR, "Zero refs for a frame with P or B slices.\n");
649                 return AVERROR_INVALIDDATA;
650             }
651
652             if (s->pps->lists_modification_present_flag && nb_refs > 1) {
653                 sh->rpl_modification_flag[0] = get_bits1(gb);
654                 if (sh->rpl_modification_flag[0]) {
655                     for (i = 0; i < sh->nb_refs[L0]; i++)
656                         sh->list_entry_lx[0][i] = get_bits(gb, av_ceil_log2(nb_refs));
657                 }
658
659                 if (sh->slice_type == B_SLICE) {
660                     sh->rpl_modification_flag[1] = get_bits1(gb);
661                     if (sh->rpl_modification_flag[1] == 1)
662                         for (i = 0; i < sh->nb_refs[L1]; i++)
663                             sh->list_entry_lx[1][i] = get_bits(gb, av_ceil_log2(nb_refs));
664                 }
665             }
666
667             if (sh->slice_type == B_SLICE)
668                 sh->mvd_l1_zero_flag = get_bits1(gb);
669
670             if (s->pps->cabac_init_present_flag)
671                 sh->cabac_init_flag = get_bits1(gb);
672             else
673                 sh->cabac_init_flag = 0;
674
675             sh->collocated_ref_idx = 0;
676             if (sh->slice_temporal_mvp_enabled_flag) {
677                 sh->collocated_list = L0;
678                 if (sh->slice_type == B_SLICE)
679                     sh->collocated_list = !get_bits1(gb);
680
681                 if (sh->nb_refs[sh->collocated_list] > 1) {
682                     sh->collocated_ref_idx = get_ue_golomb_long(gb);
683                     if (sh->collocated_ref_idx >= sh->nb_refs[sh->collocated_list]) {
684                         av_log(s->avctx, AV_LOG_ERROR,
685                                "Invalid collocated_ref_idx: %d.\n",
686                                sh->collocated_ref_idx);
687                         return AVERROR_INVALIDDATA;
688                     }
689                 }
690             }
691
692             if ((s->pps->weighted_pred_flag   && sh->slice_type == P_SLICE) ||
693                 (s->pps->weighted_bipred_flag && sh->slice_type == B_SLICE)) {
694                 pred_weight_table(s, gb);
695             }
696
697             sh->max_num_merge_cand = 5 - get_ue_golomb_long(gb);
698             if (sh->max_num_merge_cand < 1 || sh->max_num_merge_cand > 5) {
699                 av_log(s->avctx, AV_LOG_ERROR,
700                        "Invalid number of merging MVP candidates: %d.\n",
701                        sh->max_num_merge_cand);
702                 return AVERROR_INVALIDDATA;
703             }
704         }
705
706         sh->slice_qp_delta = get_se_golomb(gb);
707
708         if (s->pps->pic_slice_level_chroma_qp_offsets_present_flag) {
709             sh->slice_cb_qp_offset = get_se_golomb(gb);
710             sh->slice_cr_qp_offset = get_se_golomb(gb);
711         } else {
712             sh->slice_cb_qp_offset = 0;
713             sh->slice_cr_qp_offset = 0;
714         }
715
716         if (s->pps->deblocking_filter_control_present_flag) {
717             int deblocking_filter_override_flag = 0;
718
719             if (s->pps->deblocking_filter_override_enabled_flag)
720                 deblocking_filter_override_flag = get_bits1(gb);
721
722             if (deblocking_filter_override_flag) {
723                 sh->disable_deblocking_filter_flag = get_bits1(gb);
724                 if (!sh->disable_deblocking_filter_flag) {
725                     sh->beta_offset = get_se_golomb(gb) * 2;
726                     sh->tc_offset   = get_se_golomb(gb) * 2;
727                 }
728             } else {
729                 sh->disable_deblocking_filter_flag = s->pps->disable_dbf;
730                 sh->beta_offset                    = s->pps->beta_offset;
731                 sh->tc_offset                      = s->pps->tc_offset;
732             }
733         } else {
734             sh->disable_deblocking_filter_flag = 0;
735             sh->beta_offset                    = 0;
736             sh->tc_offset                      = 0;
737         }
738
739         if (s->pps->seq_loop_filter_across_slices_enabled_flag &&
740             (sh->slice_sample_adaptive_offset_flag[0] ||
741              sh->slice_sample_adaptive_offset_flag[1] ||
742              !sh->disable_deblocking_filter_flag)) {
743             sh->slice_loop_filter_across_slices_enabled_flag = get_bits1(gb);
744         } else {
745             sh->slice_loop_filter_across_slices_enabled_flag = s->pps->seq_loop_filter_across_slices_enabled_flag;
746         }
747     } else if (!s->slice_initialized) {
748         av_log(s->avctx, AV_LOG_ERROR, "Independent slice segment missing.\n");
749         return AVERROR_INVALIDDATA;
750     }
751
752     sh->num_entry_point_offsets = 0;
753     if (s->pps->tiles_enabled_flag || s->pps->entropy_coding_sync_enabled_flag) {
754         sh->num_entry_point_offsets = get_ue_golomb_long(gb);
755         if (sh->num_entry_point_offsets > 0) {
756             int offset_len = get_ue_golomb_long(gb) + 1;
757
758             for (i = 0; i < sh->num_entry_point_offsets; i++)
759                 skip_bits(gb, offset_len);
760         }
761     }
762
763     if (s->pps->slice_header_extension_present_flag) {
764         unsigned int length = get_ue_golomb_long(gb);
765         for (i = 0; i < length; i++)
766             skip_bits(gb, 8);  // slice_header_extension_data_byte
767     }
768
769     // Inferred parameters
770     sh->slice_qp = 26 + s->pps->pic_init_qp_minus26 + sh->slice_qp_delta;
771     if (sh->slice_qp > 51 ||
772         sh->slice_qp < -s->sps->qp_bd_offset) {
773         av_log(s->avctx, AV_LOG_ERROR,
774                "The slice_qp %d is outside the valid range "
775                "[%d, 51].\n",
776                sh->slice_qp,
777                -s->sps->qp_bd_offset);
778         return AVERROR_INVALIDDATA;
779     }
780
781     sh->slice_ctb_addr_rs = sh->slice_segment_addr;
782
783     if (!s->sh.slice_ctb_addr_rs && s->sh.dependent_slice_segment_flag) {
784         av_log(s->avctx, AV_LOG_ERROR, "Impossible slice segment.\n");
785         return AVERROR_INVALIDDATA;
786     }
787
788     s->HEVClc.first_qp_group = !s->sh.dependent_slice_segment_flag;
789
790     if (!s->pps->cu_qp_delta_enabled_flag)
791         s->HEVClc.qp_y = FFUMOD(s->sh.slice_qp + 52 + 2 * s->sps->qp_bd_offset,
792                                 52 + s->sps->qp_bd_offset) - s->sps->qp_bd_offset;
793
794     s->slice_initialized = 1;
795
796     return 0;
797 }
798
799 #define CTB(tab, x, y) ((tab)[(y) * s->sps->ctb_width + (x)])
800
801 #define SET_SAO(elem, value)                            \
802 do {                                                    \
803     if (!sao_merge_up_flag && !sao_merge_left_flag)     \
804         sao->elem = value;                              \
805     else if (sao_merge_left_flag)                       \
806         sao->elem = CTB(s->sao, rx-1, ry).elem;         \
807     else if (sao_merge_up_flag)                         \
808         sao->elem = CTB(s->sao, rx, ry-1).elem;         \
809     else                                                \
810         sao->elem = 0;                                  \
811 } while (0)
812
813 static void hls_sao_param(HEVCContext *s, int rx, int ry)
814 {
815     HEVCLocalContext *lc    = &s->HEVClc;
816     int sao_merge_left_flag = 0;
817     int sao_merge_up_flag   = 0;
818     int shift               = s->sps->bit_depth - FFMIN(s->sps->bit_depth, 10);
819     SAOParams *sao          = &CTB(s->sao, rx, ry);
820     int c_idx, i;
821
822     if (s->sh.slice_sample_adaptive_offset_flag[0] ||
823         s->sh.slice_sample_adaptive_offset_flag[1]) {
824         if (rx > 0) {
825             if (lc->ctb_left_flag)
826                 sao_merge_left_flag = ff_hevc_sao_merge_flag_decode(s);
827         }
828         if (ry > 0 && !sao_merge_left_flag) {
829             if (lc->ctb_up_flag)
830                 sao_merge_up_flag = ff_hevc_sao_merge_flag_decode(s);
831         }
832     }
833
834     for (c_idx = 0; c_idx < 3; c_idx++) {
835         if (!s->sh.slice_sample_adaptive_offset_flag[c_idx]) {
836             sao->type_idx[c_idx] = SAO_NOT_APPLIED;
837             continue;
838         }
839
840         if (c_idx == 2) {
841             sao->type_idx[2] = sao->type_idx[1];
842             sao->eo_class[2] = sao->eo_class[1];
843         } else {
844             SET_SAO(type_idx[c_idx], ff_hevc_sao_type_idx_decode(s));
845         }
846
847         if (sao->type_idx[c_idx] == SAO_NOT_APPLIED)
848             continue;
849
850         for (i = 0; i < 4; i++)
851             SET_SAO(offset_abs[c_idx][i], ff_hevc_sao_offset_abs_decode(s));
852
853         if (sao->type_idx[c_idx] == SAO_BAND) {
854             for (i = 0; i < 4; i++) {
855                 if (sao->offset_abs[c_idx][i]) {
856                     SET_SAO(offset_sign[c_idx][i],
857                             ff_hevc_sao_offset_sign_decode(s));
858                 } else {
859                     sao->offset_sign[c_idx][i] = 0;
860                 }
861             }
862             SET_SAO(band_position[c_idx], ff_hevc_sao_band_position_decode(s));
863         } else if (c_idx != 2) {
864             SET_SAO(eo_class[c_idx], ff_hevc_sao_eo_class_decode(s));
865         }
866
867         // Inferred parameters
868         sao->offset_val[c_idx][0] = 0;
869         for (i = 0; i < 4; i++) {
870             sao->offset_val[c_idx][i + 1] = sao->offset_abs[c_idx][i] << shift;
871             if (sao->type_idx[c_idx] == SAO_EDGE) {
872                 if (i > 1)
873                     sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
874             } else if (sao->offset_sign[c_idx][i]) {
875                 sao->offset_val[c_idx][i + 1] = -sao->offset_val[c_idx][i + 1];
876             }
877         }
878     }
879 }
880
881 #undef SET_SAO
882 #undef CTB
883
884 static void hls_residual_coding(HEVCContext *s, int x0, int y0,
885                                 int log2_trafo_size, enum ScanType scan_idx,
886                                 int c_idx)
887 {
888 #define GET_COORD(offset, n)                                    \
889     do {                                                        \
890         x_c = (scan_x_cg[offset >> 4] << 2) + scan_x_off[n];    \
891         y_c = (scan_y_cg[offset >> 4] << 2) + scan_y_off[n];    \
892     } while (0)
893     HEVCLocalContext *lc    = &s->HEVClc;
894     int transform_skip_flag = 0;
895
896     int last_significant_coeff_x, last_significant_coeff_y;
897     int last_scan_pos;
898     int n_end;
899     int num_coeff    = 0;
900     int greater1_ctx = 1;
901
902     int num_last_subset;
903     int x_cg_last_sig, y_cg_last_sig;
904
905     const uint8_t *scan_x_cg, *scan_y_cg, *scan_x_off, *scan_y_off;
906
907     ptrdiff_t stride = s->frame->linesize[c_idx];
908     int hshift       = s->sps->hshift[c_idx];
909     int vshift       = s->sps->vshift[c_idx];
910     uint8_t *dst     = &s->frame->data[c_idx][(y0 >> vshift) * stride +
911                                               ((x0 >> hshift) << s->sps->pixel_shift)];
912     DECLARE_ALIGNED(16, int16_t, coeffs[MAX_TB_SIZE * MAX_TB_SIZE]) = { 0 };
913     DECLARE_ALIGNED(8, uint8_t, significant_coeff_group_flag[8][8]) = { { 0 } };
914
915     int trafo_size = 1 << log2_trafo_size;
916     int i, qp, shift, add, scale, scale_m;
917     const uint8_t level_scale[] = { 40, 45, 51, 57, 64, 72 };
918     const uint8_t *scale_matrix;
919     uint8_t dc_scale;
920
921     // Derive QP for dequant
922     if (!lc->cu.cu_transquant_bypass_flag) {
923         static const int qp_c[] = {
924             29, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37
925         };
926
927         static const uint8_t rem6[51 + 2 * 6 + 1] = {
928             0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2,
929             3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5,
930             0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
931         };
932
933         static const uint8_t div6[51 + 2 * 6 + 1] = {
934             0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,  3,  3,  3,
935             3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6,  6,  6,  6,
936             7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10,
937         };
938         int qp_y = lc->qp_y;
939
940         if (c_idx == 0) {
941             qp = qp_y + s->sps->qp_bd_offset;
942         } else {
943             int qp_i, offset;
944
945             if (c_idx == 1)
946                 offset = s->pps->cb_qp_offset + s->sh.slice_cb_qp_offset;
947             else
948                 offset = s->pps->cr_qp_offset + s->sh.slice_cr_qp_offset;
949
950             qp_i = av_clip_c(qp_y + offset, -s->sps->qp_bd_offset, 57);
951             if (qp_i < 30)
952                 qp = qp_i;
953             else if (qp_i > 43)
954                 qp = qp_i - 6;
955             else
956                 qp = qp_c[qp_i - 30];
957
958             qp += s->sps->qp_bd_offset;
959         }
960
961         shift    = s->sps->bit_depth + log2_trafo_size - 5;
962         add      = 1 << (shift - 1);
963         scale    = level_scale[rem6[qp]] << (div6[qp]);
964         scale_m  = 16; // default when no custom scaling lists.
965         dc_scale = 16;
966
967         if (s->sps->scaling_list_enable_flag) {
968             const ScalingList *sl = s->pps->scaling_list_data_present_flag ?
969                                     &s->pps->scaling_list : &s->sps->scaling_list;
970             int matrix_id = lc->cu.pred_mode != MODE_INTRA;
971
972             if (log2_trafo_size != 5)
973                 matrix_id = 3 * matrix_id + c_idx;
974
975             scale_matrix = sl->sl[log2_trafo_size - 2][matrix_id];
976             if (log2_trafo_size >= 4)
977                 dc_scale = sl->sl_dc[log2_trafo_size - 4][matrix_id];
978         }
979     }
980
981     if (s->pps->transform_skip_enabled_flag &&
982         !lc->cu.cu_transquant_bypass_flag   &&
983         log2_trafo_size == 2) {
984         transform_skip_flag = ff_hevc_transform_skip_flag_decode(s, c_idx);
985     }
986
987     last_significant_coeff_x =
988         ff_hevc_last_significant_coeff_x_prefix_decode(s, c_idx, log2_trafo_size);
989     last_significant_coeff_y =
990         ff_hevc_last_significant_coeff_y_prefix_decode(s, c_idx, log2_trafo_size);
991
992     if (last_significant_coeff_x > 3) {
993         int suffix = ff_hevc_last_significant_coeff_suffix_decode(s, last_significant_coeff_x);
994         last_significant_coeff_x = (1 << ((last_significant_coeff_x >> 1) - 1)) *
995                                    (2 + (last_significant_coeff_x & 1)) +
996                                    suffix;
997     }
998
999     if (last_significant_coeff_y > 3) {
1000         int suffix = ff_hevc_last_significant_coeff_suffix_decode(s, last_significant_coeff_y);
1001         last_significant_coeff_y = (1 << ((last_significant_coeff_y >> 1) - 1)) *
1002                                    (2 + (last_significant_coeff_y & 1)) +
1003                                    suffix;
1004     }
1005
1006     if (scan_idx == SCAN_VERT)
1007         FFSWAP(int, last_significant_coeff_x, last_significant_coeff_y);
1008
1009     x_cg_last_sig = last_significant_coeff_x >> 2;
1010     y_cg_last_sig = last_significant_coeff_y >> 2;
1011
1012     switch (scan_idx) {
1013     case SCAN_DIAG: {
1014         int last_x_c = last_significant_coeff_x & 3;
1015         int last_y_c = last_significant_coeff_y & 3;
1016
1017         scan_x_off = ff_hevc_diag_scan4x4_x;
1018         scan_y_off = ff_hevc_diag_scan4x4_y;
1019         num_coeff  = diag_scan4x4_inv[last_y_c][last_x_c];
1020         if (trafo_size == 4) {
1021             scan_x_cg = scan_1x1;
1022             scan_y_cg = scan_1x1;
1023         } else if (trafo_size == 8) {
1024             num_coeff += diag_scan2x2_inv[y_cg_last_sig][x_cg_last_sig] << 4;
1025             scan_x_cg  = diag_scan2x2_x;
1026             scan_y_cg  = diag_scan2x2_y;
1027         } else if (trafo_size == 16) {
1028             num_coeff += diag_scan4x4_inv[y_cg_last_sig][x_cg_last_sig] << 4;
1029             scan_x_cg  = ff_hevc_diag_scan4x4_x;
1030             scan_y_cg  = ff_hevc_diag_scan4x4_y;
1031         } else { // trafo_size == 32
1032             num_coeff += diag_scan8x8_inv[y_cg_last_sig][x_cg_last_sig] << 4;
1033             scan_x_cg  = ff_hevc_diag_scan8x8_x;
1034             scan_y_cg  = ff_hevc_diag_scan8x8_y;
1035         }
1036         break;
1037     }
1038     case SCAN_HORIZ:
1039         scan_x_cg  = horiz_scan2x2_x;
1040         scan_y_cg  = horiz_scan2x2_y;
1041         scan_x_off = horiz_scan4x4_x;
1042         scan_y_off = horiz_scan4x4_y;
1043         num_coeff  = horiz_scan8x8_inv[last_significant_coeff_y][last_significant_coeff_x];
1044         break;
1045     default: //SCAN_VERT
1046         scan_x_cg  = horiz_scan2x2_y;
1047         scan_y_cg  = horiz_scan2x2_x;
1048         scan_x_off = horiz_scan4x4_y;
1049         scan_y_off = horiz_scan4x4_x;
1050         num_coeff  = horiz_scan8x8_inv[last_significant_coeff_x][last_significant_coeff_y];
1051         break;
1052     }
1053     num_coeff++;
1054     num_last_subset = (num_coeff - 1) >> 4;
1055
1056     for (i = num_last_subset; i >= 0; i--) {
1057         int n, m;
1058         int x_cg, y_cg, x_c, y_c;
1059         int implicit_non_zero_coeff = 0;
1060         int64_t trans_coeff_level;
1061         int prev_sig = 0;
1062         int offset   = i << 4;
1063
1064         uint8_t significant_coeff_flag_idx[16];
1065         uint8_t nb_significant_coeff_flag = 0;
1066
1067         x_cg = scan_x_cg[i];
1068         y_cg = scan_y_cg[i];
1069
1070         if (i < num_last_subset && i > 0) {
1071             int ctx_cg = 0;
1072             if (x_cg < (1 << (log2_trafo_size - 2)) - 1)
1073                 ctx_cg += significant_coeff_group_flag[x_cg + 1][y_cg];
1074             if (y_cg < (1 << (log2_trafo_size - 2)) - 1)
1075                 ctx_cg += significant_coeff_group_flag[x_cg][y_cg + 1];
1076
1077             significant_coeff_group_flag[x_cg][y_cg] =
1078                 ff_hevc_significant_coeff_group_flag_decode(s, c_idx, ctx_cg);
1079             implicit_non_zero_coeff = 1;
1080         } else {
1081             significant_coeff_group_flag[x_cg][y_cg] =
1082                 ((x_cg == x_cg_last_sig && y_cg == y_cg_last_sig) ||
1083                  (x_cg == 0 && y_cg == 0));
1084         }
1085
1086         last_scan_pos = num_coeff - offset - 1;
1087
1088         if (i == num_last_subset) {
1089             n_end                         = last_scan_pos - 1;
1090             significant_coeff_flag_idx[0] = last_scan_pos;
1091             nb_significant_coeff_flag     = 1;
1092         } else {
1093             n_end = 15;
1094         }
1095
1096         if (x_cg < ((1 << log2_trafo_size) - 1) >> 2)
1097             prev_sig = significant_coeff_group_flag[x_cg + 1][y_cg];
1098         if (y_cg < ((1 << log2_trafo_size) - 1) >> 2)
1099             prev_sig += significant_coeff_group_flag[x_cg][y_cg + 1] << 1;
1100
1101         for (n = n_end; n >= 0; n--) {
1102             GET_COORD(offset, n);
1103
1104             if (significant_coeff_group_flag[x_cg][y_cg] &&
1105                 (n > 0 || implicit_non_zero_coeff == 0)) {
1106                 if (ff_hevc_significant_coeff_flag_decode(s, c_idx, x_c, y_c,
1107                                                           log2_trafo_size,
1108                                                           scan_idx,
1109                                                           prev_sig) == 1) {
1110                     significant_coeff_flag_idx[nb_significant_coeff_flag] = n;
1111                     nb_significant_coeff_flag++;
1112                     implicit_non_zero_coeff = 0;
1113                 }
1114             } else {
1115                 int last_cg = (x_c == (x_cg << 2) && y_c == (y_cg << 2));
1116                 if (last_cg && implicit_non_zero_coeff && significant_coeff_group_flag[x_cg][y_cg]) {
1117                     significant_coeff_flag_idx[nb_significant_coeff_flag] = n;
1118                     nb_significant_coeff_flag++;
1119                 }
1120             }
1121         }
1122
1123         n_end = nb_significant_coeff_flag;
1124
1125         if (n_end) {
1126             int first_nz_pos_in_cg = 16;
1127             int last_nz_pos_in_cg = -1;
1128             int c_rice_param = 0;
1129             int first_greater1_coeff_idx = -1;
1130             uint8_t coeff_abs_level_greater1_flag[16] = { 0 };
1131             uint16_t coeff_sign_flag;
1132             int sum_abs = 0;
1133             int sign_hidden = 0;
1134
1135             // initialize first elem of coeff_bas_level_greater1_flag
1136             int ctx_set = (i > 0 && c_idx == 0) ? 2 : 0;
1137
1138             if (!(i == num_last_subset) && greater1_ctx == 0)
1139                 ctx_set++;
1140             greater1_ctx      = 1;
1141             last_nz_pos_in_cg = significant_coeff_flag_idx[0];
1142
1143             for (m = 0; m < (n_end > 8 ? 8 : n_end); m++) {
1144                 int n_idx = significant_coeff_flag_idx[m];
1145                 int inc   = (ctx_set << 2) + greater1_ctx;
1146                 coeff_abs_level_greater1_flag[n_idx] =
1147                     ff_hevc_coeff_abs_level_greater1_flag_decode(s, c_idx, inc);
1148                 if (coeff_abs_level_greater1_flag[n_idx]) {
1149                     greater1_ctx = 0;
1150                 } else if (greater1_ctx > 0 && greater1_ctx < 3) {
1151                     greater1_ctx++;
1152                 }
1153
1154                 if (coeff_abs_level_greater1_flag[n_idx] &&
1155                     first_greater1_coeff_idx == -1)
1156                     first_greater1_coeff_idx = n_idx;
1157             }
1158             first_nz_pos_in_cg = significant_coeff_flag_idx[n_end - 1];
1159             sign_hidden        = last_nz_pos_in_cg - first_nz_pos_in_cg >= 4 &&
1160                                  !lc->cu.cu_transquant_bypass_flag;
1161
1162             if (first_greater1_coeff_idx != -1) {
1163                 coeff_abs_level_greater1_flag[first_greater1_coeff_idx] += ff_hevc_coeff_abs_level_greater2_flag_decode(s, c_idx, ctx_set);
1164             }
1165             if (!s->pps->sign_data_hiding_flag || !sign_hidden) {
1166                 coeff_sign_flag = ff_hevc_coeff_sign_flag(s, nb_significant_coeff_flag) << (16 - nb_significant_coeff_flag);
1167             } else {
1168                 coeff_sign_flag = ff_hevc_coeff_sign_flag(s, nb_significant_coeff_flag - 1) << (16 - (nb_significant_coeff_flag - 1));
1169             }
1170
1171             for (m = 0; m < n_end; m++) {
1172                 n = significant_coeff_flag_idx[m];
1173                 GET_COORD(offset, n);
1174                 trans_coeff_level = 1 + coeff_abs_level_greater1_flag[n];
1175                 if (trans_coeff_level == ((m < 8) ?
1176                                           ((n == first_greater1_coeff_idx) ? 3 : 2) : 1)) {
1177                     int last_coeff_abs_level_remaining = ff_hevc_coeff_abs_level_remaining(s, trans_coeff_level, c_rice_param);
1178
1179                     trans_coeff_level += last_coeff_abs_level_remaining;
1180                     if ((trans_coeff_level) > (3 * (1 << c_rice_param)))
1181                         c_rice_param = FFMIN(c_rice_param + 1, 4);
1182                 }
1183                 if (s->pps->sign_data_hiding_flag && sign_hidden) {
1184                     sum_abs += trans_coeff_level;
1185                     if (n == first_nz_pos_in_cg && ((sum_abs & 1) == 1))
1186                         trans_coeff_level = -trans_coeff_level;
1187                 }
1188                 if (coeff_sign_flag >> 15)
1189                     trans_coeff_level = -trans_coeff_level;
1190                 coeff_sign_flag <<= 1;
1191                 if (!lc->cu.cu_transquant_bypass_flag) {
1192                     if (s->sps->scaling_list_enable_flag) {
1193                         if (y_c || x_c || log2_trafo_size < 4) {
1194                             int pos;
1195                             switch (log2_trafo_size) {
1196                             case 3:  pos = (y_c        << 3) +  x_c;       break;
1197                             case 4:  pos = ((y_c >> 1) << 3) + (x_c >> 1); break;
1198                             case 5:  pos = ((y_c >> 2) << 3) + (x_c >> 2); break;
1199                             default: pos = (y_c        << 2) +  x_c;
1200                             }
1201                             scale_m = scale_matrix[pos];
1202                         } else {
1203                             scale_m = dc_scale;
1204                         }
1205                     }
1206                     trans_coeff_level = (trans_coeff_level * (int64_t)scale * (int64_t)scale_m + add) >> shift;
1207                     if(trans_coeff_level < 0) {
1208                         if((~trans_coeff_level) & 0xFffffffffff8000)
1209                             trans_coeff_level = -32768;
1210                     } else {
1211                         if (trans_coeff_level & 0xffffffffffff8000)
1212                             trans_coeff_level = 32767;
1213                     }
1214                 }
1215                 coeffs[y_c * trafo_size + x_c] = trans_coeff_level;
1216             }
1217         }
1218     }
1219
1220     if (lc->cu.cu_transquant_bypass_flag) {
1221         s->hevcdsp.transquant_bypass[log2_trafo_size - 2](dst, coeffs, stride);
1222     } else {
1223         if (transform_skip_flag)
1224             s->hevcdsp.transform_skip(dst, coeffs, stride);
1225         else if (lc->cu.pred_mode == MODE_INTRA && c_idx == 0 &&
1226                  log2_trafo_size == 2)
1227             s->hevcdsp.transform_4x4_luma_add(dst, coeffs, stride);
1228         else
1229             s->hevcdsp.transform_add[log2_trafo_size - 2](dst, coeffs, stride);
1230     }
1231 }
1232
1233 static int hls_transform_unit(HEVCContext *s, int x0, int y0,
1234                               int xBase, int yBase, int cb_xBase, int cb_yBase,
1235                               int log2_cb_size, int log2_trafo_size,
1236                               int trafo_depth, int blk_idx,
1237                               int cbf_luma, int cbf_cb, int cbf_cr)
1238 {
1239     HEVCLocalContext *lc = &s->HEVClc;
1240
1241     if (lc->cu.pred_mode == MODE_INTRA) {
1242         int trafo_size = 1 << log2_trafo_size;
1243         ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
1244
1245         s->hpc.intra_pred[log2_trafo_size - 2](s, x0, y0, 0);
1246         if (log2_trafo_size > 2) {
1247             trafo_size = trafo_size << (s->sps->hshift[1] - 1);
1248             ff_hevc_set_neighbour_available(s, x0, y0, trafo_size, trafo_size);
1249             s->hpc.intra_pred[log2_trafo_size - 3](s, x0, y0, 1);
1250             s->hpc.intra_pred[log2_trafo_size - 3](s, x0, y0, 2);
1251         } else if (blk_idx == 3) {
1252             trafo_size = trafo_size << s->sps->hshift[1];
1253             ff_hevc_set_neighbour_available(s, xBase, yBase,
1254                                             trafo_size, trafo_size);
1255             s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 1);
1256             s->hpc.intra_pred[log2_trafo_size - 2](s, xBase, yBase, 2);
1257         }
1258     }
1259
1260     if (cbf_luma || cbf_cb || cbf_cr) {
1261         int scan_idx   = SCAN_DIAG;
1262         int scan_idx_c = SCAN_DIAG;
1263
1264         if (s->pps->cu_qp_delta_enabled_flag && !lc->tu.is_cu_qp_delta_coded) {
1265             lc->tu.cu_qp_delta = ff_hevc_cu_qp_delta_abs(s);
1266             if (lc->tu.cu_qp_delta != 0)
1267                 if (ff_hevc_cu_qp_delta_sign_flag(s) == 1)
1268                     lc->tu.cu_qp_delta = -lc->tu.cu_qp_delta;
1269             lc->tu.is_cu_qp_delta_coded = 1;
1270
1271             if (lc->tu.cu_qp_delta < -(26 + s->sps->qp_bd_offset / 2) ||
1272                 lc->tu.cu_qp_delta >  (25 + s->sps->qp_bd_offset / 2)) {
1273                 av_log(s->avctx, AV_LOG_ERROR,
1274                        "The cu_qp_delta %d is outside the valid range "
1275                        "[%d, %d].\n",
1276                        lc->tu.cu_qp_delta,
1277                        -(26 + s->sps->qp_bd_offset / 2),
1278                         (25 + s->sps->qp_bd_offset / 2));
1279                 return AVERROR_INVALIDDATA;
1280             }
1281
1282             ff_hevc_set_qPy(s, x0, y0, cb_xBase, cb_yBase, log2_cb_size);
1283         }
1284
1285         if (lc->cu.pred_mode == MODE_INTRA && log2_trafo_size < 4) {
1286             if (lc->tu.cur_intra_pred_mode >= 6 &&
1287                 lc->tu.cur_intra_pred_mode <= 14) {
1288                 scan_idx = SCAN_VERT;
1289             } else if (lc->tu.cur_intra_pred_mode >= 22 &&
1290                        lc->tu.cur_intra_pred_mode <= 30) {
1291                 scan_idx = SCAN_HORIZ;
1292             }
1293
1294             if (lc->pu.intra_pred_mode_c >=  6 &&
1295                 lc->pu.intra_pred_mode_c <= 14) {
1296                 scan_idx_c = SCAN_VERT;
1297             } else if (lc->pu.intra_pred_mode_c >= 22 &&
1298                        lc->pu.intra_pred_mode_c <= 30) {
1299                 scan_idx_c = SCAN_HORIZ;
1300             }
1301         }
1302
1303         if (cbf_luma)
1304             hls_residual_coding(s, x0, y0, log2_trafo_size, scan_idx, 0);
1305         if (log2_trafo_size > 2) {
1306             if (cbf_cb)
1307                 hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 1);
1308             if (cbf_cr)
1309                 hls_residual_coding(s, x0, y0, log2_trafo_size - 1, scan_idx_c, 2);
1310         } else if (blk_idx == 3) {
1311             if (cbf_cb)
1312                 hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 1);
1313             if (cbf_cr)
1314                 hls_residual_coding(s, xBase, yBase, log2_trafo_size, scan_idx_c, 2);
1315         }
1316     }
1317     return 0;
1318 }
1319
1320 static void set_deblocking_bypass(HEVCContext *s, int x0, int y0, int log2_cb_size)
1321 {
1322     int cb_size          = 1 << log2_cb_size;
1323     int log2_min_pu_size = s->sps->log2_min_pu_size;
1324
1325     int min_pu_width     = s->sps->min_pu_width;
1326     int x_end = FFMIN(x0 + cb_size, s->sps->width);
1327     int y_end = FFMIN(y0 + cb_size, s->sps->height);
1328     int i, j;
1329
1330     for (j = (y0 >> log2_min_pu_size); j < (y_end >> log2_min_pu_size); j++)
1331         for (i = (x0 >> log2_min_pu_size); i < (x_end >> log2_min_pu_size); i++)
1332             s->is_pcm[i + j * min_pu_width] = 2;
1333 }
1334
1335 static int hls_transform_tree(HEVCContext *s, int x0, int y0,
1336                               int xBase, int yBase, int cb_xBase, int cb_yBase,
1337                               int log2_cb_size, int log2_trafo_size,
1338                               int trafo_depth, int blk_idx,
1339                               int cbf_cb, int cbf_cr)
1340 {
1341     HEVCLocalContext *lc = &s->HEVClc;
1342     uint8_t split_transform_flag;
1343     int ret;
1344
1345     if (lc->cu.intra_split_flag) {
1346         if (trafo_depth == 1)
1347             lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[blk_idx];
1348     } else {
1349         lc->tu.cur_intra_pred_mode = lc->pu.intra_pred_mode[0];
1350     }
1351
1352     if (log2_trafo_size <= s->sps->log2_max_trafo_size &&
1353         log2_trafo_size >  s->sps->log2_min_tb_size    &&
1354         trafo_depth     < lc->cu.max_trafo_depth       &&
1355         !(lc->cu.intra_split_flag && trafo_depth == 0)) {
1356         split_transform_flag = ff_hevc_split_transform_flag_decode(s, log2_trafo_size);
1357     } else {
1358         int inter_split = s->sps->max_transform_hierarchy_depth_inter == 0 &&
1359                           lc->cu.pred_mode == MODE_INTER &&
1360                           lc->cu.part_mode != PART_2Nx2N &&
1361                           trafo_depth == 0;
1362
1363         split_transform_flag = log2_trafo_size > s->sps->log2_max_trafo_size ||
1364                                (lc->cu.intra_split_flag && trafo_depth == 0) ||
1365                                inter_split;
1366     }
1367
1368     if (log2_trafo_size > 2 && (trafo_depth == 0 || cbf_cb))
1369         cbf_cb = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
1370     else if (log2_trafo_size > 2 || trafo_depth == 0)
1371         cbf_cb = 0;
1372     if (log2_trafo_size > 2 && (trafo_depth == 0 || cbf_cr))
1373         cbf_cr = ff_hevc_cbf_cb_cr_decode(s, trafo_depth);
1374     else if (log2_trafo_size > 2 || trafo_depth == 0)
1375         cbf_cr = 0;
1376
1377     if (split_transform_flag) {
1378         const int trafo_size_split = 1 << (log2_trafo_size - 1);
1379         const int x1 = x0 + trafo_size_split;
1380         const int y1 = y0 + trafo_size_split;
1381
1382 #define SUBDIVIDE(x, y, idx)                                                    \
1383 do {                                                                            \
1384     ret = hls_transform_tree(s, x, y, x0, y0, cb_xBase, cb_yBase, log2_cb_size, \
1385                              log2_trafo_size - 1, trafo_depth + 1, idx,         \
1386                              cbf_cb, cbf_cr);                                   \
1387     if (ret < 0)                                                                \
1388         return ret;                                                             \
1389 } while (0)
1390
1391         SUBDIVIDE(x0, y0, 0);
1392         SUBDIVIDE(x1, y0, 1);
1393         SUBDIVIDE(x0, y1, 2);
1394         SUBDIVIDE(x1, y1, 3);
1395
1396 #undef SUBDIVIDE
1397     } else {
1398         int min_tu_size      = 1 << s->sps->log2_min_tb_size;
1399         int log2_min_tu_size = s->sps->log2_min_tb_size;
1400         int min_tu_width     = s->sps->min_tb_width;
1401         int cbf_luma         = 1;
1402
1403         if (lc->cu.pred_mode == MODE_INTRA || trafo_depth != 0 ||
1404             cbf_cb || cbf_cr)
1405             cbf_luma = ff_hevc_cbf_luma_decode(s, trafo_depth);
1406
1407         ret = hls_transform_unit(s, x0, y0, xBase, yBase, cb_xBase, cb_yBase,
1408                                  log2_cb_size, log2_trafo_size, trafo_depth,
1409                                  blk_idx, cbf_luma, cbf_cb, cbf_cr);
1410         if (ret < 0)
1411             return ret;
1412         // TODO: store cbf_luma somewhere else
1413         if (cbf_luma) {
1414             int i, j;
1415             for (i = 0; i < (1 << log2_trafo_size); i += min_tu_size)
1416                 for (j = 0; j < (1 << log2_trafo_size); j += min_tu_size) {
1417                     int x_tu = (x0 + j) >> log2_min_tu_size;
1418                     int y_tu = (y0 + i) >> log2_min_tu_size;
1419                     s->cbf_luma[y_tu * min_tu_width + x_tu] = 1;
1420                 }
1421         }
1422         if (!s->sh.disable_deblocking_filter_flag) {
1423             ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_trafo_size);
1424             if (s->pps->transquant_bypass_enable_flag &&
1425                 lc->cu.cu_transquant_bypass_flag)
1426                 set_deblocking_bypass(s, x0, y0, log2_trafo_size);
1427         }
1428     }
1429     return 0;
1430 }
1431
1432 static int hls_pcm_sample(HEVCContext *s, int x0, int y0, int log2_cb_size)
1433 {
1434     //TODO: non-4:2:0 support
1435     HEVCLocalContext *lc = &s->HEVClc;
1436     GetBitContext gb;
1437     int cb_size   = 1 << log2_cb_size;
1438     int stride0   = s->frame->linesize[0];
1439     uint8_t *dst0 = &s->frame->data[0][y0 * stride0 + (x0 << s->sps->pixel_shift)];
1440     int   stride1 = s->frame->linesize[1];
1441     uint8_t *dst1 = &s->frame->data[1][(y0 >> s->sps->vshift[1]) * stride1 + ((x0 >> s->sps->hshift[1]) << s->sps->pixel_shift)];
1442     int   stride2 = s->frame->linesize[2];
1443     uint8_t *dst2 = &s->frame->data[2][(y0 >> s->sps->vshift[2]) * stride2 + ((x0 >> s->sps->hshift[2]) << s->sps->pixel_shift)];
1444
1445     int length         = cb_size * cb_size * s->sps->pcm.bit_depth + ((cb_size * cb_size) >> 1) * s->sps->pcm.bit_depth_chroma;
1446     const uint8_t *pcm = skip_bytes(&lc->cc, (length + 7) >> 3);
1447     int ret;
1448
1449     if (!s->sh.disable_deblocking_filter_flag)
1450         ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
1451
1452     ret = init_get_bits(&gb, pcm, length);
1453     if (ret < 0)
1454         return ret;
1455
1456     s->hevcdsp.put_pcm(dst0, stride0, cb_size,     &gb, s->sps->pcm.bit_depth);
1457     s->hevcdsp.put_pcm(dst1, stride1, cb_size / 2, &gb, s->sps->pcm.bit_depth_chroma);
1458     s->hevcdsp.put_pcm(dst2, stride2, cb_size / 2, &gb, s->sps->pcm.bit_depth_chroma);
1459     return 0;
1460 }
1461
1462 static void hls_mvd_coding(HEVCContext *s, int x0, int y0, int log2_cb_size)
1463 {
1464     HEVCLocalContext *lc = &s->HEVClc;
1465     int x = ff_hevc_abs_mvd_greater0_flag_decode(s);
1466     int y = ff_hevc_abs_mvd_greater0_flag_decode(s);
1467
1468     if (x)
1469         x += ff_hevc_abs_mvd_greater1_flag_decode(s);
1470     if (y)
1471         y += ff_hevc_abs_mvd_greater1_flag_decode(s);
1472
1473     switch (x) {
1474     case 2: lc->pu.mvd.x = ff_hevc_mvd_decode(s);           break;
1475     case 1: lc->pu.mvd.x = ff_hevc_mvd_sign_flag_decode(s); break;
1476     case 0: lc->pu.mvd.x = 0;                               break;
1477     }
1478
1479     switch (y) {
1480     case 2: lc->pu.mvd.y = ff_hevc_mvd_decode(s);           break;
1481     case 1: lc->pu.mvd.y = ff_hevc_mvd_sign_flag_decode(s); break;
1482     case 0: lc->pu.mvd.y = 0;                               break;
1483     }
1484 }
1485
1486 /**
1487  * 8.5.3.2.2.1 Luma sample interpolation process
1488  *
1489  * @param s HEVC decoding context
1490  * @param dst target buffer for block data at block position
1491  * @param dststride stride of the dst buffer
1492  * @param ref reference picture buffer at origin (0, 0)
1493  * @param mv motion vector (relative to block position) to get pixel data from
1494  * @param x_off horizontal position of block from origin (0, 0)
1495  * @param y_off vertical position of block from origin (0, 0)
1496  * @param block_w width of block
1497  * @param block_h height of block
1498  */
1499 static void luma_mc(HEVCContext *s, int16_t *dst, ptrdiff_t dststride,
1500                     AVFrame *ref, const Mv *mv, int x_off, int y_off,
1501                     int block_w, int block_h)
1502 {
1503     HEVCLocalContext *lc = &s->HEVClc;
1504     uint8_t *src         = ref->data[0];
1505     ptrdiff_t srcstride  = ref->linesize[0];
1506     int pic_width        = s->sps->width;
1507     int pic_height       = s->sps->height;
1508
1509     int mx         = mv->x & 3;
1510     int my         = mv->y & 3;
1511     int extra_left = ff_hevc_qpel_extra_before[mx];
1512     int extra_top  = ff_hevc_qpel_extra_before[my];
1513
1514     x_off += mv->x >> 2;
1515     y_off += mv->y >> 2;
1516     src   += y_off * srcstride + (x_off << s->sps->pixel_shift);
1517
1518     if (x_off < extra_left || y_off < extra_top ||
1519         x_off >= pic_width - block_w - ff_hevc_qpel_extra_after[mx] ||
1520         y_off >= pic_height - block_h - ff_hevc_qpel_extra_after[my]) {
1521         const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
1522         int offset = extra_top * srcstride + (extra_left << s->sps->pixel_shift);
1523         int buf_offset = extra_top *
1524                          edge_emu_stride + (extra_left << s->sps->pixel_shift);
1525
1526         s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src - offset,
1527                                  edge_emu_stride, srcstride,
1528                                  block_w + ff_hevc_qpel_extra[mx],
1529                                  block_h + ff_hevc_qpel_extra[my],
1530                                  x_off - extra_left, y_off - extra_top,
1531                                  pic_width, pic_height);
1532         src = lc->edge_emu_buffer + buf_offset;
1533         srcstride = edge_emu_stride;
1534     }
1535     s->hevcdsp.put_hevc_qpel[my][mx](dst, dststride, src, srcstride, block_w,
1536                                      block_h, lc->mc_buffer);
1537 }
1538
1539 /**
1540  * 8.5.3.2.2.2 Chroma sample interpolation process
1541  *
1542  * @param s HEVC decoding context
1543  * @param dst1 target buffer for block data at block position (U plane)
1544  * @param dst2 target buffer for block data at block position (V plane)
1545  * @param dststride stride of the dst1 and dst2 buffers
1546  * @param ref reference picture buffer at origin (0, 0)
1547  * @param mv motion vector (relative to block position) to get pixel data from
1548  * @param x_off horizontal position of block from origin (0, 0)
1549  * @param y_off vertical position of block from origin (0, 0)
1550  * @param block_w width of block
1551  * @param block_h height of block
1552  */
1553 static void chroma_mc(HEVCContext *s, int16_t *dst1, int16_t *dst2,
1554                       ptrdiff_t dststride, AVFrame *ref, const Mv *mv,
1555                       int x_off, int y_off, int block_w, int block_h)
1556 {
1557     HEVCLocalContext *lc = &s->HEVClc;
1558     uint8_t *src1        = ref->data[1];
1559     uint8_t *src2        = ref->data[2];
1560     ptrdiff_t src1stride = ref->linesize[1];
1561     ptrdiff_t src2stride = ref->linesize[2];
1562     int pic_width        = s->sps->width >> 1;
1563     int pic_height       = s->sps->height >> 1;
1564
1565     int mx = mv->x & 7;
1566     int my = mv->y & 7;
1567
1568     x_off += mv->x >> 3;
1569     y_off += mv->y >> 3;
1570     src1  += y_off * src1stride + (x_off << s->sps->pixel_shift);
1571     src2  += y_off * src2stride + (x_off << s->sps->pixel_shift);
1572
1573     if (x_off < EPEL_EXTRA_BEFORE || y_off < EPEL_EXTRA_AFTER ||
1574         x_off >= pic_width - block_w - EPEL_EXTRA_AFTER ||
1575         y_off >= pic_height - block_h - EPEL_EXTRA_AFTER) {
1576         const int edge_emu_stride = EDGE_EMU_BUFFER_STRIDE << s->sps->pixel_shift;
1577         int offset1 = EPEL_EXTRA_BEFORE * (src1stride + (1 << s->sps->pixel_shift));
1578         int buf_offset1 = EPEL_EXTRA_BEFORE *
1579                           (edge_emu_stride + (1 << s->sps->pixel_shift));
1580         int offset2 = EPEL_EXTRA_BEFORE * (src2stride + (1 << s->sps->pixel_shift));
1581         int buf_offset2 = EPEL_EXTRA_BEFORE *
1582                           (edge_emu_stride + (1 << s->sps->pixel_shift));
1583
1584         s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src1 - offset1,
1585                                  edge_emu_stride, src1stride,
1586                                  block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
1587                                  x_off - EPEL_EXTRA_BEFORE,
1588                                  y_off - EPEL_EXTRA_BEFORE,
1589                                  pic_width, pic_height);
1590
1591         src1 = lc->edge_emu_buffer + buf_offset1;
1592         src1stride = edge_emu_stride;
1593         s->hevcdsp.put_hevc_epel[!!my][!!mx](dst1, dststride, src1, src1stride,
1594                                              block_w, block_h, mx, my, lc->mc_buffer);
1595
1596         s->vdsp.emulated_edge_mc(lc->edge_emu_buffer, src2 - offset2,
1597                                  edge_emu_stride, src2stride,
1598                                  block_w + EPEL_EXTRA, block_h + EPEL_EXTRA,
1599                                  x_off - EPEL_EXTRA_BEFORE,
1600                                  y_off - EPEL_EXTRA_BEFORE,
1601                                  pic_width, pic_height);
1602         src2 = lc->edge_emu_buffer + buf_offset2;
1603         src2stride = edge_emu_stride;
1604
1605         s->hevcdsp.put_hevc_epel[!!my][!!mx](dst2, dststride, src2, src2stride,
1606                                              block_w, block_h, mx, my,
1607                                              lc->mc_buffer);
1608     } else {
1609         s->hevcdsp.put_hevc_epel[!!my][!!mx](dst1, dststride, src1, src1stride,
1610                                              block_w, block_h, mx, my,
1611                                              lc->mc_buffer);
1612         s->hevcdsp.put_hevc_epel[!!my][!!mx](dst2, dststride, src2, src2stride,
1613                                              block_w, block_h, mx, my,
1614                                              lc->mc_buffer);
1615     }
1616 }
1617
1618 static void hevc_await_progress(HEVCContext *s, HEVCFrame *ref,
1619                                 const Mv *mv, int y0, int height)
1620 {
1621     int y = (mv->y >> 2) + y0 + height + 9;
1622     ff_thread_await_progress(&ref->tf, y, 0);
1623 }
1624
1625 static void hls_prediction_unit(HEVCContext *s, int x0, int y0,
1626                                 int nPbW, int nPbH,
1627                                 int log2_cb_size, int partIdx)
1628 {
1629 #define POS(c_idx, x, y)                                                              \
1630     &s->frame->data[c_idx][((y) >> s->sps->vshift[c_idx]) * s->frame->linesize[c_idx] + \
1631                            (((x) >> s->sps->hshift[c_idx]) << s->sps->pixel_shift)]
1632     HEVCLocalContext *lc = &s->HEVClc;
1633     int merge_idx = 0;
1634     struct MvField current_mv = {{{ 0 }}};
1635
1636     int min_pu_width = s->sps->min_pu_width;
1637
1638     MvField *tab_mvf = s->ref->tab_mvf;
1639     RefPicList  *refPicList = s->ref->refPicList;
1640     HEVCFrame *ref0, *ref1;
1641
1642     int tmpstride = MAX_PB_SIZE;
1643
1644     uint8_t *dst0 = POS(0, x0, y0);
1645     uint8_t *dst1 = POS(1, x0, y0);
1646     uint8_t *dst2 = POS(2, x0, y0);
1647     int log2_min_cb_size = s->sps->log2_min_cb_size;
1648     int min_cb_width     = s->sps->min_cb_width;
1649     int x_cb             = x0 >> log2_min_cb_size;
1650     int y_cb             = y0 >> log2_min_cb_size;
1651     int ref_idx[2];
1652     int mvp_flag[2];
1653     int x_pu, y_pu;
1654     int i, j;
1655
1656     if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
1657         if (s->sh.max_num_merge_cand > 1)
1658             merge_idx = ff_hevc_merge_idx_decode(s);
1659         else
1660             merge_idx = 0;
1661
1662         ff_hevc_luma_mv_merge_mode(s, x0, y0,
1663                                    1 << log2_cb_size,
1664                                    1 << log2_cb_size,
1665                                    log2_cb_size, partIdx,
1666                                    merge_idx, &current_mv);
1667         x_pu = x0 >> s->sps->log2_min_pu_size;
1668         y_pu = y0 >> s->sps->log2_min_pu_size;
1669
1670         for (j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++)
1671             for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++)
1672                 tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
1673     } else { /* MODE_INTER */
1674         lc->pu.merge_flag = ff_hevc_merge_flag_decode(s);
1675         if (lc->pu.merge_flag) {
1676             if (s->sh.max_num_merge_cand > 1)
1677                 merge_idx = ff_hevc_merge_idx_decode(s);
1678             else
1679                 merge_idx = 0;
1680
1681             ff_hevc_luma_mv_merge_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
1682                                        partIdx, merge_idx, &current_mv);
1683             x_pu = x0 >> s->sps->log2_min_pu_size;
1684             y_pu = y0 >> s->sps->log2_min_pu_size;
1685
1686             for (j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++)
1687                 for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++)
1688                     tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
1689         } else {
1690             enum InterPredIdc inter_pred_idc = PRED_L0;
1691             ff_hevc_set_neighbour_available(s, x0, y0, nPbW, nPbH);
1692             if (s->sh.slice_type == B_SLICE)
1693                 inter_pred_idc = ff_hevc_inter_pred_idc_decode(s, nPbW, nPbH);
1694
1695             if (inter_pred_idc != PRED_L1) {
1696                 if (s->sh.nb_refs[L0]) {
1697                     ref_idx[0] = ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L0]);
1698                     current_mv.ref_idx[0] = ref_idx[0];
1699                 }
1700                 current_mv.pred_flag[0] = 1;
1701                 hls_mvd_coding(s, x0, y0, 0);
1702                 mvp_flag[0] = ff_hevc_mvp_lx_flag_decode(s);
1703                 ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
1704                                          partIdx, merge_idx, &current_mv,
1705                                          mvp_flag[0], 0);
1706                 current_mv.mv[0].x += lc->pu.mvd.x;
1707                 current_mv.mv[0].y += lc->pu.mvd.y;
1708             }
1709
1710             if (inter_pred_idc != PRED_L0) {
1711                 if (s->sh.nb_refs[L1]) {
1712                     ref_idx[1] = ff_hevc_ref_idx_lx_decode(s, s->sh.nb_refs[L1]);
1713                     current_mv.ref_idx[1] = ref_idx[1];
1714                 }
1715
1716                 if (s->sh.mvd_l1_zero_flag == 1 && inter_pred_idc == PRED_BI) {
1717                     AV_ZERO32(&lc->pu.mvd);
1718                 } else {
1719                     hls_mvd_coding(s, x0, y0, 1);
1720                 }
1721
1722                 current_mv.pred_flag[1] = 1;
1723                 mvp_flag[1] = ff_hevc_mvp_lx_flag_decode(s);
1724                 ff_hevc_luma_mv_mvp_mode(s, x0, y0, nPbW, nPbH, log2_cb_size,
1725                                          partIdx, merge_idx, &current_mv,
1726                                          mvp_flag[1], 1);
1727                 current_mv.mv[1].x += lc->pu.mvd.x;
1728                 current_mv.mv[1].y += lc->pu.mvd.y;
1729             }
1730
1731             x_pu = x0 >> s->sps->log2_min_pu_size;
1732             y_pu = y0 >> s->sps->log2_min_pu_size;
1733
1734             for(j = 0; j < nPbH >> s->sps->log2_min_pu_size; j++)
1735                 for (i = 0; i < nPbW >> s->sps->log2_min_pu_size; i++)
1736                     tab_mvf[(y_pu + j) * min_pu_width + x_pu + i] = current_mv;
1737         }
1738     }
1739
1740     if (current_mv.pred_flag[0]) {
1741         ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
1742         if (!ref0)
1743             return;
1744         hevc_await_progress(s, ref0, &current_mv.mv[0], y0, nPbH);
1745     }
1746     if (current_mv.pred_flag[1]) {
1747         ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
1748         if (!ref1)
1749             return;
1750         hevc_await_progress(s, ref1, &current_mv.mv[1], y0, nPbH);
1751     }
1752
1753     if (current_mv.pred_flag[0] && !current_mv.pred_flag[1]) {
1754         DECLARE_ALIGNED(16, int16_t,  tmp[MAX_PB_SIZE * MAX_PB_SIZE]);
1755         DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
1756
1757         luma_mc(s, tmp, tmpstride, ref0->frame,
1758                 &current_mv.mv[0], x0, y0, nPbW, nPbH);
1759
1760         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1761             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1762             s->hevcdsp.weighted_pred(s->sh.luma_log2_weight_denom,
1763                                      s->sh.luma_weight_l0[current_mv.ref_idx[0]],
1764                                      s->sh.luma_offset_l0[current_mv.ref_idx[0]],
1765                                      dst0, s->frame->linesize[0], tmp,
1766                                      tmpstride, nPbW, nPbH);
1767         } else {
1768             s->hevcdsp.put_unweighted_pred(dst0, s->frame->linesize[0], tmp, tmpstride, nPbW, nPbH);
1769         }
1770         chroma_mc(s, tmp, tmp2, tmpstride, ref0->frame,
1771                   &current_mv.mv[0], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2);
1772
1773         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1774             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1775             s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
1776                                      s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0],
1777                                      s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0],
1778                                      dst1, s->frame->linesize[1], tmp, tmpstride,
1779                                      nPbW / 2, nPbH / 2);
1780             s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
1781                                      s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1],
1782                                      s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1],
1783                                      dst2, s->frame->linesize[2], tmp2, tmpstride,
1784                                      nPbW / 2, nPbH / 2);
1785         } else {
1786             s->hevcdsp.put_unweighted_pred(dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2);
1787             s->hevcdsp.put_unweighted_pred(dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2);
1788         }
1789     } else if (!current_mv.pred_flag[0] && current_mv.pred_flag[1]) {
1790         DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]);
1791         DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
1792
1793         if (!ref1)
1794             return;
1795
1796         luma_mc(s, tmp, tmpstride, ref1->frame,
1797                 &current_mv.mv[1], x0, y0, nPbW, nPbH);
1798
1799         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1800             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1801             s->hevcdsp.weighted_pred(s->sh.luma_log2_weight_denom,
1802                                       s->sh.luma_weight_l1[current_mv.ref_idx[1]],
1803                                       s->sh.luma_offset_l1[current_mv.ref_idx[1]],
1804                                       dst0, s->frame->linesize[0], tmp, tmpstride,
1805                                       nPbW, nPbH);
1806         } else {
1807             s->hevcdsp.put_unweighted_pred(dst0, s->frame->linesize[0], tmp, tmpstride, nPbW, nPbH);
1808         }
1809
1810         chroma_mc(s, tmp, tmp2, tmpstride, ref1->frame,
1811                   &current_mv.mv[1], x0/2, y0/2, nPbW/2, nPbH/2);
1812
1813         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1814             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1815             s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
1816                                      s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0],
1817                                      s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0],
1818                                      dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2);
1819             s->hevcdsp.weighted_pred(s->sh.chroma_log2_weight_denom,
1820                                      s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1],
1821                                      s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1],
1822                                      dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2);
1823         } else {
1824             s->hevcdsp.put_unweighted_pred(dst1, s->frame->linesize[1], tmp, tmpstride, nPbW/2, nPbH/2);
1825             s->hevcdsp.put_unweighted_pred(dst2, s->frame->linesize[2], tmp2, tmpstride, nPbW/2, nPbH/2);
1826         }
1827     } else if (current_mv.pred_flag[0] && current_mv.pred_flag[1]) {
1828         DECLARE_ALIGNED(16, int16_t, tmp [MAX_PB_SIZE * MAX_PB_SIZE]);
1829         DECLARE_ALIGNED(16, int16_t, tmp2[MAX_PB_SIZE * MAX_PB_SIZE]);
1830         DECLARE_ALIGNED(16, int16_t, tmp3[MAX_PB_SIZE * MAX_PB_SIZE]);
1831         DECLARE_ALIGNED(16, int16_t, tmp4[MAX_PB_SIZE * MAX_PB_SIZE]);
1832         HEVCFrame *ref0 = refPicList[0].ref[current_mv.ref_idx[0]];
1833         HEVCFrame *ref1 = refPicList[1].ref[current_mv.ref_idx[1]];
1834
1835         if (!ref0 || !ref1)
1836             return;
1837
1838         luma_mc(s, tmp, tmpstride, ref0->frame,
1839                 &current_mv.mv[0], x0, y0, nPbW, nPbH);
1840         luma_mc(s, tmp2, tmpstride, ref1->frame,
1841                 &current_mv.mv[1], x0, y0, nPbW, nPbH);
1842
1843         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1844             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1845             s->hevcdsp.weighted_pred_avg(s->sh.luma_log2_weight_denom,
1846                                          s->sh.luma_weight_l0[current_mv.ref_idx[0]],
1847                                          s->sh.luma_weight_l1[current_mv.ref_idx[1]],
1848                                          s->sh.luma_offset_l0[current_mv.ref_idx[0]],
1849                                          s->sh.luma_offset_l1[current_mv.ref_idx[1]],
1850                                          dst0, s->frame->linesize[0],
1851                                          tmp, tmp2, tmpstride, nPbW, nPbH);
1852         } else {
1853             s->hevcdsp.put_weighted_pred_avg(dst0, s->frame->linesize[0],
1854                                              tmp, tmp2, tmpstride, nPbW, nPbH);
1855         }
1856
1857         chroma_mc(s, tmp, tmp2, tmpstride, ref0->frame,
1858                   &current_mv.mv[0], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2);
1859         chroma_mc(s, tmp3, tmp4, tmpstride, ref1->frame,
1860                   &current_mv.mv[1], x0 / 2, y0 / 2, nPbW / 2, nPbH / 2);
1861
1862         if ((s->sh.slice_type == P_SLICE && s->pps->weighted_pred_flag) ||
1863             (s->sh.slice_type == B_SLICE && s->pps->weighted_bipred_flag)) {
1864             s->hevcdsp.weighted_pred_avg(s->sh.chroma_log2_weight_denom,
1865                                          s->sh.chroma_weight_l0[current_mv.ref_idx[0]][0],
1866                                          s->sh.chroma_weight_l1[current_mv.ref_idx[1]][0],
1867                                          s->sh.chroma_offset_l0[current_mv.ref_idx[0]][0],
1868                                          s->sh.chroma_offset_l1[current_mv.ref_idx[1]][0],
1869                                          dst1, s->frame->linesize[1], tmp, tmp3,
1870                                          tmpstride, nPbW / 2, nPbH / 2);
1871             s->hevcdsp.weighted_pred_avg(s->sh.chroma_log2_weight_denom,
1872                                          s->sh.chroma_weight_l0[current_mv.ref_idx[0]][1],
1873                                          s->sh.chroma_weight_l1[current_mv.ref_idx[1]][1],
1874                                          s->sh.chroma_offset_l0[current_mv.ref_idx[0]][1],
1875                                          s->sh.chroma_offset_l1[current_mv.ref_idx[1]][1],
1876                                          dst2, s->frame->linesize[2], tmp2, tmp4,
1877                                          tmpstride, nPbW / 2, nPbH / 2);
1878         } else {
1879             s->hevcdsp.put_weighted_pred_avg(dst1, s->frame->linesize[1], tmp, tmp3, tmpstride, nPbW/2, nPbH/2);
1880             s->hevcdsp.put_weighted_pred_avg(dst2, s->frame->linesize[2], tmp2, tmp4, tmpstride, nPbW/2, nPbH/2);
1881         }
1882     }
1883 }
1884
1885 /**
1886  * 8.4.1
1887  */
1888 static int luma_intra_pred_mode(HEVCContext *s, int x0, int y0, int pu_size,
1889                                 int prev_intra_luma_pred_flag)
1890 {
1891     HEVCLocalContext *lc = &s->HEVClc;
1892     int x_pu             = x0 >> s->sps->log2_min_pu_size;
1893     int y_pu             = y0 >> s->sps->log2_min_pu_size;
1894     int min_pu_width     = s->sps->min_pu_width;
1895     int size_in_pus      = pu_size >> s->sps->log2_min_pu_size;
1896     int x0b              = x0 & ((1 << s->sps->log2_ctb_size) - 1);
1897     int y0b              = y0 & ((1 << s->sps->log2_ctb_size) - 1);
1898
1899     int cand_up   = (lc->ctb_up_flag || y0b) ?
1900                     s->tab_ipm[(y_pu - 1) * min_pu_width + x_pu] : INTRA_DC;
1901     int cand_left = (lc->ctb_left_flag || x0b) ?
1902                     s->tab_ipm[y_pu * min_pu_width + x_pu - 1]   : INTRA_DC;
1903
1904     int y_ctb = (y0 >> (s->sps->log2_ctb_size)) << (s->sps->log2_ctb_size);
1905
1906     MvField *tab_mvf = s->ref->tab_mvf;
1907     int intra_pred_mode;
1908     int candidate[3];
1909     int i, j;
1910
1911     // intra_pred_mode prediction does not cross vertical CTB boundaries
1912     if ((y0 - 1) < y_ctb)
1913         cand_up = INTRA_DC;
1914
1915     if (cand_left == cand_up) {
1916         if (cand_left < 2) {
1917             candidate[0] = INTRA_PLANAR;
1918             candidate[1] = INTRA_DC;
1919             candidate[2] = INTRA_ANGULAR_26;
1920         } else {
1921             candidate[0] = cand_left;
1922             candidate[1] = 2 + ((cand_left - 2 - 1 + 32) & 31);
1923             candidate[2] = 2 + ((cand_left - 2 + 1) & 31);
1924         }
1925     } else {
1926         candidate[0] = cand_left;
1927         candidate[1] = cand_up;
1928         if (candidate[0] != INTRA_PLANAR && candidate[1] != INTRA_PLANAR) {
1929             candidate[2] = INTRA_PLANAR;
1930         } else if (candidate[0] != INTRA_DC && candidate[1] != INTRA_DC) {
1931             candidate[2] = INTRA_DC;
1932         } else {
1933             candidate[2] = INTRA_ANGULAR_26;
1934         }
1935     }
1936
1937     if (prev_intra_luma_pred_flag) {
1938         intra_pred_mode = candidate[lc->pu.mpm_idx];
1939     } else {
1940         if (candidate[0] > candidate[1])
1941             FFSWAP(uint8_t, candidate[0], candidate[1]);
1942         if (candidate[0] > candidate[2])
1943             FFSWAP(uint8_t, candidate[0], candidate[2]);
1944         if (candidate[1] > candidate[2])
1945             FFSWAP(uint8_t, candidate[1], candidate[2]);
1946
1947         intra_pred_mode = lc->pu.rem_intra_luma_pred_mode;
1948         for (i = 0; i < 3; i++)
1949             if (intra_pred_mode >= candidate[i])
1950                 intra_pred_mode++;
1951     }
1952
1953     /* write the intra prediction units into the mv array */
1954     if (!size_in_pus)
1955         size_in_pus = 1;
1956     for (i = 0; i < size_in_pus; i++) {
1957         memset(&s->tab_ipm[(y_pu + i) * min_pu_width + x_pu],
1958                intra_pred_mode, size_in_pus);
1959
1960         for (j = 0; j < size_in_pus; j++) {
1961             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].is_intra     = 1;
1962             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag[0] = 0;
1963             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].pred_flag[1] = 0;
1964             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].ref_idx[0]   = 0;
1965             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].ref_idx[1]   = 0;
1966             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[0].x      = 0;
1967             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[0].y      = 0;
1968             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[1].x      = 0;
1969             tab_mvf[(y_pu + j) * min_pu_width + x_pu + i].mv[1].y      = 0;
1970         }
1971     }
1972
1973     return intra_pred_mode;
1974 }
1975
1976 static av_always_inline void set_ct_depth(HEVCContext *s, int x0, int y0,
1977                                           int log2_cb_size, int ct_depth)
1978 {
1979     int length = (1 << log2_cb_size) >> s->sps->log2_min_cb_size;
1980     int x_cb   = x0 >> s->sps->log2_min_cb_size;
1981     int y_cb   = y0 >> s->sps->log2_min_cb_size;
1982     int y;
1983
1984     for (y = 0; y < length; y++)
1985         memset(&s->tab_ct_depth[(y_cb + y) * s->sps->min_cb_width + x_cb],
1986                ct_depth, length);
1987 }
1988
1989 static void intra_prediction_unit(HEVCContext *s, int x0, int y0,
1990                                   int log2_cb_size)
1991 {
1992     HEVCLocalContext *lc = &s->HEVClc;
1993     static const uint8_t intra_chroma_table[4] = { 0, 26, 10, 1 };
1994     uint8_t prev_intra_luma_pred_flag[4];
1995     int split   = lc->cu.part_mode == PART_NxN;
1996     int pb_size = (1 << log2_cb_size) >> split;
1997     int side    = split + 1;
1998     int chroma_mode;
1999     int i, j;
2000
2001     for (i = 0; i < side; i++)
2002         for (j = 0; j < side; j++)
2003             prev_intra_luma_pred_flag[2 * i + j] = ff_hevc_prev_intra_luma_pred_flag_decode(s);
2004
2005     for (i = 0; i < side; i++) {
2006         for (j = 0; j < side; j++) {
2007             if (prev_intra_luma_pred_flag[2 * i + j])
2008                 lc->pu.mpm_idx = ff_hevc_mpm_idx_decode(s);
2009             else
2010                 lc->pu.rem_intra_luma_pred_mode = ff_hevc_rem_intra_luma_pred_mode_decode(s);
2011
2012             lc->pu.intra_pred_mode[2 * i + j] =
2013                 luma_intra_pred_mode(s, x0 + pb_size * j, y0 + pb_size * i, pb_size,
2014                                      prev_intra_luma_pred_flag[2 * i + j]);
2015         }
2016     }
2017
2018     chroma_mode = ff_hevc_intra_chroma_pred_mode_decode(s);
2019     if (chroma_mode != 4) {
2020         if (lc->pu.intra_pred_mode[0] == intra_chroma_table[chroma_mode])
2021             lc->pu.intra_pred_mode_c = 34;
2022         else
2023             lc->pu.intra_pred_mode_c = intra_chroma_table[chroma_mode];
2024     } else {
2025         lc->pu.intra_pred_mode_c = lc->pu.intra_pred_mode[0];
2026     }
2027 }
2028
2029 static void intra_prediction_unit_default_value(HEVCContext *s,
2030                                                 int x0, int y0,
2031                                                 int log2_cb_size)
2032 {
2033     HEVCLocalContext *lc = &s->HEVClc;
2034     int pb_size          = 1 << log2_cb_size;
2035     int size_in_pus      = pb_size >> s->sps->log2_min_pu_size;
2036     int min_pu_width     = s->sps->min_pu_width;
2037     MvField *tab_mvf     = s->ref->tab_mvf;
2038     int x_pu             = x0 >> s->sps->log2_min_pu_size;
2039     int y_pu             = y0 >> s->sps->log2_min_pu_size;
2040     int j, k;
2041
2042     if (size_in_pus == 0)
2043         size_in_pus = 1;
2044     for (j = 0; j < size_in_pus; j++) {
2045         memset(&s->tab_ipm[(y_pu + j) * min_pu_width + x_pu], INTRA_DC, size_in_pus);
2046         for (k = 0; k < size_in_pus; k++)
2047             tab_mvf[(y_pu + j) * min_pu_width + x_pu + k].is_intra = lc->cu.pred_mode == MODE_INTRA;
2048     }
2049 }
2050
2051 static int hls_coding_unit(HEVCContext *s, int x0, int y0, int log2_cb_size)
2052 {
2053     int cb_size          = 1 << log2_cb_size;
2054     HEVCLocalContext *lc = &s->HEVClc;
2055     int log2_min_cb_size = s->sps->log2_min_cb_size;
2056     int length           = cb_size >> log2_min_cb_size;
2057     int min_cb_width     = s->sps->min_cb_width;
2058     int x_cb             = x0 >> log2_min_cb_size;
2059     int y_cb             = y0 >> log2_min_cb_size;
2060     int x, y, ret;
2061
2062     lc->cu.x                = x0;
2063     lc->cu.y                = y0;
2064     lc->cu.rqt_root_cbf     = 1;
2065     lc->cu.pred_mode        = MODE_INTRA;
2066     lc->cu.part_mode        = PART_2Nx2N;
2067     lc->cu.intra_split_flag = 0;
2068     lc->cu.pcm_flag         = 0;
2069
2070     SAMPLE_CTB(s->skip_flag, x_cb, y_cb) = 0;
2071     for (x = 0; x < 4; x++)
2072         lc->pu.intra_pred_mode[x] = 1;
2073     if (s->pps->transquant_bypass_enable_flag) {
2074         lc->cu.cu_transquant_bypass_flag = ff_hevc_cu_transquant_bypass_flag_decode(s);
2075         if (lc->cu.cu_transquant_bypass_flag)
2076             set_deblocking_bypass(s, x0, y0, log2_cb_size);
2077     } else
2078         lc->cu.cu_transquant_bypass_flag = 0;
2079
2080     if (s->sh.slice_type != I_SLICE) {
2081         uint8_t skip_flag = ff_hevc_skip_flag_decode(s, x0, y0, x_cb, y_cb);
2082
2083         lc->cu.pred_mode = MODE_SKIP;
2084         x = y_cb * min_cb_width + x_cb;
2085         for (y = 0; y < length; y++) {
2086             memset(&s->skip_flag[x], skip_flag, length);
2087             x += min_cb_width;
2088         }
2089         lc->cu.pred_mode = skip_flag ? MODE_SKIP : MODE_INTER;
2090     }
2091
2092     if (SAMPLE_CTB(s->skip_flag, x_cb, y_cb)) {
2093         hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0);
2094         intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
2095
2096         if (!s->sh.disable_deblocking_filter_flag)
2097             ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
2098     } else {
2099         if (s->sh.slice_type != I_SLICE)
2100             lc->cu.pred_mode = ff_hevc_pred_mode_decode(s);
2101         if (lc->cu.pred_mode != MODE_INTRA ||
2102             log2_cb_size == s->sps->log2_min_cb_size) {
2103             lc->cu.part_mode        = ff_hevc_part_mode_decode(s, log2_cb_size);
2104             lc->cu.intra_split_flag = lc->cu.part_mode == PART_NxN &&
2105                                       lc->cu.pred_mode == MODE_INTRA;
2106         }
2107
2108         if (lc->cu.pred_mode == MODE_INTRA) {
2109             if (lc->cu.part_mode == PART_2Nx2N && s->sps->pcm_enabled_flag &&
2110                 log2_cb_size >= s->sps->pcm.log2_min_pcm_cb_size &&
2111                 log2_cb_size <= s->sps->pcm.log2_max_pcm_cb_size) {
2112                 lc->cu.pcm_flag = ff_hevc_pcm_flag_decode(s);
2113             }
2114             if (lc->cu.pcm_flag) {
2115                 intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
2116                 ret = hls_pcm_sample(s, x0, y0, log2_cb_size);
2117                 if (s->sps->pcm.loop_filter_disable_flag)
2118                     set_deblocking_bypass(s, x0, y0, log2_cb_size);
2119
2120                 if (ret < 0)
2121                     return ret;
2122             } else {
2123                 intra_prediction_unit(s, x0, y0, log2_cb_size);
2124             }
2125         } else {
2126             intra_prediction_unit_default_value(s, x0, y0, log2_cb_size);
2127             switch (lc->cu.part_mode) {
2128             case PART_2Nx2N:
2129                 hls_prediction_unit(s, x0, y0, cb_size, cb_size, log2_cb_size, 0);
2130                 break;
2131             case PART_2NxN:
2132                 hls_prediction_unit(s, x0, y0,               cb_size, cb_size / 2, log2_cb_size, 0);
2133                 hls_prediction_unit(s, x0, y0 + cb_size / 2, cb_size, cb_size / 2, log2_cb_size, 1);
2134                 break;
2135             case PART_Nx2N:
2136                 hls_prediction_unit(s, x0,               y0, cb_size / 2, cb_size, log2_cb_size, 0);
2137                 hls_prediction_unit(s, x0 + cb_size / 2, y0, cb_size / 2, cb_size, log2_cb_size, 1);
2138                 break;
2139             case PART_2NxnU:
2140                 hls_prediction_unit(s, x0, y0,               cb_size, cb_size     / 4, log2_cb_size, 0);
2141                 hls_prediction_unit(s, x0, y0 + cb_size / 4, cb_size, cb_size * 3 / 4, log2_cb_size, 1);
2142                 break;
2143             case PART_2NxnD:
2144                 hls_prediction_unit(s, x0, y0,                   cb_size, cb_size * 3 / 4, log2_cb_size, 0);
2145                 hls_prediction_unit(s, x0, y0 + cb_size * 3 / 4, cb_size, cb_size     / 4, log2_cb_size, 1);
2146                 break;
2147             case PART_nLx2N:
2148                 hls_prediction_unit(s, x0,               y0, cb_size     / 4, cb_size, log2_cb_size, 0);
2149                 hls_prediction_unit(s, x0 + cb_size / 4, y0, cb_size * 3 / 4, cb_size, log2_cb_size, 1);
2150                 break;
2151             case PART_nRx2N:
2152                 hls_prediction_unit(s, x0,                   y0, cb_size * 3 / 4, cb_size, log2_cb_size, 0);
2153                 hls_prediction_unit(s, x0 + cb_size * 3 / 4, y0, cb_size     / 4, cb_size, log2_cb_size, 1);
2154                 break;
2155             case PART_NxN:
2156                 hls_prediction_unit(s, x0,               y0,               cb_size / 2, cb_size / 2, log2_cb_size, 0);
2157                 hls_prediction_unit(s, x0 + cb_size / 2, y0,               cb_size / 2, cb_size / 2, log2_cb_size, 1);
2158                 hls_prediction_unit(s, x0,               y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 2);
2159                 hls_prediction_unit(s, x0 + cb_size / 2, y0 + cb_size / 2, cb_size / 2, cb_size / 2, log2_cb_size, 3);
2160                 break;
2161             }
2162         }
2163
2164         if (!lc->cu.pcm_flag) {
2165             if (lc->cu.pred_mode != MODE_INTRA &&
2166                 !(lc->cu.part_mode == PART_2Nx2N && lc->pu.merge_flag)) {
2167                 lc->cu.rqt_root_cbf = ff_hevc_no_residual_syntax_flag_decode(s);
2168             }
2169             if (lc->cu.rqt_root_cbf) {
2170                 lc->cu.max_trafo_depth = lc->cu.pred_mode == MODE_INTRA ?
2171                                          s->sps->max_transform_hierarchy_depth_intra + lc->cu.intra_split_flag :
2172                                          s->sps->max_transform_hierarchy_depth_inter;
2173                 ret = hls_transform_tree(s, x0, y0, x0, y0, x0, y0,
2174                                          log2_cb_size,
2175                                          log2_cb_size, 0, 0, 0, 0);
2176                 if (ret < 0)
2177                     return ret;
2178             } else {
2179                 if (!s->sh.disable_deblocking_filter_flag)
2180                     ff_hevc_deblocking_boundary_strengths(s, x0, y0, log2_cb_size);
2181             }
2182         }
2183     }
2184
2185     if (s->pps->cu_qp_delta_enabled_flag && lc->tu.is_cu_qp_delta_coded == 0)
2186         ff_hevc_set_qPy(s, x0, y0, x0, y0, log2_cb_size);
2187
2188     x = y_cb * min_cb_width + x_cb;
2189     for (y = 0; y < length; y++) {
2190         memset(&s->qp_y_tab[x], lc->qp_y, length);
2191         x += min_cb_width;
2192     }
2193
2194     set_ct_depth(s, x0, y0, log2_cb_size, lc->ct.depth);
2195
2196     return 0;
2197 }
2198
2199 static int hls_coding_quadtree(HEVCContext *s, int x0, int y0,
2200                                int log2_cb_size, int cb_depth)
2201 {
2202     HEVCLocalContext *lc = &s->HEVClc;
2203     const int cb_size    = 1 << log2_cb_size;
2204     int split_cu;
2205
2206     lc->ct.depth = cb_depth;
2207     if (x0 + cb_size <= s->sps->width  &&
2208         y0 + cb_size <= s->sps->height &&
2209         log2_cb_size > s->sps->log2_min_cb_size) {
2210         split_cu = ff_hevc_split_coding_unit_flag_decode(s, cb_depth, x0, y0);
2211     } else {
2212         split_cu = (log2_cb_size > s->sps->log2_min_cb_size);
2213     }
2214     if (s->pps->cu_qp_delta_enabled_flag &&
2215         log2_cb_size >= s->sps->log2_ctb_size - s->pps->diff_cu_qp_delta_depth) {
2216         lc->tu.is_cu_qp_delta_coded = 0;
2217         lc->tu.cu_qp_delta          = 0;
2218     }
2219
2220     if (split_cu) {
2221         const int cb_size_split = cb_size >> 1;
2222         const int x1 = x0 + cb_size_split;
2223         const int y1 = y0 + cb_size_split;
2224
2225         log2_cb_size--;
2226         cb_depth++;
2227
2228 #define SUBDIVIDE(x, y)                                                \
2229 do {                                                                   \
2230     if (x < s->sps->width && y < s->sps->height) {                     \
2231         int ret = hls_coding_quadtree(s, x, y, log2_cb_size, cb_depth);\
2232         if (ret < 0)                                                   \
2233             return ret;                                                \
2234     }                                                                  \
2235 } while (0)
2236
2237         SUBDIVIDE(x0, y0);
2238         SUBDIVIDE(x1, y0);
2239         SUBDIVIDE(x0, y1);
2240         SUBDIVIDE(x1, y1);
2241     } else {
2242         int ret = hls_coding_unit(s, x0, y0, log2_cb_size);
2243         if (ret < 0)
2244             return ret;
2245     }
2246
2247     return 0;
2248 }
2249
2250 static void hls_decode_neighbour(HEVCContext *s, int x_ctb, int y_ctb,
2251                                  int ctb_addr_ts)
2252 {
2253     HEVCLocalContext *lc  = &s->HEVClc;
2254     int ctb_size          = 1 << s->sps->log2_ctb_size;
2255     int ctb_addr_rs       = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
2256     int ctb_addr_in_slice = ctb_addr_rs - s->sh.slice_addr;
2257
2258     s->tab_slice_address[ctb_addr_rs] = s->sh.slice_addr;
2259
2260     if (s->pps->entropy_coding_sync_enabled_flag) {
2261         if (x_ctb == 0 && (y_ctb & (ctb_size - 1)) == 0)
2262             lc->first_qp_group = 1;
2263         lc->end_of_tiles_x = s->sps->width;
2264     } else if (s->pps->tiles_enabled_flag) {
2265         if (ctb_addr_ts && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[ctb_addr_ts - 1]) {
2266             int idxX = s->pps->col_idxX[x_ctb >> s->sps->log2_ctb_size];
2267             lc->start_of_tiles_x = x_ctb;
2268             lc->end_of_tiles_x   = x_ctb + (s->pps->column_width[idxX] << s->sps->log2_ctb_size);
2269             lc->first_qp_group   = 1;
2270         }
2271     } else {
2272         lc->end_of_tiles_x = s->sps->width;
2273     }
2274
2275     lc->end_of_tiles_y = FFMIN(y_ctb + ctb_size, s->sps->height);
2276
2277     lc->boundary_flags = 0;
2278     if (s->pps->tiles_enabled_flag) {
2279         if (x_ctb > 0 && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - 1]])
2280             lc->boundary_flags |= BOUNDARY_LEFT_TILE;
2281         if (x_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - 1])
2282             lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
2283         if (y_ctb > 0 && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->sps->ctb_width]])
2284             lc->boundary_flags |= BOUNDARY_UPPER_TILE;
2285         if (y_ctb > 0 && s->tab_slice_address[ctb_addr_rs] != s->tab_slice_address[ctb_addr_rs - s->sps->ctb_width])
2286             lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
2287     } else {
2288         if (!ctb_addr_in_slice > 0)
2289             lc->boundary_flags |= BOUNDARY_LEFT_SLICE;
2290         if (ctb_addr_in_slice < s->sps->ctb_width)
2291             lc->boundary_flags |= BOUNDARY_UPPER_SLICE;
2292     }
2293
2294     lc->ctb_left_flag = ((x_ctb > 0) && (ctb_addr_in_slice > 0) && !(lc->boundary_flags & BOUNDARY_LEFT_TILE));
2295     lc->ctb_up_flag   = ((y_ctb > 0) && (ctb_addr_in_slice >= s->sps->ctb_width) && !(lc->boundary_flags & BOUNDARY_UPPER_TILE));
2296     lc->ctb_up_right_flag = ((y_ctb > 0)  && (ctb_addr_in_slice+1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs+1 - s->sps->ctb_width]]));
2297     lc->ctb_up_left_flag = ((x_ctb > 0) && (y_ctb > 0)  && (ctb_addr_in_slice-1 >= s->sps->ctb_width) && (s->pps->tile_id[ctb_addr_ts] == s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1 - s->sps->ctb_width]]));
2298 }
2299
2300 static int hls_slice_data(HEVCContext *s)
2301 {
2302     int ctb_size    = 1 << s->sps->log2_ctb_size;
2303     int more_data   = 1;
2304     int x_ctb       = 0;
2305     int y_ctb       = 0;
2306     int ctb_addr_ts = s->pps->ctb_addr_rs_to_ts[s->sh.slice_ctb_addr_rs];
2307     int ret;
2308
2309     while (more_data && ctb_addr_ts < s->sps->ctb_size) {
2310         int ctb_addr_rs = s->pps->ctb_addr_ts_to_rs[ctb_addr_ts];
2311
2312         x_ctb = (ctb_addr_rs % ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size;
2313         y_ctb = (ctb_addr_rs / ((s->sps->width + ctb_size - 1) >> s->sps->log2_ctb_size)) << s->sps->log2_ctb_size;
2314         hls_decode_neighbour(s, x_ctb, y_ctb, ctb_addr_ts);
2315
2316         ff_hevc_cabac_init(s, ctb_addr_ts);
2317
2318         hls_sao_param(s, x_ctb >> s->sps->log2_ctb_size, y_ctb >> s->sps->log2_ctb_size);
2319
2320         s->deblock[ctb_addr_rs].beta_offset = s->sh.beta_offset;
2321         s->deblock[ctb_addr_rs].tc_offset   = s->sh.tc_offset;
2322         s->filter_slice_edges[ctb_addr_rs]  = s->sh.slice_loop_filter_across_slices_enabled_flag;
2323
2324         ret = hls_coding_quadtree(s, x_ctb, y_ctb, s->sps->log2_ctb_size, 0);
2325         if (ret < 0)
2326             return ret;
2327         more_data = !ff_hevc_end_of_slice_flag_decode(s);
2328
2329         ctb_addr_ts++;
2330         ff_hevc_save_states(s, ctb_addr_ts);
2331         ff_hevc_hls_filters(s, x_ctb, y_ctb, ctb_size);
2332     }
2333
2334     if (x_ctb + ctb_size >= s->sps->width &&
2335         y_ctb + ctb_size >= s->sps->height)
2336         ff_hevc_hls_filter(s, x_ctb, y_ctb);
2337
2338     return ctb_addr_ts;
2339 }
2340
2341 /**
2342  * @return AVERROR_INVALIDDATA if the packet is not a valid NAL unit,
2343  * 0 if the unit should be skipped, 1 otherwise
2344  */
2345 static int hls_nal_unit(HEVCContext *s)
2346 {
2347     GetBitContext *gb = &s->HEVClc.gb;
2348     int nuh_layer_id;
2349
2350     if (get_bits1(gb) != 0)
2351         return AVERROR_INVALIDDATA;
2352
2353     s->nal_unit_type = get_bits(gb, 6);
2354
2355     nuh_layer_id   = get_bits(gb, 6);
2356     s->temporal_id = get_bits(gb, 3) - 1;
2357     if (s->temporal_id < 0)
2358         return AVERROR_INVALIDDATA;
2359
2360     av_log(s->avctx, AV_LOG_DEBUG,
2361            "nal_unit_type: %d, nuh_layer_id: %dtemporal_id: %d\n",
2362            s->nal_unit_type, nuh_layer_id, s->temporal_id);
2363
2364     return nuh_layer_id == 0;
2365 }
2366
2367 static void restore_tqb_pixels(HEVCContext *s)
2368 {
2369     int min_pu_size = 1 << s->sps->log2_min_pu_size;
2370     int x, y, c_idx;
2371
2372     for (c_idx = 0; c_idx < 3; c_idx++) {
2373         ptrdiff_t stride = s->frame->linesize[c_idx];
2374         int hshift       = s->sps->hshift[c_idx];
2375         int vshift       = s->sps->vshift[c_idx];
2376         for (y = 0; y < s->sps->min_pu_height; y++) {
2377             for (x = 0; x < s->sps->min_pu_width; x++) {
2378                 if (s->is_pcm[y * s->sps->min_pu_width + x]) {
2379                     int n;
2380                     int len      = min_pu_size >> hshift;
2381                     uint8_t *src = &s->frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)];
2382                     uint8_t *dst = &s->sao_frame->data[c_idx][((y << s->sps->log2_min_pu_size) >> vshift) * stride + (((x << s->sps->log2_min_pu_size) >> hshift) << s->sps->pixel_shift)];
2383                     for (n = 0; n < (min_pu_size >> vshift); n++) {
2384                         memcpy(dst, src, len);
2385                         src += stride;
2386                         dst += stride;
2387                     }
2388                 }
2389             }
2390         }
2391     }
2392 }
2393
2394 static int set_side_data(HEVCContext *s)
2395 {
2396     AVFrame *out = s->ref->frame;
2397
2398     if (s->sei_frame_packing_present &&
2399         s->frame_packing_arrangement_type >= 3 &&
2400         s->frame_packing_arrangement_type <= 5 &&
2401         s->content_interpretation_type > 0 &&
2402         s->content_interpretation_type < 3) {
2403         AVStereo3D *stereo = av_stereo3d_create_side_data(out);
2404         if (!stereo)
2405             return AVERROR(ENOMEM);
2406
2407         switch (s->frame_packing_arrangement_type) {
2408         case 3:
2409             if (s->quincunx_subsampling)
2410                 stereo->type = AV_STEREO3D_SIDEBYSIDE_QUINCUNX;
2411             else
2412                 stereo->type = AV_STEREO3D_SIDEBYSIDE;
2413             break;
2414         case 4:
2415             stereo->type = AV_STEREO3D_TOPBOTTOM;
2416             break;
2417         case 5:
2418             stereo->type = AV_STEREO3D_FRAMESEQUENCE;
2419             break;
2420         }
2421
2422         if (s->content_interpretation_type == 2)
2423             stereo->flags = AV_STEREO3D_FLAG_INVERT;
2424     }
2425
2426     if (s->sei_display_orientation_present &&
2427         (s->sei_anticlockwise_rotation || s->sei_hflip || s->sei_vflip)) {
2428         double angle = s->sei_anticlockwise_rotation * 360 / (double) (1 << 16);
2429         AVFrameSideData *rotation = av_frame_new_side_data(out,
2430                                                            AV_FRAME_DATA_DISPLAYMATRIX,
2431                                                            sizeof(int32_t) * 9);
2432         if (!rotation)
2433             return AVERROR(ENOMEM);
2434
2435         av_display_rotation_set((int32_t *)rotation->data, angle);
2436         av_display_matrix_flip((int32_t *)rotation->data,
2437                                s->sei_hflip, s->sei_vflip);
2438     }
2439
2440     return 0;
2441 }
2442
2443 static int hevc_frame_start(HEVCContext *s)
2444 {
2445     HEVCLocalContext *lc = &s->HEVClc;
2446     int ret;
2447
2448     memset(s->horizontal_bs, 0, 2 * s->bs_width * (s->bs_height + 1));
2449     memset(s->vertical_bs,   0, 2 * s->bs_width * (s->bs_height + 1));
2450     memset(s->cbf_luma,      0, s->sps->min_tb_width * s->sps->min_tb_height);
2451     memset(s->is_pcm,        0, s->sps->min_pu_width * s->sps->min_pu_height);
2452
2453     lc->start_of_tiles_x = 0;
2454     s->is_decoded        = 0;
2455     s->first_nal_type    = s->nal_unit_type;
2456
2457     if (s->pps->tiles_enabled_flag)
2458         lc->end_of_tiles_x = s->pps->column_width[0] << s->sps->log2_ctb_size;
2459
2460     ret = ff_hevc_set_new_ref(s, s->sps->sao_enabled ? &s->sao_frame : &s->frame,
2461                               s->poc);
2462     if (ret < 0)
2463         goto fail;
2464
2465     ret = ff_hevc_frame_rps(s);
2466     if (ret < 0) {
2467         av_log(s->avctx, AV_LOG_ERROR, "Error constructing the frame RPS.\n");
2468         goto fail;
2469     }
2470
2471     s->ref->frame->key_frame = IS_IRAP(s);
2472
2473     ret = set_side_data(s);
2474     if (ret < 0)
2475         goto fail;
2476
2477     av_frame_unref(s->output_frame);
2478     ret = ff_hevc_output_frame(s, s->output_frame, 0);
2479     if (ret < 0)
2480         goto fail;
2481
2482     ff_thread_finish_setup(s->avctx);
2483
2484     return 0;
2485
2486 fail:
2487     if (s->ref)
2488         ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
2489     s->ref = NULL;
2490     return ret;
2491 }
2492
2493 static int decode_nal_unit(HEVCContext *s, const uint8_t *nal, int length)
2494 {
2495     HEVCLocalContext *lc = &s->HEVClc;
2496     GetBitContext *gb    = &lc->gb;
2497     int ctb_addr_ts, ret;
2498
2499     ret = init_get_bits8(gb, nal, length);
2500     if (ret < 0)
2501         return ret;
2502
2503     ret = hls_nal_unit(s);
2504     if (ret < 0) {
2505         av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit %d, skipping.\n",
2506                s->nal_unit_type);
2507         goto fail;
2508     } else if (!ret)
2509         return 0;
2510
2511     switch (s->nal_unit_type) {
2512     case NAL_VPS:
2513         ret = ff_hevc_decode_nal_vps(s);
2514         if (ret < 0)
2515             goto fail;
2516         break;
2517     case NAL_SPS:
2518         ret = ff_hevc_decode_nal_sps(s);
2519         if (ret < 0)
2520             goto fail;
2521         break;
2522     case NAL_PPS:
2523         ret = ff_hevc_decode_nal_pps(s);
2524         if (ret < 0)
2525             goto fail;
2526         break;
2527     case NAL_SEI_PREFIX:
2528     case NAL_SEI_SUFFIX:
2529         ret = ff_hevc_decode_nal_sei(s);
2530         if (ret < 0)
2531             goto fail;
2532         break;
2533     case NAL_TRAIL_R:
2534     case NAL_TRAIL_N:
2535     case NAL_TSA_N:
2536     case NAL_TSA_R:
2537     case NAL_STSA_N:
2538     case NAL_STSA_R:
2539     case NAL_BLA_W_LP:
2540     case NAL_BLA_W_RADL:
2541     case NAL_BLA_N_LP:
2542     case NAL_IDR_W_RADL:
2543     case NAL_IDR_N_LP:
2544     case NAL_CRA_NUT:
2545     case NAL_RADL_N:
2546     case NAL_RADL_R:
2547     case NAL_RASL_N:
2548     case NAL_RASL_R:
2549         ret = hls_slice_header(s);
2550         if (ret < 0)
2551             return ret;
2552
2553         if (s->max_ra == INT_MAX) {
2554             if (s->nal_unit_type == NAL_CRA_NUT || IS_BLA(s)) {
2555                 s->max_ra = s->poc;
2556             } else {
2557                 if (IS_IDR(s))
2558                     s->max_ra = INT_MIN;
2559             }
2560         }
2561
2562         if ((s->nal_unit_type == NAL_RASL_R || s->nal_unit_type == NAL_RASL_N) &&
2563             s->poc <= s->max_ra) {
2564             s->is_decoded = 0;
2565             break;
2566         } else {
2567             if (s->nal_unit_type == NAL_RASL_R && s->poc > s->max_ra)
2568                 s->max_ra = INT_MIN;
2569         }
2570
2571         if (s->sh.first_slice_in_pic_flag) {
2572             ret = hevc_frame_start(s);
2573             if (ret < 0)
2574                 return ret;
2575         } else if (!s->ref) {
2576             av_log(s->avctx, AV_LOG_ERROR, "First slice in a frame missing.\n");
2577             goto fail;
2578         }
2579
2580         if (s->nal_unit_type != s->first_nal_type) {
2581             av_log(s->avctx, AV_LOG_ERROR,
2582                    "Non-matching NAL types of the VCL NALUs: %d %d\n",
2583                    s->first_nal_type, s->nal_unit_type);
2584             return AVERROR_INVALIDDATA;
2585         }
2586
2587         if (!s->sh.dependent_slice_segment_flag &&
2588             s->sh.slice_type != I_SLICE) {
2589             ret = ff_hevc_slice_rpl(s);
2590             if (ret < 0) {
2591                 av_log(s->avctx, AV_LOG_WARNING,
2592                        "Error constructing the reference lists for the current slice.\n");
2593                 goto fail;
2594             }
2595         }
2596
2597         ctb_addr_ts = hls_slice_data(s);
2598         if (ctb_addr_ts >= (s->sps->ctb_width * s->sps->ctb_height)) {
2599             s->is_decoded = 1;
2600             if ((s->pps->transquant_bypass_enable_flag ||
2601                  (s->sps->pcm.loop_filter_disable_flag && s->sps->pcm_enabled_flag)) &&
2602                 s->sps->sao_enabled)
2603                 restore_tqb_pixels(s);
2604         }
2605
2606         if (ctb_addr_ts < 0) {
2607             ret = ctb_addr_ts;
2608             goto fail;
2609         }
2610         break;
2611     case NAL_EOS_NUT:
2612     case NAL_EOB_NUT:
2613         s->seq_decode = (s->seq_decode + 1) & 0xff;
2614         s->max_ra     = INT_MAX;
2615         break;
2616     case NAL_AUD:
2617     case NAL_FD_NUT:
2618         break;
2619     default:
2620         av_log(s->avctx, AV_LOG_INFO,
2621                "Skipping NAL unit %d\n", s->nal_unit_type);
2622     }
2623
2624     return 0;
2625 fail:
2626     if (s->avctx->err_recognition & AV_EF_EXPLODE)
2627         return ret;
2628     return 0;
2629 }
2630
2631 /* FIXME: This is adapted from ff_h264_decode_nal, avoiding duplication
2632  * between these functions would be nice. */
2633 static int extract_rbsp(const uint8_t *src, int length,
2634                         HEVCNAL *nal)
2635 {
2636     int i, si, di;
2637     uint8_t *dst;
2638
2639 #define STARTCODE_TEST                                                  \
2640         if (i + 2 < length && src[i + 1] == 0 && src[i + 2] <= 3) {     \
2641             if (src[i + 2] != 3) {                                      \
2642                 /* startcode, so we must be past the end */             \
2643                 length = i;                                             \
2644             }                                                           \
2645             break;                                                      \
2646         }
2647 #if HAVE_FAST_UNALIGNED
2648 #define FIND_FIRST_ZERO                                                 \
2649         if (i > 0 && !src[i])                                           \
2650             i--;                                                        \
2651         while (src[i])                                                  \
2652             i++
2653 #if HAVE_FAST_64BIT
2654     for (i = 0; i + 1 < length; i += 9) {
2655         if (!((~AV_RN64A(src + i) &
2656                (AV_RN64A(src + i) - 0x0100010001000101ULL)) &
2657               0x8000800080008080ULL))
2658             continue;
2659         FIND_FIRST_ZERO;
2660         STARTCODE_TEST;
2661         i -= 7;
2662     }
2663 #else
2664     for (i = 0; i + 1 < length; i += 5) {
2665         if (!((~AV_RN32A(src + i) &
2666                (AV_RN32A(src + i) - 0x01000101U)) &
2667               0x80008080U))
2668             continue;
2669         FIND_FIRST_ZERO;
2670         STARTCODE_TEST;
2671         i -= 3;
2672     }
2673 #endif /* HAVE_FAST_64BIT */
2674 #else
2675     for (i = 0; i + 1 < length; i += 2) {
2676         if (src[i])
2677             continue;
2678         if (i > 0 && src[i - 1] == 0)
2679             i--;
2680         STARTCODE_TEST;
2681     }
2682 #endif /* HAVE_FAST_UNALIGNED */
2683
2684     if (i >= length - 1) { // no escaped 0
2685         nal->data = src;
2686         nal->size = length;
2687         return length;
2688     }
2689
2690     av_fast_malloc(&nal->rbsp_buffer, &nal->rbsp_buffer_size,
2691                    length + FF_INPUT_BUFFER_PADDING_SIZE);
2692     if (!nal->rbsp_buffer)
2693         return AVERROR(ENOMEM);
2694
2695     dst = nal->rbsp_buffer;
2696
2697     memcpy(dst, src, i);
2698     si = di = i;
2699     while (si + 2 < length) {
2700         // remove escapes (very rare 1:2^22)
2701         if (src[si + 2] > 3) {
2702             dst[di++] = src[si++];
2703             dst[di++] = src[si++];
2704         } else if (src[si] == 0 && src[si + 1] == 0) {
2705             if (src[si + 2] == 3) { // escape
2706                 dst[di++] = 0;
2707                 dst[di++] = 0;
2708                 si       += 3;
2709
2710                 continue;
2711             } else // next start code
2712                 goto nsc;
2713         }
2714
2715         dst[di++] = src[si++];
2716     }
2717     while (si < length)
2718         dst[di++] = src[si++];
2719
2720 nsc:
2721     memset(dst + di, 0, FF_INPUT_BUFFER_PADDING_SIZE);
2722
2723     nal->data = dst;
2724     nal->size = di;
2725     return si;
2726 }
2727
2728 static int decode_nal_units(HEVCContext *s, const uint8_t *buf, int length)
2729 {
2730     int i, consumed, ret = 0;
2731
2732     s->ref = NULL;
2733     s->eos = 0;
2734
2735     /* split the input packet into NAL units, so we know the upper bound on the
2736      * number of slices in the frame */
2737     s->nb_nals = 0;
2738     while (length >= 4) {
2739         HEVCNAL *nal;
2740         int extract_length = 0;
2741
2742         if (s->is_nalff) {
2743             int i;
2744             for (i = 0; i < s->nal_length_size; i++)
2745                 extract_length = (extract_length << 8) | buf[i];
2746             buf    += s->nal_length_size;
2747             length -= s->nal_length_size;
2748
2749             if (extract_length > length) {
2750                 av_log(s->avctx, AV_LOG_ERROR, "Invalid NAL unit size.\n");
2751                 ret = AVERROR_INVALIDDATA;
2752                 goto fail;
2753             }
2754         } else {
2755             if (buf[2] == 0) {
2756                 length--;
2757                 buf++;
2758                 continue;
2759             }
2760             if (buf[0] != 0 || buf[1] != 0 || buf[2] != 1) {
2761                 ret = AVERROR_INVALIDDATA;
2762                 goto fail;
2763             }
2764
2765             buf           += 3;
2766             length        -= 3;
2767             extract_length = length;
2768         }
2769
2770         if (s->nals_allocated < s->nb_nals + 1) {
2771             int new_size = s->nals_allocated + 1;
2772             HEVCNAL *tmp = av_realloc_array(s->nals, new_size, sizeof(*tmp));
2773             if (!tmp) {
2774                 ret = AVERROR(ENOMEM);
2775                 goto fail;
2776             }
2777             s->nals = tmp;
2778             memset(s->nals + s->nals_allocated, 0,
2779                    (new_size - s->nals_allocated) * sizeof(*tmp));
2780             s->nals_allocated = new_size;
2781         }
2782         nal = &s->nals[s->nb_nals++];
2783
2784         consumed = extract_rbsp(buf, extract_length, nal);
2785         if (consumed < 0) {
2786             ret = consumed;
2787             goto fail;
2788         }
2789
2790         ret = init_get_bits8(&s->HEVClc.gb, nal->data, nal->size);
2791         if (ret < 0)
2792             goto fail;
2793         hls_nal_unit(s);
2794
2795         if (s->nal_unit_type == NAL_EOB_NUT ||
2796             s->nal_unit_type == NAL_EOS_NUT)
2797             s->eos = 1;
2798
2799         buf    += consumed;
2800         length -= consumed;
2801     }
2802
2803     /* parse the NAL units */
2804     for (i = 0; i < s->nb_nals; i++) {
2805         int ret = decode_nal_unit(s, s->nals[i].data, s->nals[i].size);
2806         if (ret < 0) {
2807             av_log(s->avctx, AV_LOG_WARNING,
2808                    "Error parsing NAL unit #%d.\n", i);
2809             goto fail;
2810         }
2811     }
2812
2813 fail:
2814     if (s->ref)
2815         ff_thread_report_progress(&s->ref->tf, INT_MAX, 0);
2816
2817     return ret;
2818 }
2819
2820 static void print_md5(void *log_ctx, int level, uint8_t md5[16])
2821 {
2822     int i;
2823     for (i = 0; i < 16; i++)
2824         av_log(log_ctx, level, "%02"PRIx8, md5[i]);
2825 }
2826
2827 static int verify_md5(HEVCContext *s, AVFrame *frame)
2828 {
2829     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(frame->format);
2830     int pixel_shift;
2831     int i, j;
2832
2833     if (!desc)
2834         return AVERROR(EINVAL);
2835
2836     pixel_shift = desc->comp[0].depth_minus1 > 7;
2837
2838     av_log(s->avctx, AV_LOG_DEBUG, "Verifying checksum for frame with POC %d: ",
2839            s->poc);
2840
2841     /* the checksums are LE, so we have to byteswap for >8bpp formats
2842      * on BE arches */
2843 #if HAVE_BIGENDIAN
2844     if (pixel_shift && !s->checksum_buf) {
2845         av_fast_malloc(&s->checksum_buf, &s->checksum_buf_size,
2846                        FFMAX3(frame->linesize[0], frame->linesize[1],
2847                               frame->linesize[2]));
2848         if (!s->checksum_buf)
2849             return AVERROR(ENOMEM);
2850     }
2851 #endif
2852
2853     for (i = 0; frame->data[i]; i++) {
2854         int width  = s->avctx->coded_width;
2855         int height = s->avctx->coded_height;
2856         int w = (i == 1 || i == 2) ? (width  >> desc->log2_chroma_w) : width;
2857         int h = (i == 1 || i == 2) ? (height >> desc->log2_chroma_h) : height;
2858         uint8_t md5[16];
2859
2860         av_md5_init(s->md5_ctx);
2861         for (j = 0; j < h; j++) {
2862             const uint8_t *src = frame->data[i] + j * frame->linesize[i];
2863 #if HAVE_BIGENDIAN
2864             if (pixel_shift) {
2865                 s->bdsp.bswap16_buf((uint16_t *) s->checksum_buf,
2866                                     (const uint16_t *) src, w);
2867                 src = s->checksum_buf;
2868             }
2869 #endif
2870             av_md5_update(s->md5_ctx, src, w << pixel_shift);
2871         }
2872         av_md5_final(s->md5_ctx, md5);
2873
2874         if (!memcmp(md5, s->md5[i], 16)) {
2875             av_log   (s->avctx, AV_LOG_DEBUG, "plane %d - correct ", i);
2876             print_md5(s->avctx, AV_LOG_DEBUG, md5);
2877             av_log   (s->avctx, AV_LOG_DEBUG, "; ");
2878         } else {
2879             av_log   (s->avctx, AV_LOG_ERROR, "mismatching checksum of plane %d - ", i);
2880             print_md5(s->avctx, AV_LOG_ERROR, md5);
2881             av_log   (s->avctx, AV_LOG_ERROR, " != ");
2882             print_md5(s->avctx, AV_LOG_ERROR, s->md5[i]);
2883             av_log   (s->avctx, AV_LOG_ERROR, "\n");
2884             return AVERROR_INVALIDDATA;
2885         }
2886     }
2887
2888     av_log(s->avctx, AV_LOG_DEBUG, "\n");
2889
2890     return 0;
2891 }
2892
2893 static int hevc_decode_frame(AVCodecContext *avctx, void *data, int *got_output,
2894                              AVPacket *avpkt)
2895 {
2896     int ret;
2897     HEVCContext *s = avctx->priv_data;
2898
2899     if (!avpkt->size) {
2900         ret = ff_hevc_output_frame(s, data, 1);
2901         if (ret < 0)
2902             return ret;
2903
2904         *got_output = ret;
2905         return 0;
2906     }
2907
2908     s->ref = NULL;
2909     ret    = decode_nal_units(s, avpkt->data, avpkt->size);
2910     if (ret < 0)
2911         return ret;
2912
2913     /* verify the SEI checksum */
2914     if (avctx->err_recognition & AV_EF_CRCCHECK && s->is_decoded &&
2915         s->is_md5) {
2916         ret = verify_md5(s, s->ref->frame);
2917         if (ret < 0 && avctx->err_recognition & AV_EF_EXPLODE) {
2918             ff_hevc_unref_frame(s, s->ref, ~0);
2919             return ret;
2920         }
2921     }
2922     s->is_md5 = 0;
2923
2924     if (s->is_decoded) {
2925         av_log(avctx, AV_LOG_DEBUG, "Decoded frame with POC %d.\n", s->poc);
2926         s->is_decoded = 0;
2927     }
2928
2929     if (s->output_frame->buf[0]) {
2930         av_frame_move_ref(data, s->output_frame);
2931         *got_output = 1;
2932     }
2933
2934     return avpkt->size;
2935 }
2936
2937 static int hevc_ref_frame(HEVCContext *s, HEVCFrame *dst, HEVCFrame *src)
2938 {
2939     int ret = ff_thread_ref_frame(&dst->tf, &src->tf);
2940     if (ret < 0)
2941         return ret;
2942
2943     dst->tab_mvf_buf = av_buffer_ref(src->tab_mvf_buf);
2944     if (!dst->tab_mvf_buf)
2945         goto fail;
2946     dst->tab_mvf = src->tab_mvf;
2947
2948     dst->rpl_tab_buf = av_buffer_ref(src->rpl_tab_buf);
2949     if (!dst->rpl_tab_buf)
2950         goto fail;
2951     dst->rpl_tab = src->rpl_tab;
2952
2953     dst->rpl_buf = av_buffer_ref(src->rpl_buf);
2954     if (!dst->rpl_buf)
2955         goto fail;
2956
2957     dst->poc        = src->poc;
2958     dst->ctb_count  = src->ctb_count;
2959     dst->window     = src->window;
2960     dst->flags      = src->flags;
2961     dst->sequence   = src->sequence;
2962
2963     return 0;
2964 fail:
2965     ff_hevc_unref_frame(s, dst, ~0);
2966     return AVERROR(ENOMEM);
2967 }
2968
2969 static av_cold int hevc_decode_free(AVCodecContext *avctx)
2970 {
2971     HEVCContext       *s = avctx->priv_data;
2972     int i;
2973
2974     pic_arrays_free(s);
2975
2976     av_freep(&s->md5_ctx);
2977
2978     av_frame_free(&s->tmp_frame);
2979     av_frame_free(&s->output_frame);
2980
2981     for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
2982         ff_hevc_unref_frame(s, &s->DPB[i], ~0);
2983         av_frame_free(&s->DPB[i].frame);
2984     }
2985
2986     for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++)
2987         av_buffer_unref(&s->vps_list[i]);
2988     for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++)
2989         av_buffer_unref(&s->sps_list[i]);
2990     for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++)
2991         av_buffer_unref(&s->pps_list[i]);
2992
2993     for (i = 0; i < s->nals_allocated; i++)
2994         av_freep(&s->nals[i].rbsp_buffer);
2995     av_freep(&s->nals);
2996     s->nals_allocated = 0;
2997
2998     return 0;
2999 }
3000
3001 static av_cold int hevc_init_context(AVCodecContext *avctx)
3002 {
3003     HEVCContext *s = avctx->priv_data;
3004     int i;
3005
3006     s->avctx = avctx;
3007
3008     s->tmp_frame = av_frame_alloc();
3009     if (!s->tmp_frame)
3010         goto fail;
3011
3012     s->output_frame = av_frame_alloc();
3013     if (!s->output_frame)
3014         goto fail;
3015
3016     for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
3017         s->DPB[i].frame = av_frame_alloc();
3018         if (!s->DPB[i].frame)
3019             goto fail;
3020         s->DPB[i].tf.f = s->DPB[i].frame;
3021     }
3022
3023     s->max_ra = INT_MAX;
3024
3025     s->md5_ctx = av_md5_alloc();
3026     if (!s->md5_ctx)
3027         goto fail;
3028
3029     ff_bswapdsp_init(&s->bdsp);
3030
3031     s->context_initialized = 1;
3032
3033     return 0;
3034
3035 fail:
3036     hevc_decode_free(avctx);
3037     return AVERROR(ENOMEM);
3038 }
3039
3040 static int hevc_update_thread_context(AVCodecContext *dst,
3041                                       const AVCodecContext *src)
3042 {
3043     HEVCContext *s  = dst->priv_data;
3044     HEVCContext *s0 = src->priv_data;
3045     int i, ret;
3046
3047     if (!s->context_initialized) {
3048         ret = hevc_init_context(dst);
3049         if (ret < 0)
3050             return ret;
3051     }
3052
3053     for (i = 0; i < FF_ARRAY_ELEMS(s->DPB); i++) {
3054         ff_hevc_unref_frame(s, &s->DPB[i], ~0);
3055         if (s0->DPB[i].frame->buf[0]) {
3056             ret = hevc_ref_frame(s, &s->DPB[i], &s0->DPB[i]);
3057             if (ret < 0)
3058                 return ret;
3059         }
3060     }
3061
3062     for (i = 0; i < FF_ARRAY_ELEMS(s->vps_list); i++) {
3063         av_buffer_unref(&s->vps_list[i]);
3064         if (s0->vps_list[i]) {
3065             s->vps_list[i] = av_buffer_ref(s0->vps_list[i]);
3066             if (!s->vps_list[i])
3067                 return AVERROR(ENOMEM);
3068         }
3069     }
3070
3071     for (i = 0; i < FF_ARRAY_ELEMS(s->sps_list); i++) {
3072         av_buffer_unref(&s->sps_list[i]);
3073         if (s0->sps_list[i]) {
3074             s->sps_list[i] = av_buffer_ref(s0->sps_list[i]);
3075             if (!s->sps_list[i])
3076                 return AVERROR(ENOMEM);
3077         }
3078     }
3079
3080     for (i = 0; i < FF_ARRAY_ELEMS(s->pps_list); i++) {
3081         av_buffer_unref(&s->pps_list[i]);
3082         if (s0->pps_list[i]) {
3083             s->pps_list[i] = av_buffer_ref(s0->pps_list[i]);
3084             if (!s->pps_list[i])
3085                 return AVERROR(ENOMEM);
3086         }
3087     }
3088
3089     if (s->sps != s0->sps)
3090         ret = set_sps(s, s0->sps);
3091
3092     s->seq_decode = s0->seq_decode;
3093     s->seq_output = s0->seq_output;
3094     s->pocTid0    = s0->pocTid0;
3095     s->max_ra     = s0->max_ra;
3096
3097     s->is_nalff        = s0->is_nalff;
3098     s->nal_length_size = s0->nal_length_size;
3099
3100     if (s0->eos) {
3101         s->seq_decode = (s->seq_decode + 1) & 0xff;
3102         s->max_ra = INT_MAX;
3103     }
3104
3105     return 0;
3106 }
3107
3108 static int hevc_decode_extradata(HEVCContext *s)
3109 {
3110     AVCodecContext *avctx = s->avctx;
3111     GetByteContext gb;
3112     int ret;
3113
3114     bytestream2_init(&gb, avctx->extradata, avctx->extradata_size);
3115
3116     if (avctx->extradata_size > 3 &&
3117         (avctx->extradata[0] || avctx->extradata[1] ||
3118          avctx->extradata[2] > 1)) {
3119         /* It seems the extradata is encoded as hvcC format.
3120          * Temporarily, we support configurationVersion==0 until 14496-15 3rd
3121          * is finalized. When finalized, configurationVersion will be 1 and we
3122          * can recognize hvcC by checking if avctx->extradata[0]==1 or not. */
3123         int i, j, num_arrays, nal_len_size;
3124
3125         s->is_nalff = 1;
3126
3127         bytestream2_skip(&gb, 21);
3128         nal_len_size = (bytestream2_get_byte(&gb) & 3) + 1;
3129         num_arrays   = bytestream2_get_byte(&gb);
3130
3131         /* nal units in the hvcC always have length coded with 2 bytes,
3132          * so put a fake nal_length_size = 2 while parsing them */
3133         s->nal_length_size = 2;
3134
3135         /* Decode nal units from hvcC. */
3136         for (i = 0; i < num_arrays; i++) {
3137             int type = bytestream2_get_byte(&gb) & 0x3f;
3138             int cnt  = bytestream2_get_be16(&gb);
3139
3140             for (j = 0; j < cnt; j++) {
3141                 // +2 for the nal size field
3142                 int nalsize = bytestream2_peek_be16(&gb) + 2;
3143                 if (bytestream2_get_bytes_left(&gb) < nalsize) {
3144                     av_log(s->avctx, AV_LOG_ERROR,
3145                            "Invalid NAL unit size in extradata.\n");
3146                     return AVERROR_INVALIDDATA;
3147                 }
3148
3149                 ret = decode_nal_units(s, gb.buffer, nalsize);
3150                 if (ret < 0) {
3151                     av_log(avctx, AV_LOG_ERROR,
3152                            "Decoding nal unit %d %d from hvcC failed\n",
3153                            type, i);
3154                     return ret;
3155                 }
3156                 bytestream2_skip(&gb, nalsize);
3157             }
3158         }
3159
3160         /* Now store right nal length size, that will be used to parse
3161          * all other nals */
3162         s->nal_length_size = nal_len_size;
3163     } else {
3164         s->is_nalff = 0;
3165         ret = decode_nal_units(s, avctx->extradata, avctx->extradata_size);
3166         if (ret < 0)
3167             return ret;
3168     }
3169     return 0;
3170 }
3171
3172 static av_cold int hevc_decode_init(AVCodecContext *avctx)
3173 {
3174     HEVCContext *s = avctx->priv_data;
3175     int ret;
3176
3177     ff_init_cabac_states();
3178
3179     avctx->internal->allocate_progress = 1;
3180
3181     ret = hevc_init_context(avctx);
3182     if (ret < 0)
3183         return ret;
3184
3185     if (avctx->extradata_size > 0 && avctx->extradata) {
3186         ret = hevc_decode_extradata(s);
3187         if (ret < 0) {
3188             hevc_decode_free(avctx);
3189             return ret;
3190         }
3191     }
3192
3193     return 0;
3194 }
3195
3196 static av_cold int hevc_init_thread_copy(AVCodecContext *avctx)
3197 {
3198     HEVCContext *s = avctx->priv_data;
3199     int ret;
3200
3201     memset(s, 0, sizeof(*s));
3202
3203     ret = hevc_init_context(avctx);
3204     if (ret < 0)
3205         return ret;
3206
3207     return 0;
3208 }
3209
3210 static void hevc_decode_flush(AVCodecContext *avctx)
3211 {
3212     HEVCContext *s = avctx->priv_data;
3213     ff_hevc_flush_dpb(s);
3214     s->max_ra = INT_MAX;
3215 }
3216
3217 #define OFFSET(x) offsetof(HEVCContext, x)
3218 #define PAR (AV_OPT_FLAG_DECODING_PARAM | AV_OPT_FLAG_VIDEO_PARAM)
3219
3220 static const AVProfile profiles[] = {
3221     { FF_PROFILE_HEVC_MAIN,                 "Main"                },
3222     { FF_PROFILE_HEVC_MAIN_10,              "Main 10"             },
3223     { FF_PROFILE_HEVC_MAIN_STILL_PICTURE,   "Main Still Picture"  },
3224     { FF_PROFILE_UNKNOWN },
3225 };
3226
3227 static const AVOption options[] = {
3228     { "apply_defdispwin", "Apply default display window from VUI", OFFSET(apply_defdispwin),
3229         AV_OPT_TYPE_INT, {.i64 = 0}, 0, 1, PAR },
3230     { NULL },
3231 };
3232
3233 static const AVClass hevc_decoder_class = {
3234     .class_name = "HEVC decoder",
3235     .item_name  = av_default_item_name,
3236     .option     = options,
3237     .version    = LIBAVUTIL_VERSION_INT,
3238 };
3239
3240 AVCodec ff_hevc_decoder = {
3241     .name                  = "hevc",
3242     .long_name             = NULL_IF_CONFIG_SMALL("HEVC (High Efficiency Video Coding)"),
3243     .type                  = AVMEDIA_TYPE_VIDEO,
3244     .id                    = AV_CODEC_ID_HEVC,
3245     .priv_data_size        = sizeof(HEVCContext),
3246     .priv_class            = &hevc_decoder_class,
3247     .init                  = hevc_decode_init,
3248     .close                 = hevc_decode_free,
3249     .decode                = hevc_decode_frame,
3250     .flush                 = hevc_decode_flush,
3251     .update_thread_context = hevc_update_thread_context,
3252     .init_thread_copy      = hevc_init_thread_copy,
3253     .capabilities          = CODEC_CAP_DR1 | CODEC_CAP_DELAY |
3254                              CODEC_CAP_FRAME_THREADS,
3255     .profiles              = NULL_IF_CONFIG_SMALL(profiles),
3256 };