2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
5 * This library is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU Lesser General Public
7 * License as published by the Free Software Foundation; either
8 * version 2 of the License, or (at your option) any later version.
10 * This library is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * Lesser General Public License for more details.
15 * You should have received a copy of the GNU Lesser General Public
16 * License along with this library; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 * H.264 / AVC / MPEG4 part10 codec.
24 * @author Michael Niedermayer <michaelni@gmx.at>
30 #include "mpegvideo.h"
39 #define interlaced_dct interlaced_dct_is_a_bad_name
40 #define mb_intra mb_intra_isnt_initalized_see_mb_type
42 #define LUMA_DC_BLOCK_INDEX 25
43 #define CHROMA_DC_BLOCK_INDEX 26
45 #define CHROMA_DC_COEFF_TOKEN_VLC_BITS 8
46 #define COEFF_TOKEN_VLC_BITS 8
47 #define TOTAL_ZEROS_VLC_BITS 9
48 #define CHROMA_DC_TOTAL_ZEROS_VLC_BITS 3
49 #define RUN_VLC_BITS 3
50 #define RUN7_VLC_BITS 6
52 #define MAX_SPS_COUNT 32
53 #define MAX_PPS_COUNT 256
55 #define MAX_MMCO_COUNT 66
58 * Sequence parameter set
64 int transform_bypass; ///< qpprime_y_zero_transform_bypass_flag
65 int log2_max_frame_num; ///< log2_max_frame_num_minus4 + 4
66 int poc_type; ///< pic_order_cnt_type
67 int log2_max_poc_lsb; ///< log2_max_pic_order_cnt_lsb_minus4
68 int delta_pic_order_always_zero_flag;
69 int offset_for_non_ref_pic;
70 int offset_for_top_to_bottom_field;
71 int poc_cycle_length; ///< num_ref_frames_in_pic_order_cnt_cycle
72 int ref_frame_count; ///< num_ref_frames
73 int gaps_in_frame_num_allowed_flag;
74 int mb_width; ///< frame_width_in_mbs_minus1 + 1
75 int mb_height; ///< frame_height_in_mbs_minus1 + 1
76 int frame_mbs_only_flag;
77 int mb_aff; ///<mb_adaptive_frame_field_flag
78 int direct_8x8_inference_flag;
79 int crop; ///< frame_cropping_flag
80 int crop_left; ///< frame_cropping_rect_left_offset
81 int crop_right; ///< frame_cropping_rect_right_offset
82 int crop_top; ///< frame_cropping_rect_top_offset
83 int crop_bottom; ///< frame_cropping_rect_bottom_offset
84 int vui_parameters_present_flag;
86 int timing_info_present_flag;
87 uint32_t num_units_in_tick;
89 int fixed_frame_rate_flag;
90 short offset_for_ref_frame[256]; //FIXME dyn aloc?
91 int bitstream_restriction_flag;
92 int num_reorder_frames;
93 int scaling_matrix_present;
94 uint8_t scaling_matrix4[6][16];
95 uint8_t scaling_matrix8[2][64];
99 * Picture parameter set
103 int cabac; ///< entropy_coding_mode_flag
104 int pic_order_present; ///< pic_order_present_flag
105 int slice_group_count; ///< num_slice_groups_minus1 + 1
106 int mb_slice_group_map_type;
107 int ref_count[2]; ///< num_ref_idx_l0/1_active_minus1 + 1
108 int weighted_pred; ///< weighted_pred_flag
109 int weighted_bipred_idc;
110 int init_qp; ///< pic_init_qp_minus26 + 26
111 int init_qs; ///< pic_init_qs_minus26 + 26
112 int chroma_qp_index_offset;
113 int deblocking_filter_parameters_present; ///< deblocking_filter_parameters_present_flag
114 int constrained_intra_pred; ///< constrained_intra_pred_flag
115 int redundant_pic_cnt_present; ///< redundant_pic_cnt_present_flag
116 int transform_8x8_mode; ///< transform_8x8_mode_flag
117 uint8_t scaling_matrix4[6][16];
118 uint8_t scaling_matrix8[2][64];
122 * Memory management control operation opcode.
124 typedef enum MMCOOpcode{
135 * Memory management control operation.
146 typedef struct H264Context{
154 #define NAL_IDR_SLICE 5
159 #define NAL_END_SEQUENCE 10
160 #define NAL_END_STREAM 11
161 #define NAL_FILLER_DATA 12
162 #define NAL_SPS_EXT 13
163 #define NAL_AUXILIARY_SLICE 19
164 uint8_t *rbsp_buffer;
165 unsigned int rbsp_buffer_size;
168 * Used to parse AVC variant of h264
170 int is_avc; ///< this flag is != 0 if codec is avc1
171 int got_avcC; ///< flag used to parse avcC data only once
172 int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
176 int prev_mb_skipped; //FIXME remove (IMHO not used)
179 int chroma_pred_mode;
180 int intra16x16_pred_mode;
185 int8_t intra4x4_pred_mode_cache[5*8];
186 int8_t (*intra4x4_pred_mode)[8];
187 void (*pred4x4 [9+3])(uint8_t *src, uint8_t *topright, int stride);//FIXME move to dsp?
188 void (*pred8x8l [9+3])(uint8_t *src, int topleft, int topright, int stride);
189 void (*pred8x8 [4+3])(uint8_t *src, int stride);
190 void (*pred16x16[4+3])(uint8_t *src, int stride);
191 unsigned int topleft_samples_available;
192 unsigned int top_samples_available;
193 unsigned int topright_samples_available;
194 unsigned int left_samples_available;
195 uint8_t (*top_borders[2])[16+2*8];
196 uint8_t left_border[2*(17+2*9)];
199 * non zero coeff count cache.
200 * is 64 if not available.
202 uint8_t non_zero_count_cache[6*8] __align8;
203 uint8_t (*non_zero_count)[16];
206 * Motion vector cache.
208 int16_t mv_cache[2][5*8][2] __align8;
209 int8_t ref_cache[2][5*8] __align8;
210 #define LIST_NOT_USED -1 //FIXME rename?
211 #define PART_NOT_AVAILABLE -2
214 * is 1 if the specific list MV&references are set to 0,0,-2.
216 int mv_cache_clean[2];
219 * number of neighbors (top and/or left) that used 8x8 dct
221 int neighbor_transform_size;
224 * block_offset[ 0..23] for frame macroblocks
225 * block_offset[24..47] for field macroblocks
227 int block_offset[2*(16+8)];
229 uint32_t *mb2b_xy; //FIXME are these 4 a good idea?
231 int b_stride; //FIXME use s->b4_stride
237 int unknown_svq3_flag;
238 int next_slice_index;
240 SPS sps_buffer[MAX_SPS_COUNT];
241 SPS sps; ///< current sps
243 PPS pps_buffer[MAX_PPS_COUNT];
247 PPS pps; //FIXME move to Picture perhaps? (->no) do we need that?
249 uint32_t dequant4_buffer[6][52][16];
250 uint32_t dequant8_buffer[2][52][64];
251 uint32_t (*dequant4_coeff[6])[16];
252 uint32_t (*dequant8_coeff[2])[64];
253 int dequant_coeff_pps; ///< reinit tables when pps changes
256 uint8_t *slice_table_base;
257 uint8_t *slice_table; ///< slice_table_base + mb_stride + 1
259 int slice_type_fixed;
261 //interlacing specific flags
263 int mb_field_decoding_flag;
270 int delta_poc_bottom;
273 int prev_poc_msb; ///< poc_msb of the last reference pic for POC type 0
274 int prev_poc_lsb; ///< poc_lsb of the last reference pic for POC type 0
275 int frame_num_offset; ///< for POC type 2
276 int prev_frame_num_offset; ///< for POC type 2
277 int prev_frame_num; ///< frame_num of the last pic for POC type 1/2
280 * frame_num for frames or 2*frame_num for field pics.
285 * max_frame_num or 2*max_frame_num for field pics.
289 //Weighted pred stuff
291 int use_weight_chroma;
292 int luma_log2_weight_denom;
293 int chroma_log2_weight_denom;
294 int luma_weight[2][16];
295 int luma_offset[2][16];
296 int chroma_weight[2][16][2];
297 int chroma_offset[2][16][2];
298 int implicit_weight[16][16];
301 int deblocking_filter; ///< disable_deblocking_filter_idc with 1<->0
302 int slice_alpha_c0_offset;
303 int slice_beta_offset;
305 int redundant_pic_count;
307 int direct_spatial_mv_pred;
308 int dist_scale_factor[16];
309 int map_col_to_list0[2][16];
312 * num_ref_idx_l0/1_active_minus1 + 1
314 int ref_count[2];// FIXME split for AFF
315 Picture *short_ref[32];
316 Picture *long_ref[32];
317 Picture default_ref_list[2][32];
318 Picture ref_list[2][32]; //FIXME size?
319 Picture field_ref_list[2][32]; //FIXME size?
320 Picture *delayed_pic[16]; //FIXME size?
321 Picture *delayed_output_pic;
324 * memory management control operations buffer.
326 MMCO mmco[MAX_MMCO_COUNT];
329 int long_ref_count; ///< number of actual long term references
330 int short_ref_count; ///< number of actual short term references
333 GetBitContext intra_gb;
334 GetBitContext inter_gb;
335 GetBitContext *intra_gb_ptr;
336 GetBitContext *inter_gb_ptr;
338 DCTELEM mb[16*24] __align8;
344 uint8_t cabac_state[460];
347 /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0,1,2), 0x0? luma_cbp */
351 /* chroma_pred_mode for i4x4 or i16x16, else 0 */
352 uint8_t *chroma_pred_mode_table;
353 int last_qscale_diff;
354 int16_t (*mvd_table[2])[2];
355 int16_t mvd_cache[2][5*8][2] __align8;
356 uint8_t *direct_table;
357 uint8_t direct_cache[5*8];
359 uint8_t zigzag_scan[16];
360 uint8_t field_scan[16];
361 const uint8_t *zigzag_scan_q0;
362 const uint8_t *field_scan_q0;
367 static VLC coeff_token_vlc[4];
368 static VLC chroma_dc_coeff_token_vlc;
370 static VLC total_zeros_vlc[15];
371 static VLC chroma_dc_total_zeros_vlc[3];
373 static VLC run_vlc[6];
376 static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
377 static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
378 static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
380 static always_inline uint32_t pack16to32(int a, int b){
381 #ifdef WORDS_BIGENDIAN
382 return (b&0xFFFF) + (a<<16);
384 return (a&0xFFFF) + (b<<16);
390 * @param h height of the rectangle, should be a constant
391 * @param w width of the rectangle, should be a constant
392 * @param size the size of val (1 or 4), should be a constant
394 static always_inline void fill_rectangle(void *vp, int w, int h, int stride, uint32_t val, int size){
395 uint8_t *p= (uint8_t*)vp;
396 assert(size==1 || size==4);
401 assert((((long)vp)&(FFMIN(w, STRIDE_ALIGN)-1)) == 0);
402 assert((stride&(w-1))==0);
403 //FIXME check what gcc generates for 64 bit on x86 and possibly write a 32 bit ver of it
406 *(uint16_t*)(p + stride)= size==4 ? val : val*0x0101;
407 }else if(w==2 && h==4){
408 *(uint16_t*)(p + 0*stride)=
409 *(uint16_t*)(p + 1*stride)=
410 *(uint16_t*)(p + 2*stride)=
411 *(uint16_t*)(p + 3*stride)= size==4 ? val : val*0x0101;
412 }else if(w==4 && h==1){
413 *(uint32_t*)(p + 0*stride)= size==4 ? val : val*0x01010101;
414 }else if(w==4 && h==2){
415 *(uint32_t*)(p + 0*stride)=
416 *(uint32_t*)(p + 1*stride)= size==4 ? val : val*0x01010101;
417 }else if(w==4 && h==4){
418 *(uint32_t*)(p + 0*stride)=
419 *(uint32_t*)(p + 1*stride)=
420 *(uint32_t*)(p + 2*stride)=
421 *(uint32_t*)(p + 3*stride)= size==4 ? val : val*0x01010101;
422 }else if(w==8 && h==1){
424 *(uint32_t*)(p + 4)= size==4 ? val : val*0x01010101;
425 }else if(w==8 && h==2){
426 *(uint32_t*)(p + 0 + 0*stride)=
427 *(uint32_t*)(p + 4 + 0*stride)=
428 *(uint32_t*)(p + 0 + 1*stride)=
429 *(uint32_t*)(p + 4 + 1*stride)= size==4 ? val : val*0x01010101;
430 }else if(w==8 && h==4){
431 *(uint64_t*)(p + 0*stride)=
432 *(uint64_t*)(p + 1*stride)=
433 *(uint64_t*)(p + 2*stride)=
434 *(uint64_t*)(p + 3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
435 }else if(w==16 && h==2){
436 *(uint64_t*)(p + 0+0*stride)=
437 *(uint64_t*)(p + 8+0*stride)=
438 *(uint64_t*)(p + 0+1*stride)=
439 *(uint64_t*)(p + 8+1*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
440 }else if(w==16 && h==4){
441 *(uint64_t*)(p + 0+0*stride)=
442 *(uint64_t*)(p + 8+0*stride)=
443 *(uint64_t*)(p + 0+1*stride)=
444 *(uint64_t*)(p + 8+1*stride)=
445 *(uint64_t*)(p + 0+2*stride)=
446 *(uint64_t*)(p + 8+2*stride)=
447 *(uint64_t*)(p + 0+3*stride)=
448 *(uint64_t*)(p + 8+3*stride)= size==4 ? val*0x0100000001ULL : val*0x0101010101010101ULL;
453 static void fill_caches(H264Context *h, int mb_type, int for_deblock){
454 MpegEncContext * const s = &h->s;
455 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
456 int topleft_xy, top_xy, topright_xy, left_xy[2];
457 int topleft_type, top_type, topright_type, left_type[2];
461 //FIXME deblocking can skip fill_caches much of the time with multiple slices too.
462 // the actual condition is whether we're on the edge of a slice,
463 // and even then the intra and nnz parts are unnecessary.
464 if(for_deblock && h->slice_num == 1)
467 //wow what a mess, why didn't they simplify the interlacing&intra stuff, i can't imagine that these complex rules are worth it
469 top_xy = mb_xy - s->mb_stride;
470 topleft_xy = top_xy - 1;
471 topright_xy= top_xy + 1;
472 left_xy[1] = left_xy[0] = mb_xy-1;
482 const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
483 const int top_pair_xy = pair_xy - s->mb_stride;
484 const int topleft_pair_xy = top_pair_xy - 1;
485 const int topright_pair_xy = top_pair_xy + 1;
486 const int topleft_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
487 const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
488 const int topright_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
489 const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
490 const int curr_mb_frame_flag = !IS_INTERLACED(mb_type);
491 const int bottom = (s->mb_y & 1);
492 tprintf("fill_caches: curr_mb_frame_flag:%d, left_mb_frame_flag:%d, topleft_mb_frame_flag:%d, top_mb_frame_flag:%d, topright_mb_frame_flag:%d\n", curr_mb_frame_flag, left_mb_frame_flag, topleft_mb_frame_flag, top_mb_frame_flag, topright_mb_frame_flag);
494 ? !curr_mb_frame_flag // bottom macroblock
495 : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
497 top_xy -= s->mb_stride;
500 ? !curr_mb_frame_flag // bottom macroblock
501 : (!curr_mb_frame_flag && !topleft_mb_frame_flag) // top macroblock
503 topleft_xy -= s->mb_stride;
506 ? !curr_mb_frame_flag // bottom macroblock
507 : (!curr_mb_frame_flag && !topright_mb_frame_flag) // top macroblock
509 topright_xy -= s->mb_stride;
511 if (left_mb_frame_flag != curr_mb_frame_flag) {
512 left_xy[1] = left_xy[0] = pair_xy - 1;
513 if (curr_mb_frame_flag) {
534 left_xy[1] += s->mb_stride;
547 h->top_mb_xy = top_xy;
548 h->left_mb_xy[0] = left_xy[0];
549 h->left_mb_xy[1] = left_xy[1];
551 topleft_type = h->slice_table[topleft_xy ] < 255 ? s->current_picture.mb_type[topleft_xy] : 0;
552 top_type = h->slice_table[top_xy ] < 255 ? s->current_picture.mb_type[top_xy] : 0;
553 topright_type= h->slice_table[topright_xy] < 255 ? s->current_picture.mb_type[topright_xy]: 0;
554 left_type[0] = h->slice_table[left_xy[0] ] < 255 ? s->current_picture.mb_type[left_xy[0]] : 0;
555 left_type[1] = h->slice_table[left_xy[1] ] < 255 ? s->current_picture.mb_type[left_xy[1]] : 0;
557 topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
558 top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
559 topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
560 left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
561 left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
564 if(IS_INTRA(mb_type)){
565 h->topleft_samples_available=
566 h->top_samples_available=
567 h->left_samples_available= 0xFFFF;
568 h->topright_samples_available= 0xEEEA;
570 if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
571 h->topleft_samples_available= 0xB3FF;
572 h->top_samples_available= 0x33FF;
573 h->topright_samples_available= 0x26EA;
576 if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
577 h->topleft_samples_available&= 0xDF5F;
578 h->left_samples_available&= 0x5F5F;
582 if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
583 h->topleft_samples_available&= 0x7FFF;
585 if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
586 h->topright_samples_available&= 0xFBFF;
588 if(IS_INTRA4x4(mb_type)){
589 if(IS_INTRA4x4(top_type)){
590 h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
591 h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
592 h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
593 h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
596 if(!top_type || (IS_INTER(top_type) && h->pps.constrained_intra_pred))
601 h->intra4x4_pred_mode_cache[4+8*0]=
602 h->intra4x4_pred_mode_cache[5+8*0]=
603 h->intra4x4_pred_mode_cache[6+8*0]=
604 h->intra4x4_pred_mode_cache[7+8*0]= pred;
607 if(IS_INTRA4x4(left_type[i])){
608 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
609 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
612 if(!left_type[i] || (IS_INTER(left_type[i]) && h->pps.constrained_intra_pred))
617 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
618 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
633 //FIXME constraint_intra_pred & partitioning & nnz (lets hope this is just a typo in the spec)
635 h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4];
636 h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5];
637 h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6];
638 h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
640 h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9];
641 h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
643 h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12];
644 h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
647 h->non_zero_count_cache[4+8*0]=
648 h->non_zero_count_cache[5+8*0]=
649 h->non_zero_count_cache[6+8*0]=
650 h->non_zero_count_cache[7+8*0]=
652 h->non_zero_count_cache[1+8*0]=
653 h->non_zero_count_cache[2+8*0]=
655 h->non_zero_count_cache[1+8*3]=
656 h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
660 for (i=0; i<2; i++) {
662 h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]];
663 h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]];
664 h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]];
665 h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]];
667 h->non_zero_count_cache[3+8*1 + 2*8*i]=
668 h->non_zero_count_cache[3+8*2 + 2*8*i]=
669 h->non_zero_count_cache[0+8*1 + 8*i]=
670 h->non_zero_count_cache[0+8*4 + 8*i]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
677 h->top_cbp = h->cbp_table[top_xy];
678 } else if(IS_INTRA(mb_type)) {
685 h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
686 } else if(IS_INTRA(mb_type)) {
692 h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
695 h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
700 //FIXME direct mb can skip much of this
701 if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
703 for(list=0; list<1+(h->slice_type==B_TYPE); list++){
704 if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
705 /*if(!h->mv_cache_clean[list]){
706 memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
707 memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
708 h->mv_cache_clean[list]= 1;
712 h->mv_cache_clean[list]= 0;
714 if(IS_INTER(top_type)){
715 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
716 const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
717 *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
718 *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
719 *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
720 *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
721 h->ref_cache[list][scan8[0] + 0 - 1*8]=
722 h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
723 h->ref_cache[list][scan8[0] + 2 - 1*8]=
724 h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
726 *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
727 *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
728 *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
729 *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
730 *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
733 //FIXME unify cleanup or sth
734 if(IS_INTER(left_type[0])){
735 const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
736 const int b8_xy= h->mb2b8_xy[left_xy[0]] + 1;
737 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0]];
738 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1]];
739 h->ref_cache[list][scan8[0] - 1 + 0*8]=
740 h->ref_cache[list][scan8[0] - 1 + 1*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0]>>1)];
742 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 0*8]=
743 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 1*8]= 0;
744 h->ref_cache[list][scan8[0] - 1 + 0*8]=
745 h->ref_cache[list][scan8[0] - 1 + 1*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
748 if(IS_INTER(left_type[1])){
749 const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
750 const int b8_xy= h->mb2b8_xy[left_xy[1]] + 1;
751 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[2]];
752 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[3]];
753 h->ref_cache[list][scan8[0] - 1 + 2*8]=
754 h->ref_cache[list][scan8[0] - 1 + 3*8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[2]>>1)];
756 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 2*8]=
757 *(uint32_t*)h->mv_cache [list][scan8[0] - 1 + 3*8]= 0;
758 h->ref_cache[list][scan8[0] - 1 + 2*8]=
759 h->ref_cache[list][scan8[0] - 1 + 3*8]= left_type[0] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
760 assert((!left_type[0]) == (!left_type[1]));
763 if(for_deblock || (IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred))
766 if(IS_INTER(topleft_type)){
767 const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
768 const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + h->b8_stride;
769 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
770 h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
772 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
773 h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
776 if(IS_INTER(topright_type)){
777 const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
778 const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
779 *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
780 h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
782 *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
783 h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
787 h->ref_cache[list][scan8[5 ]+1] =
788 h->ref_cache[list][scan8[7 ]+1] =
789 h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
790 h->ref_cache[list][scan8[4 ]] =
791 h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
792 *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
793 *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
794 *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
795 *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
796 *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
799 /* XXX beurk, Load mvd */
800 if(IS_INTER(topleft_type)){
801 const int b_xy = h->mb2b_xy[topleft_xy] + 3 + 3*h->b_stride;
802 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy];
804 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 - 1*8]= 0;
807 if(IS_INTER(top_type)){
808 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
809 *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
810 *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
811 *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
812 *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
814 *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
815 *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
816 *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
817 *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
819 if(IS_INTER(left_type[0])){
820 const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
821 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
822 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
824 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
825 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
827 if(IS_INTER(left_type[1])){
828 const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
829 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
830 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
832 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
833 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
835 *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
836 *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
837 *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
838 *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
839 *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
841 if(h->slice_type == B_TYPE){
842 fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
844 if(IS_DIRECT(top_type)){
845 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
846 }else if(IS_8X8(top_type)){
847 int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
848 h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
849 h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
851 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
855 if(IS_DIRECT(left_type[0])){
856 h->direct_cache[scan8[0] - 1 + 0*8]=
857 h->direct_cache[scan8[0] - 1 + 2*8]= 1;
858 }else if(IS_8X8(left_type[0])){
859 int b8_xy = h->mb2b8_xy[left_xy[0]] + 1;
860 h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[b8_xy];
861 h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[b8_xy + h->b8_stride];
863 h->direct_cache[scan8[0] - 1 + 0*8]=
864 h->direct_cache[scan8[0] - 1 + 2*8]= 0;
872 h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
875 static inline void write_back_intra_pred_mode(H264Context *h){
876 MpegEncContext * const s = &h->s;
877 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
879 h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
880 h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
881 h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
882 h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
883 h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
884 h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
885 h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
889 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
891 static inline int check_intra4x4_pred_mode(H264Context *h){
892 MpegEncContext * const s = &h->s;
893 static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
894 static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
897 if(!(h->top_samples_available&0x8000)){
899 int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
901 av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
904 h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
909 if(!(h->left_samples_available&0x8000)){
911 int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
913 av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
916 h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
922 } //FIXME cleanup like next
925 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
927 static inline int check_intra_pred_mode(H264Context *h, int mode){
928 MpegEncContext * const s = &h->s;
929 static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
930 static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
932 if(mode < 0 || mode > 6) {
933 av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
937 if(!(h->top_samples_available&0x8000)){
940 av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
945 if(!(h->left_samples_available&0x8000)){
948 av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
957 * gets the predicted intra4x4 prediction mode.
959 static inline int pred_intra_mode(H264Context *h, int n){
960 const int index8= scan8[n];
961 const int left= h->intra4x4_pred_mode_cache[index8 - 1];
962 const int top = h->intra4x4_pred_mode_cache[index8 - 8];
963 const int min= FFMIN(left, top);
965 tprintf("mode:%d %d min:%d\n", left ,top, min);
967 if(min<0) return DC_PRED;
971 static inline void write_back_non_zero_count(H264Context *h){
972 MpegEncContext * const s = &h->s;
973 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
975 h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[7+8*1];
976 h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[7+8*2];
977 h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[7+8*3];
978 h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
979 h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[4+8*4];
980 h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[5+8*4];
981 h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[6+8*4];
983 h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[1+8*2];
984 h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
985 h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[2+8*1];
987 h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5];
988 h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
989 h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4];
993 * gets the predicted number of non zero coefficients.
994 * @param n block index
996 static inline int pred_non_zero_count(H264Context *h, int n){
997 const int index8= scan8[n];
998 const int left= h->non_zero_count_cache[index8 - 1];
999 const int top = h->non_zero_count_cache[index8 - 8];
1002 if(i<64) i= (i+1)>>1;
1004 tprintf("pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
1009 static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
1010 const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
1012 if(topright_ref != PART_NOT_AVAILABLE){
1013 *C= h->mv_cache[list][ i - 8 + part_width ];
1014 return topright_ref;
1016 tprintf("topright MV not available\n");
1018 *C= h->mv_cache[list][ i - 8 - 1 ];
1019 return h->ref_cache[list][ i - 8 - 1 ];
1024 * gets the predicted MV.
1025 * @param n the block index
1026 * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
1027 * @param mx the x component of the predicted motion vector
1028 * @param my the y component of the predicted motion vector
1030 static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
1031 const int index8= scan8[n];
1032 const int top_ref= h->ref_cache[list][ index8 - 8 ];
1033 const int left_ref= h->ref_cache[list][ index8 - 1 ];
1034 const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
1035 const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
1037 int diagonal_ref, match_count;
1039 assert(part_width==1 || part_width==2 || part_width==4);
1049 diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
1050 match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
1051 tprintf("pred_motion match_count=%d\n", match_count);
1052 if(match_count > 1){ //most common
1053 *mx= mid_pred(A[0], B[0], C[0]);
1054 *my= mid_pred(A[1], B[1], C[1]);
1055 }else if(match_count==1){
1059 }else if(top_ref==ref){
1067 if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
1071 *mx= mid_pred(A[0], B[0], C[0]);
1072 *my= mid_pred(A[1], B[1], C[1]);
1076 tprintf("pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
1080 * gets the directionally predicted 16x8 MV.
1081 * @param n the block index
1082 * @param mx the x component of the predicted motion vector
1083 * @param my the y component of the predicted motion vector
1085 static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
1087 const int top_ref= h->ref_cache[list][ scan8[0] - 8 ];
1088 const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
1090 tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
1098 const int left_ref= h->ref_cache[list][ scan8[8] - 1 ];
1099 const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
1101 tprintf("pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
1103 if(left_ref == ref){
1111 pred_motion(h, n, 4, list, ref, mx, my);
1115 * gets the directionally predicted 8x16 MV.
1116 * @param n the block index
1117 * @param mx the x component of the predicted motion vector
1118 * @param my the y component of the predicted motion vector
1120 static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
1122 const int left_ref= h->ref_cache[list][ scan8[0] - 1 ];
1123 const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
1125 tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
1127 if(left_ref == ref){
1136 diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
1138 tprintf("pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
1140 if(diagonal_ref == ref){
1148 pred_motion(h, n, 2, list, ref, mx, my);
1151 static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
1152 const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
1153 const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
1155 tprintf("pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
1157 if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
1158 || (top_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
1159 || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
1165 pred_motion(h, 0, 4, 0, 0, mx, my);
1170 static inline void direct_dist_scale_factor(H264Context * const h){
1171 const int poc = h->s.current_picture_ptr->poc;
1172 const int poc1 = h->ref_list[1][0].poc;
1174 for(i=0; i<h->ref_count[0]; i++){
1175 int poc0 = h->ref_list[0][i].poc;
1176 int td = clip(poc1 - poc0, -128, 127);
1177 if(td == 0 /* FIXME || pic0 is a long-term ref */){
1178 h->dist_scale_factor[i] = 256;
1180 int tb = clip(poc - poc0, -128, 127);
1181 int tx = (16384 + (ABS(td) >> 1)) / td;
1182 h->dist_scale_factor[i] = clip((tb*tx + 32) >> 6, -1024, 1023);
1186 static inline void direct_ref_list_init(H264Context * const h){
1187 MpegEncContext * const s = &h->s;
1188 Picture * const ref1 = &h->ref_list[1][0];
1189 Picture * const cur = s->current_picture_ptr;
1191 if(cur->pict_type == I_TYPE)
1192 cur->ref_count[0] = 0;
1193 if(cur->pict_type != B_TYPE)
1194 cur->ref_count[1] = 0;
1195 for(list=0; list<2; list++){
1196 cur->ref_count[list] = h->ref_count[list];
1197 for(j=0; j<h->ref_count[list]; j++)
1198 cur->ref_poc[list][j] = h->ref_list[list][j].poc;
1200 if(cur->pict_type != B_TYPE || h->direct_spatial_mv_pred)
1202 for(list=0; list<2; list++){
1203 for(i=0; i<ref1->ref_count[list]; i++){
1204 const int poc = ref1->ref_poc[list][i];
1205 h->map_col_to_list0[list][i] = PART_NOT_AVAILABLE;
1206 for(j=0; j<h->ref_count[list]; j++)
1207 if(h->ref_list[list][j].poc == poc){
1208 h->map_col_to_list0[list][i] = j;
1215 static inline void pred_direct_motion(H264Context * const h, int *mb_type){
1216 MpegEncContext * const s = &h->s;
1217 const int mb_xy = s->mb_x + s->mb_y*s->mb_stride;
1218 const int b8_xy = 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1219 const int b4_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1220 const int mb_type_col = h->ref_list[1][0].mb_type[mb_xy];
1221 const int16_t (*l1mv0)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[0][b4_xy];
1222 const int16_t (*l1mv1)[2] = (const int16_t (*)[2]) &h->ref_list[1][0].motion_val[1][b4_xy];
1223 const int8_t *l1ref0 = &h->ref_list[1][0].ref_index[0][b8_xy];
1224 const int8_t *l1ref1 = &h->ref_list[1][0].ref_index[1][b8_xy];
1225 const int is_b8x8 = IS_8X8(*mb_type);
1229 if(IS_8X8(mb_type_col) && !h->sps.direct_8x8_inference_flag){
1230 /* FIXME save sub mb types from previous frames (or derive from MVs)
1231 * so we know exactly what block size to use */
1232 sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
1233 *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
1234 }else if(!is_b8x8 && (IS_16X16(mb_type_col) || IS_INTRA(mb_type_col))){
1235 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1236 *mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
1238 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1239 *mb_type = MB_TYPE_8x8|MB_TYPE_L0L1;
1242 *mb_type |= MB_TYPE_DIRECT2;
1244 tprintf("mb_type = %08x, sub_mb_type = %08x, is_b8x8 = %d, mb_type_col = %08x\n", *mb_type, sub_mb_type, is_b8x8, mb_type_col);
1246 if(h->direct_spatial_mv_pred){
1251 /* ref = min(neighbors) */
1252 for(list=0; list<2; list++){
1253 int refa = h->ref_cache[list][scan8[0] - 1];
1254 int refb = h->ref_cache[list][scan8[0] - 8];
1255 int refc = h->ref_cache[list][scan8[0] - 8 + 4];
1257 refc = h->ref_cache[list][scan8[0] - 8 - 1];
1259 if(ref[list] < 0 || (refb < ref[list] && refb >= 0))
1261 if(ref[list] < 0 || (refc < ref[list] && refc >= 0))
1267 if(ref[0] < 0 && ref[1] < 0){
1268 ref[0] = ref[1] = 0;
1269 mv[0][0] = mv[0][1] =
1270 mv[1][0] = mv[1][1] = 0;
1272 for(list=0; list<2; list++){
1274 pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]);
1276 mv[list][0] = mv[list][1] = 0;
1281 *mb_type &= ~MB_TYPE_P0L1;
1282 sub_mb_type &= ~MB_TYPE_P0L1;
1283 }else if(ref[0] < 0){
1284 *mb_type &= ~MB_TYPE_P0L0;
1285 sub_mb_type &= ~MB_TYPE_P0L0;
1288 if(IS_16X16(*mb_type)){
1289 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
1290 fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
1291 if(!IS_INTRA(mb_type_col)
1292 && ( (l1ref0[0] == 0 && ABS(l1mv0[0][0]) <= 1 && ABS(l1mv0[0][1]) <= 1)
1293 || (l1ref0[0] < 0 && l1ref1[0] == 0 && ABS(l1mv1[0][0]) <= 1 && ABS(l1mv1[0][1]) <= 1
1294 && (h->x264_build>33 || !h->x264_build)))){
1296 fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1298 fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
1300 fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1302 fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, 0, 4);
1304 fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1305 fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1308 for(i8=0; i8<4; i8++){
1309 const int x8 = i8&1;
1310 const int y8 = i8>>1;
1312 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1314 h->sub_mb_type[i8] = sub_mb_type;
1316 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1317 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1318 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
1319 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
1322 if(!IS_INTRA(mb_type_col) && ( l1ref0[x8 + y8*h->b8_stride] == 0
1323 || (l1ref0[x8 + y8*h->b8_stride] < 0 && l1ref1[x8 + y8*h->b8_stride] == 0
1324 && (h->x264_build>33 || !h->x264_build)))){
1325 const int16_t (*l1mv)[2]= l1ref0[x8 + y8*h->b8_stride] == 0 ? l1mv0 : l1mv1;
1326 if(IS_SUB_8X8(sub_mb_type)){
1327 const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
1328 if(ABS(mv_col[0]) <= 1 && ABS(mv_col[1]) <= 1){
1330 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1332 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1335 for(i4=0; i4<4; i4++){
1336 const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
1337 if(ABS(mv_col[0]) <= 1 && ABS(mv_col[1]) <= 1){
1339 *(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0;
1341 *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0;
1347 }else{ /* direct temporal mv pred */
1348 if(IS_16X16(*mb_type)){
1349 fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
1350 if(IS_INTRA(mb_type_col)){
1351 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, 0, 1);
1352 fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, 0, 4);
1353 fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, 0, 4);
1355 const int ref0 = l1ref0[0] >= 0 ? h->map_col_to_list0[0][l1ref0[0]]
1356 : h->map_col_to_list0[1][l1ref1[0]];
1357 const int dist_scale_factor = h->dist_scale_factor[ref0];
1358 const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0];
1360 mv_l0[0] = (dist_scale_factor * mv_col[0] + 128) >> 8;
1361 mv_l0[1] = (dist_scale_factor * mv_col[1] + 128) >> 8;
1362 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref0, 1);
1363 fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, pack16to32(mv_l0[0],mv_l0[1]), 4);
1364 fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]), 4);
1367 for(i8=0; i8<4; i8++){
1368 const int x8 = i8&1;
1369 const int y8 = i8>>1;
1370 int ref0, dist_scale_factor;
1371 const int16_t (*l1mv)[2]= l1mv0;
1373 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1375 h->sub_mb_type[i8] = sub_mb_type;
1376 if(IS_INTRA(mb_type_col)){
1377 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
1378 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1379 fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1380 fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1384 ref0 = l1ref0[x8 + y8*h->b8_stride];
1386 ref0 = h->map_col_to_list0[0][ref0];
1388 ref0 = h->map_col_to_list0[1][l1ref1[x8 + y8*h->b8_stride]];
1391 dist_scale_factor = h->dist_scale_factor[ref0];
1393 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
1394 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1395 if(IS_SUB_8X8(sub_mb_type)){
1396 const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
1397 int mx = (dist_scale_factor * mv_col[0] + 128) >> 8;
1398 int my = (dist_scale_factor * mv_col[1] + 128) >> 8;
1399 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
1400 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-mv_col[1]), 4);
1402 for(i4=0; i4<4; i4++){
1403 const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
1404 int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
1405 mv_l0[0] = (dist_scale_factor * mv_col[0] + 128) >> 8;
1406 mv_l0[1] = (dist_scale_factor * mv_col[1] + 128) >> 8;
1407 *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] =
1408 pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
1415 static inline void write_back_motion(H264Context *h, int mb_type){
1416 MpegEncContext * const s = &h->s;
1417 const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1418 const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1421 for(list=0; list<2; list++){
1423 if(!USES_LIST(mb_type, list)){
1424 if(1){ //FIXME skip or never read if mb_type doesn't use it
1426 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]=
1427 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= 0;
1429 if( h->pps.cabac ) {
1430 /* FIXME needed ? */
1432 *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]=
1433 *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= 0;
1437 s->current_picture.ref_index[list][b8_xy + 0 + y*h->b8_stride]=
1438 s->current_picture.ref_index[list][b8_xy + 1 + y*h->b8_stride]= LIST_NOT_USED;
1445 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
1446 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
1448 if( h->pps.cabac ) {
1450 *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
1451 *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
1455 s->current_picture.ref_index[list][b8_xy + 0 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+0 + 16*y];
1456 s->current_picture.ref_index[list][b8_xy + 1 + y*h->b8_stride]= h->ref_cache[list][scan8[0]+2 + 16*y];
1460 if(h->slice_type == B_TYPE && h->pps.cabac){
1461 if(IS_8X8(mb_type)){
1462 h->direct_table[b8_xy+1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
1463 h->direct_table[b8_xy+0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
1464 h->direct_table[b8_xy+1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
1470 * Decodes a network abstraction layer unit.
1471 * @param consumed is the number of bytes used as input
1472 * @param length is the length of the array
1473 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
1474 * @returns decoded bytes, might be src+1 if no escapes
1476 static uint8_t *decode_nal(H264Context *h, uint8_t *src, int *dst_length, int *consumed, int length){
1480 // src[0]&0x80; //forbidden bit
1481 h->nal_ref_idc= src[0]>>5;
1482 h->nal_unit_type= src[0]&0x1F;
1486 for(i=0; i<length; i++)
1487 printf("%2X ", src[i]);
1489 for(i=0; i+1<length; i+=2){
1490 if(src[i]) continue;
1491 if(i>0 && src[i-1]==0) i--;
1492 if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1494 /* startcode, so we must be past the end */
1501 if(i>=length-1){ //no escaped 0
1502 *dst_length= length;
1503 *consumed= length+1; //+1 for the header
1507 h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length);
1508 dst= h->rbsp_buffer;
1510 //printf("decoding esc\n");
1513 //remove escapes (very rare 1:2^22)
1514 if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
1515 if(src[si+2]==3){ //escape
1520 }else //next start code
1524 dst[di++]= src[si++];
1528 *consumed= si + 1;//+1 for the header
1529 //FIXME store exact number of bits in the getbitcontext (its needed for decoding)
1535 * @param src the data which should be escaped
1536 * @param dst the target buffer, dst+1 == src is allowed as a special case
1537 * @param length the length of the src data
1538 * @param dst_length the length of the dst array
1539 * @returns length of escaped data in bytes or -1 if an error occured
1541 static int encode_nal(H264Context *h, uint8_t *dst, uint8_t *src, int length, int dst_length){
1542 int i, escape_count, si, di;
1546 assert(dst_length>0);
1548 dst[0]= (h->nal_ref_idc<<5) + h->nal_unit_type;
1550 if(length==0) return 1;
1553 for(i=0; i<length; i+=2){
1554 if(src[i]) continue;
1555 if(i>0 && src[i-1]==0)
1557 if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1563 if(escape_count==0){
1565 memcpy(dst+1, src, length);
1569 if(length + escape_count + 1> dst_length)
1572 //this should be damn rare (hopefully)
1574 h->rbsp_buffer= av_fast_realloc(h->rbsp_buffer, &h->rbsp_buffer_size, length + escape_count);
1575 temp= h->rbsp_buffer;
1576 //printf("encoding esc\n");
1581 if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
1582 temp[di++]= 0; si++;
1583 temp[di++]= 0; si++;
1585 temp[di++]= src[si++];
1588 temp[di++]= src[si++];
1590 memcpy(dst+1, temp, length+escape_count);
1592 assert(di == length+escape_count);
1598 * write 1,10,100,1000,... for alignment, yes its exactly inverse to mpeg4
1600 static void encode_rbsp_trailing(PutBitContext *pb){
1603 length= (-put_bits_count(pb))&7;
1604 if(length) put_bits(pb, length, 0);
1609 * identifies the exact end of the bitstream
1610 * @return the length of the trailing, or 0 if damaged
1612 static int decode_rbsp_trailing(uint8_t *src){
1616 tprintf("rbsp trailing %X\n", v);
1626 * idct tranforms the 16 dc values and dequantize them.
1627 * @param qp quantization parameter
1629 static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
1632 int temp[16]; //FIXME check if this is a good idea
1633 static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
1634 static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1636 //memset(block, 64, 2*256);
1639 const int offset= y_offset[i];
1640 const int z0= block[offset+stride*0] + block[offset+stride*4];
1641 const int z1= block[offset+stride*0] - block[offset+stride*4];
1642 const int z2= block[offset+stride*1] - block[offset+stride*5];
1643 const int z3= block[offset+stride*1] + block[offset+stride*5];
1652 const int offset= x_offset[i];
1653 const int z0= temp[4*0+i] + temp[4*2+i];
1654 const int z1= temp[4*0+i] - temp[4*2+i];
1655 const int z2= temp[4*1+i] - temp[4*3+i];
1656 const int z3= temp[4*1+i] + temp[4*3+i];
1658 block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_resdual
1659 block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8));
1660 block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8));
1661 block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8));
1667 * dct tranforms the 16 dc values.
1668 * @param qp quantization parameter ??? FIXME
1670 static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
1671 // const int qmul= dequant_coeff[qp][0];
1673 int temp[16]; //FIXME check if this is a good idea
1674 static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
1675 static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1678 const int offset= y_offset[i];
1679 const int z0= block[offset+stride*0] + block[offset+stride*4];
1680 const int z1= block[offset+stride*0] - block[offset+stride*4];
1681 const int z2= block[offset+stride*1] - block[offset+stride*5];
1682 const int z3= block[offset+stride*1] + block[offset+stride*5];
1691 const int offset= x_offset[i];
1692 const int z0= temp[4*0+i] + temp[4*2+i];
1693 const int z1= temp[4*0+i] - temp[4*2+i];
1694 const int z2= temp[4*1+i] - temp[4*3+i];
1695 const int z3= temp[4*1+i] + temp[4*3+i];
1697 block[stride*0 +offset]= (z0 + z3)>>1;
1698 block[stride*2 +offset]= (z1 + z2)>>1;
1699 block[stride*8 +offset]= (z1 - z2)>>1;
1700 block[stride*10+offset]= (z0 - z3)>>1;
1708 static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
1709 const int stride= 16*2;
1710 const int xStride= 16;
1713 a= block[stride*0 + xStride*0];
1714 b= block[stride*0 + xStride*1];
1715 c= block[stride*1 + xStride*0];
1716 d= block[stride*1 + xStride*1];
1723 block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7;
1724 block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7;
1725 block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7;
1726 block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7;
1730 static void chroma_dc_dct_c(DCTELEM *block){
1731 const int stride= 16*2;
1732 const int xStride= 16;
1735 a= block[stride*0 + xStride*0];
1736 b= block[stride*0 + xStride*1];
1737 c= block[stride*1 + xStride*0];
1738 d= block[stride*1 + xStride*1];
1745 block[stride*0 + xStride*0]= (a+c);
1746 block[stride*0 + xStride*1]= (e+b);
1747 block[stride*1 + xStride*0]= (a-c);
1748 block[stride*1 + xStride*1]= (e-b);
1753 * gets the chroma qp.
1755 static inline int get_chroma_qp(int chroma_qp_index_offset, int qscale){
1757 return chroma_qp[clip(qscale + chroma_qp_index_offset, 0, 51)];
1762 static void h264_diff_dct_c(DCTELEM *block, uint8_t *src1, uint8_t *src2, int stride){
1764 //FIXME try int temp instead of block
1767 const int d0= src1[0 + i*stride] - src2[0 + i*stride];
1768 const int d1= src1[1 + i*stride] - src2[1 + i*stride];
1769 const int d2= src1[2 + i*stride] - src2[2 + i*stride];
1770 const int d3= src1[3 + i*stride] - src2[3 + i*stride];
1771 const int z0= d0 + d3;
1772 const int z3= d0 - d3;
1773 const int z1= d1 + d2;
1774 const int z2= d1 - d2;
1776 block[0 + 4*i]= z0 + z1;
1777 block[1 + 4*i]= 2*z3 + z2;
1778 block[2 + 4*i]= z0 - z1;
1779 block[3 + 4*i]= z3 - 2*z2;
1783 const int z0= block[0*4 + i] + block[3*4 + i];
1784 const int z3= block[0*4 + i] - block[3*4 + i];
1785 const int z1= block[1*4 + i] + block[2*4 + i];
1786 const int z2= block[1*4 + i] - block[2*4 + i];
1788 block[0*4 + i]= z0 + z1;
1789 block[1*4 + i]= 2*z3 + z2;
1790 block[2*4 + i]= z0 - z1;
1791 block[3*4 + i]= z3 - 2*z2;
1796 //FIXME need to check that this doesnt overflow signed 32 bit for low qp, i am not sure, it's very close
1797 //FIXME check that gcc inlines this (and optimizes intra & seperate_dc stuff away)
1798 static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int seperate_dc){
1800 const int * const quant_table= quant_coeff[qscale];
1801 const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
1802 const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
1803 const unsigned int threshold2= (threshold1<<1);
1809 const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
1810 const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
1811 const unsigned int dc_threshold2= (dc_threshold1<<1);
1813 int level= block[0]*quant_coeff[qscale+18][0];
1814 if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1816 level= (dc_bias + level)>>(QUANT_SHIFT-2);
1819 level= (dc_bias - level)>>(QUANT_SHIFT-2);
1822 // last_non_zero = i;
1827 const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
1828 const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
1829 const unsigned int dc_threshold2= (dc_threshold1<<1);
1831 int level= block[0]*quant_table[0];
1832 if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1834 level= (dc_bias + level)>>(QUANT_SHIFT+1);
1837 level= (dc_bias - level)>>(QUANT_SHIFT+1);
1840 // last_non_zero = i;
1853 const int j= scantable[i];
1854 int level= block[j]*quant_table[j];
1856 // if( bias+level >= (1<<(QMAT_SHIFT - 3))
1857 // || bias-level >= (1<<(QMAT_SHIFT - 3))){
1858 if(((unsigned)(level+threshold1))>threshold2){
1860 level= (bias + level)>>QUANT_SHIFT;
1863 level= (bias - level)>>QUANT_SHIFT;
1872 return last_non_zero;
1875 static void pred4x4_vertical_c(uint8_t *src, uint8_t *topright, int stride){
1876 const uint32_t a= ((uint32_t*)(src-stride))[0];
1877 ((uint32_t*)(src+0*stride))[0]= a;
1878 ((uint32_t*)(src+1*stride))[0]= a;
1879 ((uint32_t*)(src+2*stride))[0]= a;
1880 ((uint32_t*)(src+3*stride))[0]= a;
1883 static void pred4x4_horizontal_c(uint8_t *src, uint8_t *topright, int stride){
1884 ((uint32_t*)(src+0*stride))[0]= src[-1+0*stride]*0x01010101;
1885 ((uint32_t*)(src+1*stride))[0]= src[-1+1*stride]*0x01010101;
1886 ((uint32_t*)(src+2*stride))[0]= src[-1+2*stride]*0x01010101;
1887 ((uint32_t*)(src+3*stride))[0]= src[-1+3*stride]*0x01010101;
1890 static void pred4x4_dc_c(uint8_t *src, uint8_t *topright, int stride){
1891 const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride]
1892 + src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 4) >>3;
1894 ((uint32_t*)(src+0*stride))[0]=
1895 ((uint32_t*)(src+1*stride))[0]=
1896 ((uint32_t*)(src+2*stride))[0]=
1897 ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
1900 static void pred4x4_left_dc_c(uint8_t *src, uint8_t *topright, int stride){
1901 const int dc= ( src[-1+0*stride] + src[-1+1*stride] + src[-1+2*stride] + src[-1+3*stride] + 2) >>2;
1903 ((uint32_t*)(src+0*stride))[0]=
1904 ((uint32_t*)(src+1*stride))[0]=
1905 ((uint32_t*)(src+2*stride))[0]=
1906 ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
1909 static void pred4x4_top_dc_c(uint8_t *src, uint8_t *topright, int stride){
1910 const int dc= ( src[-stride] + src[1-stride] + src[2-stride] + src[3-stride] + 2) >>2;
1912 ((uint32_t*)(src+0*stride))[0]=
1913 ((uint32_t*)(src+1*stride))[0]=
1914 ((uint32_t*)(src+2*stride))[0]=
1915 ((uint32_t*)(src+3*stride))[0]= dc* 0x01010101;
1918 static void pred4x4_128_dc_c(uint8_t *src, uint8_t *topright, int stride){
1919 ((uint32_t*)(src+0*stride))[0]=
1920 ((uint32_t*)(src+1*stride))[0]=
1921 ((uint32_t*)(src+2*stride))[0]=
1922 ((uint32_t*)(src+3*stride))[0]= 128U*0x01010101U;
1926 #define LOAD_TOP_RIGHT_EDGE\
1927 const int t4= topright[0];\
1928 const int t5= topright[1];\
1929 const int t6= topright[2];\
1930 const int t7= topright[3];\
1932 #define LOAD_LEFT_EDGE\
1933 const int l0= src[-1+0*stride];\
1934 const int l1= src[-1+1*stride];\
1935 const int l2= src[-1+2*stride];\
1936 const int l3= src[-1+3*stride];\
1938 #define LOAD_TOP_EDGE\
1939 const int t0= src[ 0-1*stride];\
1940 const int t1= src[ 1-1*stride];\
1941 const int t2= src[ 2-1*stride];\
1942 const int t3= src[ 3-1*stride];\
1944 static void pred4x4_down_right_c(uint8_t *src, uint8_t *topright, int stride){
1945 const int lt= src[-1-1*stride];
1949 src[0+3*stride]=(l3 + 2*l2 + l1 + 2)>>2;
1951 src[1+3*stride]=(l2 + 2*l1 + l0 + 2)>>2;
1954 src[2+3*stride]=(l1 + 2*l0 + lt + 2)>>2;
1958 src[3+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
1961 src[3+2*stride]=(lt + 2*t0 + t1 + 2)>>2;
1963 src[3+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
1964 src[3+0*stride]=(t1 + 2*t2 + t3 + 2)>>2;
1967 static void pred4x4_down_left_c(uint8_t *src, uint8_t *topright, int stride){
1972 src[0+0*stride]=(t0 + t2 + 2*t1 + 2)>>2;
1974 src[0+1*stride]=(t1 + t3 + 2*t2 + 2)>>2;
1977 src[0+2*stride]=(t2 + t4 + 2*t3 + 2)>>2;
1981 src[0+3*stride]=(t3 + t5 + 2*t4 + 2)>>2;
1984 src[1+3*stride]=(t4 + t6 + 2*t5 + 2)>>2;
1986 src[2+3*stride]=(t5 + t7 + 2*t6 + 2)>>2;
1987 src[3+3*stride]=(t6 + 3*t7 + 2)>>2;
1990 static void pred4x4_vertical_right_c(uint8_t *src, uint8_t *topright, int stride){
1991 const int lt= src[-1-1*stride];
1994 const __attribute__((unused)) int unu= l3;
1997 src[1+2*stride]=(lt + t0 + 1)>>1;
1999 src[2+2*stride]=(t0 + t1 + 1)>>1;
2001 src[3+2*stride]=(t1 + t2 + 1)>>1;
2002 src[3+0*stride]=(t2 + t3 + 1)>>1;
2004 src[1+3*stride]=(l0 + 2*lt + t0 + 2)>>2;
2006 src[2+3*stride]=(lt + 2*t0 + t1 + 2)>>2;
2008 src[3+3*stride]=(t0 + 2*t1 + t2 + 2)>>2;
2009 src[3+1*stride]=(t1 + 2*t2 + t3 + 2)>>2;
2010 src[0+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
2011 src[0+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
2014 static void pred4x4_vertical_left_c(uint8_t *src, uint8_t *topright, int stride){
2017 const __attribute__((unused)) int unu= t7;
2019 src[0+0*stride]=(t0 + t1 + 1)>>1;
2021 src[0+2*stride]=(t1 + t2 + 1)>>1;
2023 src[1+2*stride]=(t2 + t3 + 1)>>1;
2025 src[2+2*stride]=(t3 + t4+ 1)>>1;
2026 src[3+2*stride]=(t4 + t5+ 1)>>1;
2027 src[0+1*stride]=(t0 + 2*t1 + t2 + 2)>>2;
2029 src[0+3*stride]=(t1 + 2*t2 + t3 + 2)>>2;
2031 src[1+3*stride]=(t2 + 2*t3 + t4 + 2)>>2;
2033 src[2+3*stride]=(t3 + 2*t4 + t5 + 2)>>2;
2034 src[3+3*stride]=(t4 + 2*t5 + t6 + 2)>>2;
2037 static void pred4x4_horizontal_up_c(uint8_t *src, uint8_t *topright, int stride){
2040 src[0+0*stride]=(l0 + l1 + 1)>>1;
2041 src[1+0*stride]=(l0 + 2*l1 + l2 + 2)>>2;
2043 src[0+1*stride]=(l1 + l2 + 1)>>1;
2045 src[1+1*stride]=(l1 + 2*l2 + l3 + 2)>>2;
2047 src[0+2*stride]=(l2 + l3 + 1)>>1;
2049 src[1+2*stride]=(l2 + 2*l3 + l3 + 2)>>2;
2058 static void pred4x4_horizontal_down_c(uint8_t *src, uint8_t *topright, int stride){
2059 const int lt= src[-1-1*stride];
2062 const __attribute__((unused)) int unu= t3;
2065 src[2+1*stride]=(lt + l0 + 1)>>1;
2067 src[3+1*stride]=(l0 + 2*lt + t0 + 2)>>2;
2068 src[2+0*stride]=(lt + 2*t0 + t1 + 2)>>2;
2069 src[3+0*stride]=(t0 + 2*t1 + t2 + 2)>>2;
2071 src[2+2*stride]=(l0 + l1 + 1)>>1;
2073 src[3+2*stride]=(lt + 2*l0 + l1 + 2)>>2;
2075 src[2+3*stride]=(l1 + l2+ 1)>>1;
2077 src[3+3*stride]=(l0 + 2*l1 + l2 + 2)>>2;
2078 src[0+3*stride]=(l2 + l3 + 1)>>1;
2079 src[1+3*stride]=(l1 + 2*l2 + l3 + 2)>>2;
2082 static void pred16x16_vertical_c(uint8_t *src, int stride){
2084 const uint32_t a= ((uint32_t*)(src-stride))[0];
2085 const uint32_t b= ((uint32_t*)(src-stride))[1];
2086 const uint32_t c= ((uint32_t*)(src-stride))[2];
2087 const uint32_t d= ((uint32_t*)(src-stride))[3];
2089 for(i=0; i<16; i++){
2090 ((uint32_t*)(src+i*stride))[0]= a;
2091 ((uint32_t*)(src+i*stride))[1]= b;
2092 ((uint32_t*)(src+i*stride))[2]= c;
2093 ((uint32_t*)(src+i*stride))[3]= d;
2097 static void pred16x16_horizontal_c(uint8_t *src, int stride){
2100 for(i=0; i<16; i++){
2101 ((uint32_t*)(src+i*stride))[0]=
2102 ((uint32_t*)(src+i*stride))[1]=
2103 ((uint32_t*)(src+i*stride))[2]=
2104 ((uint32_t*)(src+i*stride))[3]= src[-1+i*stride]*0x01010101;
2108 static void pred16x16_dc_c(uint8_t *src, int stride){
2112 dc+= src[-1+i*stride];
2119 dc= 0x01010101*((dc + 16)>>5);
2121 for(i=0; i<16; i++){
2122 ((uint32_t*)(src+i*stride))[0]=
2123 ((uint32_t*)(src+i*stride))[1]=
2124 ((uint32_t*)(src+i*stride))[2]=
2125 ((uint32_t*)(src+i*stride))[3]= dc;
2129 static void pred16x16_left_dc_c(uint8_t *src, int stride){
2133 dc+= src[-1+i*stride];
2136 dc= 0x01010101*((dc + 8)>>4);
2138 for(i=0; i<16; i++){
2139 ((uint32_t*)(src+i*stride))[0]=
2140 ((uint32_t*)(src+i*stride))[1]=
2141 ((uint32_t*)(src+i*stride))[2]=
2142 ((uint32_t*)(src+i*stride))[3]= dc;
2146 static void pred16x16_top_dc_c(uint8_t *src, int stride){
2152 dc= 0x01010101*((dc + 8)>>4);
2154 for(i=0; i<16; i++){
2155 ((uint32_t*)(src+i*stride))[0]=
2156 ((uint32_t*)(src+i*stride))[1]=
2157 ((uint32_t*)(src+i*stride))[2]=
2158 ((uint32_t*)(src+i*stride))[3]= dc;
2162 static void pred16x16_128_dc_c(uint8_t *src, int stride){
2165 for(i=0; i<16; i++){
2166 ((uint32_t*)(src+i*stride))[0]=
2167 ((uint32_t*)(src+i*stride))[1]=
2168 ((uint32_t*)(src+i*stride))[2]=
2169 ((uint32_t*)(src+i*stride))[3]= 0x01010101U*128U;
2173 static inline void pred16x16_plane_compat_c(uint8_t *src, int stride, const int svq3){
2176 uint8_t *cm = cropTbl + MAX_NEG_CROP;
2177 const uint8_t * const src0 = src+7-stride;
2178 const uint8_t *src1 = src+8*stride-1;
2179 const uint8_t *src2 = src1-2*stride; // == src+6*stride-1;
2180 int H = src0[1] - src0[-1];
2181 int V = src1[0] - src2[ 0];
2182 for(k=2; k<=8; ++k) {
2183 src1 += stride; src2 -= stride;
2184 H += k*(src0[k] - src0[-k]);
2185 V += k*(src1[0] - src2[ 0]);
2188 H = ( 5*(H/4) ) / 16;
2189 V = ( 5*(V/4) ) / 16;
2191 /* required for 100% accuracy */
2192 i = H; H = V; V = i;
2194 H = ( 5*H+32 ) >> 6;
2195 V = ( 5*V+32 ) >> 6;
2198 a = 16*(src1[0] + src2[16] + 1) - 7*(V+H);
2199 for(j=16; j>0; --j) {
2202 for(i=-16; i<0; i+=4) {
2203 src[16+i] = cm[ (b ) >> 5 ];
2204 src[17+i] = cm[ (b+ H) >> 5 ];
2205 src[18+i] = cm[ (b+2*H) >> 5 ];
2206 src[19+i] = cm[ (b+3*H) >> 5 ];
2213 static void pred16x16_plane_c(uint8_t *src, int stride){
2214 pred16x16_plane_compat_c(src, stride, 0);
2217 static void pred8x8_vertical_c(uint8_t *src, int stride){
2219 const uint32_t a= ((uint32_t*)(src-stride))[0];
2220 const uint32_t b= ((uint32_t*)(src-stride))[1];
2223 ((uint32_t*)(src+i*stride))[0]= a;
2224 ((uint32_t*)(src+i*stride))[1]= b;
2228 static void pred8x8_horizontal_c(uint8_t *src, int stride){
2232 ((uint32_t*)(src+i*stride))[0]=
2233 ((uint32_t*)(src+i*stride))[1]= src[-1+i*stride]*0x01010101;
2237 static void pred8x8_128_dc_c(uint8_t *src, int stride){
2241 ((uint32_t*)(src+i*stride))[0]=
2242 ((uint32_t*)(src+i*stride))[1]= 0x01010101U*128U;
2246 static void pred8x8_left_dc_c(uint8_t *src, int stride){
2252 dc0+= src[-1+i*stride];
2253 dc2+= src[-1+(i+4)*stride];
2255 dc0= 0x01010101*((dc0 + 2)>>2);
2256 dc2= 0x01010101*((dc2 + 2)>>2);
2259 ((uint32_t*)(src+i*stride))[0]=
2260 ((uint32_t*)(src+i*stride))[1]= dc0;
2263 ((uint32_t*)(src+i*stride))[0]=
2264 ((uint32_t*)(src+i*stride))[1]= dc2;
2268 static void pred8x8_top_dc_c(uint8_t *src, int stride){
2274 dc0+= src[i-stride];
2275 dc1+= src[4+i-stride];
2277 dc0= 0x01010101*((dc0 + 2)>>2);
2278 dc1= 0x01010101*((dc1 + 2)>>2);
2281 ((uint32_t*)(src+i*stride))[0]= dc0;
2282 ((uint32_t*)(src+i*stride))[1]= dc1;
2285 ((uint32_t*)(src+i*stride))[0]= dc0;
2286 ((uint32_t*)(src+i*stride))[1]= dc1;
2291 static void pred8x8_dc_c(uint8_t *src, int stride){
2293 int dc0, dc1, dc2, dc3;
2297 dc0+= src[-1+i*stride] + src[i-stride];
2298 dc1+= src[4+i-stride];
2299 dc2+= src[-1+(i+4)*stride];
2301 dc3= 0x01010101*((dc1 + dc2 + 4)>>3);
2302 dc0= 0x01010101*((dc0 + 4)>>3);
2303 dc1= 0x01010101*((dc1 + 2)>>2);
2304 dc2= 0x01010101*((dc2 + 2)>>2);
2307 ((uint32_t*)(src+i*stride))[0]= dc0;
2308 ((uint32_t*)(src+i*stride))[1]= dc1;
2311 ((uint32_t*)(src+i*stride))[0]= dc2;
2312 ((uint32_t*)(src+i*stride))[1]= dc3;
2316 static void pred8x8_plane_c(uint8_t *src, int stride){
2319 uint8_t *cm = cropTbl + MAX_NEG_CROP;
2320 const uint8_t * const src0 = src+3-stride;
2321 const uint8_t *src1 = src+4*stride-1;
2322 const uint8_t *src2 = src1-2*stride; // == src+2*stride-1;
2323 int H = src0[1] - src0[-1];
2324 int V = src1[0] - src2[ 0];
2325 for(k=2; k<=4; ++k) {
2326 src1 += stride; src2 -= stride;
2327 H += k*(src0[k] - src0[-k]);
2328 V += k*(src1[0] - src2[ 0]);
2330 H = ( 17*H+16 ) >> 5;
2331 V = ( 17*V+16 ) >> 5;
2333 a = 16*(src1[0] + src2[8]+1) - 3*(V+H);
2334 for(j=8; j>0; --j) {
2337 src[0] = cm[ (b ) >> 5 ];
2338 src[1] = cm[ (b+ H) >> 5 ];
2339 src[2] = cm[ (b+2*H) >> 5 ];
2340 src[3] = cm[ (b+3*H) >> 5 ];
2341 src[4] = cm[ (b+4*H) >> 5 ];
2342 src[5] = cm[ (b+5*H) >> 5 ];
2343 src[6] = cm[ (b+6*H) >> 5 ];
2344 src[7] = cm[ (b+7*H) >> 5 ];
2349 #define SRC(x,y) src[(x)+(y)*stride]
2351 const int l##y = (SRC(-1,y-1) + 2*SRC(-1,y) + SRC(-1,y+1) + 2) >> 2;
2352 #define PREDICT_8x8_LOAD_LEFT \
2353 const int l0 = ((has_topleft ? SRC(-1,-1) : SRC(-1,0)) \
2354 + 2*SRC(-1,0) + SRC(-1,1) + 2) >> 2; \
2355 PL(1) PL(2) PL(3) PL(4) PL(5) PL(6) \
2356 const int l7 attribute_unused = (SRC(-1,6) + 3*SRC(-1,7) + 2) >> 2
2359 const int t##x = (SRC(x-1,-1) + 2*SRC(x,-1) + SRC(x+1,-1) + 2) >> 2;
2360 #define PREDICT_8x8_LOAD_TOP \
2361 const int t0 = ((has_topleft ? SRC(-1,-1) : SRC(0,-1)) \
2362 + 2*SRC(0,-1) + SRC(1,-1) + 2) >> 2; \
2363 PT(1) PT(2) PT(3) PT(4) PT(5) PT(6) \
2364 const int t7 attribute_unused = ((has_topright ? SRC(8,-1) : SRC(7,-1)) \
2365 + 2*SRC(7,-1) + SRC(6,-1) + 2) >> 2
2368 t##x = (SRC(x-1,-1) + 2*SRC(x,-1) + SRC(x+1,-1) + 2) >> 2;
2369 #define PREDICT_8x8_LOAD_TOPRIGHT \
2370 int t8, t9, t10, t11, t12, t13, t14, t15; \
2371 if(has_topright) { \
2372 PTR(8) PTR(9) PTR(10) PTR(11) PTR(12) PTR(13) PTR(14) \
2373 t15 = (SRC(14,-1) + 3*SRC(15,-1) + 2) >> 2; \
2374 } else t8=t9=t10=t11=t12=t13=t14=t15= SRC(7,-1);
2376 #define PREDICT_8x8_LOAD_TOPLEFT \
2377 const int lt = (SRC(-1,0) + 2*SRC(-1,-1) + SRC(0,-1) + 2) >> 2
2379 #define PREDICT_8x8_DC(v) \
2381 for( y = 0; y < 8; y++ ) { \
2382 ((uint32_t*)src)[0] = \
2383 ((uint32_t*)src)[1] = v; \
2387 static void pred8x8l_128_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2389 PREDICT_8x8_DC(0x80808080);
2391 static void pred8x8l_left_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2393 PREDICT_8x8_LOAD_LEFT;
2394 const uint32_t dc = ((l0+l1+l2+l3+l4+l5+l6+l7+4) >> 3) * 0x01010101;
2397 static void pred8x8l_top_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2399 PREDICT_8x8_LOAD_TOP;
2400 const uint32_t dc = ((t0+t1+t2+t3+t4+t5+t6+t7+4) >> 3) * 0x01010101;
2403 static void pred8x8l_dc_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2405 PREDICT_8x8_LOAD_LEFT;
2406 PREDICT_8x8_LOAD_TOP;
2407 const uint32_t dc = ((l0+l1+l2+l3+l4+l5+l6+l7
2408 +t0+t1+t2+t3+t4+t5+t6+t7+8) >> 4) * 0x01010101;
2411 static void pred8x8l_horizontal_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2413 PREDICT_8x8_LOAD_LEFT;
2414 #define ROW(y) ((uint32_t*)(src+y*stride))[0] =\
2415 ((uint32_t*)(src+y*stride))[1] = 0x01010101 * l##y
2416 ROW(0); ROW(1); ROW(2); ROW(3); ROW(4); ROW(5); ROW(6); ROW(7);
2419 static void pred8x8l_vertical_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2422 PREDICT_8x8_LOAD_TOP;
2431 for( y = 1; y < 8; y++ )
2432 *(uint64_t*)(src+y*stride) = *(uint64_t*)src;
2434 static void pred8x8l_down_left_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2436 PREDICT_8x8_LOAD_TOP;
2437 PREDICT_8x8_LOAD_TOPRIGHT;
2438 SRC(0,0)= (t0 + 2*t1 + t2 + 2) >> 2;
2439 SRC(0,1)=SRC(1,0)= (t1 + 2*t2 + t3 + 2) >> 2;
2440 SRC(0,2)=SRC(1,1)=SRC(2,0)= (t2 + 2*t3 + t4 + 2) >> 2;
2441 SRC(0,3)=SRC(1,2)=SRC(2,1)=SRC(3,0)= (t3 + 2*t4 + t5 + 2) >> 2;
2442 SRC(0,4)=SRC(1,3)=SRC(2,2)=SRC(3,1)=SRC(4,0)= (t4 + 2*t5 + t6 + 2) >> 2;
2443 SRC(0,5)=SRC(1,4)=SRC(2,3)=SRC(3,2)=SRC(4,1)=SRC(5,0)= (t5 + 2*t6 + t7 + 2) >> 2;
2444 SRC(0,6)=SRC(1,5)=SRC(2,4)=SRC(3,3)=SRC(4,2)=SRC(5,1)=SRC(6,0)= (t6 + 2*t7 + t8 + 2) >> 2;
2445 SRC(0,7)=SRC(1,6)=SRC(2,5)=SRC(3,4)=SRC(4,3)=SRC(5,2)=SRC(6,1)=SRC(7,0)= (t7 + 2*t8 + t9 + 2) >> 2;
2446 SRC(1,7)=SRC(2,6)=SRC(3,5)=SRC(4,4)=SRC(5,3)=SRC(6,2)=SRC(7,1)= (t8 + 2*t9 + t10 + 2) >> 2;
2447 SRC(2,7)=SRC(3,6)=SRC(4,5)=SRC(5,4)=SRC(6,3)=SRC(7,2)= (t9 + 2*t10 + t11 + 2) >> 2;
2448 SRC(3,7)=SRC(4,6)=SRC(5,5)=SRC(6,4)=SRC(7,3)= (t10 + 2*t11 + t12 + 2) >> 2;
2449 SRC(4,7)=SRC(5,6)=SRC(6,5)=SRC(7,4)= (t11 + 2*t12 + t13 + 2) >> 2;
2450 SRC(5,7)=SRC(6,6)=SRC(7,5)= (t12 + 2*t13 + t14 + 2) >> 2;
2451 SRC(6,7)=SRC(7,6)= (t13 + 2*t14 + t15 + 2) >> 2;
2452 SRC(7,7)= (t14 + 3*t15 + 2) >> 2;
2454 static void pred8x8l_down_right_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2456 PREDICT_8x8_LOAD_TOP;
2457 PREDICT_8x8_LOAD_LEFT;
2458 PREDICT_8x8_LOAD_TOPLEFT;
2459 SRC(0,7)= (l7 + 2*l6 + l5 + 2) >> 2;
2460 SRC(0,6)=SRC(1,7)= (l6 + 2*l5 + l4 + 2) >> 2;
2461 SRC(0,5)=SRC(1,6)=SRC(2,7)= (l5 + 2*l4 + l3 + 2) >> 2;
2462 SRC(0,4)=SRC(1,5)=SRC(2,6)=SRC(3,7)= (l4 + 2*l3 + l2 + 2) >> 2;
2463 SRC(0,3)=SRC(1,4)=SRC(2,5)=SRC(3,6)=SRC(4,7)= (l3 + 2*l2 + l1 + 2) >> 2;
2464 SRC(0,2)=SRC(1,3)=SRC(2,4)=SRC(3,5)=SRC(4,6)=SRC(5,7)= (l2 + 2*l1 + l0 + 2) >> 2;
2465 SRC(0,1)=SRC(1,2)=SRC(2,3)=SRC(3,4)=SRC(4,5)=SRC(5,6)=SRC(6,7)= (l1 + 2*l0 + lt + 2) >> 2;
2466 SRC(0,0)=SRC(1,1)=SRC(2,2)=SRC(3,3)=SRC(4,4)=SRC(5,5)=SRC(6,6)=SRC(7,7)= (l0 + 2*lt + t0 + 2) >> 2;
2467 SRC(1,0)=SRC(2,1)=SRC(3,2)=SRC(4,3)=SRC(5,4)=SRC(6,5)=SRC(7,6)= (lt + 2*t0 + t1 + 2) >> 2;
2468 SRC(2,0)=SRC(3,1)=SRC(4,2)=SRC(5,3)=SRC(6,4)=SRC(7,5)= (t0 + 2*t1 + t2 + 2) >> 2;
2469 SRC(3,0)=SRC(4,1)=SRC(5,2)=SRC(6,3)=SRC(7,4)= (t1 + 2*t2 + t3 + 2) >> 2;
2470 SRC(4,0)=SRC(5,1)=SRC(6,2)=SRC(7,3)= (t2 + 2*t3 + t4 + 2) >> 2;
2471 SRC(5,0)=SRC(6,1)=SRC(7,2)= (t3 + 2*t4 + t5 + 2) >> 2;
2472 SRC(6,0)=SRC(7,1)= (t4 + 2*t5 + t6 + 2) >> 2;
2473 SRC(7,0)= (t5 + 2*t6 + t7 + 2) >> 2;
2476 static void pred8x8l_vertical_right_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2478 PREDICT_8x8_LOAD_TOP;
2479 PREDICT_8x8_LOAD_LEFT;
2480 PREDICT_8x8_LOAD_TOPLEFT;
2481 SRC(0,6)= (l5 + 2*l4 + l3 + 2) >> 2;
2482 SRC(0,7)= (l6 + 2*l5 + l4 + 2) >> 2;
2483 SRC(0,4)=SRC(1,6)= (l3 + 2*l2 + l1 + 2) >> 2;
2484 SRC(0,5)=SRC(1,7)= (l4 + 2*l3 + l2 + 2) >> 2;
2485 SRC(0,2)=SRC(1,4)=SRC(2,6)= (l1 + 2*l0 + lt + 2) >> 2;
2486 SRC(0,3)=SRC(1,5)=SRC(2,7)= (l2 + 2*l1 + l0 + 2) >> 2;
2487 SRC(0,1)=SRC(1,3)=SRC(2,5)=SRC(3,7)= (l0 + 2*lt + t0 + 2) >> 2;
2488 SRC(0,0)=SRC(1,2)=SRC(2,4)=SRC(3,6)= (lt + t0 + 1) >> 1;
2489 SRC(1,1)=SRC(2,3)=SRC(3,5)=SRC(4,7)= (lt + 2*t0 + t1 + 2) >> 2;
2490 SRC(1,0)=SRC(2,2)=SRC(3,4)=SRC(4,6)= (t0 + t1 + 1) >> 1;
2491 SRC(2,1)=SRC(3,3)=SRC(4,5)=SRC(5,7)= (t0 + 2*t1 + t2 + 2) >> 2;
2492 SRC(2,0)=SRC(3,2)=SRC(4,4)=SRC(5,6)= (t1 + t2 + 1) >> 1;
2493 SRC(3,1)=SRC(4,3)=SRC(5,5)=SRC(6,7)= (t1 + 2*t2 + t3 + 2) >> 2;
2494 SRC(3,0)=SRC(4,2)=SRC(5,4)=SRC(6,6)= (t2 + t3 + 1) >> 1;
2495 SRC(4,1)=SRC(5,3)=SRC(6,5)=SRC(7,7)= (t2 + 2*t3 + t4 + 2) >> 2;
2496 SRC(4,0)=SRC(5,2)=SRC(6,4)=SRC(7,6)= (t3 + t4 + 1) >> 1;
2497 SRC(5,1)=SRC(6,3)=SRC(7,5)= (t3 + 2*t4 + t5 + 2) >> 2;
2498 SRC(5,0)=SRC(6,2)=SRC(7,4)= (t4 + t5 + 1) >> 1;
2499 SRC(6,1)=SRC(7,3)= (t4 + 2*t5 + t6 + 2) >> 2;
2500 SRC(6,0)=SRC(7,2)= (t5 + t6 + 1) >> 1;
2501 SRC(7,1)= (t5 + 2*t6 + t7 + 2) >> 2;
2502 SRC(7,0)= (t6 + t7 + 1) >> 1;
2504 static void pred8x8l_horizontal_down_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2506 PREDICT_8x8_LOAD_TOP;
2507 PREDICT_8x8_LOAD_LEFT;
2508 PREDICT_8x8_LOAD_TOPLEFT;
2509 SRC(0,7)= (l6 + l7 + 1) >> 1;
2510 SRC(1,7)= (l5 + 2*l6 + l7 + 2) >> 2;
2511 SRC(0,6)=SRC(2,7)= (l5 + l6 + 1) >> 1;
2512 SRC(1,6)=SRC(3,7)= (l4 + 2*l5 + l6 + 2) >> 2;
2513 SRC(0,5)=SRC(2,6)=SRC(4,7)= (l4 + l5 + 1) >> 1;
2514 SRC(1,5)=SRC(3,6)=SRC(5,7)= (l3 + 2*l4 + l5 + 2) >> 2;
2515 SRC(0,4)=SRC(2,5)=SRC(4,6)=SRC(6,7)= (l3 + l4 + 1) >> 1;
2516 SRC(1,4)=SRC(3,5)=SRC(5,6)=SRC(7,7)= (l2 + 2*l3 + l4 + 2) >> 2;
2517 SRC(0,3)=SRC(2,4)=SRC(4,5)=SRC(6,6)= (l2 + l3 + 1) >> 1;
2518 SRC(1,3)=SRC(3,4)=SRC(5,5)=SRC(7,6)= (l1 + 2*l2 + l3 + 2) >> 2;
2519 SRC(0,2)=SRC(2,3)=SRC(4,4)=SRC(6,5)= (l1 + l2 + 1) >> 1;
2520 SRC(1,2)=SRC(3,3)=SRC(5,4)=SRC(7,5)= (l0 + 2*l1 + l2 + 2) >> 2;
2521 SRC(0,1)=SRC(2,2)=SRC(4,3)=SRC(6,4)= (l0 + l1 + 1) >> 1;
2522 SRC(1,1)=SRC(3,2)=SRC(5,3)=SRC(7,4)= (lt + 2*l0 + l1 + 2) >> 2;
2523 SRC(0,0)=SRC(2,1)=SRC(4,2)=SRC(6,3)= (lt + l0 + 1) >> 1;
2524 SRC(1,0)=SRC(3,1)=SRC(5,2)=SRC(7,3)= (l0 + 2*lt + t0 + 2) >> 2;
2525 SRC(2,0)=SRC(4,1)=SRC(6,2)= (t1 + 2*t0 + lt + 2) >> 2;
2526 SRC(3,0)=SRC(5,1)=SRC(7,2)= (t2 + 2*t1 + t0 + 2) >> 2;
2527 SRC(4,0)=SRC(6,1)= (t3 + 2*t2 + t1 + 2) >> 2;
2528 SRC(5,0)=SRC(7,1)= (t4 + 2*t3 + t2 + 2) >> 2;
2529 SRC(6,0)= (t5 + 2*t4 + t3 + 2) >> 2;
2530 SRC(7,0)= (t6 + 2*t5 + t4 + 2) >> 2;
2532 static void pred8x8l_vertical_left_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2534 PREDICT_8x8_LOAD_TOP;
2535 PREDICT_8x8_LOAD_TOPRIGHT;
2536 SRC(0,0)= (t0 + t1 + 1) >> 1;
2537 SRC(0,1)= (t0 + 2*t1 + t2 + 2) >> 2;
2538 SRC(0,2)=SRC(1,0)= (t1 + t2 + 1) >> 1;
2539 SRC(0,3)=SRC(1,1)= (t1 + 2*t2 + t3 + 2) >> 2;
2540 SRC(0,4)=SRC(1,2)=SRC(2,0)= (t2 + t3 + 1) >> 1;
2541 SRC(0,5)=SRC(1,3)=SRC(2,1)= (t2 + 2*t3 + t4 + 2) >> 2;
2542 SRC(0,6)=SRC(1,4)=SRC(2,2)=SRC(3,0)= (t3 + t4 + 1) >> 1;
2543 SRC(0,7)=SRC(1,5)=SRC(2,3)=SRC(3,1)= (t3 + 2*t4 + t5 + 2) >> 2;
2544 SRC(1,6)=SRC(2,4)=SRC(3,2)=SRC(4,0)= (t4 + t5 + 1) >> 1;
2545 SRC(1,7)=SRC(2,5)=SRC(3,3)=SRC(4,1)= (t4 + 2*t5 + t6 + 2) >> 2;
2546 SRC(2,6)=SRC(3,4)=SRC(4,2)=SRC(5,0)= (t5 + t6 + 1) >> 1;
2547 SRC(2,7)=SRC(3,5)=SRC(4,3)=SRC(5,1)= (t5 + 2*t6 + t7 + 2) >> 2;
2548 SRC(3,6)=SRC(4,4)=SRC(5,2)=SRC(6,0)= (t6 + t7 + 1) >> 1;
2549 SRC(3,7)=SRC(4,5)=SRC(5,3)=SRC(6,1)= (t6 + 2*t7 + t8 + 2) >> 2;
2550 SRC(4,6)=SRC(5,4)=SRC(6,2)=SRC(7,0)= (t7 + t8 + 1) >> 1;
2551 SRC(4,7)=SRC(5,5)=SRC(6,3)=SRC(7,1)= (t7 + 2*t8 + t9 + 2) >> 2;
2552 SRC(5,6)=SRC(6,4)=SRC(7,2)= (t8 + t9 + 1) >> 1;
2553 SRC(5,7)=SRC(6,5)=SRC(7,3)= (t8 + 2*t9 + t10 + 2) >> 2;
2554 SRC(6,6)=SRC(7,4)= (t9 + t10 + 1) >> 1;
2555 SRC(6,7)=SRC(7,5)= (t9 + 2*t10 + t11 + 2) >> 2;
2556 SRC(7,6)= (t10 + t11 + 1) >> 1;
2557 SRC(7,7)= (t10 + 2*t11 + t12 + 2) >> 2;
2559 static void pred8x8l_horizontal_up_c(uint8_t *src, int has_topleft, int has_topright, int stride)
2561 PREDICT_8x8_LOAD_LEFT;
2562 SRC(0,0)= (l0 + l1 + 1) >> 1;
2563 SRC(1,0)= (l0 + 2*l1 + l2 + 2) >> 2;
2564 SRC(0,1)=SRC(2,0)= (l1 + l2 + 1) >> 1;
2565 SRC(1,1)=SRC(3,0)= (l1 + 2*l2 + l3 + 2) >> 2;
2566 SRC(0,2)=SRC(2,1)=SRC(4,0)= (l2 + l3 + 1) >> 1;
2567 SRC(1,2)=SRC(3,1)=SRC(5,0)= (l2 + 2*l3 + l4 + 2) >> 2;
2568 SRC(0,3)=SRC(2,2)=SRC(4,1)=SRC(6,0)= (l3 + l4 + 1) >> 1;
2569 SRC(1,3)=SRC(3,2)=SRC(5,1)=SRC(7,0)= (l3 + 2*l4 + l5 + 2) >> 2;
2570 SRC(0,4)=SRC(2,3)=SRC(4,2)=SRC(6,1)= (l4 + l5 + 1) >> 1;
2571 SRC(1,4)=SRC(3,3)=SRC(5,2)=SRC(7,1)= (l4 + 2*l5 + l6 + 2) >> 2;
2572 SRC(0,5)=SRC(2,4)=SRC(4,3)=SRC(6,2)= (l5 + l6 + 1) >> 1;
2573 SRC(1,5)=SRC(3,4)=SRC(5,3)=SRC(7,2)= (l5 + 2*l6 + l7 + 2) >> 2;
2574 SRC(0,6)=SRC(2,5)=SRC(4,4)=SRC(6,3)= (l6 + l7 + 1) >> 1;
2575 SRC(1,6)=SRC(3,5)=SRC(5,4)=SRC(7,3)= (l6 + 3*l7 + 2) >> 2;
2576 SRC(0,7)=SRC(1,7)=SRC(2,6)=SRC(2,7)=SRC(3,6)=
2577 SRC(3,7)=SRC(4,5)=SRC(4,6)=SRC(4,7)=SRC(5,5)=
2578 SRC(5,6)=SRC(5,7)=SRC(6,4)=SRC(6,5)=SRC(6,6)=
2579 SRC(6,7)=SRC(7,4)=SRC(7,5)=SRC(7,6)=SRC(7,7)= l7;
2581 #undef PREDICT_8x8_LOAD_LEFT
2582 #undef PREDICT_8x8_LOAD_TOP
2583 #undef PREDICT_8x8_LOAD_TOPLEFT
2584 #undef PREDICT_8x8_LOAD_TOPRIGHT
2585 #undef PREDICT_8x8_DC
2591 static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
2592 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2593 int src_x_offset, int src_y_offset,
2594 qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
2595 MpegEncContext * const s = &h->s;
2596 const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
2597 const int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
2598 const int luma_xy= (mx&3) + ((my&3)<<2);
2599 uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*s->linesize;
2600 uint8_t * src_cb= pic->data[1] + (mx>>3) + (my>>3)*s->uvlinesize;
2601 uint8_t * src_cr= pic->data[2] + (mx>>3) + (my>>3)*s->uvlinesize;
2602 int extra_width= (s->flags&CODEC_FLAG_EMU_EDGE) ? 0 : 16; //FIXME increase edge?, IMHO not worth it
2603 int extra_height= extra_width;
2605 const int full_mx= mx>>2;
2606 const int full_my= my>>2;
2607 const int pic_width = 16*s->mb_width;
2608 const int pic_height = 16*s->mb_height;
2610 assert(pic->data[0]);
2612 if(mx&7) extra_width -= 3;
2613 if(my&7) extra_height -= 3;
2615 if( full_mx < 0-extra_width
2616 || full_my < 0-extra_height
2617 || full_mx + 16/*FIXME*/ > pic_width + extra_width
2618 || full_my + 16/*FIXME*/ > pic_height + extra_height){
2619 ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*s->linesize, s->linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
2620 src_y= s->edge_emu_buffer + 2 + 2*s->linesize;
2624 qpix_op[luma_xy](dest_y, src_y, s->linesize); //FIXME try variable height perhaps?
2626 qpix_op[luma_xy](dest_y + delta, src_y + delta, s->linesize);
2629 if(s->flags&CODEC_FLAG_GRAY) return;
2632 ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
2633 src_cb= s->edge_emu_buffer;
2635 chroma_op(dest_cb, src_cb, s->uvlinesize, chroma_height, mx&7, my&7);
2638 ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, s->uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
2639 src_cr= s->edge_emu_buffer;
2641 chroma_op(dest_cr, src_cr, s->uvlinesize, chroma_height, mx&7, my&7);
2644 static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
2645 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2646 int x_offset, int y_offset,
2647 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
2648 qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
2649 int list0, int list1){
2650 MpegEncContext * const s = &h->s;
2651 qpel_mc_func *qpix_op= qpix_put;
2652 h264_chroma_mc_func chroma_op= chroma_put;
2654 dest_y += 2*x_offset + 2*y_offset*s-> linesize;
2655 dest_cb += x_offset + y_offset*s->uvlinesize;
2656 dest_cr += x_offset + y_offset*s->uvlinesize;
2657 x_offset += 8*s->mb_x;
2658 y_offset += 8*s->mb_y;
2661 Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
2662 mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
2663 dest_y, dest_cb, dest_cr, x_offset, y_offset,
2664 qpix_op, chroma_op);
2667 chroma_op= chroma_avg;
2671 Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
2672 mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
2673 dest_y, dest_cb, dest_cr, x_offset, y_offset,
2674 qpix_op, chroma_op);
2678 static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
2679 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2680 int x_offset, int y_offset,
2681 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
2682 h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
2683 h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
2684 int list0, int list1){
2685 MpegEncContext * const s = &h->s;
2687 dest_y += 2*x_offset + 2*y_offset*s-> linesize;
2688 dest_cb += x_offset + y_offset*s->uvlinesize;
2689 dest_cr += x_offset + y_offset*s->uvlinesize;
2690 x_offset += 8*s->mb_x;
2691 y_offset += 8*s->mb_y;
2694 /* don't optimize for luma-only case, since B-frames usually
2695 * use implicit weights => chroma too. */
2696 uint8_t *tmp_cb = s->obmc_scratchpad;
2697 uint8_t *tmp_cr = tmp_cb + 8*s->uvlinesize;
2698 uint8_t *tmp_y = tmp_cr + 8*s->uvlinesize;
2699 int refn0 = h->ref_cache[0][ scan8[n] ];
2700 int refn1 = h->ref_cache[1][ scan8[n] ];
2702 mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
2703 dest_y, dest_cb, dest_cr,
2704 x_offset, y_offset, qpix_put, chroma_put);
2705 mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
2706 tmp_y, tmp_cb, tmp_cr,
2707 x_offset, y_offset, qpix_put, chroma_put);
2709 if(h->use_weight == 2){
2710 int weight0 = h->implicit_weight[refn0][refn1];
2711 int weight1 = 64 - weight0;
2712 luma_weight_avg( dest_y, tmp_y, s-> linesize, 5, weight0, weight1, 0);
2713 chroma_weight_avg(dest_cb, tmp_cb, s->uvlinesize, 5, weight0, weight1, 0);
2714 chroma_weight_avg(dest_cr, tmp_cr, s->uvlinesize, 5, weight0, weight1, 0);
2716 luma_weight_avg(dest_y, tmp_y, s->linesize, h->luma_log2_weight_denom,
2717 h->luma_weight[0][refn0], h->luma_weight[1][refn1],
2718 h->luma_offset[0][refn0] + h->luma_offset[1][refn1]);
2719 chroma_weight_avg(dest_cb, tmp_cb, s->uvlinesize, h->chroma_log2_weight_denom,
2720 h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0],
2721 h->chroma_offset[0][refn0][0] + h->chroma_offset[1][refn1][0]);
2722 chroma_weight_avg(dest_cr, tmp_cr, s->uvlinesize, h->chroma_log2_weight_denom,
2723 h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1],
2724 h->chroma_offset[0][refn0][1] + h->chroma_offset[1][refn1][1]);
2727 int list = list1 ? 1 : 0;
2728 int refn = h->ref_cache[list][ scan8[n] ];
2729 Picture *ref= &h->ref_list[list][refn];
2730 mc_dir_part(h, ref, n, square, chroma_height, delta, list,
2731 dest_y, dest_cb, dest_cr, x_offset, y_offset,
2732 qpix_put, chroma_put);
2734 luma_weight_op(dest_y, s->linesize, h->luma_log2_weight_denom,
2735 h->luma_weight[list][refn], h->luma_offset[list][refn]);
2736 if(h->use_weight_chroma){
2737 chroma_weight_op(dest_cb, s->uvlinesize, h->chroma_log2_weight_denom,
2738 h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]);
2739 chroma_weight_op(dest_cr, s->uvlinesize, h->chroma_log2_weight_denom,
2740 h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]);
2745 static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
2746 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2747 int x_offset, int y_offset,
2748 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
2749 qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
2750 h264_weight_func *weight_op, h264_biweight_func *weight_avg,
2751 int list0, int list1){
2752 if((h->use_weight==2 && list0 && list1
2753 && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32))
2754 || h->use_weight==1)
2755 mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
2756 x_offset, y_offset, qpix_put, chroma_put,
2757 weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
2759 mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
2760 x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
2763 static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
2764 qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
2765 qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
2766 h264_weight_func *weight_op, h264_biweight_func *weight_avg){
2767 MpegEncContext * const s = &h->s;
2768 const int mb_xy= s->mb_x + s->mb_y*s->mb_stride;
2769 const int mb_type= s->current_picture.mb_type[mb_xy];
2771 assert(IS_INTER(mb_type));
2773 if(IS_16X16(mb_type)){
2774 mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
2775 qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
2776 &weight_op[0], &weight_avg[0],
2777 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
2778 }else if(IS_16X8(mb_type)){
2779 mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
2780 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
2781 &weight_op[1], &weight_avg[1],
2782 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
2783 mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
2784 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
2785 &weight_op[1], &weight_avg[1],
2786 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
2787 }else if(IS_8X16(mb_type)){
2788 mc_part(h, 0, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 0, 0,
2789 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
2790 &weight_op[2], &weight_avg[2],
2791 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
2792 mc_part(h, 4, 0, 8, 8*s->linesize, dest_y, dest_cb, dest_cr, 4, 0,
2793 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
2794 &weight_op[2], &weight_avg[2],
2795 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
2799 assert(IS_8X8(mb_type));
2802 const int sub_mb_type= h->sub_mb_type[i];
2804 int x_offset= (i&1)<<2;
2805 int y_offset= (i&2)<<1;
2807 if(IS_SUB_8X8(sub_mb_type)){
2808 mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
2809 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
2810 &weight_op[3], &weight_avg[3],
2811 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2812 }else if(IS_SUB_8X4(sub_mb_type)){
2813 mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
2814 qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
2815 &weight_op[4], &weight_avg[4],
2816 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2817 mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
2818 qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
2819 &weight_op[4], &weight_avg[4],
2820 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2821 }else if(IS_SUB_4X8(sub_mb_type)){
2822 mc_part(h, n , 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
2823 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2824 &weight_op[5], &weight_avg[5],
2825 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2826 mc_part(h, n+1, 0, 4, 4*s->linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
2827 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2828 &weight_op[5], &weight_avg[5],
2829 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2832 assert(IS_SUB_4X4(sub_mb_type));
2834 int sub_x_offset= x_offset + 2*(j&1);
2835 int sub_y_offset= y_offset + (j&2);
2836 mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
2837 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
2838 &weight_op[6], &weight_avg[6],
2839 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
2846 static void decode_init_vlc(H264Context *h){
2847 static int done = 0;
2853 init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
2854 &chroma_dc_coeff_token_len [0], 1, 1,
2855 &chroma_dc_coeff_token_bits[0], 1, 1, 1);
2858 init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
2859 &coeff_token_len [i][0], 1, 1,
2860 &coeff_token_bits[i][0], 1, 1, 1);
2864 init_vlc(&chroma_dc_total_zeros_vlc[i], CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
2865 &chroma_dc_total_zeros_len [i][0], 1, 1,
2866 &chroma_dc_total_zeros_bits[i][0], 1, 1, 1);
2868 for(i=0; i<15; i++){
2869 init_vlc(&total_zeros_vlc[i], TOTAL_ZEROS_VLC_BITS, 16,
2870 &total_zeros_len [i][0], 1, 1,
2871 &total_zeros_bits[i][0], 1, 1, 1);
2875 init_vlc(&run_vlc[i], RUN_VLC_BITS, 7,
2876 &run_len [i][0], 1, 1,
2877 &run_bits[i][0], 1, 1, 1);
2879 init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
2880 &run_len [6][0], 1, 1,
2881 &run_bits[6][0], 1, 1, 1);
2886 * Sets the intra prediction function pointers.
2888 static void init_pred_ptrs(H264Context *h){
2889 // MpegEncContext * const s = &h->s;
2891 h->pred4x4[VERT_PRED ]= pred4x4_vertical_c;
2892 h->pred4x4[HOR_PRED ]= pred4x4_horizontal_c;
2893 h->pred4x4[DC_PRED ]= pred4x4_dc_c;
2894 h->pred4x4[DIAG_DOWN_LEFT_PRED ]= pred4x4_down_left_c;
2895 h->pred4x4[DIAG_DOWN_RIGHT_PRED]= pred4x4_down_right_c;
2896 h->pred4x4[VERT_RIGHT_PRED ]= pred4x4_vertical_right_c;
2897 h->pred4x4[HOR_DOWN_PRED ]= pred4x4_horizontal_down_c;
2898 h->pred4x4[VERT_LEFT_PRED ]= pred4x4_vertical_left_c;
2899 h->pred4x4[HOR_UP_PRED ]= pred4x4_horizontal_up_c;
2900 h->pred4x4[LEFT_DC_PRED ]= pred4x4_left_dc_c;
2901 h->pred4x4[TOP_DC_PRED ]= pred4x4_top_dc_c;
2902 h->pred4x4[DC_128_PRED ]= pred4x4_128_dc_c;
2904 h->pred8x8l[VERT_PRED ]= pred8x8l_vertical_c;
2905 h->pred8x8l[HOR_PRED ]= pred8x8l_horizontal_c;
2906 h->pred8x8l[DC_PRED ]= pred8x8l_dc_c;
2907 h->pred8x8l[DIAG_DOWN_LEFT_PRED ]= pred8x8l_down_left_c;
2908 h->pred8x8l[DIAG_DOWN_RIGHT_PRED]= pred8x8l_down_right_c;
2909 h->pred8x8l[VERT_RIGHT_PRED ]= pred8x8l_vertical_right_c;
2910 h->pred8x8l[HOR_DOWN_PRED ]= pred8x8l_horizontal_down_c;
2911 h->pred8x8l[VERT_LEFT_PRED ]= pred8x8l_vertical_left_c;
2912 h->pred8x8l[HOR_UP_PRED ]= pred8x8l_horizontal_up_c;
2913 h->pred8x8l[LEFT_DC_PRED ]= pred8x8l_left_dc_c;
2914 h->pred8x8l[TOP_DC_PRED ]= pred8x8l_top_dc_c;
2915 h->pred8x8l[DC_128_PRED ]= pred8x8l_128_dc_c;
2917 h->pred8x8[DC_PRED8x8 ]= pred8x8_dc_c;
2918 h->pred8x8[VERT_PRED8x8 ]= pred8x8_vertical_c;
2919 h->pred8x8[HOR_PRED8x8 ]= pred8x8_horizontal_c;
2920 h->pred8x8[PLANE_PRED8x8 ]= pred8x8_plane_c;
2921 h->pred8x8[LEFT_DC_PRED8x8]= pred8x8_left_dc_c;
2922 h->pred8x8[TOP_DC_PRED8x8 ]= pred8x8_top_dc_c;
2923 h->pred8x8[DC_128_PRED8x8 ]= pred8x8_128_dc_c;
2925 h->pred16x16[DC_PRED8x8 ]= pred16x16_dc_c;
2926 h->pred16x16[VERT_PRED8x8 ]= pred16x16_vertical_c;
2927 h->pred16x16[HOR_PRED8x8 ]= pred16x16_horizontal_c;
2928 h->pred16x16[PLANE_PRED8x8 ]= pred16x16_plane_c;
2929 h->pred16x16[LEFT_DC_PRED8x8]= pred16x16_left_dc_c;
2930 h->pred16x16[TOP_DC_PRED8x8 ]= pred16x16_top_dc_c;
2931 h->pred16x16[DC_128_PRED8x8 ]= pred16x16_128_dc_c;
2934 static void free_tables(H264Context *h){
2935 av_freep(&h->intra4x4_pred_mode);
2936 av_freep(&h->chroma_pred_mode_table);
2937 av_freep(&h->cbp_table);
2938 av_freep(&h->mvd_table[0]);
2939 av_freep(&h->mvd_table[1]);
2940 av_freep(&h->direct_table);
2941 av_freep(&h->non_zero_count);
2942 av_freep(&h->slice_table_base);
2943 av_freep(&h->top_borders[1]);
2944 av_freep(&h->top_borders[0]);
2945 h->slice_table= NULL;
2947 av_freep(&h->mb2b_xy);
2948 av_freep(&h->mb2b8_xy);
2950 av_freep(&h->s.obmc_scratchpad);
2953 static void init_dequant8_coeff_table(H264Context *h){
2955 h->dequant8_coeff[0] = h->dequant8_buffer[0];
2956 h->dequant8_coeff[1] = h->dequant8_buffer[1];
2958 for(i=0; i<2; i++ ){
2959 if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){
2960 h->dequant8_coeff[1] = h->dequant8_buffer[0];
2964 for(q=0; q<52; q++){
2965 int shift = div6[q];
2968 h->dequant8_coeff[i][q][x] = ((uint32_t)dequant8_coeff_init[idx][
2969 dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] * h->pps.scaling_matrix8[i][x]) << shift;
2974 static void init_dequant4_coeff_table(H264Context *h){
2976 const int transpose = (h->s.dsp.h264_idct_add != ff_h264_idct_add_c); //FIXME ugly
2977 for(i=0; i<6; i++ ){
2978 h->dequant4_coeff[i] = h->dequant4_buffer[i];
2980 if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
2981 h->dequant4_coeff[i] = h->dequant4_buffer[j];
2988 for(q=0; q<52; q++){
2989 int shift = div6[q] + 2;
2992 h->dequant4_coeff[i][q][transpose ? (x>>2)|((x<<2)&0xF) : x] =
2993 ((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
2994 h->pps.scaling_matrix4[i][x]) << shift;
2999 static void init_dequant_tables(H264Context *h){
3001 init_dequant4_coeff_table(h);
3002 if(h->pps.transform_8x8_mode)
3003 init_dequant8_coeff_table(h);
3004 if(h->sps.transform_bypass){
3007 h->dequant4_coeff[i][0][x] = 1<<6;
3008 if(h->pps.transform_8x8_mode)
3011 h->dequant8_coeff[i][0][x] = 1<<6;
3018 * needs width/height
3020 static int alloc_tables(H264Context *h){
3021 MpegEncContext * const s = &h->s;
3022 const int big_mb_num= s->mb_stride * (s->mb_height+1);
3025 CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t))
3027 CHECKED_ALLOCZ(h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t))
3028 CHECKED_ALLOCZ(h->slice_table_base , big_mb_num * sizeof(uint8_t))
3029 CHECKED_ALLOCZ(h->top_borders[0] , s->mb_width * (16+8+8) * sizeof(uint8_t))
3030 CHECKED_ALLOCZ(h->top_borders[1] , s->mb_width * (16+8+8) * sizeof(uint8_t))
3031 CHECKED_ALLOCZ(h->cbp_table, big_mb_num * sizeof(uint16_t))
3033 if( h->pps.cabac ) {
3034 CHECKED_ALLOCZ(h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t))
3035 CHECKED_ALLOCZ(h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t));
3036 CHECKED_ALLOCZ(h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t));
3037 CHECKED_ALLOCZ(h->direct_table, 32*big_mb_num * sizeof(uint8_t));
3040 memset(h->slice_table_base, -1, big_mb_num * sizeof(uint8_t));
3041 h->slice_table= h->slice_table_base + s->mb_stride + 1;
3043 CHECKED_ALLOCZ(h->mb2b_xy , big_mb_num * sizeof(uint32_t));
3044 CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint32_t));
3045 for(y=0; y<s->mb_height; y++){
3046 for(x=0; x<s->mb_width; x++){
3047 const int mb_xy= x + y*s->mb_stride;
3048 const int b_xy = 4*x + 4*y*h->b_stride;
3049 const int b8_xy= 2*x + 2*y*h->b8_stride;
3051 h->mb2b_xy [mb_xy]= b_xy;
3052 h->mb2b8_xy[mb_xy]= b8_xy;
3056 s->obmc_scratchpad = NULL;
3058 if(!h->dequant4_coeff[0])
3059 init_dequant_tables(h);
3067 static void common_init(H264Context *h){
3068 MpegEncContext * const s = &h->s;
3070 s->width = s->avctx->width;
3071 s->height = s->avctx->height;
3072 s->codec_id= s->avctx->codec->id;
3076 h->dequant_coeff_pps= -1;
3077 s->unrestricted_mv=1;
3078 s->decode=1; //FIXME
3080 memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
3081 memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
3084 static int decode_init(AVCodecContext *avctx){
3085 H264Context *h= avctx->priv_data;
3086 MpegEncContext * const s = &h->s;
3088 MPV_decode_defaults(s);
3093 s->out_format = FMT_H264;
3094 s->workaround_bugs= avctx->workaround_bugs;
3097 // s->decode_mb= ff_h263_decode_mb;
3099 avctx->pix_fmt= PIX_FMT_YUV420P;
3103 if(avctx->extradata_size > 0 && avctx->extradata &&
3104 *(char *)avctx->extradata == 1){
3114 static int frame_start(H264Context *h){
3115 MpegEncContext * const s = &h->s;
3118 if(MPV_frame_start(s, s->avctx) < 0)
3120 ff_er_frame_start(s);
3122 assert(s->linesize && s->uvlinesize);
3124 for(i=0; i<16; i++){
3125 h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
3126 h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
3129 h->block_offset[16+i]=
3130 h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
3131 h->block_offset[24+16+i]=
3132 h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
3135 /* can't be in alloc_tables because linesize isn't known there.
3136 * FIXME: redo bipred weight to not require extra buffer? */
3137 if(!s->obmc_scratchpad)
3138 s->obmc_scratchpad = av_malloc(16*s->linesize + 2*8*s->uvlinesize);
3140 // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
3144 static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
3145 MpegEncContext * const s = &h->s;
3149 src_cb -= uvlinesize;
3150 src_cr -= uvlinesize;
3152 // There are two lines saved, the line above the the top macroblock of a pair,
3153 // and the line above the bottom macroblock
3154 h->left_border[0]= h->top_borders[0][s->mb_x][15];
3155 for(i=1; i<17; i++){
3156 h->left_border[i]= src_y[15+i* linesize];
3159 *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 16*linesize);
3160 *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
3162 if(!(s->flags&CODEC_FLAG_GRAY)){
3163 h->left_border[17 ]= h->top_borders[0][s->mb_x][16+7];
3164 h->left_border[17+9]= h->top_borders[0][s->mb_x][24+7];
3166 h->left_border[i+17 ]= src_cb[7+i*uvlinesize];
3167 h->left_border[i+17+9]= src_cr[7+i*uvlinesize];
3169 *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
3170 *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
3174 static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
3175 MpegEncContext * const s = &h->s;
3178 int deblock_left = (s->mb_x > 0);
3179 int deblock_top = (s->mb_y > 0);
3181 src_y -= linesize + 1;
3182 src_cb -= uvlinesize + 1;
3183 src_cr -= uvlinesize + 1;
3185 #define XCHG(a,b,t,xchg)\
3192 for(i = !deblock_top; i<17; i++){
3193 XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
3198 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
3199 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
3200 if(s->mb_x+1 < s->mb_width){
3201 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
3205 if(!(s->flags&CODEC_FLAG_GRAY)){
3207 for(i = !deblock_top; i<9; i++){
3208 XCHG(h->left_border[i+17 ], src_cb[i*uvlinesize], temp8, xchg);
3209 XCHG(h->left_border[i+17+9], src_cr[i*uvlinesize], temp8, xchg);
3213 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
3214 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
3219 static inline void backup_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
3220 MpegEncContext * const s = &h->s;
3223 src_y -= 2 * linesize;
3224 src_cb -= 2 * uvlinesize;
3225 src_cr -= 2 * uvlinesize;
3227 // There are two lines saved, the line above the the top macroblock of a pair,
3228 // and the line above the bottom macroblock
3229 h->left_border[0]= h->top_borders[0][s->mb_x][15];
3230 h->left_border[1]= h->top_borders[1][s->mb_x][15];
3231 for(i=2; i<34; i++){
3232 h->left_border[i]= src_y[15+i* linesize];
3235 *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 32*linesize);
3236 *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+32*linesize);
3237 *(uint64_t*)(h->top_borders[1][s->mb_x]+0)= *(uint64_t*)(src_y + 33*linesize);
3238 *(uint64_t*)(h->top_borders[1][s->mb_x]+8)= *(uint64_t*)(src_y +8+33*linesize);
3240 if(!(s->flags&CODEC_FLAG_GRAY)){
3241 h->left_border[34 ]= h->top_borders[0][s->mb_x][16+7];
3242 h->left_border[34+ 1]= h->top_borders[1][s->mb_x][16+7];
3243 h->left_border[34+18 ]= h->top_borders[0][s->mb_x][24+7];
3244 h->left_border[34+18+1]= h->top_borders[1][s->mb_x][24+7];
3245 for(i=2; i<18; i++){
3246 h->left_border[i+34 ]= src_cb[7+i*uvlinesize];
3247 h->left_border[i+34+18]= src_cr[7+i*uvlinesize];
3249 *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+16*uvlinesize);
3250 *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+16*uvlinesize);
3251 *(uint64_t*)(h->top_borders[1][s->mb_x]+16)= *(uint64_t*)(src_cb+17*uvlinesize);
3252 *(uint64_t*)(h->top_borders[1][s->mb_x]+24)= *(uint64_t*)(src_cr+17*uvlinesize);
3256 static inline void xchg_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
3257 MpegEncContext * const s = &h->s;
3260 int deblock_left = (s->mb_x > 0);
3261 int deblock_top = (s->mb_y > 0);
3263 tprintf("xchg_pair_border: src_y:%p src_cb:%p src_cr:%p ls:%d uvls:%d\n", src_y, src_cb, src_cr, linesize, uvlinesize);
3265 src_y -= 2 * linesize + 1;
3266 src_cb -= 2 * uvlinesize + 1;
3267 src_cr -= 2 * uvlinesize + 1;
3269 #define XCHG(a,b,t,xchg)\
3276 for(i = (!deblock_top)<<1; i<34; i++){
3277 XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
3282 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
3283 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
3284 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+0), *(uint64_t*)(src_y +1 +linesize), temp64, xchg);
3285 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+8), *(uint64_t*)(src_y +9 +linesize), temp64, 1);
3288 if(!(s->flags&CODEC_FLAG_GRAY)){
3290 for(i = (!deblock_top) << 1; i<18; i++){
3291 XCHG(h->left_border[i+34 ], src_cb[i*uvlinesize], temp8, xchg);
3292 XCHG(h->left_border[i+34+18], src_cr[i*uvlinesize], temp8, xchg);
3296 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
3297 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
3298 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+16), *(uint64_t*)(src_cb+1 +uvlinesize), temp64, 1);
3299 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+24), *(uint64_t*)(src_cr+1 +uvlinesize), temp64, 1);
3304 static void hl_decode_mb(H264Context *h){
3305 MpegEncContext * const s = &h->s;
3306 const int mb_x= s->mb_x;
3307 const int mb_y= s->mb_y;
3308 const int mb_xy= mb_x + mb_y*s->mb_stride;
3309 const int mb_type= s->current_picture.mb_type[mb_xy];
3310 uint8_t *dest_y, *dest_cb, *dest_cr;
3311 int linesize, uvlinesize /*dct_offset*/;
3313 int *block_offset = &h->block_offset[0];
3314 const unsigned int bottom = mb_y & 1;
3315 const int transform_bypass = (s->qscale == 0 && h->sps.transform_bypass);
3316 void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
3321 dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
3322 dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
3323 dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
3325 if (h->mb_field_decoding_flag) {
3326 linesize = s->linesize * 2;
3327 uvlinesize = s->uvlinesize * 2;
3328 block_offset = &h->block_offset[24];
3329 if(mb_y&1){ //FIXME move out of this func?
3330 dest_y -= s->linesize*15;
3331 dest_cb-= s->uvlinesize*7;
3332 dest_cr-= s->uvlinesize*7;
3335 linesize = s->linesize;
3336 uvlinesize = s->uvlinesize;
3337 // dct_offset = s->linesize * 16;
3340 idct_add = transform_bypass
3341 ? IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4
3342 : IS_8x8DCT(mb_type) ? s->dsp.h264_idct8_add : s->dsp.h264_idct_add;
3344 if (IS_INTRA_PCM(mb_type)) {
3347 // The pixels are stored in h->mb array in the same order as levels,
3348 // copy them in output in the correct order.
3349 for(i=0; i<16; i++) {
3350 for (y=0; y<4; y++) {
3351 for (x=0; x<4; x++) {
3352 *(dest_y + block_offset[i] + y*linesize + x) = h->mb[i*16+y*4+x];
3356 for(i=16; i<16+4; i++) {
3357 for (y=0; y<4; y++) {
3358 for (x=0; x<4; x++) {
3359 *(dest_cb + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
3363 for(i=20; i<20+4; i++) {
3364 for (y=0; y<4; y++) {
3365 for (x=0; x<4; x++) {
3366 *(dest_cr + block_offset[i] + y*uvlinesize + x) = h->mb[i*16+y*4+x];
3371 if(IS_INTRA(mb_type)){
3372 if(h->deblocking_filter) {
3373 if (h->mb_aff_frame) {
3375 xchg_pair_border(h, dest_y, dest_cb, dest_cr, s->linesize, s->uvlinesize, 1);
3377 xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1);
3381 if(!(s->flags&CODEC_FLAG_GRAY)){
3382 h->pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
3383 h->pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
3386 if(IS_INTRA4x4(mb_type)){
3388 if(IS_8x8DCT(mb_type)){
3389 for(i=0; i<16; i+=4){
3390 uint8_t * const ptr= dest_y + block_offset[i];
3391 const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
3392 h->pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
3393 (h->topright_samples_available<<(i+1))&0x8000, linesize);
3394 if(h->non_zero_count_cache[ scan8[i] ])
3395 idct_add(ptr, h->mb + i*16, linesize);
3398 for(i=0; i<16; i++){
3399 uint8_t * const ptr= dest_y + block_offset[i];
3401 const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
3404 if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
3405 const int topright_avail= (h->topright_samples_available<<i)&0x8000;
3406 assert(mb_y || linesize <= block_offset[i]);
3407 if(!topright_avail){
3408 tr= ptr[3 - linesize]*0x01010101;
3409 topright= (uint8_t*) &tr;
3411 topright= ptr + 4 - linesize;
3415 h->pred4x4[ dir ](ptr, topright, linesize);
3416 if(h->non_zero_count_cache[ scan8[i] ]){
3417 if(s->codec_id == CODEC_ID_H264)
3418 idct_add(ptr, h->mb + i*16, linesize);
3420 svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
3425 h->pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
3426 if(s->codec_id == CODEC_ID_H264){
3427 if(!transform_bypass)
3428 h264_luma_dc_dequant_idct_c(h->mb, s->qscale, h->dequant4_coeff[IS_INTRA(mb_type) ? 0:3][s->qscale][0]);
3430 svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
3432 if(h->deblocking_filter) {
3433 if (h->mb_aff_frame) {
3435 uint8_t *pair_dest_y = s->current_picture.data[0] + ((mb_y-1) * 16* s->linesize ) + mb_x * 16;
3436 uint8_t *pair_dest_cb = s->current_picture.data[1] + ((mb_y-1) * 8 * s->uvlinesize) + mb_x * 8;
3437 uint8_t *pair_dest_cr = s->current_picture.data[2] + ((mb_y-1) * 8 * s->uvlinesize) + mb_x * 8;
3439 xchg_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize, 0);
3443 xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0);
3446 }else if(s->codec_id == CODEC_ID_H264){
3447 hl_motion(h, dest_y, dest_cb, dest_cr,
3448 s->dsp.put_h264_qpel_pixels_tab, s->dsp.put_h264_chroma_pixels_tab,
3449 s->dsp.avg_h264_qpel_pixels_tab, s->dsp.avg_h264_chroma_pixels_tab,
3450 s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab);
3454 if(!IS_INTRA4x4(mb_type)){
3455 if(s->codec_id == CODEC_ID_H264){
3456 const int di = IS_8x8DCT(mb_type) ? 4 : 1;
3457 for(i=0; i<16; i+=di){
3458 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
3459 uint8_t * const ptr= dest_y + block_offset[i];
3460 idct_add(ptr, h->mb + i*16, linesize);
3464 for(i=0; i<16; i++){
3465 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
3466 uint8_t * const ptr= dest_y + block_offset[i];
3467 svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
3473 if(!(s->flags&CODEC_FLAG_GRAY)){
3474 idct_add = transform_bypass ? s->dsp.add_pixels4 : s->dsp.h264_idct_add;
3475 if(!transform_bypass){
3476 chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp, h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp][0]);
3477 chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp, h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp][0]);
3479 if(s->codec_id == CODEC_ID_H264){
3480 for(i=16; i<16+4; i++){
3481 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
3482 uint8_t * const ptr= dest_cb + block_offset[i];
3483 idct_add(ptr, h->mb + i*16, uvlinesize);
3486 for(i=20; i<20+4; i++){
3487 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
3488 uint8_t * const ptr= dest_cr + block_offset[i];
3489 idct_add(ptr, h->mb + i*16, uvlinesize);
3493 for(i=16; i<16+4; i++){
3494 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
3495 uint8_t * const ptr= dest_cb + block_offset[i];
3496 svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
3499 for(i=20; i<20+4; i++){
3500 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
3501 uint8_t * const ptr= dest_cr + block_offset[i];
3502 svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
3508 if(h->deblocking_filter) {
3509 if (h->mb_aff_frame) {
3510 const int mb_y = s->mb_y - 1;
3511 uint8_t *pair_dest_y, *pair_dest_cb, *pair_dest_cr;
3512 const int mb_xy= mb_x + mb_y*s->mb_stride;
3513 const int mb_type_top = s->current_picture.mb_type[mb_xy];
3514 const int mb_type_bottom= s->current_picture.mb_type[mb_xy+s->mb_stride];
3515 uint8_t tmp = s->current_picture.data[1][384];
3516 if (!bottom) return;
3517 pair_dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
3518 pair_dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
3519 pair_dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
3521 backup_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize);
3522 // TODO deblock a pair
3525 tprintf("call mbaff filter_mb mb_x:%d mb_y:%d pair_dest_y = %p, dest_y = %p\n", mb_x, mb_y, pair_dest_y, dest_y);
3526 fill_caches(h, mb_type_top, 1); //FIXME don't fill stuff which isn't used by filter_mb
3527 filter_mb(h, mb_x, mb_y, pair_dest_y, pair_dest_cb, pair_dest_cr, linesize, uvlinesize);
3528 if (tmp != s->current_picture.data[1][384]) {
3529 tprintf("modified pixel 8,1 (1)\n");
3533 tprintf("call mbaff filter_mb\n");
3534 fill_caches(h, mb_type_bottom, 1); //FIXME don't fill stuff which isn't used by filter_mb
3535 filter_mb(h, mb_x, mb_y+1, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
3536 if (tmp != s->current_picture.data[1][384]) {
3537 tprintf("modified pixel 8,1 (2)\n");
3540 tprintf("call filter_mb\n");
3541 backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
3542 fill_caches(h, mb_type, 1); //FIXME don't fill stuff which isn't used by filter_mb
3543 filter_mb(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
3549 * fills the default_ref_list.
3551 static int fill_default_ref_list(H264Context *h){
3552 MpegEncContext * const s = &h->s;
3554 int smallest_poc_greater_than_current = -1;
3555 Picture sorted_short_ref[32];
3557 if(h->slice_type==B_TYPE){
3561 /* sort frame according to poc in B slice */
3562 for(out_i=0; out_i<h->short_ref_count; out_i++){
3564 int best_poc=INT_MAX;
3566 for(i=0; i<h->short_ref_count; i++){
3567 const int poc= h->short_ref[i]->poc;