2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
5 * This file is part of FFmpeg.
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 * H.264 / AVC / MPEG4 part10 codec.
25 * @author Michael Niedermayer <michaelni@gmx.at>
30 #include "mpegvideo.h"
33 #include "h264_parser.h"
35 #include "rectangle.h"
39 #include "i386/h264_i386.h"
46 * Value of Picture.reference when Picture is not a reference picture, but
47 * is held for delayed output.
49 #define DELAYED_PIC_REF 4
51 static VLC coeff_token_vlc[4];
52 static VLC_TYPE coeff_token_vlc_tables[520+332+280+256][2];
53 static const int coeff_token_vlc_tables_size[4]={520,332,280,256};
55 static VLC chroma_dc_coeff_token_vlc;
56 static VLC_TYPE chroma_dc_coeff_token_vlc_table[256][2];
57 static const int chroma_dc_coeff_token_vlc_table_size = 256;
59 static VLC total_zeros_vlc[15];
60 static VLC_TYPE total_zeros_vlc_tables[15][512][2];
61 static const int total_zeros_vlc_tables_size = 512;
63 static VLC chroma_dc_total_zeros_vlc[3];
64 static VLC_TYPE chroma_dc_total_zeros_vlc_tables[3][8][2];
65 static const int chroma_dc_total_zeros_vlc_tables_size = 8;
67 static VLC run_vlc[6];
68 static VLC_TYPE run_vlc_tables[6][8][2];
69 static const int run_vlc_tables_size = 8;
72 static VLC_TYPE run7_vlc_table[96][2];
73 static const int run7_vlc_table_size = 96;
75 static void svq3_luma_dc_dequant_idct_c(DCTELEM *block, int qp);
76 static void svq3_add_idct_c(uint8_t *dst, DCTELEM *block, int stride, int qp, int dc);
77 static void filter_mb( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
78 static void filter_mb_fast( H264Context *h, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize);
79 static Picture * remove_long(H264Context *h, int i, int ref_mask);
81 static av_always_inline uint32_t pack16to32(int a, int b){
82 #ifdef WORDS_BIGENDIAN
83 return (b&0xFFFF) + (a<<16);
85 return (a&0xFFFF) + (b<<16);
89 const uint8_t ff_rem6[52]={
90 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3,
93 const uint8_t ff_div6[52]={
94 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8,
97 static const int left_block_options[4][8]={
104 static void fill_caches(H264Context *h, int mb_type, int for_deblock){
105 MpegEncContext * const s = &h->s;
106 const int mb_xy= h->mb_xy;
107 int topleft_xy, top_xy, topright_xy, left_xy[2];
108 int topleft_type, top_type, topright_type, left_type[2];
110 int topleft_partition= -1;
113 top_xy = mb_xy - (s->mb_stride << FIELD_PICTURE);
115 //FIXME deblocking could skip the intra and nnz parts.
116 if(for_deblock && (h->slice_num == 1 || h->slice_table[mb_xy] == h->slice_table[top_xy]) && !FRAME_MBAFF)
119 /* Wow, what a mess, why didn't they simplify the interlacing & intra
120 * stuff, I can't imagine that these complex rules are worth it. */
122 topleft_xy = top_xy - 1;
123 topright_xy= top_xy + 1;
124 left_xy[1] = left_xy[0] = mb_xy-1;
125 left_block = left_block_options[0];
127 const int pair_xy = s->mb_x + (s->mb_y & ~1)*s->mb_stride;
128 const int top_pair_xy = pair_xy - s->mb_stride;
129 const int topleft_pair_xy = top_pair_xy - 1;
130 const int topright_pair_xy = top_pair_xy + 1;
131 const int topleft_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topleft_pair_xy]);
132 const int top_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[top_pair_xy]);
133 const int topright_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[topright_pair_xy]);
134 const int left_mb_frame_flag = !IS_INTERLACED(s->current_picture.mb_type[pair_xy-1]);
135 const int curr_mb_frame_flag = !IS_INTERLACED(mb_type);
136 const int bottom = (s->mb_y & 1);
137 tprintf(s->avctx, "fill_caches: curr_mb_frame_flag:%d, left_mb_frame_flag:%d, topleft_mb_frame_flag:%d, top_mb_frame_flag:%d, topright_mb_frame_flag:%d\n", curr_mb_frame_flag, left_mb_frame_flag, topleft_mb_frame_flag, top_mb_frame_flag, topright_mb_frame_flag);
139 ? !curr_mb_frame_flag // bottom macroblock
140 : (!curr_mb_frame_flag && !top_mb_frame_flag) // top macroblock
142 top_xy -= s->mb_stride;
145 ? !curr_mb_frame_flag // bottom macroblock
146 : (!curr_mb_frame_flag && !topleft_mb_frame_flag) // top macroblock
148 topleft_xy -= s->mb_stride;
149 } else if(bottom && curr_mb_frame_flag && !left_mb_frame_flag) {
150 topleft_xy += s->mb_stride;
151 // take top left mv from the middle of the mb, as opposed to all other modes which use the bottom right partition
152 topleft_partition = 0;
155 ? !curr_mb_frame_flag // bottom macroblock
156 : (!curr_mb_frame_flag && !topright_mb_frame_flag) // top macroblock
158 topright_xy -= s->mb_stride;
160 if (left_mb_frame_flag != curr_mb_frame_flag) {
161 left_xy[1] = left_xy[0] = pair_xy - 1;
162 if (curr_mb_frame_flag) {
164 left_block = left_block_options[1];
166 left_block= left_block_options[2];
169 left_xy[1] += s->mb_stride;
170 left_block = left_block_options[3];
175 h->top_mb_xy = top_xy;
176 h->left_mb_xy[0] = left_xy[0];
177 h->left_mb_xy[1] = left_xy[1];
181 top_type = h->slice_table[top_xy ] < 255 ? s->current_picture.mb_type[top_xy] : 0;
182 left_type[0] = h->slice_table[left_xy[0] ] < 255 ? s->current_picture.mb_type[left_xy[0]] : 0;
183 left_type[1] = h->slice_table[left_xy[1] ] < 255 ? s->current_picture.mb_type[left_xy[1]] : 0;
185 if(FRAME_MBAFF && !IS_INTRA(mb_type)){
187 int v = *(uint16_t*)&h->non_zero_count[mb_xy][14];
189 h->non_zero_count_cache[scan8[i]] = (v>>i)&1;
190 for(list=0; list<h->list_count; list++){
191 if(USES_LIST(mb_type,list)){
192 uint32_t *src = (uint32_t*)s->current_picture.motion_val[list][h->mb2b_xy[mb_xy]];
193 uint32_t *dst = (uint32_t*)h->mv_cache[list][scan8[0]];
194 int8_t *ref = &s->current_picture.ref_index[list][h->mb2b8_xy[mb_xy]];
195 for(i=0; i<4; i++, dst+=8, src+=h->b_stride){
201 *(uint32_t*)&h->ref_cache[list][scan8[ 0]] =
202 *(uint32_t*)&h->ref_cache[list][scan8[ 2]] = pack16to32(ref[0],ref[1])*0x0101;
204 *(uint32_t*)&h->ref_cache[list][scan8[ 8]] =
205 *(uint32_t*)&h->ref_cache[list][scan8[10]] = pack16to32(ref[0],ref[1])*0x0101;
207 fill_rectangle(&h-> mv_cache[list][scan8[ 0]], 4, 4, 8, 0, 4);
208 fill_rectangle(&h->ref_cache[list][scan8[ 0]], 4, 4, 8, (uint8_t)LIST_NOT_USED, 1);
213 topleft_type = h->slice_table[topleft_xy ] == h->slice_num ? s->current_picture.mb_type[topleft_xy] : 0;
214 top_type = h->slice_table[top_xy ] == h->slice_num ? s->current_picture.mb_type[top_xy] : 0;
215 topright_type= h->slice_table[topright_xy] == h->slice_num ? s->current_picture.mb_type[topright_xy]: 0;
216 left_type[0] = h->slice_table[left_xy[0] ] == h->slice_num ? s->current_picture.mb_type[left_xy[0]] : 0;
217 left_type[1] = h->slice_table[left_xy[1] ] == h->slice_num ? s->current_picture.mb_type[left_xy[1]] : 0;
220 if(IS_INTRA(mb_type)){
221 h->topleft_samples_available=
222 h->top_samples_available=
223 h->left_samples_available= 0xFFFF;
224 h->topright_samples_available= 0xEEEA;
226 if(!IS_INTRA(top_type) && (top_type==0 || h->pps.constrained_intra_pred)){
227 h->topleft_samples_available= 0xB3FF;
228 h->top_samples_available= 0x33FF;
229 h->topright_samples_available= 0x26EA;
232 if(!IS_INTRA(left_type[i]) && (left_type[i]==0 || h->pps.constrained_intra_pred)){
233 h->topleft_samples_available&= 0xDF5F;
234 h->left_samples_available&= 0x5F5F;
238 if(!IS_INTRA(topleft_type) && (topleft_type==0 || h->pps.constrained_intra_pred))
239 h->topleft_samples_available&= 0x7FFF;
241 if(!IS_INTRA(topright_type) && (topright_type==0 || h->pps.constrained_intra_pred))
242 h->topright_samples_available&= 0xFBFF;
244 if(IS_INTRA4x4(mb_type)){
245 if(IS_INTRA4x4(top_type)){
246 h->intra4x4_pred_mode_cache[4+8*0]= h->intra4x4_pred_mode[top_xy][4];
247 h->intra4x4_pred_mode_cache[5+8*0]= h->intra4x4_pred_mode[top_xy][5];
248 h->intra4x4_pred_mode_cache[6+8*0]= h->intra4x4_pred_mode[top_xy][6];
249 h->intra4x4_pred_mode_cache[7+8*0]= h->intra4x4_pred_mode[top_xy][3];
252 if(!top_type || (IS_INTER(top_type) && h->pps.constrained_intra_pred))
257 h->intra4x4_pred_mode_cache[4+8*0]=
258 h->intra4x4_pred_mode_cache[5+8*0]=
259 h->intra4x4_pred_mode_cache[6+8*0]=
260 h->intra4x4_pred_mode_cache[7+8*0]= pred;
263 if(IS_INTRA4x4(left_type[i])){
264 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[0+2*i]];
265 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= h->intra4x4_pred_mode[left_xy[i]][left_block[1+2*i]];
268 if(!left_type[i] || (IS_INTER(left_type[i]) && h->pps.constrained_intra_pred))
273 h->intra4x4_pred_mode_cache[3+8*1 + 2*8*i]=
274 h->intra4x4_pred_mode_cache[3+8*2 + 2*8*i]= pred;
289 //FIXME constraint_intra_pred & partitioning & nnz (let us hope this is just a typo in the spec)
291 h->non_zero_count_cache[4+8*0]= h->non_zero_count[top_xy][4];
292 h->non_zero_count_cache[5+8*0]= h->non_zero_count[top_xy][5];
293 h->non_zero_count_cache[6+8*0]= h->non_zero_count[top_xy][6];
294 h->non_zero_count_cache[7+8*0]= h->non_zero_count[top_xy][3];
296 h->non_zero_count_cache[1+8*0]= h->non_zero_count[top_xy][9];
297 h->non_zero_count_cache[2+8*0]= h->non_zero_count[top_xy][8];
299 h->non_zero_count_cache[1+8*3]= h->non_zero_count[top_xy][12];
300 h->non_zero_count_cache[2+8*3]= h->non_zero_count[top_xy][11];
303 h->non_zero_count_cache[4+8*0]=
304 h->non_zero_count_cache[5+8*0]=
305 h->non_zero_count_cache[6+8*0]=
306 h->non_zero_count_cache[7+8*0]=
308 h->non_zero_count_cache[1+8*0]=
309 h->non_zero_count_cache[2+8*0]=
311 h->non_zero_count_cache[1+8*3]=
312 h->non_zero_count_cache[2+8*3]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
316 for (i=0; i<2; i++) {
318 h->non_zero_count_cache[3+8*1 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[0+2*i]];
319 h->non_zero_count_cache[3+8*2 + 2*8*i]= h->non_zero_count[left_xy[i]][left_block[1+2*i]];
320 h->non_zero_count_cache[0+8*1 + 8*i]= h->non_zero_count[left_xy[i]][left_block[4+2*i]];
321 h->non_zero_count_cache[0+8*4 + 8*i]= h->non_zero_count[left_xy[i]][left_block[5+2*i]];
323 h->non_zero_count_cache[3+8*1 + 2*8*i]=
324 h->non_zero_count_cache[3+8*2 + 2*8*i]=
325 h->non_zero_count_cache[0+8*1 + 8*i]=
326 h->non_zero_count_cache[0+8*4 + 8*i]= h->pps.cabac && !IS_INTRA(mb_type) ? 0 : 64;
333 h->top_cbp = h->cbp_table[top_xy];
334 } else if(IS_INTRA(mb_type)) {
341 h->left_cbp = h->cbp_table[left_xy[0]] & 0x1f0;
342 } else if(IS_INTRA(mb_type)) {
348 h->left_cbp |= ((h->cbp_table[left_xy[0]]>>((left_block[0]&(~1))+1))&0x1) << 1;
351 h->left_cbp |= ((h->cbp_table[left_xy[1]]>>((left_block[2]&(~1))+1))&0x1) << 3;
356 if(IS_INTER(mb_type) || IS_DIRECT(mb_type)){
358 for(list=0; list<h->list_count; list++){
359 if(!USES_LIST(mb_type, list) && !IS_DIRECT(mb_type) && !h->deblocking_filter){
360 /*if(!h->mv_cache_clean[list]){
361 memset(h->mv_cache [list], 0, 8*5*2*sizeof(int16_t)); //FIXME clean only input? clean at all?
362 memset(h->ref_cache[list], PART_NOT_AVAILABLE, 8*5*sizeof(int8_t));
363 h->mv_cache_clean[list]= 1;
367 h->mv_cache_clean[list]= 0;
369 if(USES_LIST(top_type, list)){
370 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
371 const int b8_xy= h->mb2b8_xy[top_xy] + h->b8_stride;
372 *(uint32_t*)h->mv_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 0];
373 *(uint32_t*)h->mv_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 1];
374 *(uint32_t*)h->mv_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 2];
375 *(uint32_t*)h->mv_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + 3];
376 h->ref_cache[list][scan8[0] + 0 - 1*8]=
377 h->ref_cache[list][scan8[0] + 1 - 1*8]= s->current_picture.ref_index[list][b8_xy + 0];
378 h->ref_cache[list][scan8[0] + 2 - 1*8]=
379 h->ref_cache[list][scan8[0] + 3 - 1*8]= s->current_picture.ref_index[list][b8_xy + 1];
381 *(uint32_t*)h->mv_cache [list][scan8[0] + 0 - 1*8]=
382 *(uint32_t*)h->mv_cache [list][scan8[0] + 1 - 1*8]=
383 *(uint32_t*)h->mv_cache [list][scan8[0] + 2 - 1*8]=
384 *(uint32_t*)h->mv_cache [list][scan8[0] + 3 - 1*8]= 0;
385 *(uint32_t*)&h->ref_cache[list][scan8[0] + 0 - 1*8]= ((top_type ? LIST_NOT_USED : PART_NOT_AVAILABLE)&0xFF)*0x01010101;
389 int cache_idx = scan8[0] - 1 + i*2*8;
390 if(USES_LIST(left_type[i], list)){
391 const int b_xy= h->mb2b_xy[left_xy[i]] + 3;
392 const int b8_xy= h->mb2b8_xy[left_xy[i]] + 1;
393 *(uint32_t*)h->mv_cache[list][cache_idx ]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[0+i*2]];
394 *(uint32_t*)h->mv_cache[list][cache_idx+8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy + h->b_stride*left_block[1+i*2]];
395 h->ref_cache[list][cache_idx ]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[0+i*2]>>1)];
396 h->ref_cache[list][cache_idx+8]= s->current_picture.ref_index[list][b8_xy + h->b8_stride*(left_block[1+i*2]>>1)];
398 *(uint32_t*)h->mv_cache [list][cache_idx ]=
399 *(uint32_t*)h->mv_cache [list][cache_idx+8]= 0;
400 h->ref_cache[list][cache_idx ]=
401 h->ref_cache[list][cache_idx+8]= left_type[i] ? LIST_NOT_USED : PART_NOT_AVAILABLE;
405 if((for_deblock || (IS_DIRECT(mb_type) && !h->direct_spatial_mv_pred)) && !FRAME_MBAFF)
408 if(USES_LIST(topleft_type, list)){
409 const int b_xy = h->mb2b_xy[topleft_xy] + 3 + h->b_stride + (topleft_partition & 2*h->b_stride);
410 const int b8_xy= h->mb2b8_xy[topleft_xy] + 1 + (topleft_partition & h->b8_stride);
411 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
412 h->ref_cache[list][scan8[0] - 1 - 1*8]= s->current_picture.ref_index[list][b8_xy];
414 *(uint32_t*)h->mv_cache[list][scan8[0] - 1 - 1*8]= 0;
415 h->ref_cache[list][scan8[0] - 1 - 1*8]= topleft_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
418 if(USES_LIST(topright_type, list)){
419 const int b_xy= h->mb2b_xy[topright_xy] + 3*h->b_stride;
420 const int b8_xy= h->mb2b8_xy[topright_xy] + h->b8_stride;
421 *(uint32_t*)h->mv_cache[list][scan8[0] + 4 - 1*8]= *(uint32_t*)s->current_picture.motion_val[list][b_xy];
422 h->ref_cache[list][scan8[0] + 4 - 1*8]= s->current_picture.ref_index[list][b8_xy];
424 *(uint32_t*)h->mv_cache [list][scan8[0] + 4 - 1*8]= 0;
425 h->ref_cache[list][scan8[0] + 4 - 1*8]= topright_type ? LIST_NOT_USED : PART_NOT_AVAILABLE;
428 if((IS_SKIP(mb_type) || IS_DIRECT(mb_type)) && !FRAME_MBAFF)
431 h->ref_cache[list][scan8[5 ]+1] =
432 h->ref_cache[list][scan8[7 ]+1] =
433 h->ref_cache[list][scan8[13]+1] = //FIXME remove past 3 (init somewhere else)
434 h->ref_cache[list][scan8[4 ]] =
435 h->ref_cache[list][scan8[12]] = PART_NOT_AVAILABLE;
436 *(uint32_t*)h->mv_cache [list][scan8[5 ]+1]=
437 *(uint32_t*)h->mv_cache [list][scan8[7 ]+1]=
438 *(uint32_t*)h->mv_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
439 *(uint32_t*)h->mv_cache [list][scan8[4 ]]=
440 *(uint32_t*)h->mv_cache [list][scan8[12]]= 0;
443 /* XXX beurk, Load mvd */
444 if(USES_LIST(top_type, list)){
445 const int b_xy= h->mb2b_xy[top_xy] + 3*h->b_stride;
446 *(uint32_t*)h->mvd_cache[list][scan8[0] + 0 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 0];
447 *(uint32_t*)h->mvd_cache[list][scan8[0] + 1 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 1];
448 *(uint32_t*)h->mvd_cache[list][scan8[0] + 2 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 2];
449 *(uint32_t*)h->mvd_cache[list][scan8[0] + 3 - 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + 3];
451 *(uint32_t*)h->mvd_cache [list][scan8[0] + 0 - 1*8]=
452 *(uint32_t*)h->mvd_cache [list][scan8[0] + 1 - 1*8]=
453 *(uint32_t*)h->mvd_cache [list][scan8[0] + 2 - 1*8]=
454 *(uint32_t*)h->mvd_cache [list][scan8[0] + 3 - 1*8]= 0;
456 if(USES_LIST(left_type[0], list)){
457 const int b_xy= h->mb2b_xy[left_xy[0]] + 3;
458 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 0*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[0]];
459 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 1*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[1]];
461 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 0*8]=
462 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 1*8]= 0;
464 if(USES_LIST(left_type[1], list)){
465 const int b_xy= h->mb2b_xy[left_xy[1]] + 3;
466 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 2*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[2]];
467 *(uint32_t*)h->mvd_cache[list][scan8[0] - 1 + 3*8]= *(uint32_t*)h->mvd_table[list][b_xy + h->b_stride*left_block[3]];
469 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 2*8]=
470 *(uint32_t*)h->mvd_cache [list][scan8[0] - 1 + 3*8]= 0;
472 *(uint32_t*)h->mvd_cache [list][scan8[5 ]+1]=
473 *(uint32_t*)h->mvd_cache [list][scan8[7 ]+1]=
474 *(uint32_t*)h->mvd_cache [list][scan8[13]+1]= //FIXME remove past 3 (init somewhere else)
475 *(uint32_t*)h->mvd_cache [list][scan8[4 ]]=
476 *(uint32_t*)h->mvd_cache [list][scan8[12]]= 0;
478 if(h->slice_type_nos == FF_B_TYPE){
479 fill_rectangle(&h->direct_cache[scan8[0]], 4, 4, 8, 0, 1);
481 if(IS_DIRECT(top_type)){
482 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0x01010101;
483 }else if(IS_8X8(top_type)){
484 int b8_xy = h->mb2b8_xy[top_xy] + h->b8_stride;
485 h->direct_cache[scan8[0] + 0 - 1*8]= h->direct_table[b8_xy];
486 h->direct_cache[scan8[0] + 2 - 1*8]= h->direct_table[b8_xy + 1];
488 *(uint32_t*)&h->direct_cache[scan8[0] - 1*8]= 0;
491 if(IS_DIRECT(left_type[0]))
492 h->direct_cache[scan8[0] - 1 + 0*8]= 1;
493 else if(IS_8X8(left_type[0]))
494 h->direct_cache[scan8[0] - 1 + 0*8]= h->direct_table[h->mb2b8_xy[left_xy[0]] + 1 + h->b8_stride*(left_block[0]>>1)];
496 h->direct_cache[scan8[0] - 1 + 0*8]= 0;
498 if(IS_DIRECT(left_type[1]))
499 h->direct_cache[scan8[0] - 1 + 2*8]= 1;
500 else if(IS_8X8(left_type[1]))
501 h->direct_cache[scan8[0] - 1 + 2*8]= h->direct_table[h->mb2b8_xy[left_xy[1]] + 1 + h->b8_stride*(left_block[2]>>1)];
503 h->direct_cache[scan8[0] - 1 + 2*8]= 0;
509 MAP_F2F(scan8[0] - 1 - 1*8, topleft_type)\
510 MAP_F2F(scan8[0] + 0 - 1*8, top_type)\
511 MAP_F2F(scan8[0] + 1 - 1*8, top_type)\
512 MAP_F2F(scan8[0] + 2 - 1*8, top_type)\
513 MAP_F2F(scan8[0] + 3 - 1*8, top_type)\
514 MAP_F2F(scan8[0] + 4 - 1*8, topright_type)\
515 MAP_F2F(scan8[0] - 1 + 0*8, left_type[0])\
516 MAP_F2F(scan8[0] - 1 + 1*8, left_type[0])\
517 MAP_F2F(scan8[0] - 1 + 2*8, left_type[1])\
518 MAP_F2F(scan8[0] - 1 + 3*8, left_type[1])
520 #define MAP_F2F(idx, mb_type)\
521 if(!IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
522 h->ref_cache[list][idx] <<= 1;\
523 h->mv_cache[list][idx][1] /= 2;\
524 h->mvd_cache[list][idx][1] /= 2;\
529 #define MAP_F2F(idx, mb_type)\
530 if(IS_INTERLACED(mb_type) && h->ref_cache[list][idx] >= 0){\
531 h->ref_cache[list][idx] >>= 1;\
532 h->mv_cache[list][idx][1] <<= 1;\
533 h->mvd_cache[list][idx][1] <<= 1;\
543 h->neighbor_transform_size= !!IS_8x8DCT(top_type) + !!IS_8x8DCT(left_type[0]);
546 static inline void write_back_intra_pred_mode(H264Context *h){
547 const int mb_xy= h->mb_xy;
549 h->intra4x4_pred_mode[mb_xy][0]= h->intra4x4_pred_mode_cache[7+8*1];
550 h->intra4x4_pred_mode[mb_xy][1]= h->intra4x4_pred_mode_cache[7+8*2];
551 h->intra4x4_pred_mode[mb_xy][2]= h->intra4x4_pred_mode_cache[7+8*3];
552 h->intra4x4_pred_mode[mb_xy][3]= h->intra4x4_pred_mode_cache[7+8*4];
553 h->intra4x4_pred_mode[mb_xy][4]= h->intra4x4_pred_mode_cache[4+8*4];
554 h->intra4x4_pred_mode[mb_xy][5]= h->intra4x4_pred_mode_cache[5+8*4];
555 h->intra4x4_pred_mode[mb_xy][6]= h->intra4x4_pred_mode_cache[6+8*4];
559 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
561 static inline int check_intra4x4_pred_mode(H264Context *h){
562 MpegEncContext * const s = &h->s;
563 static const int8_t top [12]= {-1, 0,LEFT_DC_PRED,-1,-1,-1,-1,-1, 0};
564 static const int8_t left[12]= { 0,-1, TOP_DC_PRED, 0,-1,-1,-1, 0,-1,DC_128_PRED};
567 if(!(h->top_samples_available&0x8000)){
569 int status= top[ h->intra4x4_pred_mode_cache[scan8[0] + i] ];
571 av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
574 h->intra4x4_pred_mode_cache[scan8[0] + i]= status;
579 if(!(h->left_samples_available&0x8000)){
581 int status= left[ h->intra4x4_pred_mode_cache[scan8[0] + 8*i] ];
583 av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra4x4 mode %d at %d %d\n", status, s->mb_x, s->mb_y);
586 h->intra4x4_pred_mode_cache[scan8[0] + 8*i]= status;
592 } //FIXME cleanup like next
595 * checks if the top & left blocks are available if needed & changes the dc mode so it only uses the available blocks.
597 static inline int check_intra_pred_mode(H264Context *h, int mode){
598 MpegEncContext * const s = &h->s;
599 static const int8_t top [7]= {LEFT_DC_PRED8x8, 1,-1,-1};
600 static const int8_t left[7]= { TOP_DC_PRED8x8,-1, 2,-1,DC_128_PRED8x8};
603 av_log(h->s.avctx, AV_LOG_ERROR, "out of range intra chroma pred mode at %d %d\n", s->mb_x, s->mb_y);
607 if(!(h->top_samples_available&0x8000)){
610 av_log(h->s.avctx, AV_LOG_ERROR, "top block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
615 if(!(h->left_samples_available&0x8000)){
618 av_log(h->s.avctx, AV_LOG_ERROR, "left block unavailable for requested intra mode at %d %d\n", s->mb_x, s->mb_y);
627 * gets the predicted intra4x4 prediction mode.
629 static inline int pred_intra_mode(H264Context *h, int n){
630 const int index8= scan8[n];
631 const int left= h->intra4x4_pred_mode_cache[index8 - 1];
632 const int top = h->intra4x4_pred_mode_cache[index8 - 8];
633 const int min= FFMIN(left, top);
635 tprintf(h->s.avctx, "mode:%d %d min:%d\n", left ,top, min);
637 if(min<0) return DC_PRED;
641 static inline void write_back_non_zero_count(H264Context *h){
642 const int mb_xy= h->mb_xy;
644 h->non_zero_count[mb_xy][0]= h->non_zero_count_cache[7+8*1];
645 h->non_zero_count[mb_xy][1]= h->non_zero_count_cache[7+8*2];
646 h->non_zero_count[mb_xy][2]= h->non_zero_count_cache[7+8*3];
647 h->non_zero_count[mb_xy][3]= h->non_zero_count_cache[7+8*4];
648 h->non_zero_count[mb_xy][4]= h->non_zero_count_cache[4+8*4];
649 h->non_zero_count[mb_xy][5]= h->non_zero_count_cache[5+8*4];
650 h->non_zero_count[mb_xy][6]= h->non_zero_count_cache[6+8*4];
652 h->non_zero_count[mb_xy][9]= h->non_zero_count_cache[1+8*2];
653 h->non_zero_count[mb_xy][8]= h->non_zero_count_cache[2+8*2];
654 h->non_zero_count[mb_xy][7]= h->non_zero_count_cache[2+8*1];
656 h->non_zero_count[mb_xy][12]=h->non_zero_count_cache[1+8*5];
657 h->non_zero_count[mb_xy][11]=h->non_zero_count_cache[2+8*5];
658 h->non_zero_count[mb_xy][10]=h->non_zero_count_cache[2+8*4];
661 // store all luma nnzs, for deblocking
664 v += (!!h->non_zero_count_cache[scan8[i]]) << i;
665 *(uint16_t*)&h->non_zero_count[mb_xy][14] = v;
670 * gets the predicted number of non-zero coefficients.
671 * @param n block index
673 static inline int pred_non_zero_count(H264Context *h, int n){
674 const int index8= scan8[n];
675 const int left= h->non_zero_count_cache[index8 - 1];
676 const int top = h->non_zero_count_cache[index8 - 8];
679 if(i<64) i= (i+1)>>1;
681 tprintf(h->s.avctx, "pred_nnz L%X T%X n%d s%d P%X\n", left, top, n, scan8[n], i&31);
686 static inline int fetch_diagonal_mv(H264Context *h, const int16_t **C, int i, int list, int part_width){
687 const int topright_ref= h->ref_cache[list][ i - 8 + part_width ];
688 MpegEncContext *s = &h->s;
690 /* there is no consistent mapping of mvs to neighboring locations that will
691 * make mbaff happy, so we can't move all this logic to fill_caches */
693 const uint32_t *mb_types = s->current_picture_ptr->mb_type;
695 *(uint32_t*)h->mv_cache[list][scan8[0]-2] = 0;
696 *C = h->mv_cache[list][scan8[0]-2];
699 && (s->mb_y&1) && i < scan8[0]+8 && topright_ref != PART_NOT_AVAILABLE){
700 int topright_xy = s->mb_x + (s->mb_y-1)*s->mb_stride + (i == scan8[0]+3);
701 if(IS_INTERLACED(mb_types[topright_xy])){
702 #define SET_DIAG_MV(MV_OP, REF_OP, X4, Y4)\
703 const int x4 = X4, y4 = Y4;\
704 const int mb_type = mb_types[(x4>>2)+(y4>>2)*s->mb_stride];\
705 if(!USES_LIST(mb_type,list))\
706 return LIST_NOT_USED;\
707 mv = s->current_picture_ptr->motion_val[list][x4 + y4*h->b_stride];\
708 h->mv_cache[list][scan8[0]-2][0] = mv[0];\
709 h->mv_cache[list][scan8[0]-2][1] = mv[1] MV_OP;\
710 return s->current_picture_ptr->ref_index[list][(x4>>1) + (y4>>1)*h->b8_stride] REF_OP;
712 SET_DIAG_MV(*2, >>1, s->mb_x*4+(i&7)-4+part_width, s->mb_y*4-1);
715 if(topright_ref == PART_NOT_AVAILABLE
716 && ((s->mb_y&1) || i >= scan8[0]+8) && (i&7)==4
717 && h->ref_cache[list][scan8[0]-1] != PART_NOT_AVAILABLE){
719 && IS_INTERLACED(mb_types[h->left_mb_xy[0]])){
720 SET_DIAG_MV(*2, >>1, s->mb_x*4-1, (s->mb_y|1)*4+(s->mb_y&1)*2+(i>>4)-1);
723 && !IS_INTERLACED(mb_types[h->left_mb_xy[0]])
725 // left shift will turn LIST_NOT_USED into PART_NOT_AVAILABLE, but that's OK.
726 SET_DIAG_MV(/2, <<1, s->mb_x*4-1, (s->mb_y&~1)*4 - 1 + ((i-scan8[0])>>3)*2);
732 if(topright_ref != PART_NOT_AVAILABLE){
733 *C= h->mv_cache[list][ i - 8 + part_width ];
736 tprintf(s->avctx, "topright MV not available\n");
738 *C= h->mv_cache[list][ i - 8 - 1 ];
739 return h->ref_cache[list][ i - 8 - 1 ];
744 * gets the predicted MV.
745 * @param n the block index
746 * @param part_width the width of the partition (4, 8,16) -> (1, 2, 4)
747 * @param mx the x component of the predicted motion vector
748 * @param my the y component of the predicted motion vector
750 static inline void pred_motion(H264Context * const h, int n, int part_width, int list, int ref, int * const mx, int * const my){
751 const int index8= scan8[n];
752 const int top_ref= h->ref_cache[list][ index8 - 8 ];
753 const int left_ref= h->ref_cache[list][ index8 - 1 ];
754 const int16_t * const A= h->mv_cache[list][ index8 - 1 ];
755 const int16_t * const B= h->mv_cache[list][ index8 - 8 ];
757 int diagonal_ref, match_count;
759 assert(part_width==1 || part_width==2 || part_width==4);
769 diagonal_ref= fetch_diagonal_mv(h, &C, index8, list, part_width);
770 match_count= (diagonal_ref==ref) + (top_ref==ref) + (left_ref==ref);
771 tprintf(h->s.avctx, "pred_motion match_count=%d\n", match_count);
772 if(match_count > 1){ //most common
773 *mx= mid_pred(A[0], B[0], C[0]);
774 *my= mid_pred(A[1], B[1], C[1]);
775 }else if(match_count==1){
779 }else if(top_ref==ref){
787 if(top_ref == PART_NOT_AVAILABLE && diagonal_ref == PART_NOT_AVAILABLE && left_ref != PART_NOT_AVAILABLE){
791 *mx= mid_pred(A[0], B[0], C[0]);
792 *my= mid_pred(A[1], B[1], C[1]);
796 tprintf(h->s.avctx, "pred_motion (%2d %2d %2d) (%2d %2d %2d) (%2d %2d %2d) -> (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], diagonal_ref, C[0], C[1], left_ref, A[0], A[1], ref, *mx, *my, h->s.mb_x, h->s.mb_y, n, list);
800 * gets the directionally predicted 16x8 MV.
801 * @param n the block index
802 * @param mx the x component of the predicted motion vector
803 * @param my the y component of the predicted motion vector
805 static inline void pred_16x8_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
807 const int top_ref= h->ref_cache[list][ scan8[0] - 8 ];
808 const int16_t * const B= h->mv_cache[list][ scan8[0] - 8 ];
810 tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", top_ref, B[0], B[1], h->s.mb_x, h->s.mb_y, n, list);
818 const int left_ref= h->ref_cache[list][ scan8[8] - 1 ];
819 const int16_t * const A= h->mv_cache[list][ scan8[8] - 1 ];
821 tprintf(h->s.avctx, "pred_16x8: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
831 pred_motion(h, n, 4, list, ref, mx, my);
835 * gets the directionally predicted 8x16 MV.
836 * @param n the block index
837 * @param mx the x component of the predicted motion vector
838 * @param my the y component of the predicted motion vector
840 static inline void pred_8x16_motion(H264Context * const h, int n, int list, int ref, int * const mx, int * const my){
842 const int left_ref= h->ref_cache[list][ scan8[0] - 1 ];
843 const int16_t * const A= h->mv_cache[list][ scan8[0] - 1 ];
845 tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", left_ref, A[0], A[1], h->s.mb_x, h->s.mb_y, n, list);
856 diagonal_ref= fetch_diagonal_mv(h, &C, scan8[4], list, 2);
858 tprintf(h->s.avctx, "pred_8x16: (%2d %2d %2d) at %2d %2d %d list %d\n", diagonal_ref, C[0], C[1], h->s.mb_x, h->s.mb_y, n, list);
860 if(diagonal_ref == ref){
868 pred_motion(h, n, 2, list, ref, mx, my);
871 static inline void pred_pskip_motion(H264Context * const h, int * const mx, int * const my){
872 const int top_ref = h->ref_cache[0][ scan8[0] - 8 ];
873 const int left_ref= h->ref_cache[0][ scan8[0] - 1 ];
875 tprintf(h->s.avctx, "pred_pskip: (%d) (%d) at %2d %2d\n", top_ref, left_ref, h->s.mb_x, h->s.mb_y);
877 if(top_ref == PART_NOT_AVAILABLE || left_ref == PART_NOT_AVAILABLE
878 || (top_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 8 ] == 0)
879 || (left_ref == 0 && *(uint32_t*)h->mv_cache[0][ scan8[0] - 1 ] == 0)){
885 pred_motion(h, 0, 4, 0, 0, mx, my);
890 static inline void direct_dist_scale_factor(H264Context * const h){
891 MpegEncContext * const s = &h->s;
892 const int poc = h->s.current_picture_ptr->field_poc[ s->picture_structure == PICT_BOTTOM_FIELD ];
893 const int poc1 = h->ref_list[1][0].poc;
895 for(i=0; i<h->ref_count[0]; i++){
896 int poc0 = h->ref_list[0][i].poc;
897 int td = av_clip(poc1 - poc0, -128, 127);
898 if(td == 0 || h->ref_list[0][i].long_ref){
899 h->dist_scale_factor[i] = 256;
901 int tb = av_clip(poc - poc0, -128, 127);
902 int tx = (16384 + (FFABS(td) >> 1)) / td;
903 h->dist_scale_factor[i] = av_clip((tb*tx + 32) >> 6, -1024, 1023);
907 for(i=0; i<h->ref_count[0]; i++){
908 h->dist_scale_factor_field[2*i] =
909 h->dist_scale_factor_field[2*i+1] = h->dist_scale_factor[i];
913 static inline void direct_ref_list_init(H264Context * const h){
914 MpegEncContext * const s = &h->s;
915 Picture * const ref1 = &h->ref_list[1][0];
916 Picture * const cur = s->current_picture_ptr;
918 int sidx= s->picture_structure&1;
919 int ref1sidx= ref1->reference&1;
920 for(list=0; list<2; list++){
921 cur->ref_count[sidx][list] = h->ref_count[list];
922 for(j=0; j<h->ref_count[list]; j++)
923 cur->ref_poc[sidx][list][j] = 4*h->ref_list[list][j].frame_num + (h->ref_list[list][j].reference&3);
925 if(s->picture_structure == PICT_FRAME){
926 memcpy(cur->ref_count[0], cur->ref_count[1], sizeof(cur->ref_count[0]));
927 memcpy(cur->ref_poc [0], cur->ref_poc [1], sizeof(cur->ref_poc [0]));
929 if(cur->pict_type != FF_B_TYPE || h->direct_spatial_mv_pred)
931 for(list=0; list<2; list++){
932 for(i=0; i<ref1->ref_count[ref1sidx][list]; i++){
933 int poc = ref1->ref_poc[ref1sidx][list][i];
934 if(((poc&3) == 3) != (s->picture_structure == PICT_FRAME))
935 poc= (poc&~3) + s->picture_structure;
936 h->map_col_to_list0[list][i] = 0; /* bogus; fills in for missing frames */
937 for(j=0; j<h->ref_count[list]; j++)
938 if(4*h->ref_list[list][j].frame_num + (h->ref_list[list][j].reference&3) == poc){
939 h->map_col_to_list0[list][i] = j;
945 for(list=0; list<2; list++){
946 for(i=0; i<ref1->ref_count[ref1sidx][list]; i++){
947 j = h->map_col_to_list0[list][i];
948 h->map_col_to_list0_field[list][2*i] = 2*j;
949 h->map_col_to_list0_field[list][2*i+1] = 2*j+1;
955 static inline void pred_direct_motion(H264Context * const h, int *mb_type){
956 MpegEncContext * const s = &h->s;
957 int b8_stride = h->b8_stride;
958 int b4_stride = h->b_stride;
959 int mb_xy = h->mb_xy;
961 const int16_t (*l1mv0)[2], (*l1mv1)[2];
962 const int8_t *l1ref0, *l1ref1;
963 const int is_b8x8 = IS_8X8(*mb_type);
964 unsigned int sub_mb_type;
967 #define MB_TYPE_16x16_OR_INTRA (MB_TYPE_16x16|MB_TYPE_INTRA4x4|MB_TYPE_INTRA16x16|MB_TYPE_INTRA_PCM)
969 if(IS_INTERLACED(h->ref_list[1][0].mb_type[mb_xy])){ // AFL/AFR/FR/FL -> AFL/FL
970 if(h->ref_list[1][0].reference == PICT_FRAME){ // AFL/AFR/FR/FL -> AFL
971 if(!IS_INTERLACED(*mb_type)){ // AFR/FR -> AFL
972 int cur_poc = s->current_picture_ptr->poc;
973 int *col_poc = h->ref_list[1]->field_poc;
974 int col_parity = FFABS(col_poc[0] - cur_poc) >= FFABS(col_poc[1] - cur_poc);
975 mb_xy= s->mb_x + ((s->mb_y&~1) + col_parity)*s->mb_stride;
978 }else if(!(s->picture_structure & h->ref_list[1][0].reference)){// FL -> FL & differ parity
979 int fieldoff= 2*(h->ref_list[1][0].reference)-3;
980 mb_xy += s->mb_stride*fieldoff;
983 }else{ // AFL/AFR/FR/FL -> AFR/FR
984 if(IS_INTERLACED(*mb_type)){ // AFL /FL -> AFR/FR
985 mb_xy= s->mb_x + (s->mb_y&~1)*s->mb_stride;
986 mb_type_col[0] = h->ref_list[1][0].mb_type[mb_xy];
987 mb_type_col[1] = h->ref_list[1][0].mb_type[mb_xy + s->mb_stride];
990 //FIXME IS_8X8(mb_type_col[0]) && !h->sps.direct_8x8_inference_flag
991 if( (mb_type_col[0] & MB_TYPE_16x16_OR_INTRA)
992 && (mb_type_col[1] & MB_TYPE_16x16_OR_INTRA)
994 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
995 *mb_type |= MB_TYPE_16x8 |MB_TYPE_L0L1|MB_TYPE_DIRECT2; /* B_16x8 */
997 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
998 *mb_type |= MB_TYPE_8x8|MB_TYPE_L0L1;
1000 }else{ // AFR/FR -> AFR/FR
1003 mb_type_col[1] = h->ref_list[1][0].mb_type[mb_xy];
1004 if(IS_8X8(mb_type_col[0]) && !h->sps.direct_8x8_inference_flag){
1005 /* FIXME save sub mb types from previous frames (or derive from MVs)
1006 * so we know exactly what block size to use */
1007 sub_mb_type = MB_TYPE_8x8|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_4x4 */
1008 *mb_type |= MB_TYPE_8x8|MB_TYPE_L0L1;
1009 }else if(!is_b8x8 && (mb_type_col[0] & MB_TYPE_16x16_OR_INTRA)){
1010 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1011 *mb_type |= MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_16x16 */
1013 sub_mb_type = MB_TYPE_16x16|MB_TYPE_P0L0|MB_TYPE_P0L1|MB_TYPE_DIRECT2; /* B_SUB_8x8 */
1014 *mb_type |= MB_TYPE_8x8|MB_TYPE_L0L1;
1019 l1mv0 = &h->ref_list[1][0].motion_val[0][h->mb2b_xy [mb_xy]];
1020 l1mv1 = &h->ref_list[1][0].motion_val[1][h->mb2b_xy [mb_xy]];
1021 l1ref0 = &h->ref_list[1][0].ref_index [0][h->mb2b8_xy[mb_xy]];
1022 l1ref1 = &h->ref_list[1][0].ref_index [1][h->mb2b8_xy[mb_xy]];
1025 l1ref0 += h->b8_stride;
1026 l1ref1 += h->b8_stride;
1027 l1mv0 += 2*b4_stride;
1028 l1mv1 += 2*b4_stride;
1032 if(h->direct_spatial_mv_pred){
1037 /* FIXME interlacing + spatial direct uses wrong colocated block positions */
1039 /* ref = min(neighbors) */
1040 for(list=0; list<2; list++){
1041 int refa = h->ref_cache[list][scan8[0] - 1];
1042 int refb = h->ref_cache[list][scan8[0] - 8];
1043 int refc = h->ref_cache[list][scan8[0] - 8 + 4];
1044 if(refc == PART_NOT_AVAILABLE)
1045 refc = h->ref_cache[list][scan8[0] - 8 - 1];
1046 ref[list] = FFMIN3((unsigned)refa, (unsigned)refb, (unsigned)refc);
1051 if(ref[0] < 0 && ref[1] < 0){
1052 ref[0] = ref[1] = 0;
1053 mv[0][0] = mv[0][1] =
1054 mv[1][0] = mv[1][1] = 0;
1056 for(list=0; list<2; list++){
1058 pred_motion(h, 0, 4, list, ref[list], &mv[list][0], &mv[list][1]);
1060 mv[list][0] = mv[list][1] = 0;
1066 *mb_type &= ~MB_TYPE_L1;
1067 sub_mb_type &= ~MB_TYPE_L1;
1068 }else if(ref[0] < 0){
1070 *mb_type &= ~MB_TYPE_L0;
1071 sub_mb_type &= ~MB_TYPE_L0;
1074 if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col[0])){
1075 for(i8=0; i8<4; i8++){
1078 int xy8 = x8+y8*b8_stride;
1079 int xy4 = 3*x8+y8*b4_stride;
1082 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1084 h->sub_mb_type[i8] = sub_mb_type;
1086 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
1087 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
1088 if(!IS_INTRA(mb_type_col[y8])
1089 && ( (l1ref0[xy8] == 0 && FFABS(l1mv0[xy4][0]) <= 1 && FFABS(l1mv0[xy4][1]) <= 1)
1090 || (l1ref0[xy8] < 0 && l1ref1[xy8] == 0 && FFABS(l1mv1[xy4][0]) <= 1 && FFABS(l1mv1[xy4][1]) <= 1))){
1092 a= pack16to32(mv[0][0],mv[0][1]);
1094 b= pack16to32(mv[1][0],mv[1][1]);
1096 a= pack16to32(mv[0][0],mv[0][1]);
1097 b= pack16to32(mv[1][0],mv[1][1]);
1099 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, a, 4);
1100 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, b, 4);
1102 }else if(IS_16X16(*mb_type)){
1105 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, (uint8_t)ref[0], 1);
1106 fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, (uint8_t)ref[1], 1);
1107 if(!IS_INTRA(mb_type_col[0])
1108 && ( (l1ref0[0] == 0 && FFABS(l1mv0[0][0]) <= 1 && FFABS(l1mv0[0][1]) <= 1)
1109 || (l1ref0[0] < 0 && l1ref1[0] == 0 && FFABS(l1mv1[0][0]) <= 1 && FFABS(l1mv1[0][1]) <= 1
1110 && (h->x264_build>33 || !h->x264_build)))){
1112 a= pack16to32(mv[0][0],mv[0][1]);
1114 b= pack16to32(mv[1][0],mv[1][1]);
1116 a= pack16to32(mv[0][0],mv[0][1]);
1117 b= pack16to32(mv[1][0],mv[1][1]);
1119 fill_rectangle(&h->mv_cache[0][scan8[0]], 4, 4, 8, a, 4);
1120 fill_rectangle(&h->mv_cache[1][scan8[0]], 4, 4, 8, b, 4);
1122 for(i8=0; i8<4; i8++){
1123 const int x8 = i8&1;
1124 const int y8 = i8>>1;
1126 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1128 h->sub_mb_type[i8] = sub_mb_type;
1130 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mv[0][0],mv[0][1]), 4);
1131 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mv[1][0],mv[1][1]), 4);
1132 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[0], 1);
1133 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, (uint8_t)ref[1], 1);
1136 if(!IS_INTRA(mb_type_col[0]) && ( l1ref0[x8 + y8*h->b8_stride] == 0
1137 || (l1ref0[x8 + y8*h->b8_stride] < 0 && l1ref1[x8 + y8*h->b8_stride] == 0
1138 && (h->x264_build>33 || !h->x264_build)))){
1139 const int16_t (*l1mv)[2]= l1ref0[x8 + y8*h->b8_stride] == 0 ? l1mv0 : l1mv1;
1140 if(IS_SUB_8X8(sub_mb_type)){
1141 const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
1142 if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
1144 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1146 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1149 for(i4=0; i4<4; i4++){
1150 const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
1151 if(FFABS(mv_col[0]) <= 1 && FFABS(mv_col[1]) <= 1){
1153 *(uint32_t*)h->mv_cache[0][scan8[i8*4+i4]] = 0;
1155 *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] = 0;
1161 }else{ /* direct temporal mv pred */
1162 const int *map_col_to_list0[2] = {h->map_col_to_list0[0], h->map_col_to_list0[1]};
1163 const int *dist_scale_factor = h->dist_scale_factor;
1165 if(FRAME_MBAFF && IS_INTERLACED(*mb_type)){
1166 map_col_to_list0[0] = h->map_col_to_list0_field[0];
1167 map_col_to_list0[1] = h->map_col_to_list0_field[1];
1168 dist_scale_factor = h->dist_scale_factor_field;
1170 if(IS_INTERLACED(*mb_type) != IS_INTERLACED(mb_type_col[0])){
1171 /* FIXME assumes direct_8x8_inference == 1 */
1172 int y_shift = 2*!IS_INTERLACED(*mb_type);
1173 int ref_shift= FRAME_MBAFF ? y_shift : 1;
1175 for(i8=0; i8<4; i8++){
1176 const int x8 = i8&1;
1177 const int y8 = i8>>1;
1179 const int16_t (*l1mv)[2]= l1mv0;
1181 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1183 h->sub_mb_type[i8] = sub_mb_type;
1185 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1186 if(IS_INTRA(mb_type_col[y8])){
1187 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
1188 fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1189 fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1193 ref0 = l1ref0[x8 + y8*b8_stride];
1195 ref0 = map_col_to_list0[0][ref0*2>>ref_shift];
1197 ref0 = map_col_to_list0[1][l1ref1[x8 + y8*b8_stride]*2>>ref_shift];
1200 scale = dist_scale_factor[ref0];
1201 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
1204 const int16_t *mv_col = l1mv[x8*3 + y8*b4_stride];
1205 int my_col = (mv_col[1]<<y_shift)/2;
1206 int mx = (scale * mv_col[0] + 128) >> 8;
1207 int my = (scale * my_col + 128) >> 8;
1208 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
1209 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-my_col), 4);
1215 /* one-to-one mv scaling */
1217 if(IS_16X16(*mb_type)){
1220 fill_rectangle(&h->ref_cache[1][scan8[0]], 4, 4, 8, 0, 1);
1221 if(IS_INTRA(mb_type_col[0])){
1224 const int ref0 = l1ref0[0] >= 0 ? map_col_to_list0[0][l1ref0[0]]
1225 : map_col_to_list0[1][l1ref1[0]];
1226 const int scale = dist_scale_factor[ref0];
1227 const int16_t *mv_col = l1ref0[0] >= 0 ? l1mv0[0] : l1mv1[0];
1229 mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
1230 mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
1232 mv0= pack16to32(mv_l0[0],mv_l0[1]);
1233 mv1= pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
1235 fill_rectangle(&h->ref_cache[0][scan8[0]], 4, 4, 8, ref, 1);
1236 fill_rectangle(&h-> mv_cache[0][scan8[0]], 4, 4, 8, mv0, 4);
1237 fill_rectangle(&h-> mv_cache[1][scan8[0]], 4, 4, 8, mv1, 4);
1239 for(i8=0; i8<4; i8++){
1240 const int x8 = i8&1;
1241 const int y8 = i8>>1;
1243 const int16_t (*l1mv)[2]= l1mv0;
1245 if(is_b8x8 && !IS_DIRECT(h->sub_mb_type[i8]))
1247 h->sub_mb_type[i8] = sub_mb_type;
1248 fill_rectangle(&h->ref_cache[1][scan8[i8*4]], 2, 2, 8, 0, 1);
1249 if(IS_INTRA(mb_type_col[0])){
1250 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, 0, 1);
1251 fill_rectangle(&h-> mv_cache[0][scan8[i8*4]], 2, 2, 8, 0, 4);
1252 fill_rectangle(&h-> mv_cache[1][scan8[i8*4]], 2, 2, 8, 0, 4);
1256 ref0 = l1ref0[x8 + y8*h->b8_stride];
1258 ref0 = map_col_to_list0[0][ref0];
1260 ref0 = map_col_to_list0[1][l1ref1[x8 + y8*h->b8_stride]];
1263 scale = dist_scale_factor[ref0];
1265 fill_rectangle(&h->ref_cache[0][scan8[i8*4]], 2, 2, 8, ref0, 1);
1266 if(IS_SUB_8X8(sub_mb_type)){
1267 const int16_t *mv_col = l1mv[x8*3 + y8*3*h->b_stride];
1268 int mx = (scale * mv_col[0] + 128) >> 8;
1269 int my = (scale * mv_col[1] + 128) >> 8;
1270 fill_rectangle(&h->mv_cache[0][scan8[i8*4]], 2, 2, 8, pack16to32(mx,my), 4);
1271 fill_rectangle(&h->mv_cache[1][scan8[i8*4]], 2, 2, 8, pack16to32(mx-mv_col[0],my-mv_col[1]), 4);
1273 for(i4=0; i4<4; i4++){
1274 const int16_t *mv_col = l1mv[x8*2 + (i4&1) + (y8*2 + (i4>>1))*h->b_stride];
1275 int16_t *mv_l0 = h->mv_cache[0][scan8[i8*4+i4]];
1276 mv_l0[0] = (scale * mv_col[0] + 128) >> 8;
1277 mv_l0[1] = (scale * mv_col[1] + 128) >> 8;
1278 *(uint32_t*)h->mv_cache[1][scan8[i8*4+i4]] =
1279 pack16to32(mv_l0[0]-mv_col[0],mv_l0[1]-mv_col[1]);
1286 static inline void write_back_motion(H264Context *h, int mb_type){
1287 MpegEncContext * const s = &h->s;
1288 const int b_xy = 4*s->mb_x + 4*s->mb_y*h->b_stride;
1289 const int b8_xy= 2*s->mb_x + 2*s->mb_y*h->b8_stride;
1292 if(!USES_LIST(mb_type, 0))
1293 fill_rectangle(&s->current_picture.ref_index[0][b8_xy], 2, 2, h->b8_stride, (uint8_t)LIST_NOT_USED, 1);
1295 for(list=0; list<h->list_count; list++){
1297 if(!USES_LIST(mb_type, list))
1301 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+0 + 8*y];
1302 *(uint64_t*)s->current_picture.motion_val[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mv_cache[list][scan8[0]+2 + 8*y];
1304 if( h->pps.cabac ) {
1305 if(IS_SKIP(mb_type))
1306 fill_rectangle(h->mvd_table[list][b_xy], 4, 4, h->b_stride, 0, 4);
1309 *(uint64_t*)h->mvd_table[list][b_xy + 0 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+0 + 8*y];
1310 *(uint64_t*)h->mvd_table[list][b_xy + 2 + y*h->b_stride]= *(uint64_t*)h->mvd_cache[list][scan8[0]+2 + 8*y];
1315 int8_t *ref_index = &s->current_picture.ref_index[list][b8_xy];
1316 ref_index[0+0*h->b8_stride]= h->ref_cache[list][scan8[0]];
1317 ref_index[1+0*h->b8_stride]= h->ref_cache[list][scan8[4]];
1318 ref_index[0+1*h->b8_stride]= h->ref_cache[list][scan8[8]];
1319 ref_index[1+1*h->b8_stride]= h->ref_cache[list][scan8[12]];
1323 if(h->slice_type_nos == FF_B_TYPE && h->pps.cabac){
1324 if(IS_8X8(mb_type)){
1325 uint8_t *direct_table = &h->direct_table[b8_xy];
1326 direct_table[1+0*h->b8_stride] = IS_DIRECT(h->sub_mb_type[1]) ? 1 : 0;
1327 direct_table[0+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[2]) ? 1 : 0;
1328 direct_table[1+1*h->b8_stride] = IS_DIRECT(h->sub_mb_type[3]) ? 1 : 0;
1334 * Decodes a network abstraction layer unit.
1335 * @param consumed is the number of bytes used as input
1336 * @param length is the length of the array
1337 * @param dst_length is the number of decoded bytes FIXME here or a decode rbsp tailing?
1338 * @returns decoded bytes, might be src+1 if no escapes
1340 static const uint8_t *decode_nal(H264Context *h, const uint8_t *src, int *dst_length, int *consumed, int length){
1345 // src[0]&0x80; //forbidden bit
1346 h->nal_ref_idc= src[0]>>5;
1347 h->nal_unit_type= src[0]&0x1F;
1351 for(i=0; i<length; i++)
1352 printf("%2X ", src[i]);
1354 for(i=0; i+1<length; i+=2){
1355 if(src[i]) continue;
1356 if(i>0 && src[i-1]==0) i--;
1357 if(i+2<length && src[i+1]==0 && src[i+2]<=3){
1359 /* startcode, so we must be past the end */
1366 if(i>=length-1){ //no escaped 0
1367 *dst_length= length;
1368 *consumed= length+1; //+1 for the header
1372 bufidx = h->nal_unit_type == NAL_DPC ? 1 : 0; // use second escape buffer for inter data
1373 h->rbsp_buffer[bufidx]= av_fast_realloc(h->rbsp_buffer[bufidx], &h->rbsp_buffer_size[bufidx], length);
1374 dst= h->rbsp_buffer[bufidx];
1380 //printf("decoding esc\n");
1383 //remove escapes (very rare 1:2^22)
1384 if(si+2<length && src[si]==0 && src[si+1]==0 && src[si+2]<=3){
1385 if(src[si+2]==3){ //escape
1390 }else //next start code
1394 dst[di++]= src[si++];
1398 *consumed= si + 1;//+1 for the header
1399 //FIXME store exact number of bits in the getbitcontext (it is needed for decoding)
1404 * identifies the exact end of the bitstream
1405 * @return the length of the trailing, or 0 if damaged
1407 static int decode_rbsp_trailing(H264Context *h, const uint8_t *src){
1411 tprintf(h->s.avctx, "rbsp trailing %X\n", v);
1421 * IDCT transforms the 16 dc values and dequantizes them.
1422 * @param qp quantization parameter
1424 static void h264_luma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
1427 int temp[16]; //FIXME check if this is a good idea
1428 static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
1429 static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1431 //memset(block, 64, 2*256);
1434 const int offset= y_offset[i];
1435 const int z0= block[offset+stride*0] + block[offset+stride*4];
1436 const int z1= block[offset+stride*0] - block[offset+stride*4];
1437 const int z2= block[offset+stride*1] - block[offset+stride*5];
1438 const int z3= block[offset+stride*1] + block[offset+stride*5];
1447 const int offset= x_offset[i];
1448 const int z0= temp[4*0+i] + temp[4*2+i];
1449 const int z1= temp[4*0+i] - temp[4*2+i];
1450 const int z2= temp[4*1+i] - temp[4*3+i];
1451 const int z3= temp[4*1+i] + temp[4*3+i];
1453 block[stride*0 +offset]= ((((z0 + z3)*qmul + 128 ) >> 8)); //FIXME think about merging this into decode_residual
1454 block[stride*2 +offset]= ((((z1 + z2)*qmul + 128 ) >> 8));
1455 block[stride*8 +offset]= ((((z1 - z2)*qmul + 128 ) >> 8));
1456 block[stride*10+offset]= ((((z0 - z3)*qmul + 128 ) >> 8));
1462 * DCT transforms the 16 dc values.
1463 * @param qp quantization parameter ??? FIXME
1465 static void h264_luma_dc_dct_c(DCTELEM *block/*, int qp*/){
1466 // const int qmul= dequant_coeff[qp][0];
1468 int temp[16]; //FIXME check if this is a good idea
1469 static const int x_offset[4]={0, 1*stride, 4* stride, 5*stride};
1470 static const int y_offset[4]={0, 2*stride, 8* stride, 10*stride};
1473 const int offset= y_offset[i];
1474 const int z0= block[offset+stride*0] + block[offset+stride*4];
1475 const int z1= block[offset+stride*0] - block[offset+stride*4];
1476 const int z2= block[offset+stride*1] - block[offset+stride*5];
1477 const int z3= block[offset+stride*1] + block[offset+stride*5];
1486 const int offset= x_offset[i];
1487 const int z0= temp[4*0+i] + temp[4*2+i];
1488 const int z1= temp[4*0+i] - temp[4*2+i];
1489 const int z2= temp[4*1+i] - temp[4*3+i];
1490 const int z3= temp[4*1+i] + temp[4*3+i];
1492 block[stride*0 +offset]= (z0 + z3)>>1;
1493 block[stride*2 +offset]= (z1 + z2)>>1;
1494 block[stride*8 +offset]= (z1 - z2)>>1;
1495 block[stride*10+offset]= (z0 - z3)>>1;
1503 static void chroma_dc_dequant_idct_c(DCTELEM *block, int qp, int qmul){
1504 const int stride= 16*2;
1505 const int xStride= 16;
1508 a= block[stride*0 + xStride*0];
1509 b= block[stride*0 + xStride*1];
1510 c= block[stride*1 + xStride*0];
1511 d= block[stride*1 + xStride*1];
1518 block[stride*0 + xStride*0]= ((a+c)*qmul) >> 7;
1519 block[stride*0 + xStride*1]= ((e+b)*qmul) >> 7;
1520 block[stride*1 + xStride*0]= ((a-c)*qmul) >> 7;
1521 block[stride*1 + xStride*1]= ((e-b)*qmul) >> 7;
1525 static void chroma_dc_dct_c(DCTELEM *block){
1526 const int stride= 16*2;
1527 const int xStride= 16;
1530 a= block[stride*0 + xStride*0];
1531 b= block[stride*0 + xStride*1];
1532 c= block[stride*1 + xStride*0];
1533 d= block[stride*1 + xStride*1];
1540 block[stride*0 + xStride*0]= (a+c);
1541 block[stride*0 + xStride*1]= (e+b);
1542 block[stride*1 + xStride*0]= (a-c);
1543 block[stride*1 + xStride*1]= (e-b);
1548 * gets the chroma qp.
1550 static inline int get_chroma_qp(H264Context *h, int t, int qscale){
1551 return h->pps.chroma_qp_table[t][qscale];
1554 //FIXME need to check that this does not overflow signed 32 bit for low qp, I am not sure, it's very close
1555 //FIXME check that gcc inlines this (and optimizes intra & separate_dc stuff away)
1556 static inline int quantize_c(DCTELEM *block, uint8_t *scantable, int qscale, int intra, int separate_dc){
1558 const int * const quant_table= quant_coeff[qscale];
1559 const int bias= intra ? (1<<QUANT_SHIFT)/3 : (1<<QUANT_SHIFT)/6;
1560 const unsigned int threshold1= (1<<QUANT_SHIFT) - bias - 1;
1561 const unsigned int threshold2= (threshold1<<1);
1567 const int dc_bias= intra ? (1<<(QUANT_SHIFT-2))/3 : (1<<(QUANT_SHIFT-2))/6;
1568 const unsigned int dc_threshold1= (1<<(QUANT_SHIFT-2)) - dc_bias - 1;
1569 const unsigned int dc_threshold2= (dc_threshold1<<1);
1571 int level= block[0]*quant_coeff[qscale+18][0];
1572 if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1574 level= (dc_bias + level)>>(QUANT_SHIFT-2);
1577 level= (dc_bias - level)>>(QUANT_SHIFT-2);
1580 // last_non_zero = i;
1585 const int dc_bias= intra ? (1<<(QUANT_SHIFT+1))/3 : (1<<(QUANT_SHIFT+1))/6;
1586 const unsigned int dc_threshold1= (1<<(QUANT_SHIFT+1)) - dc_bias - 1;
1587 const unsigned int dc_threshold2= (dc_threshold1<<1);
1589 int level= block[0]*quant_table[0];
1590 if(((unsigned)(level+dc_threshold1))>dc_threshold2){
1592 level= (dc_bias + level)>>(QUANT_SHIFT+1);
1595 level= (dc_bias - level)>>(QUANT_SHIFT+1);
1598 // last_non_zero = i;
1611 const int j= scantable[i];
1612 int level= block[j]*quant_table[j];
1614 // if( bias+level >= (1<<(QMAT_SHIFT - 3))
1615 // || bias-level >= (1<<(QMAT_SHIFT - 3))){
1616 if(((unsigned)(level+threshold1))>threshold2){
1618 level= (bias + level)>>QUANT_SHIFT;
1621 level= (bias - level)>>QUANT_SHIFT;
1630 return last_non_zero;
1633 static inline void mc_dir_part(H264Context *h, Picture *pic, int n, int square, int chroma_height, int delta, int list,
1634 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1635 int src_x_offset, int src_y_offset,
1636 qpel_mc_func *qpix_op, h264_chroma_mc_func chroma_op){
1637 MpegEncContext * const s = &h->s;
1638 const int mx= h->mv_cache[list][ scan8[n] ][0] + src_x_offset*8;
1639 int my= h->mv_cache[list][ scan8[n] ][1] + src_y_offset*8;
1640 const int luma_xy= (mx&3) + ((my&3)<<2);
1641 uint8_t * src_y = pic->data[0] + (mx>>2) + (my>>2)*h->mb_linesize;
1642 uint8_t * src_cb, * src_cr;
1643 int extra_width= h->emu_edge_width;
1644 int extra_height= h->emu_edge_height;
1646 const int full_mx= mx>>2;
1647 const int full_my= my>>2;
1648 const int pic_width = 16*s->mb_width;
1649 const int pic_height = 16*s->mb_height >> MB_FIELD;
1651 if(!pic->data[0]) //FIXME this is unacceptable, some sensible error concealment must be done for missing reference frames
1654 if(mx&7) extra_width -= 3;
1655 if(my&7) extra_height -= 3;
1657 if( full_mx < 0-extra_width
1658 || full_my < 0-extra_height
1659 || full_mx + 16/*FIXME*/ > pic_width + extra_width
1660 || full_my + 16/*FIXME*/ > pic_height + extra_height){
1661 ff_emulated_edge_mc(s->edge_emu_buffer, src_y - 2 - 2*h->mb_linesize, h->mb_linesize, 16+5, 16+5/*FIXME*/, full_mx-2, full_my-2, pic_width, pic_height);
1662 src_y= s->edge_emu_buffer + 2 + 2*h->mb_linesize;
1666 qpix_op[luma_xy](dest_y, src_y, h->mb_linesize); //FIXME try variable height perhaps?
1668 qpix_op[luma_xy](dest_y + delta, src_y + delta, h->mb_linesize);
1671 if(ENABLE_GRAY && s->flags&CODEC_FLAG_GRAY) return;
1674 // chroma offset when predicting from a field of opposite parity
1675 my += 2 * ((s->mb_y & 1) - (pic->reference - 1));
1676 emu |= (my>>3) < 0 || (my>>3) + 8 >= (pic_height>>1);
1678 src_cb= pic->data[1] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
1679 src_cr= pic->data[2] + (mx>>3) + (my>>3)*h->mb_uvlinesize;
1682 ff_emulated_edge_mc(s->edge_emu_buffer, src_cb, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
1683 src_cb= s->edge_emu_buffer;
1685 chroma_op(dest_cb, src_cb, h->mb_uvlinesize, chroma_height, mx&7, my&7);
1688 ff_emulated_edge_mc(s->edge_emu_buffer, src_cr, h->mb_uvlinesize, 9, 9/*FIXME*/, (mx>>3), (my>>3), pic_width>>1, pic_height>>1);
1689 src_cr= s->edge_emu_buffer;
1691 chroma_op(dest_cr, src_cr, h->mb_uvlinesize, chroma_height, mx&7, my&7);
1694 static inline void mc_part_std(H264Context *h, int n, int square, int chroma_height, int delta,
1695 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1696 int x_offset, int y_offset,
1697 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
1698 qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
1699 int list0, int list1){
1700 MpegEncContext * const s = &h->s;
1701 qpel_mc_func *qpix_op= qpix_put;
1702 h264_chroma_mc_func chroma_op= chroma_put;
1704 dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
1705 dest_cb += x_offset + y_offset*h->mb_uvlinesize;
1706 dest_cr += x_offset + y_offset*h->mb_uvlinesize;
1707 x_offset += 8*s->mb_x;
1708 y_offset += 8*(s->mb_y >> MB_FIELD);
1711 Picture *ref= &h->ref_list[0][ h->ref_cache[0][ scan8[n] ] ];
1712 mc_dir_part(h, ref, n, square, chroma_height, delta, 0,
1713 dest_y, dest_cb, dest_cr, x_offset, y_offset,
1714 qpix_op, chroma_op);
1717 chroma_op= chroma_avg;
1721 Picture *ref= &h->ref_list[1][ h->ref_cache[1][ scan8[n] ] ];
1722 mc_dir_part(h, ref, n, square, chroma_height, delta, 1,
1723 dest_y, dest_cb, dest_cr, x_offset, y_offset,
1724 qpix_op, chroma_op);
1728 static inline void mc_part_weighted(H264Context *h, int n, int square, int chroma_height, int delta,
1729 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1730 int x_offset, int y_offset,
1731 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
1732 h264_weight_func luma_weight_op, h264_weight_func chroma_weight_op,
1733 h264_biweight_func luma_weight_avg, h264_biweight_func chroma_weight_avg,
1734 int list0, int list1){
1735 MpegEncContext * const s = &h->s;
1737 dest_y += 2*x_offset + 2*y_offset*h-> mb_linesize;
1738 dest_cb += x_offset + y_offset*h->mb_uvlinesize;
1739 dest_cr += x_offset + y_offset*h->mb_uvlinesize;
1740 x_offset += 8*s->mb_x;
1741 y_offset += 8*(s->mb_y >> MB_FIELD);
1744 /* don't optimize for luma-only case, since B-frames usually
1745 * use implicit weights => chroma too. */
1746 uint8_t *tmp_cb = s->obmc_scratchpad;
1747 uint8_t *tmp_cr = s->obmc_scratchpad + 8;
1748 uint8_t *tmp_y = s->obmc_scratchpad + 8*h->mb_uvlinesize;
1749 int refn0 = h->ref_cache[0][ scan8[n] ];
1750 int refn1 = h->ref_cache[1][ scan8[n] ];
1752 mc_dir_part(h, &h->ref_list[0][refn0], n, square, chroma_height, delta, 0,
1753 dest_y, dest_cb, dest_cr,
1754 x_offset, y_offset, qpix_put, chroma_put);
1755 mc_dir_part(h, &h->ref_list[1][refn1], n, square, chroma_height, delta, 1,
1756 tmp_y, tmp_cb, tmp_cr,
1757 x_offset, y_offset, qpix_put, chroma_put);
1759 if(h->use_weight == 2){
1760 int weight0 = h->implicit_weight[refn0][refn1];
1761 int weight1 = 64 - weight0;
1762 luma_weight_avg( dest_y, tmp_y, h-> mb_linesize, 5, weight0, weight1, 0);
1763 chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, 5, weight0, weight1, 0);
1764 chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, 5, weight0, weight1, 0);
1766 luma_weight_avg(dest_y, tmp_y, h->mb_linesize, h->luma_log2_weight_denom,
1767 h->luma_weight[0][refn0], h->luma_weight[1][refn1],
1768 h->luma_offset[0][refn0] + h->luma_offset[1][refn1]);
1769 chroma_weight_avg(dest_cb, tmp_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
1770 h->chroma_weight[0][refn0][0], h->chroma_weight[1][refn1][0],
1771 h->chroma_offset[0][refn0][0] + h->chroma_offset[1][refn1][0]);
1772 chroma_weight_avg(dest_cr, tmp_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
1773 h->chroma_weight[0][refn0][1], h->chroma_weight[1][refn1][1],
1774 h->chroma_offset[0][refn0][1] + h->chroma_offset[1][refn1][1]);
1777 int list = list1 ? 1 : 0;
1778 int refn = h->ref_cache[list][ scan8[n] ];
1779 Picture *ref= &h->ref_list[list][refn];
1780 mc_dir_part(h, ref, n, square, chroma_height, delta, list,
1781 dest_y, dest_cb, dest_cr, x_offset, y_offset,
1782 qpix_put, chroma_put);
1784 luma_weight_op(dest_y, h->mb_linesize, h->luma_log2_weight_denom,
1785 h->luma_weight[list][refn], h->luma_offset[list][refn]);
1786 if(h->use_weight_chroma){
1787 chroma_weight_op(dest_cb, h->mb_uvlinesize, h->chroma_log2_weight_denom,
1788 h->chroma_weight[list][refn][0], h->chroma_offset[list][refn][0]);
1789 chroma_weight_op(dest_cr, h->mb_uvlinesize, h->chroma_log2_weight_denom,
1790 h->chroma_weight[list][refn][1], h->chroma_offset[list][refn][1]);
1795 static inline void mc_part(H264Context *h, int n, int square, int chroma_height, int delta,
1796 uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1797 int x_offset, int y_offset,
1798 qpel_mc_func *qpix_put, h264_chroma_mc_func chroma_put,
1799 qpel_mc_func *qpix_avg, h264_chroma_mc_func chroma_avg,
1800 h264_weight_func *weight_op, h264_biweight_func *weight_avg,
1801 int list0, int list1){
1802 if((h->use_weight==2 && list0 && list1
1803 && (h->implicit_weight[ h->ref_cache[0][scan8[n]] ][ h->ref_cache[1][scan8[n]] ] != 32))
1804 || h->use_weight==1)
1805 mc_part_weighted(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
1806 x_offset, y_offset, qpix_put, chroma_put,
1807 weight_op[0], weight_op[3], weight_avg[0], weight_avg[3], list0, list1);
1809 mc_part_std(h, n, square, chroma_height, delta, dest_y, dest_cb, dest_cr,
1810 x_offset, y_offset, qpix_put, chroma_put, qpix_avg, chroma_avg, list0, list1);
1813 static inline void prefetch_motion(H264Context *h, int list){
1814 /* fetch pixels for estimated mv 4 macroblocks ahead
1815 * optimized for 64byte cache lines */
1816 MpegEncContext * const s = &h->s;
1817 const int refn = h->ref_cache[list][scan8[0]];
1819 const int mx= (h->mv_cache[list][scan8[0]][0]>>2) + 16*s->mb_x + 8;
1820 const int my= (h->mv_cache[list][scan8[0]][1]>>2) + 16*s->mb_y;
1821 uint8_t **src= h->ref_list[list][refn].data;
1822 int off= mx + (my + (s->mb_x&3)*4)*h->mb_linesize + 64;
1823 s->dsp.prefetch(src[0]+off, s->linesize, 4);
1824 off= (mx>>1) + ((my>>1) + (s->mb_x&7))*s->uvlinesize + 64;
1825 s->dsp.prefetch(src[1]+off, src[2]-src[1], 2);
1829 static void hl_motion(H264Context *h, uint8_t *dest_y, uint8_t *dest_cb, uint8_t *dest_cr,
1830 qpel_mc_func (*qpix_put)[16], h264_chroma_mc_func (*chroma_put),
1831 qpel_mc_func (*qpix_avg)[16], h264_chroma_mc_func (*chroma_avg),
1832 h264_weight_func *weight_op, h264_biweight_func *weight_avg){
1833 MpegEncContext * const s = &h->s;
1834 const int mb_xy= h->mb_xy;
1835 const int mb_type= s->current_picture.mb_type[mb_xy];
1837 assert(IS_INTER(mb_type));
1839 prefetch_motion(h, 0);
1841 if(IS_16X16(mb_type)){
1842 mc_part(h, 0, 1, 8, 0, dest_y, dest_cb, dest_cr, 0, 0,
1843 qpix_put[0], chroma_put[0], qpix_avg[0], chroma_avg[0],
1844 &weight_op[0], &weight_avg[0],
1845 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1846 }else if(IS_16X8(mb_type)){
1847 mc_part(h, 0, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 0,
1848 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
1849 &weight_op[1], &weight_avg[1],
1850 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1851 mc_part(h, 8, 0, 4, 8, dest_y, dest_cb, dest_cr, 0, 4,
1852 qpix_put[1], chroma_put[0], qpix_avg[1], chroma_avg[0],
1853 &weight_op[1], &weight_avg[1],
1854 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
1855 }else if(IS_8X16(mb_type)){
1856 mc_part(h, 0, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 0, 0,
1857 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1858 &weight_op[2], &weight_avg[2],
1859 IS_DIR(mb_type, 0, 0), IS_DIR(mb_type, 0, 1));
1860 mc_part(h, 4, 0, 8, 8*h->mb_linesize, dest_y, dest_cb, dest_cr, 4, 0,
1861 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1862 &weight_op[2], &weight_avg[2],
1863 IS_DIR(mb_type, 1, 0), IS_DIR(mb_type, 1, 1));
1867 assert(IS_8X8(mb_type));
1870 const int sub_mb_type= h->sub_mb_type[i];
1872 int x_offset= (i&1)<<2;
1873 int y_offset= (i&2)<<1;
1875 if(IS_SUB_8X8(sub_mb_type)){
1876 mc_part(h, n, 1, 4, 0, dest_y, dest_cb, dest_cr, x_offset, y_offset,
1877 qpix_put[1], chroma_put[1], qpix_avg[1], chroma_avg[1],
1878 &weight_op[3], &weight_avg[3],
1879 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1880 }else if(IS_SUB_8X4(sub_mb_type)){
1881 mc_part(h, n , 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset,
1882 qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
1883 &weight_op[4], &weight_avg[4],
1884 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1885 mc_part(h, n+2, 0, 2, 4, dest_y, dest_cb, dest_cr, x_offset, y_offset+2,
1886 qpix_put[2], chroma_put[1], qpix_avg[2], chroma_avg[1],
1887 &weight_op[4], &weight_avg[4],
1888 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1889 }else if(IS_SUB_4X8(sub_mb_type)){
1890 mc_part(h, n , 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset, y_offset,
1891 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
1892 &weight_op[5], &weight_avg[5],
1893 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1894 mc_part(h, n+1, 0, 4, 4*h->mb_linesize, dest_y, dest_cb, dest_cr, x_offset+2, y_offset,
1895 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
1896 &weight_op[5], &weight_avg[5],
1897 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1900 assert(IS_SUB_4X4(sub_mb_type));
1902 int sub_x_offset= x_offset + 2*(j&1);
1903 int sub_y_offset= y_offset + (j&2);
1904 mc_part(h, n+j, 1, 2, 0, dest_y, dest_cb, dest_cr, sub_x_offset, sub_y_offset,
1905 qpix_put[2], chroma_put[2], qpix_avg[2], chroma_avg[2],
1906 &weight_op[6], &weight_avg[6],
1907 IS_DIR(sub_mb_type, 0, 0), IS_DIR(sub_mb_type, 0, 1));
1913 prefetch_motion(h, 1);
1916 static av_cold void decode_init_vlc(void){
1917 static int done = 0;
1924 chroma_dc_coeff_token_vlc.table = chroma_dc_coeff_token_vlc_table;
1925 chroma_dc_coeff_token_vlc.table_allocated = chroma_dc_coeff_token_vlc_table_size;
1926 init_vlc(&chroma_dc_coeff_token_vlc, CHROMA_DC_COEFF_TOKEN_VLC_BITS, 4*5,
1927 &chroma_dc_coeff_token_len [0], 1, 1,
1928 &chroma_dc_coeff_token_bits[0], 1, 1,
1929 INIT_VLC_USE_NEW_STATIC);
1933 coeff_token_vlc[i].table = coeff_token_vlc_tables+offset;
1934 coeff_token_vlc[i].table_allocated = coeff_token_vlc_tables_size[i];
1935 init_vlc(&coeff_token_vlc[i], COEFF_TOKEN_VLC_BITS, 4*17,
1936 &coeff_token_len [i][0], 1, 1,
1937 &coeff_token_bits[i][0], 1, 1,
1938 INIT_VLC_USE_NEW_STATIC);
1939 offset += coeff_token_vlc_tables_size[i];
1942 * This is a one time safety check to make sure that
1943 * the packed static coeff_token_vlc table sizes
1944 * were initialized correctly.
1946 assert(offset == sizeof(coeff_token_vlc_tables)/(sizeof(VLC_TYPE)*2));
1949 chroma_dc_total_zeros_vlc[i].table = chroma_dc_total_zeros_vlc_tables[i];
1950 chroma_dc_total_zeros_vlc[i].table_allocated = chroma_dc_total_zeros_vlc_tables_size;
1951 init_vlc(&chroma_dc_total_zeros_vlc[i],
1952 CHROMA_DC_TOTAL_ZEROS_VLC_BITS, 4,
1953 &chroma_dc_total_zeros_len [i][0], 1, 1,
1954 &chroma_dc_total_zeros_bits[i][0], 1, 1,
1955 INIT_VLC_USE_NEW_STATIC);
1957 for(i=0; i<15; i++){
1958 total_zeros_vlc[i].table = total_zeros_vlc_tables[i];
1959 total_zeros_vlc[i].table_allocated = total_zeros_vlc_tables_size;
1960 init_vlc(&total_zeros_vlc[i],
1961 TOTAL_ZEROS_VLC_BITS, 16,
1962 &total_zeros_len [i][0], 1, 1,
1963 &total_zeros_bits[i][0], 1, 1,
1964 INIT_VLC_USE_NEW_STATIC);
1968 run_vlc[i].table = run_vlc_tables[i];
1969 run_vlc[i].table_allocated = run_vlc_tables_size;
1970 init_vlc(&run_vlc[i],
1972 &run_len [i][0], 1, 1,
1973 &run_bits[i][0], 1, 1,
1974 INIT_VLC_USE_NEW_STATIC);
1976 run7_vlc.table = run7_vlc_table,
1977 run7_vlc.table_allocated = run7_vlc_table_size;
1978 init_vlc(&run7_vlc, RUN7_VLC_BITS, 16,
1979 &run_len [6][0], 1, 1,
1980 &run_bits[6][0], 1, 1,
1981 INIT_VLC_USE_NEW_STATIC);
1985 static void free_tables(H264Context *h){
1988 av_freep(&h->intra4x4_pred_mode);
1989 av_freep(&h->chroma_pred_mode_table);
1990 av_freep(&h->cbp_table);
1991 av_freep(&h->mvd_table[0]);
1992 av_freep(&h->mvd_table[1]);
1993 av_freep(&h->direct_table);
1994 av_freep(&h->non_zero_count);
1995 av_freep(&h->slice_table_base);
1996 h->slice_table= NULL;
1998 av_freep(&h->mb2b_xy);
1999 av_freep(&h->mb2b8_xy);
2001 for(i = 0; i < MAX_SPS_COUNT; i++)
2002 av_freep(h->sps_buffers + i);
2004 for(i = 0; i < MAX_PPS_COUNT; i++)
2005 av_freep(h->pps_buffers + i);
2007 for(i = 0; i < h->s.avctx->thread_count; i++) {
2008 hx = h->thread_context[i];
2010 av_freep(&hx->top_borders[1]);
2011 av_freep(&hx->top_borders[0]);
2012 av_freep(&hx->s.obmc_scratchpad);
2016 static void init_dequant8_coeff_table(H264Context *h){
2018 const int transpose = (h->s.dsp.h264_idct8_add != ff_h264_idct8_add_c); //FIXME ugly
2019 h->dequant8_coeff[0] = h->dequant8_buffer[0];
2020 h->dequant8_coeff[1] = h->dequant8_buffer[1];
2022 for(i=0; i<2; i++ ){
2023 if(i && !memcmp(h->pps.scaling_matrix8[0], h->pps.scaling_matrix8[1], 64*sizeof(uint8_t))){
2024 h->dequant8_coeff[1] = h->dequant8_buffer[0];
2028 for(q=0; q<52; q++){
2029 int shift = ff_div6[q];
2030 int idx = ff_rem6[q];
2032 h->dequant8_coeff[i][q][transpose ? (x>>3)|((x&7)<<3) : x] =
2033 ((uint32_t)dequant8_coeff_init[idx][ dequant8_coeff_init_scan[((x>>1)&12) | (x&3)] ] *
2034 h->pps.scaling_matrix8[i][x]) << shift;
2039 static void init_dequant4_coeff_table(H264Context *h){
2041 const int transpose = (h->s.dsp.h264_idct_add != ff_h264_idct_add_c); //FIXME ugly
2042 for(i=0; i<6; i++ ){
2043 h->dequant4_coeff[i] = h->dequant4_buffer[i];
2045 if(!memcmp(h->pps.scaling_matrix4[j], h->pps.scaling_matrix4[i], 16*sizeof(uint8_t))){
2046 h->dequant4_coeff[i] = h->dequant4_buffer[j];
2053 for(q=0; q<52; q++){
2054 int shift = ff_div6[q] + 2;
2055 int idx = ff_rem6[q];
2057 h->dequant4_coeff[i][q][transpose ? (x>>2)|((x<<2)&0xF) : x] =
2058 ((uint32_t)dequant4_coeff_init[idx][(x&1) + ((x>>2)&1)] *
2059 h->pps.scaling_matrix4[i][x]) << shift;
2064 static void init_dequant_tables(H264Context *h){
2066 init_dequant4_coeff_table(h);
2067 if(h->pps.transform_8x8_mode)
2068 init_dequant8_coeff_table(h);
2069 if(h->sps.transform_bypass){
2072 h->dequant4_coeff[i][0][x] = 1<<6;
2073 if(h->pps.transform_8x8_mode)
2076 h->dequant8_coeff[i][0][x] = 1<<6;
2083 * needs width/height
2085 static int alloc_tables(H264Context *h){
2086 MpegEncContext * const s = &h->s;
2087 const int big_mb_num= s->mb_stride * (s->mb_height+1);
2090 CHECKED_ALLOCZ(h->intra4x4_pred_mode, big_mb_num * 8 * sizeof(uint8_t))
2092 CHECKED_ALLOCZ(h->non_zero_count , big_mb_num * 16 * sizeof(uint8_t))
2093 CHECKED_ALLOCZ(h->slice_table_base , (big_mb_num+s->mb_stride) * sizeof(uint8_t))
2094 CHECKED_ALLOCZ(h->cbp_table, big_mb_num * sizeof(uint16_t))
2096 CHECKED_ALLOCZ(h->chroma_pred_mode_table, big_mb_num * sizeof(uint8_t))
2097 CHECKED_ALLOCZ(h->mvd_table[0], 32*big_mb_num * sizeof(uint16_t));
2098 CHECKED_ALLOCZ(h->mvd_table[1], 32*big_mb_num * sizeof(uint16_t));
2099 CHECKED_ALLOCZ(h->direct_table, 32*big_mb_num * sizeof(uint8_t));
2101 memset(h->slice_table_base, -1, (big_mb_num+s->mb_stride) * sizeof(uint8_t));
2102 h->slice_table= h->slice_table_base + s->mb_stride*2 + 1;
2104 CHECKED_ALLOCZ(h->mb2b_xy , big_mb_num * sizeof(uint32_t));
2105 CHECKED_ALLOCZ(h->mb2b8_xy , big_mb_num * sizeof(uint32_t));
2106 for(y=0; y<s->mb_height; y++){
2107 for(x=0; x<s->mb_width; x++){
2108 const int mb_xy= x + y*s->mb_stride;
2109 const int b_xy = 4*x + 4*y*h->b_stride;
2110 const int b8_xy= 2*x + 2*y*h->b8_stride;
2112 h->mb2b_xy [mb_xy]= b_xy;
2113 h->mb2b8_xy[mb_xy]= b8_xy;
2117 s->obmc_scratchpad = NULL;
2119 if(!h->dequant4_coeff[0])
2120 init_dequant_tables(h);
2129 * Mimic alloc_tables(), but for every context thread.
2131 static void clone_tables(H264Context *dst, H264Context *src){
2132 dst->intra4x4_pred_mode = src->intra4x4_pred_mode;
2133 dst->non_zero_count = src->non_zero_count;
2134 dst->slice_table = src->slice_table;
2135 dst->cbp_table = src->cbp_table;
2136 dst->mb2b_xy = src->mb2b_xy;
2137 dst->mb2b8_xy = src->mb2b8_xy;
2138 dst->chroma_pred_mode_table = src->chroma_pred_mode_table;
2139 dst->mvd_table[0] = src->mvd_table[0];
2140 dst->mvd_table[1] = src->mvd_table[1];
2141 dst->direct_table = src->direct_table;
2143 dst->s.obmc_scratchpad = NULL;
2144 ff_h264_pred_init(&dst->hpc, src->s.codec_id);
2149 * Allocate buffers which are not shared amongst multiple threads.
2151 static int context_init(H264Context *h){
2152 CHECKED_ALLOCZ(h->top_borders[0], h->s.mb_width * (16+8+8) * sizeof(uint8_t))
2153 CHECKED_ALLOCZ(h->top_borders[1], h->s.mb_width * (16+8+8) * sizeof(uint8_t))
2157 return -1; // free_tables will clean up for us
2160 static av_cold void common_init(H264Context *h){
2161 MpegEncContext * const s = &h->s;
2163 s->width = s->avctx->width;
2164 s->height = s->avctx->height;
2165 s->codec_id= s->avctx->codec->id;
2167 ff_h264_pred_init(&h->hpc, s->codec_id);
2169 h->dequant_coeff_pps= -1;
2170 s->unrestricted_mv=1;
2171 s->decode=1; //FIXME
2173 memset(h->pps.scaling_matrix4, 16, 6*16*sizeof(uint8_t));
2174 memset(h->pps.scaling_matrix8, 16, 2*64*sizeof(uint8_t));
2177 static av_cold int decode_init(AVCodecContext *avctx){
2178 H264Context *h= avctx->priv_data;
2179 MpegEncContext * const s = &h->s;
2181 MPV_decode_defaults(s);
2186 s->out_format = FMT_H264;
2187 s->workaround_bugs= avctx->workaround_bugs;
2190 // s->decode_mb= ff_h263_decode_mb;
2191 s->quarter_sample = 1;
2194 if(avctx->codec_id == CODEC_ID_SVQ3)
2195 avctx->pix_fmt= PIX_FMT_YUVJ420P;
2197 avctx->pix_fmt= PIX_FMT_YUV420P;
2201 if(avctx->extradata_size > 0 && avctx->extradata &&
2202 *(char *)avctx->extradata == 1){
2209 h->thread_context[0] = h;
2210 h->outputed_poc = INT_MIN;
2214 static int frame_start(H264Context *h){
2215 MpegEncContext * const s = &h->s;
2218 if(MPV_frame_start(s, s->avctx) < 0)
2220 ff_er_frame_start(s);
2222 * MPV_frame_start uses pict_type to derive key_frame.
2223 * This is incorrect for H.264; IDR markings must be used.
2224 * Zero here; IDR markings per slice in frame or fields are ORed in later.
2225 * See decode_nal_units().
2227 s->current_picture_ptr->key_frame= 0;
2229 assert(s->linesize && s->uvlinesize);
2231 for(i=0; i<16; i++){
2232 h->block_offset[i]= 4*((scan8[i] - scan8[0])&7) + 4*s->linesize*((scan8[i] - scan8[0])>>3);
2233 h->block_offset[24+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->linesize*((scan8[i] - scan8[0])>>3);
2236 h->block_offset[16+i]=
2237 h->block_offset[20+i]= 4*((scan8[i] - scan8[0])&7) + 4*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2238 h->block_offset[24+16+i]=
2239 h->block_offset[24+20+i]= 4*((scan8[i] - scan8[0])&7) + 8*s->uvlinesize*((scan8[i] - scan8[0])>>3);
2242 /* can't be in alloc_tables because linesize isn't known there.
2243 * FIXME: redo bipred weight to not require extra buffer? */
2244 for(i = 0; i < s->avctx->thread_count; i++)
2245 if(!h->thread_context[i]->s.obmc_scratchpad)
2246 h->thread_context[i]->s.obmc_scratchpad = av_malloc(16*2*s->linesize + 8*2*s->uvlinesize);
2248 /* some macroblocks will be accessed before they're available */
2249 if(FRAME_MBAFF || s->avctx->thread_count > 1)
2250 memset(h->slice_table, -1, (s->mb_height*s->mb_stride-1) * sizeof(uint8_t));
2252 // s->decode= (s->flags&CODEC_FLAG_PSNR) || !s->encoding || s->current_picture.reference /*|| h->contains_intra*/ || 1;
2254 // We mark the current picture as non-reference after allocating it, so
2255 // that if we break out due to an error it can be released automatically
2256 // in the next MPV_frame_start().
2257 // SVQ3 as well as most other codecs have only last/next/current and thus
2258 // get released even with set reference, besides SVQ3 and others do not
2259 // mark frames as reference later "naturally".
2260 if(s->codec_id != CODEC_ID_SVQ3)
2261 s->current_picture_ptr->reference= 0;
2263 s->current_picture_ptr->field_poc[0]=
2264 s->current_picture_ptr->field_poc[1]= INT_MAX;
2265 assert(s->current_picture_ptr->long_ref==0);
2270 static inline void backup_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple){
2271 MpegEncContext * const s = &h->s;
2275 src_cb -= uvlinesize;
2276 src_cr -= uvlinesize;
2278 // There are two lines saved, the line above the the top macroblock of a pair,
2279 // and the line above the bottom macroblock
2280 h->left_border[0]= h->top_borders[0][s->mb_x][15];
2281 for(i=1; i<17; i++){
2282 h->left_border[i]= src_y[15+i* linesize];
2285 *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 16*linesize);
2286 *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+16*linesize);
2288 if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2289 h->left_border[17 ]= h->top_borders[0][s->mb_x][16+7];
2290 h->left_border[17+9]= h->top_borders[0][s->mb_x][24+7];
2292 h->left_border[i+17 ]= src_cb[7+i*uvlinesize];
2293 h->left_border[i+17+9]= src_cr[7+i*uvlinesize];
2295 *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+8*uvlinesize);
2296 *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+8*uvlinesize);
2300 static inline void xchg_mb_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg, int simple){
2301 MpegEncContext * const s = &h->s;
2308 if(h->deblocking_filter == 2) {
2310 deblock_left = h->slice_table[mb_xy] == h->slice_table[mb_xy - 1];
2311 deblock_top = h->slice_table[mb_xy] == h->slice_table[h->top_mb_xy];
2313 deblock_left = (s->mb_x > 0);
2314 deblock_top = (s->mb_y > 0);
2317 src_y -= linesize + 1;
2318 src_cb -= uvlinesize + 1;
2319 src_cr -= uvlinesize + 1;
2321 #define XCHG(a,b,t,xchg)\
2328 for(i = !deblock_top; i<17; i++){
2329 XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
2334 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
2335 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
2336 if(s->mb_x+1 < s->mb_width){
2337 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
2341 if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2343 for(i = !deblock_top; i<9; i++){
2344 XCHG(h->left_border[i+17 ], src_cb[i*uvlinesize], temp8, xchg);
2345 XCHG(h->left_border[i+17+9], src_cr[i*uvlinesize], temp8, xchg);
2349 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
2350 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
2355 static inline void backup_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize){
2356 MpegEncContext * const s = &h->s;
2359 src_y -= 2 * linesize;
2360 src_cb -= 2 * uvlinesize;
2361 src_cr -= 2 * uvlinesize;
2363 // There are two lines saved, the line above the the top macroblock of a pair,
2364 // and the line above the bottom macroblock
2365 h->left_border[0]= h->top_borders[0][s->mb_x][15];
2366 h->left_border[1]= h->top_borders[1][s->mb_x][15];
2367 for(i=2; i<34; i++){
2368 h->left_border[i]= src_y[15+i* linesize];
2371 *(uint64_t*)(h->top_borders[0][s->mb_x]+0)= *(uint64_t*)(src_y + 32*linesize);
2372 *(uint64_t*)(h->top_borders[0][s->mb_x]+8)= *(uint64_t*)(src_y +8+32*linesize);
2373 *(uint64_t*)(h->top_borders[1][s->mb_x]+0)= *(uint64_t*)(src_y + 33*linesize);
2374 *(uint64_t*)(h->top_borders[1][s->mb_x]+8)= *(uint64_t*)(src_y +8+33*linesize);
2376 if(!ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2377 h->left_border[34 ]= h->top_borders[0][s->mb_x][16+7];
2378 h->left_border[34+ 1]= h->top_borders[1][s->mb_x][16+7];
2379 h->left_border[34+18 ]= h->top_borders[0][s->mb_x][24+7];
2380 h->left_border[34+18+1]= h->top_borders[1][s->mb_x][24+7];
2381 for(i=2; i<18; i++){
2382 h->left_border[i+34 ]= src_cb[7+i*uvlinesize];
2383 h->left_border[i+34+18]= src_cr[7+i*uvlinesize];
2385 *(uint64_t*)(h->top_borders[0][s->mb_x]+16)= *(uint64_t*)(src_cb+16*uvlinesize);
2386 *(uint64_t*)(h->top_borders[0][s->mb_x]+24)= *(uint64_t*)(src_cr+16*uvlinesize);
2387 *(uint64_t*)(h->top_borders[1][s->mb_x]+16)= *(uint64_t*)(src_cb+17*uvlinesize);
2388 *(uint64_t*)(h->top_borders[1][s->mb_x]+24)= *(uint64_t*)(src_cr+17*uvlinesize);
2392 static inline void xchg_pair_border(H264Context *h, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int xchg){
2393 MpegEncContext * const s = &h->s;
2396 int deblock_left = (s->mb_x > 0);
2397 int deblock_top = (s->mb_y > 1);
2399 tprintf(s->avctx, "xchg_pair_border: src_y:%p src_cb:%p src_cr:%p ls:%d uvls:%d\n", src_y, src_cb, src_cr, linesize, uvlinesize);
2401 src_y -= 2 * linesize + 1;
2402 src_cb -= 2 * uvlinesize + 1;
2403 src_cr -= 2 * uvlinesize + 1;
2405 #define XCHG(a,b,t,xchg)\
2412 for(i = (!deblock_top)<<1; i<34; i++){
2413 XCHG(h->left_border[i ], src_y [i* linesize], temp8, xchg);
2418 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+0), *(uint64_t*)(src_y +1), temp64, xchg);
2419 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+8), *(uint64_t*)(src_y +9), temp64, 1);
2420 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+0), *(uint64_t*)(src_y +1 +linesize), temp64, xchg);
2421 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+8), *(uint64_t*)(src_y +9 +linesize), temp64, 1);
2422 if(s->mb_x+1 < s->mb_width){
2423 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x+1]), *(uint64_t*)(src_y +17), temp64, 1);
2424 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x+1]), *(uint64_t*)(src_y +17 +linesize), temp64, 1);
2428 if(!ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2430 for(i = (!deblock_top) << 1; i<18; i++){
2431 XCHG(h->left_border[i+34 ], src_cb[i*uvlinesize], temp8, xchg);
2432 XCHG(h->left_border[i+34+18], src_cr[i*uvlinesize], temp8, xchg);
2436 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+16), *(uint64_t*)(src_cb+1), temp64, 1);
2437 XCHG(*(uint64_t*)(h->top_borders[0][s->mb_x]+24), *(uint64_t*)(src_cr+1), temp64, 1);
2438 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+16), *(uint64_t*)(src_cb+1 +uvlinesize), temp64, 1);
2439 XCHG(*(uint64_t*)(h->top_borders[1][s->mb_x]+24), *(uint64_t*)(src_cr+1 +uvlinesize), temp64, 1);
2444 static av_always_inline void hl_decode_mb_internal(H264Context *h, int simple){
2445 MpegEncContext * const s = &h->s;
2446 const int mb_x= s->mb_x;
2447 const int mb_y= s->mb_y;
2448 const int mb_xy= h->mb_xy;
2449 const int mb_type= s->current_picture.mb_type[mb_xy];
2450 uint8_t *dest_y, *dest_cb, *dest_cr;
2451 int linesize, uvlinesize /*dct_offset*/;
2453 int *block_offset = &h->block_offset[0];
2454 const unsigned int bottom = mb_y & 1;
2455 const int transform_bypass = (s->qscale == 0 && h->sps.transform_bypass), is_h264 = (simple || s->codec_id == CODEC_ID_H264);
2456 void (*idct_add)(uint8_t *dst, DCTELEM *block, int stride);
2457 void (*idct_dc_add)(uint8_t *dst, DCTELEM *block, int stride);
2459 dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
2460 dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2461 dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2463 s->dsp.prefetch(dest_y + (s->mb_x&3)*4*s->linesize + 64, s->linesize, 4);
2464 s->dsp.prefetch(dest_cb + (s->mb_x&7)*s->uvlinesize + 64, dest_cr - dest_cb, 2);
2466 if (!simple && MB_FIELD) {
2467 linesize = h->mb_linesize = s->linesize * 2;
2468 uvlinesize = h->mb_uvlinesize = s->uvlinesize * 2;
2469 block_offset = &h->block_offset[24];
2470 if(mb_y&1){ //FIXME move out of this function?
2471 dest_y -= s->linesize*15;
2472 dest_cb-= s->uvlinesize*7;
2473 dest_cr-= s->uvlinesize*7;
2477 for(list=0; list<h->list_count; list++){
2478 if(!USES_LIST(mb_type, list))
2480 if(IS_16X16(mb_type)){
2481 int8_t *ref = &h->ref_cache[list][scan8[0]];
2482 fill_rectangle(ref, 4, 4, 8, (16+*ref)^(s->mb_y&1), 1);
2484 for(i=0; i<16; i+=4){
2485 //FIXME can refs be smaller than 8x8 when !direct_8x8_inference ?
2486 int ref = h->ref_cache[list][scan8[i]];
2488 fill_rectangle(&h->ref_cache[list][scan8[i]], 2, 2, 8, (16+ref)^(s->mb_y&1), 1);
2494 linesize = h->mb_linesize = s->linesize;
2495 uvlinesize = h->mb_uvlinesize = s->uvlinesize;
2496 // dct_offset = s->linesize * 16;
2499 if(transform_bypass){
2501 idct_add = IS_8x8DCT(mb_type) ? s->dsp.add_pixels8 : s->dsp.add_pixels4;
2502 }else if(IS_8x8DCT(mb_type)){
2503 idct_dc_add = s->dsp.h264_idct8_dc_add;
2504 idct_add = s->dsp.h264_idct8_add;
2506 idct_dc_add = s->dsp.h264_idct_dc_add;
2507 idct_add = s->dsp.h264_idct_add;
2510 if(!simple && FRAME_MBAFF && h->deblocking_filter && IS_INTRA(mb_type)
2511 && (!bottom || !IS_INTRA(s->current_picture.mb_type[mb_xy-s->mb_stride]))){
2512 int mbt_y = mb_y&~1;
2513 uint8_t *top_y = s->current_picture.data[0] + (mbt_y * 16* s->linesize ) + mb_x * 16;
2514 uint8_t *top_cb = s->current_picture.data[1] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8;
2515 uint8_t *top_cr = s->current_picture.data[2] + (mbt_y * 8 * s->uvlinesize) + mb_x * 8;
2516 xchg_pair_border(h, top_y, top_cb, top_cr, s->linesize, s->uvlinesize, 1);
2519 if (!simple && IS_INTRA_PCM(mb_type)) {
2520 for (i=0; i<16; i++) {
2521 memcpy(dest_y + i* linesize, h->mb + i*8, 16);
2523 for (i=0; i<8; i++) {
2524 memcpy(dest_cb+ i*uvlinesize, h->mb + 128 + i*4, 8);
2525 memcpy(dest_cr+ i*uvlinesize, h->mb + 160 + i*4, 8);
2528 if(IS_INTRA(mb_type)){
2529 if(h->deblocking_filter && (simple || !FRAME_MBAFF))
2530 xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 1, simple);
2532 if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2533 h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cb, uvlinesize);
2534 h->hpc.pred8x8[ h->chroma_pred_mode ](dest_cr, uvlinesize);
2537 if(IS_INTRA4x4(mb_type)){
2538 if(simple || !s->encoding){
2539 if(IS_8x8DCT(mb_type)){
2540 for(i=0; i<16; i+=4){
2541 uint8_t * const ptr= dest_y + block_offset[i];
2542 const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
2543 const int nnz = h->non_zero_count_cache[ scan8[i] ];
2544 h->hpc.pred8x8l[ dir ](ptr, (h->topleft_samples_available<<i)&0x8000,
2545 (h->topright_samples_available<<i)&0x4000, linesize);
2547 if(nnz == 1 && h->mb[i*16])
2548 idct_dc_add(ptr, h->mb + i*16, linesize);
2550 idct_add(ptr, h->mb + i*16, linesize);
2554 for(i=0; i<16; i++){
2555 uint8_t * const ptr= dest_y + block_offset[i];
2557 const int dir= h->intra4x4_pred_mode_cache[ scan8[i] ];
2560 if(dir == DIAG_DOWN_LEFT_PRED || dir == VERT_LEFT_PRED){
2561 const int topright_avail= (h->topright_samples_available<<i)&0x8000;
2562 assert(mb_y || linesize <= block_offset[i]);
2563 if(!topright_avail){
2564 tr= ptr[3 - linesize]*0x01010101;
2565 topright= (uint8_t*) &tr;
2567 topright= ptr + 4 - linesize;
2571 h->hpc.pred4x4[ dir ](ptr, topright, linesize);
2572 nnz = h->non_zero_count_cache[ scan8[i] ];
2575 if(nnz == 1 && h->mb[i*16])
2576 idct_dc_add(ptr, h->mb + i*16, linesize);
2578 idct_add(ptr, h->mb + i*16, linesize);
2580 svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, 0);
2585 h->hpc.pred16x16[ h->intra16x16_pred_mode ](dest_y , linesize);
2587 if(!transform_bypass)
2588 h264_luma_dc_dequant_idct_c(h->mb, s->qscale, h->dequant4_coeff[0][s->qscale][0]);
2590 svq3_luma_dc_dequant_idct_c(h->mb, s->qscale);
2592 if(h->deblocking_filter && (simple || !FRAME_MBAFF))
2593 xchg_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, 0, simple);
2595 hl_motion(h, dest_y, dest_cb, dest_cr,
2596 s->me.qpel_put, s->dsp.put_h264_chroma_pixels_tab,
2597 s->me.qpel_avg, s->dsp.avg_h264_chroma_pixels_tab,
2598 s->dsp.weight_h264_pixels_tab, s->dsp.biweight_h264_pixels_tab);
2602 if(!IS_INTRA4x4(mb_type)){
2604 if(IS_INTRA16x16(mb_type)){
2605 for(i=0; i<16; i++){
2606 if(h->non_zero_count_cache[ scan8[i] ])
2607 idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
2608 else if(h->mb[i*16])
2609 idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
2612 const int di = IS_8x8DCT(mb_type) ? 4 : 1;
2613 for(i=0; i<16; i+=di){
2614 int nnz = h->non_zero_count_cache[ scan8[i] ];
2616 if(nnz==1 && h->mb[i*16])
2617 idct_dc_add(dest_y + block_offset[i], h->mb + i*16, linesize);
2619 idct_add(dest_y + block_offset[i], h->mb + i*16, linesize);
2624 for(i=0; i<16; i++){
2625 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){ //FIXME benchmark weird rule, & below
2626 uint8_t * const ptr= dest_y + block_offset[i];
2627 svq3_add_idct_c(ptr, h->mb + i*16, linesize, s->qscale, IS_INTRA(mb_type) ? 1 : 0);
2633 if(simple || !ENABLE_GRAY || !(s->flags&CODEC_FLAG_GRAY)){
2634 uint8_t *dest[2] = {dest_cb, dest_cr};
2635 if(transform_bypass){
2636 idct_add = idct_dc_add = s->dsp.add_pixels4;
2638 idct_add = s->dsp.h264_idct_add;
2639 idct_dc_add = s->dsp.h264_idct_dc_add;
2640 chroma_dc_dequant_idct_c(h->mb + 16*16, h->chroma_qp[0], h->dequant4_coeff[IS_INTRA(mb_type) ? 1:4][h->chroma_qp[0]][0]);
2641 chroma_dc_dequant_idct_c(h->mb + 16*16+4*16, h->chroma_qp[1], h->dequant4_coeff[IS_INTRA(mb_type) ? 2:5][h->chroma_qp[1]][0]);
2644 for(i=16; i<16+8; i++){
2645 if(h->non_zero_count_cache[ scan8[i] ])
2646 idct_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
2647 else if(h->mb[i*16])
2648 idct_dc_add(dest[(i&4)>>2] + block_offset[i], h->mb + i*16, uvlinesize);
2651 for(i=16; i<16+8; i++){
2652 if(h->non_zero_count_cache[ scan8[i] ] || h->mb[i*16]){
2653 uint8_t * const ptr= dest[(i&4)>>2] + block_offset[i];
2654 svq3_add_idct_c(ptr, h->mb + i*16, uvlinesize, chroma_qp[s->qscale + 12] - 12, 2);
2660 if(h->deblocking_filter) {
2661 if (!simple && FRAME_MBAFF) {
2662 //FIXME try deblocking one mb at a time?
2663 // the reduction in load/storing mvs and such might outweigh the extra backup/xchg_border
2664 const int mb_y = s->mb_y - 1;
2665 uint8_t *pair_dest_y, *pair_dest_cb, *pair_dest_cr;
2666 const int mb_xy= mb_x + mb_y*s->mb_stride;
2667 const int mb_type_top = s->current_picture.mb_type[mb_xy];
2668 const int mb_type_bottom= s->current_picture.mb_type[mb_xy+s->mb_stride];
2669 if (!bottom) return;
2670 pair_dest_y = s->current_picture.data[0] + (mb_y * 16* s->linesize ) + mb_x * 16;
2671 pair_dest_cb = s->current_picture.data[1] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2672 pair_dest_cr = s->current_picture.data[2] + (mb_y * 8 * s->uvlinesize) + mb_x * 8;
2674 if(IS_INTRA(mb_type_top | mb_type_bottom))
2675 xchg_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize, 0);
2677 backup_pair_border(h, pair_dest_y, pair_dest_cb, pair_dest_cr, s->linesize, s->uvlinesize);
2680 s->mb_y--; h->mb_xy -= s->mb_stride;
2681 tprintf(h->s.avctx, "call mbaff filter_mb mb_x:%d mb_y:%d pair_dest_y = %p, dest_y = %p\n", mb_x, mb_y, pair_dest_y, dest_y);
2682 fill_caches(h, mb_type_top, 1); //FIXME don't fill stuff which isn't used by filter_mb
2683 h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy]);
2684 h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy]);
2685 filter_mb(h, mb_x, mb_y, pair_dest_y, pair_dest_cb, pair_dest_cr, linesize, uvlinesize);
2687 s->mb_y++; h->mb_xy += s->mb_stride;
2688 tprintf(h->s.avctx, "call mbaff filter_mb\n");
2689 fill_caches(h, mb_type_bottom, 1); //FIXME don't fill stuff which isn't used by filter_mb
2690 h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy+s->mb_stride]);
2691 h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy+s->mb_stride]);
2692 filter_mb(h, mb_x, mb_y+1, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
2694 tprintf(h->s.avctx, "call filter_mb\n");
2695 backup_mb_border(h, dest_y, dest_cb, dest_cr, linesize, uvlinesize, simple);
2696 fill_caches(h, mb_type, 1); //FIXME don't fill stuff which isn't used by filter_mb
2697 h->chroma_qp[0] = get_chroma_qp(h, 0, s->current_picture.qscale_table[mb_xy]);
2698 h->chroma_qp[1] = get_chroma_qp(h, 1, s->current_picture.qscale_table[mb_xy]);
2699 filter_mb_fast(h, mb_x, mb_y, dest_y, dest_cb, dest_cr, linesize, uvlinesize);
2705 * Process a macroblock; this case avoids checks for expensive uncommon cases.
2707 static void hl_decode_mb_simple(H264Context *h){
2708 hl_decode_mb_internal(h, 1);
2712 * Process a macroblock; this handles edge cases, such as interlacing.
2714 static void av_noinline hl_decode_mb_complex(H264Context *h){
2715 hl_decode_mb_internal(h, 0);
2718 static void hl_decode_mb(H264Context *h){
2719 MpegEncContext * const s = &h->s;
2720 const int mb_xy= h->mb_xy;
2721 const int mb_type= s->current_picture.mb_type[mb_xy];
2722 int is_complex = FRAME_MBAFF || MB_FIELD || IS_INTRA_PCM(mb_type) || s->codec_id != CODEC_ID_H264 ||
2723 (ENABLE_GRAY && (s->flags&CODEC_FLAG_GRAY)) || (ENABLE_H264_ENCODER && s->encoding) || ENABLE_SMALL;
2725 if(ENABLE_H264_ENCODER && !s->decode)
2729 hl_decode_mb_complex(h);
2730 else hl_decode_mb_simple(h);
2733 static void pic_as_field(Picture *pic, const int parity){
2735 for (i = 0; i < 4; ++i) {
2736 if (parity == PICT_BOTTOM_FIELD)
2737 pic->data[i] += pic->linesize[i];
2738 pic->reference = parity;
2739 pic->linesize[i] *= 2;
2741 pic->poc= pic->field_poc[parity == PICT_BOTTOM_FIELD];
2744 static int split_field_copy(Picture *dest, Picture *src,
2745 int parity, int id_add){
2746 int match = !!(src->reference & parity);
2750 if(parity != PICT_FRAME){
2751 pic_as_field(dest, parity);
2753 dest->pic_id += id_add;
2760 static int build_def_list(Picture *def, Picture **in, int len, int is_long, int sel){
2764 while(i[0]<len || i[1]<len){
2765 while(i[0]<len && !(in[ i[0] ] && (in[ i[0] ]->reference & sel)))
2767 while(i[1]<len && !(in[ i[1] ] && (in[ i[1] ]->reference & (sel^3))))
2770 in[ i[0] ]->pic_id= is_long ? i[0] : in[ i[0] ]->frame_num;
2771 split_field_copy(&def[index++], in[ i[0]++ ], sel , 1);
2774 in[ i[1] ]->pic_id= is_long ? i[1] : in[ i[1] ]->frame_num;
2775 split_field_copy(&def[index++], in[ i[1]++ ], sel^3, 0);
2782 static int add_sorted(Picture **sorted, Picture **src, int len, int limit, int dir){
2787 best_poc= dir ? INT_MIN : INT_MAX;
2789 for(i=0; i<len; i++){
2790 const int poc= src[i]->poc;
2791 if(((poc > limit) ^ dir) && ((poc < best_poc) ^ dir)){
2793 sorted[out_i]= src[i];
2796 if(best_poc == (dir ? INT_MIN : INT_MAX))
2798 limit= sorted[out_i++]->poc - dir;
2804 * fills the default_ref_list.
2806 static int fill_default_ref_list(H264Context *h){
2807 MpegEncContext * const s = &h->s;
2810 if(h->slice_type_nos==FF_B_TYPE){
2811 Picture *sorted[32];
2816 cur_poc= s->current_picture_ptr->field_poc[ s->picture_structure == PICT_BOTTOM_FIELD ];
2818 cur_poc= s->current_picture_ptr->poc;
2820 for(list= 0; list<2; list++){
2821 len= add_sorted(sorted , h->short_ref, h->short_ref_count, cur_poc, 1^list);
2822 len+=add_sorted(sorted+len, h->short_ref, h->short_ref_count, cur_poc, 0^list);
2824 len= build_def_list(h->default_ref_list[list] , sorted , len, 0, s->picture_structure);
2825 len+=build_def_list(h->default_ref_list[list]+len, h->long_ref, 16 , 1, s->picture_structure);
2828 if(len < h->ref_count[list])
2829 memset(&h->default_ref_list[list][len], 0, sizeof(Picture)*(h->ref_count[list] - len));
2833 if(lens[0] == lens[1] && lens[1] > 1){
2834 for(i=0; h->default_ref_list[0][i].data[0] == h->default_ref_list[1][i].data[0] && i<lens[0]; i++);
2836 FFSWAP(Picture, h->default_ref_list[1][0], h->default_ref_list[1][1]);
2839 len = build_def_list(h->default_ref_list[0] , h->short_ref, h->short_ref_count, 0, s->picture_structure);
2840 len+= build_def_list(h->default_ref_list[0]+len, h-> long_ref, 16 , 1, s->picture_structure);
2842 if(len < h->ref_count[0])
2843 memset(&h->default_ref_list[0][len], 0, sizeof(Picture)*(h->ref_count[0] - len));
2846 for (i=0; i<h->ref_count[0]; i++) {
2847 tprintf(h->s.avctx, "List0: %s fn:%d 0x%p\n", (h->default_ref_list[0][i].long_ref ? "LT" : "ST"), h->default_ref_list[0][i].pic_id, h->default_ref_list[0][i].data[0]);
2849 if(h->slice_type_nos==FF_B_TYPE){
2850 for (i=0; i<h->ref_count[1]; i++) {
2851 tprintf(h->s.avctx, "List1: %s fn:%d 0x%p\n", (h->default_ref_list[1][i].long_ref ? "LT" : "ST"), h->default_ref_list[1][i].pic_id, h->default_ref_list[1][i].data[0]);
2858 static void print_short_term(H264Context *h);
2859 static void print_long_term(H264Context *h);
2862 * Extract structure information about the picture described by pic_num in
2863 * the current decoding context (frame or field). Note that pic_num is
2864 * picture number without wrapping (so, 0<=pic_num<max_pic_num).
2865 * @param pic_num picture number for which to extract structure information
2866 * @param structure one of PICT_XXX describing structure of picture
2868 * @return frame number (short term) or long term index of picture
2869 * described by pic_num
2871 static int pic_num_extract(H264Context *h, int pic_num, int *structure){
2872 MpegEncContext * const s = &h->s;
2874 *structure = s->picture_structure;
2877 /* opposite field */
2878 *structure ^= PICT_FRAME;
2885 static int decode_ref_pic_list_reordering(H264Context *h){
2886 MpegEncContext * const s = &h->s;
2887 int list, index, pic_structure;
2889 print_short_term(h);
2892 for(list=0; list<h->list_count; list++){
2893 memcpy(h->ref_list[list], h->default_ref_list[list], sizeof(Picture)*h->ref_count[list]);
2895 if(get_bits1(&s->gb)){
2896 int pred= h->curr_pic_num;
2898 for(index=0; ; index++){
2899 unsigned int reordering_of_pic_nums_idc= get_ue_golomb(&s->gb);
2900 unsigned int pic_id;
2902 Picture *ref = NULL;
2904 if(reordering_of_pic_nums_idc==3)
2907 if(index >= h->ref_count[list]){
2908 av_log(h->s.avctx, AV_LOG_ERROR, "reference count overflow\n");
2912 if(reordering_of_pic_nums_idc<3){
2913 if(reordering_of_pic_nums_idc<2){
2914 const unsigned int abs_diff_pic_num= get_ue_golomb(&s->gb) + 1;
2917 if(abs_diff_pic_num > h->max_pic_num){
2918 av_log(h->s.avctx, AV_LOG_ERROR, "abs_diff_pic_num overflow\n");
2922 if(reordering_of_pic_nums_idc == 0) pred-= abs_diff_pic_num;
2923 else pred+= abs_diff_pic_num;
2924 pred &= h->max_pic_num - 1;
2926 frame_num = pic_num_extract(h, pred, &pic_structure);
2928 for(i= h->short_ref_count-1; i>=0; i--){
2929 ref = h->short_ref[i];
2930 assert(ref->reference);
2931 assert(!ref->long_ref);
2933 ref->frame_num == frame_num &&
2934 (ref->reference & pic_structure)
2942 pic_id= get_ue_golomb(&s->gb); //long_term_pic_idx
2944 long_idx= pic_num_extract(h, pic_id, &pic_structure);
2947 av_log(h->s.avctx, AV_LOG_ERROR, "long_term_pic_idx overflow\n");
2950 ref = h->long_ref[long_idx];
2951 assert(!(ref && !ref->reference));
2952 if(ref && (ref->reference & pic_structure)){
2953 ref->pic_id= pic_id;
2954 assert(ref->long_ref);
2962 av_log(h->s.avctx, AV_LOG_ERROR, "reference picture missing during reorder\n");
2963 memset(&h->ref_list[list][index], 0, sizeof(Picture)); //FIXME
2965 for(i=index; i+1<h->ref_count[list]; i++){
2966 if(ref->long_ref == h->ref_list[list][i].long_ref && ref->pic_id == h->ref_list[list][i].pic_id)
2969 for(; i > index; i--){
2970 h->ref_list[list][i]= h->ref_list[list][i-1];
2972 h->ref_list[list][index]= *ref;
2974 pic_as_field(&h->ref_list[list][index], pic_structure);
2978 av_log(h->s.avctx, AV_LOG_ERROR, "illegal reordering_of_pic_nums_idc\n");
2984 for(list=0; list<h->list_count; list++){
2985 for(index= 0; index < h->ref_count[list]; index++){
2986 if(!h->ref_list[list][index].data[0]){
2987 av_log(h->s.avctx, AV_LOG_ERROR, "Missing reference picture\n");
2988 h->ref_list[list][index]= s->current_picture; //FIXME this is not a sensible solution
2993 if(h->slice_type_nos==FF_B_TYPE && !h->direct_spatial_mv_pred)
2994 direct_dist_scale_factor(h);
2995 direct_ref_list_init(h);
2999 static void fill_mbaff_ref_list(H264Context *h){
3001 for(list=0; list<2; list++){ //FIXME try list_count
3002 for(i=0; i<h->ref_count[list]; i++){
3003 Picture *frame = &h->ref_list[list][i];
3004 Picture *field = &h->ref_list[list][16+2*i];
3007 field[0].linesize[j] <<= 1;
3008 field[0].reference = PICT_TOP_FIELD;
3009 field[1] = field[0];
3011 field[1].data[j] += frame->linesize[j];
3012 field[1].reference = PICT_BOTTOM_FIELD;
3014 h->luma_weight[list][16+2*i] = h->luma_weight[list][16+2*i+1] = h->luma_weight[list][i];
3015 h->luma_offset[list][16+2*i] = h->luma_offset[list][16+2*i+1] = h->luma_offset[list][i];
3017 h->chroma_weight[list][16+2*i][j] = h->chroma_weight[list][16+2*i+1][j] = h->chroma_weight[list][i][j];
3018 h->chroma_offset[list][16+2*i][j] = h->chroma_offset[list][16+2*i+1][j] = h->chroma_offset[list][i][j];
3022 for(j=0; j<h->ref_count[1]; j++){
3023 for(i=0; i<h->ref_count[0]; i++)
3024 h->implicit_weight[j][16+2*i] = h->implicit_weight[j][16+2*i+1] = h->implicit_weight[j][i];
3025 memcpy(h->implicit_weight[16+2*j], h->implicit_weight[j], sizeof(*h->implicit_weight));
3026 memcpy(h->implicit_weight[16+2*j+1], h->implicit_weight[j], sizeof(*h->implicit_weight));
3030 static int pred_weight_table(H264Context *h){
3031 MpegEncContext * const s = &h->s;
3033 int luma_def, chroma_def;
3036 h->use_weight_chroma= 0;
3037 h->luma_log2_weight_denom= get_ue_golomb(&s->gb);
3038 h->chroma_log2_weight_denom= get_ue_golomb(&s->gb);
3039 luma_def = 1<<h->luma_log2_weight_denom;
3040 chroma_def = 1<<h->chroma_log2_weight_denom;
3042 for(list=0; list<2; list++){
3043 for(i=0; i<h->ref_count[list]; i++){
3044 int luma_weight_flag, chroma_weight_flag;
3046 luma_weight_flag= get_bits1(&s->gb);
3047 if(luma_weight_flag){
3048 h->luma_weight[list][i]= get_se_golomb(&s->gb);
3049 h->luma_offset[list][i]= get_se_golomb(&s->gb);
3050 if( h->luma_weight[list][i] != luma_def
3051 || h->luma_offset[list][i] != 0)
3054 h->luma_weight[list][i]= luma_def;
3055 h->luma_offset[list][i]= 0;
3059 chroma_weight_flag= get_bits1(&s->gb);
3060 if(chroma_weight_flag){
3063 h->chroma_weight[list][i][j]= get_se_golomb(&s->gb);
3064 h->chroma_offset[list][i][j]= get_se_golomb(&s->gb);
3065 if( h->chroma_weight[list][i][j] != chroma_def
3066 || h->chroma_offset[list][i][j] != 0)
3067 h->use_weight_chroma= 1;
3072 h->chroma_weight[list][i][j]= chroma_def;
3073 h->chroma_offset[list][i][j]= 0;
3078 if(h->slice_type_nos != FF_B_TYPE) break;
3080 h->use_weight= h->use_weight || h->use_weight_chroma;
3084 static void implicit_weight_table(H264Context *h){
3085 MpegEncContext * const s = &h->s;
3087 int cur_poc = s->current_picture_ptr->poc;
3089 if( h->ref_count[0] == 1 && h->ref_count[1] == 1
3090 && h->ref_list[0][0].poc + h->ref_list[1][0].poc == 2*cur_poc){
3092 h->use_weight_chroma= 0;
3097 h->use_weight_chroma= 2;
3098 h->luma_log2_weight_denom= 5;
3099 h->chroma_log2_weight_denom= 5;
3101 for(ref0=0; ref0 < h->ref_count[0]; ref0++){
3102 int poc0 = h->ref_list[0][ref0].poc;
3103 for(ref1=0; ref1 < h->ref_count[1]; ref1++){
3104 int poc1 = h->ref_list[1][ref1].poc;
3105 int td = av_clip(poc1 - poc0, -128, 127);
3107 int tb = av_clip(cur_poc - poc0, -128, 127);
3108 int tx = (16384 + (FFABS(td) >> 1)) / td;
3109 int dist_scale_factor = av_clip((tb*tx + 32) >> 6, -1024, 1023) >> 2;
3110 if(dist_scale_factor < -64 || dist_scale_factor > 128)
3111 h->implicit_weight[ref0][ref1] = 32;
3113 h->implicit_weight[ref0][ref1] = 64 - dist_scale_factor;
3115 h->implicit_weight[ref0][ref1] = 32;
3121 * Mark a picture as no longer needed for reference. The refmask
3122 * argument allows unreferencing of individual fields or the whole frame.
3123 * If the picture becomes entirely unreferenced, but is being held for
3124 * display purposes, it is marked as such.
3125 * @param refmask mask of fields to unreference; the mask is bitwise
3126 * anded with the reference marking of pic
3127 * @return non-zero if pic becomes entirely unreferenced (except possibly
3128 * for display purposes) zero if one of the fields remains in
3131 static inline int unreference_pic(H264Context *h, Picture *pic, int refmask){
3133 if (pic->reference &= refmask) {
3136 for(i = 0; h->delayed_pic[i]; i++)
3137 if(pic == h->delayed_pic[i]){
3138 pic->reference=DELAYED_PIC_REF;
3146 * instantaneous decoder refresh.
3148 static void idr(H264Context *h){
3151 for(i=0; i<16; i++){
3152 remove_long(h, i, 0);
3154 assert(h->long_ref_count==0);
3156 for(i=0; i<h->short_ref_count; i++){
3157 unreference_pic(h, h->short_ref[i], 0);
3158 h->short_ref[i]= NULL;
3160 h->short_ref_count=0;
3161 h->prev_frame_num= 0;
3162 h->prev_frame_num_offset= 0;
3167 /* forget old pics after a seek */
3168 static void flush_dpb(AVCodecContext *avctx){
3169 H264Context *h= avctx->priv_data;
3171 for(i=0; i<MAX_DELAYED_PIC_COUNT; i++) {
3172 if(h->delayed_pic[i])
3173 h->delayed_pic[i]->reference= 0;
3174 h->delayed_pic[i]= NULL;
3176 h->outputed_poc= INT_MIN;
3178 if(h->s.current_picture_ptr)
3179 h->s.current_picture_ptr->reference= 0;
3180 h->s.first_field= 0;
3181 ff_mpeg_flush(avctx);
3185 * Find a Picture in the short term reference list by frame number.
3186 * @param frame_num frame number to search for
3187 * @param idx the index into h->short_ref where returned picture is found
3188 * undefined if no picture found.
3189 * @return pointer to the found picture, or NULL if no pic with the provided
3190 * frame number is found
3192 static Picture * find_short(H264Context *h, int frame_num, int *idx){
3193 MpegEncContext * const s = &h->s;
3196 for(i=0; i<h->short_ref_count; i++){
3197 Picture *pic= h->short_ref[i];
3198 if(s->avctx->debug&FF_DEBUG_MMCO)
3199 av_log(h->s.avctx, AV_LOG_DEBUG, "%d %d %p\n", i, pic->frame_num, pic);
3200 if(pic->frame_num == frame_num) {
3209 * Remove a picture from the short term reference list by its index in
3210 * that list. This does no checking on the provided index; it is assumed
3211 * to be valid. Other list entries are shifted down.
3212 * @param i index into h->short_ref of picture to remove.
3214 static void remove_short_at_index(H264Context *h, int i){
3215 assert(i >= 0 && i < h->short_ref_count);
3216 h->short_ref[i]= NULL;
3217 if (--h->short_ref_count)
3218 memmove(&h->short_ref[i], &h->short_ref[i+1], (h->short_ref_count - i)*sizeof(Picture*));
3223 * @return the removed picture or NULL if an error occurs
3225 static Picture * remove_short(H264Context *h, int frame_num, int ref_mask){
3226 MpegEncContext * const s = &h->s;
3230 if(s->avctx->debug&FF_DEBUG_MMCO)
3231 av_log(h->s.avctx, AV_LOG_DEBUG, "remove short %d count %d\n", frame_num, h->short_ref_count);
3233 pic = find_short(h, frame_num, &i);
3235 if(unreference_pic(h, pic, ref_mask))
3236 remove_short_at_index(h, i);
3243 * Remove a picture from the long term reference list by its index in
3245 * @return the removed picture or NULL if an error occurs
3247 static Picture * remove_long(H264Context *h, int i, int ref_mask){
3250 pic= h->long_ref[i];
3252 if(unreference_pic(h, pic, ref_mask)){
3253 assert(h->long_ref[i]->long_ref == 1);
3254 h->long_ref[i]->long_ref= 0;
3255 h->long_ref[i]= NULL;
3256 h->long_ref_count--;
3264 * print short term list
3266 static void print_short_term(H264Context *h) {
3268 if(h->s.avctx->debug&FF_DEBUG_MMCO) {
3269 av_log(h->s.avctx, AV_LOG_DEBUG, "short term list:\n");
3270 for(i=0; i<h->short_ref_count; i++){
3271 Picture *pic= h->short_ref[i];
3272 av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
3278 * print long term list
3280 static void print_long_term(H264Context *h) {
3282 if(h->s.avctx->debug&FF_DEBUG_MMCO) {
3283 av_log(h->s.avctx, AV_LOG_DEBUG, "long term list:\n");
3284 for(i = 0; i < 16; i++){
3285 Picture *pic= h->long_ref[i];
3287 av_log(h->s.avctx, AV_LOG_DEBUG, "%d fn:%d poc:%d %p\n", i, pic->frame_num, pic->poc, pic->data[0]);
3294 * Executes the reference picture marking (memory management control operations).
3296 static int execute_ref_pic_marking(H264Context *h, MMCO *mmco, int mmco_count){
3297 MpegEncContext * const s = &h->s;
3299 int current_ref_assigned=0;
3302 if((s->avctx->debug&FF_DEBUG_MMCO) && mmco_count==0)
3303 av_log(h->s.avctx, AV_LOG_DEBUG, "no mmco here\n");
3305 for(i=0; i<mmco_count; i++){
3306 int structure, frame_num;
3307 if(s->avctx->debug&FF_DEBUG_MMCO)
3308 av_log(h->s.avctx, AV_LOG_DEBUG, "mmco:%d %d %d\n", h->mmco[i].opcode, h->mmco[i].short_pic_num, h->mmco[i].long_arg);
3310 if( mmco[i].opcode == MMCO_SHORT2UNUSED
3311 || mmco[i].opcode == MMCO_SHORT2LONG){
3312 frame_num = pic_num_extract(h, mmco[i].short_pic_num, &structure);
3313 pic = find_short(h, frame_num, &j);
3315 if(mmco[i].opcode != MMCO_SHORT2LONG || !h->long_ref[mmco[i].long_arg]
3316 || h->long_ref[mmco[i].long_arg]->frame_num != frame_num)
3317 av_log(h->s.avctx, AV_LOG_ERROR, "mmco: unref short failure\n");
3322 switch(mmco[i].opcode){
3323 case MMCO_SHORT2UNUSED:
3324 if(s->avctx->debug&FF_DEBUG_MMCO)
3325 av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: unref short %d count %d\n", h->mmco[i].short_pic_num, h->short_ref_count);
3326 remove_short(h, frame_num, structure ^ PICT_FRAME);
3328 case MMCO_SHORT2LONG:
3329 if (h->long_ref[mmco[i].long_arg] != pic)
3330 remove_long(h, mmco[i].long_arg, 0);
3332 remove_short_at_index(h, j);
3333 h->long_ref[ mmco[i].long_arg ]= pic;
3334 if (h->long_ref[ mmco[i].long_arg ]){
3335 h->long_ref[ mmco[i].long_arg ]->long_ref=1;
3336 h->long_ref_count++;
3339 case MMCO_LONG2UNUSED:
3340 j = pic_num_extract(h, mmco[i].long_arg, &structure);
3341 pic = h->long_ref[j];
3343 remove_long(h, j, structure ^ PICT_FRAME);
3344 } else if(s->avctx->debug&FF_DEBUG_MMCO)
3345 av_log(h->s.avctx, AV_LOG_DEBUG, "mmco: unref long failure\n");
3348 // Comment below left from previous code as it is an interresting note.
3349 /* First field in pair is in short term list or
3350 * at a different long term index.
3351 * This is not allowed; see 7.4.3.3, notes 2 and 3.
3352 * Report the problem and keep the pair where it is,
3353 * and mark this field valid.
3356 if (h->long_ref[mmco[i].long_arg] != s->current_picture_ptr) {
3357 remove_long(h, mmco[i].long_arg, 0);
3359 h->long_ref[ mmco[i].long_arg ]= s->current_picture_ptr;
3360 h->long_ref[ mmco[i].long_arg ]->long_ref=1;
3361 h->long_ref_count++;
3364 s->current_picture_ptr->reference |= s->picture_structure;
3365 current_ref_assigned=1;
3367 case MMCO_SET_MAX_LONG:
3368 assert(mmco[i].long_arg <= 16);
3369 // just remove the long term which index is greater than new max
3370 for(j = mmco[i].long_arg; j<16; j++){
3371 remove_long(h, j, 0);
3375 while(h->short_ref_count){
3376 remove_short(h, h->short_ref[0]->frame_num, 0);
3378 for(j = 0; j < 16; j++) {
3379 remove_long(h, j, 0);
3381 s->current_picture_ptr->poc=
3382 s->current_picture_ptr->field_poc[0]=
3383 s->current_picture_ptr->field_poc[1]=
3387 s->current_picture_ptr->frame_num= 0;
3393 if (!current_ref_assigned) {
3394 /* Second field of complementary field pair; the first field of
3395 * which is already referenced. If short referenced, it
3396 * should be first entry in short_ref. If not, it must exist
3397 * in long_ref; trying to put it on the short list here is an
3398 * error in the encoded bit stream (ref: 7.4.3.3, NOTE 2 and 3).
3400 if (h->short_ref_count && h->short_ref[0] == s->current_picture_ptr) {
3401 /* Just mark the second field valid */
3402 s->current_picture_ptr->reference = PICT_FRAME;
3403 } else if (s->current_picture_ptr->long_ref) {
3404 av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term reference "
3405 "assignment for second field "
3406 "in complementary field pair "
3407 "(first field is long term)\n");
3409 pic= remove_short(h, s->current_picture_ptr->frame_num, 0);
3411 av_log(h->s.avctx, AV_LOG_ERROR, "illegal short term buffer state detected\n");
3414 if(h->short_ref_count)
3415 memmove(&h->short_ref[1], &h->short_ref[0], h->short_ref_count*sizeof(Picture*));
3417 h->short_ref[0]= s->current_picture_ptr;
3418 h->short_ref_count++;
3419 s->current_picture_ptr->reference |= s->picture_structure;
3423 if (h->long_ref_count + h->short_ref_count > h->sps.ref_frame_count){
3425 /* We have too many reference frames, probably due to corrupted
3426 * stream. Need to discard one frame. Prevents overrun of the
3427 * short_ref and long_ref buffers.
3429 av_log(h->s.avctx, AV_LOG_ERROR,
3430 "number of reference frames exceeds max (probably "
3431 "corrupt input), discarding one\n");
3433 if (h->long_ref_count && !h->short_ref_count) {