1 /*
2  * reference discrete cosine transform (double precision)
3  * Copyright (C) 2009 Dylan Yudaken
4  *
5  * This file is part of Libav.
6  *
7  * Libav is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * Libav is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with Libav; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
22 /**
23  * @file
24  * reference discrete cosine transform (double precision)
25  *
26  * @author Dylan Yudaken (dyudaken at gmail)
27  *
28  * @note This file could be optimized a lot, but is for
29  * reference and so readability is better.
30  */
32 #include "libavutil/mathematics.h"
33 #include "dctref.h"
35 static double coefficients[8 * 8];
37 /**
38  * Initialize the double precision discrete cosine transform
39  * functions fdct & idct.
40  */
41 av_cold void ff_ref_dct_init(void)
42 {
43     unsigned int i, j;
45     for (j = 0; j < 8; ++j) {
46         coefficients[j] = sqrt(0.125);
47         for (i = 8; i < 64; i += 8) {
48             coefficients[i + j] = 0.5 * cos(i * (j + 0.5) * M_PI / 64.0);
49         }
50     }
51 }
53 /**
54  * Transform 8x8 block of data with a double precision forward DCT <br>
55  * This is a reference implementation.
56  *
57  * @param block pointer to 8x8 block of data to transform
58  */
59 void ff_ref_fdct(short *block)
60 {
61     /* implement the equation: block = coefficients * block * coefficients' */
63     unsigned int i, j, k;
64     double out[8 * 8];
66     /* out = coefficients * block */
67     for (i = 0; i < 64; i += 8) {
68         for (j = 0; j < 8; ++j) {
69             double tmp = 0;
70             for (k = 0; k < 8; ++k) {
71                 tmp += coefficients[i + k] * block[k * 8 + j];
72             }
73             out[i + j] = tmp * 8;
74         }
75     }
77     /* block = out * (coefficients') */
78     for (j = 0; j < 8; ++j) {
79         for (i = 0; i < 64; i += 8) {
80             double tmp = 0;
81             for (k = 0; k < 8; ++k) {
82                 tmp += out[i + k] * coefficients[j * 8 + k];
83             }
84             block[i + j] = floor(tmp + 0.499999999999);
85         }
86     }
87 }
89 /**
90  * Transform 8x8 block of data with a double precision inverse DCT <br>
91  * This is a reference implementation.
92  *
93  * @param block pointer to 8x8 block of data to transform
94  */
95 void ff_ref_idct(short *block)
96 {
97     /* implement the equation: block = (coefficients') * block * coefficients */
99     unsigned int i, j, k;
100     double out[8 * 8];
102     /* out = block * coefficients */
103     for (i = 0; i < 64; i += 8) {
104         for (j = 0; j < 8; ++j) {
105             double tmp = 0;
106             for (k = 0; k < 8; ++k) {
107                 tmp += block[i + k] * coefficients[k * 8 + j];
108             }
109             out[i + j] = tmp;
110         }
111     }
113     /* block = (coefficients') * out */
114     for (i = 0; i < 8; ++i) {
115         for (j = 0; j < 8; ++j) {
116             double tmp = 0;
117             for (k = 0; k < 64; k += 8) {
118                 tmp += coefficients[k + i] * out[k + j];
119             }
120             block[i * 8 + j] = floor(tmp + 0.5);
121         }
122     }
123 }