cook shouldn't try to enforce the bitstream reader type
[ffmpeg.git] / libavcodec / cook.c
1 /*
2  * COOK compatible decoder
3  * Copyright (c) 2003 Sascha Sommer
4  * Copyright (c) 2005 Benjamin Larsson
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  *
20  */
21
22 /**
23  * @file cook.c
24  * Cook compatible decoder.
25  * This decoder handles RealNetworks, RealAudio G2 data.
26  * Cook is identified by the codec name cook in RM files.
27  *
28  * To use this decoder, a calling application must supply the extradata
29  * bytes provided from the RM container; 8+ bytes for mono streams and
30  * 16+ for stereo streams (maybe more).
31  *
32  * Codec technicalities (all this assume a buffer length of 1024):
33  * Cook works with several different techniques to achieve its compression.
34  * In the timedomain the buffer is divided into 8 pieces and quantized. If
35  * two neighboring pieces have different quantization index a smooth
36  * quantization curve is used to get a smooth overlap between the different
37  * pieces.
38  * To get to the transformdomain Cook uses a modulated lapped transform.
39  * The transform domain has 50 subbands with 20 elements each. This
40  * means only a maximum of 50*20=1000 coefficients are used out of the 1024
41  * available.
42  */
43
44 #include <math.h>
45 #include <stddef.h>
46 #include <stdio.h>
47
48 #include "avcodec.h"
49 #include "bitstream.h"
50 #include "dsputil.h"
51
52 #include "cookdata.h"
53
54 /* the different Cook versions */
55 #define MONO_COOK1      0x1000001
56 #define MONO_COOK2      0x1000002
57 #define JOINT_STEREO    0x1000003
58 #define MC_COOK         0x2000000   //multichannel Cook, not supported
59
60 #define SUBBAND_SIZE    20
61 //#define COOKDEBUG
62
63 typedef struct {
64     int     size;
65     int     qidx_table1[8];
66     int     qidx_table2[8];
67 } COOKgain;
68
69 typedef struct __attribute__((__packed__)){
70     /* codec data start */
71     uint32_t cookversion;               //in network order, bigendian
72     uint16_t samples_per_frame;         //amount of samples per frame per channel, bigendian
73     uint16_t subbands;                  //amount of bands used in the frequency domain, bigendian
74     /* Mono extradata ends here. */
75     uint32_t unused;
76     uint16_t js_subband_start;          //bigendian
77     uint16_t js_vlc_bits;               //bigendian
78     /* Stereo extradata ends here. */
79 } COOKextradata;
80
81
82 typedef struct {
83     GetBitContext       gb;
84     /* stream data */
85     int                 nb_channels;
86     int                 joint_stereo;
87     int                 bit_rate;
88     int                 sample_rate;
89     int                 samples_per_channel;
90     int                 samples_per_frame;
91     int                 subbands;
92     int                 log2_numvector_size;
93     int                 numvector_size;                //1 << log2_numvector_size;
94     int                 js_subband_start;
95     int                 total_subbands;
96     int                 num_vectors;
97     int                 bits_per_subpacket;
98     /* states */
99     int                 random_state;
100
101     /* transform data */
102     FFTContext          fft_ctx;
103     FFTSample           mlt_tmp[1024] __attribute__((aligned(16))); /* temporary storage for imlt */
104     float*              mlt_window;
105     float*              mlt_precos;
106     float*              mlt_presin;
107     float*              mlt_postcos;
108     int                 fft_size;
109     int                 fft_order;
110     int                 mlt_size;       //modulated lapped transform size
111
112     /* gain buffers */
113     COOKgain*           gain_now_ptr;
114     COOKgain*           gain_previous_ptr;
115     COOKgain            gain_current;
116     COOKgain            gain_now;
117     COOKgain            gain_previous;
118     COOKgain            gain_channel1[2];
119     COOKgain            gain_channel2[2];
120
121     /* VLC data */
122     int                 js_vlc_bits;
123     VLC                 envelope_quant_index[13];
124     VLC                 sqvh[7];          //scalar quantization
125     VLC                 ccpl;             //channel coupling
126
127     /* generatable tables and related variables */
128     int                 gain_size_factor;
129     float               gain_table[23];
130     float               pow2tab[127];
131     float               rootpow2tab[127];
132
133     /* data buffers */
134
135     uint8_t*            decoded_bytes_buffer;
136     float               mono_mdct_output[2048] __attribute__((aligned(16)));
137     float*              previous_buffer_ptr[2];
138     float               mono_previous_buffer1[1024];
139     float               mono_previous_buffer2[1024];
140     float*              decode_buf_ptr[4];
141     float*              decode_buf_ptr2[2];
142     float               decode_buffer_1[1024];
143     float               decode_buffer_2[1024];
144     float               decode_buffer_3[1024];
145     float               decode_buffer_4[1024];
146 } COOKContext;
147
148 /* debug functions */
149
150 #ifdef COOKDEBUG
151 static void dump_float_table(float* table, int size, int delimiter) {
152     int i=0;
153     av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
154     for (i=0 ; i<size ; i++) {
155         av_log(NULL, AV_LOG_ERROR, "%5.1f, ", table[i]);
156         if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
157     }
158 }
159
160 static void dump_int_table(int* table, int size, int delimiter) {
161     int i=0;
162     av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
163     for (i=0 ; i<size ; i++) {
164         av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
165         if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
166     }
167 }
168
169 static void dump_short_table(short* table, int size, int delimiter) {
170     int i=0;
171     av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i);
172     for (i=0 ; i<size ; i++) {
173         av_log(NULL, AV_LOG_ERROR, "%d, ", table[i]);
174         if ((i+1)%delimiter == 0) av_log(NULL,AV_LOG_ERROR,"\n[%d]: ",i+1);
175     }
176 }
177
178 #endif
179
180 /*************** init functions ***************/
181
182 /* table generator */
183 static void init_pow2table(COOKContext *q){
184     int i;
185     q->pow2tab[63] = 1.0;
186     for (i=1 ; i<64 ; i++){
187         q->pow2tab[63+i]=(float)((uint64_t)1<<i);
188         q->pow2tab[63-i]=1.0/(float)((uint64_t)1<<i);
189     }
190 }
191
192 /* table generator */
193 static void init_rootpow2table(COOKContext *q){
194     int i;
195     q->rootpow2tab[63] = 1.0;
196     for (i=1 ; i<64 ; i++){
197         q->rootpow2tab[63+i]=sqrt((float)((uint64_t)1<<i));
198         q->rootpow2tab[63-i]=sqrt(1.0/(float)((uint64_t)1<<i));
199     }
200 }
201
202 /* table generator */
203 static void init_gain_table(COOKContext *q) {
204     int i;
205     q->gain_size_factor = q->samples_per_channel/8;
206     for (i=0 ; i<23 ; i++) {
207         q->gain_table[i] = pow((double)q->pow2tab[i+52] ,
208                                (1.0/(double)q->gain_size_factor));
209     }
210 }
211
212
213 static int init_cook_vlc_tables(COOKContext *q) {
214     int i, result;
215
216     result = 0;
217     for (i=0 ; i<13 ; i++) {
218         result &= init_vlc (&q->envelope_quant_index[i], 9, 24,
219             envelope_quant_index_huffbits[i], 1, 1,
220             envelope_quant_index_huffcodes[i], 2, 2, 0);
221     }
222     av_log(NULL,AV_LOG_DEBUG,"sqvh VLC init\n");
223     for (i=0 ; i<7 ; i++) {
224         result &= init_vlc (&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
225             cvh_huffbits[i], 1, 1,
226             cvh_huffcodes[i], 2, 2, 0);
227     }
228
229     if (q->nb_channels==2 && q->joint_stereo==1){
230         result &= init_vlc (&q->ccpl, 6, (1<<q->js_vlc_bits)-1,
231             ccpl_huffbits[q->js_vlc_bits-2], 1, 1,
232             ccpl_huffcodes[q->js_vlc_bits-2], 2, 2, 0);
233         av_log(NULL,AV_LOG_DEBUG,"Joint-stereo VLC used.\n");
234     }
235
236     av_log(NULL,AV_LOG_DEBUG,"VLC tables initialized.\n");
237     return result;
238 }
239
240 static int init_cook_mlt(COOKContext *q) {
241     int j;
242     float alpha;
243
244     /* Allocate the buffers, could be replaced with a static [512]
245        array if needed. */
246     q->mlt_size = q->samples_per_channel;
247     q->mlt_window = av_malloc(sizeof(float)*q->mlt_size);
248     q->mlt_precos = av_malloc(sizeof(float)*q->mlt_size/2);
249     q->mlt_presin = av_malloc(sizeof(float)*q->mlt_size/2);
250     q->mlt_postcos = av_malloc(sizeof(float)*q->mlt_size/2);
251
252     /* Initialize the MLT window: simple sine window. */
253     alpha = M_PI / (2.0 * (float)q->mlt_size);
254     for(j=0 ; j<q->mlt_size ; j++) {
255         q->mlt_window[j] = sin((j + 512.0/(float)q->mlt_size) * alpha);
256     }
257
258     /* pre/post twiddle factors */
259     for (j=0 ; j<q->mlt_size/2 ; j++){
260         q->mlt_precos[j] = cos( ((j+0.25)*M_PI)/q->mlt_size);
261         q->mlt_presin[j] = sin( ((j+0.25)*M_PI)/q->mlt_size);
262         q->mlt_postcos[j] = (float)sqrt(2.0/(float)q->mlt_size)*cos( ((float)j*M_PI) /q->mlt_size); //sqrt(2/MLT_size) = scalefactor
263     }
264
265     /* Initialize the FFT. */
266     ff_fft_init(&q->fft_ctx, av_log2(q->mlt_size)-1, 0);
267     av_log(NULL,AV_LOG_DEBUG,"FFT initialized, order = %d.\n",
268            av_log2(q->samples_per_channel)-1);
269
270     return (int)(q->mlt_window && q->mlt_precos && q->mlt_presin && q->mlt_postcos);
271 }
272
273 /*************** init functions end ***********/
274
275 /**
276  * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
277  * Why? No idea, some checksum/error detection method maybe.
278  * Nice way to waste CPU cycles.
279  *
280  * @param in        pointer to 32bit array of indata
281  * @param bits      amount of bits
282  * @param out       pointer to 32bit array of outdata
283  */
284
285 static inline void decode_bytes(uint8_t* inbuffer, uint8_t* out, int bytes){
286     int i;
287     uint32_t* buf = (uint32_t*) inbuffer;
288     uint32_t* obuf = (uint32_t*) out;
289     /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
290      * I'm too lazy though, should be something like
291      * for(i=0 ; i<bitamount/64 ; i++)
292      *     (int64_t)out[i] = 0x37c511f237c511f2^be2me_64(int64_t)in[i]);
293      * Buffer alignment needs to be checked. */
294
295
296     for(i=0 ; i<bytes/4 ; i++){
297 #ifdef WORDS_BIGENDIAN
298         obuf[i] = 0x37c511f2^buf[i];
299 #else
300         obuf[i] = 0xf211c537^buf[i];
301 #endif
302     }
303 }
304
305 /**
306  * Cook uninit
307  */
308
309 static int cook_decode_close(AVCodecContext *avctx)
310 {
311     int i;
312     COOKContext *q = avctx->priv_data;
313     av_log(NULL,AV_LOG_DEBUG, "Deallocating memory.\n");
314
315     /* Free allocated memory buffers. */
316     av_free(q->mlt_window);
317     av_free(q->mlt_precos);
318     av_free(q->mlt_presin);
319     av_free(q->mlt_postcos);
320     av_free(q->decoded_bytes_buffer);
321
322     /* Free the transform. */
323     ff_fft_end(&q->fft_ctx);
324
325     /* Free the VLC tables. */
326     for (i=0 ; i<13 ; i++) {
327         free_vlc(&q->envelope_quant_index[i]);
328     }
329     for (i=0 ; i<7 ; i++) {
330         free_vlc(&q->sqvh[i]);
331     }
332     if(q->nb_channels==2 && q->joint_stereo==1 ){
333         free_vlc(&q->ccpl);
334     }
335
336     av_log(NULL,AV_LOG_DEBUG,"Memory deallocated.\n");
337
338     return 0;
339 }
340
341 /**
342  * Fill the COOKgain structure for the timedomain quantization.
343  *
344  * @param q                 pointer to the COOKContext
345  * @param gaininfo          pointer to the COOKgain
346  */
347
348 static void decode_gain_info(GetBitContext *gb, COOKgain* gaininfo) {
349     int i;
350
351     while (get_bits1(gb)) {}
352
353     gaininfo->size = get_bits_count(gb) - 1;     //amount of elements*2 to update
354
355     if (get_bits_count(gb) - 1 <= 0) return;
356
357     for (i=0 ; i<gaininfo->size ; i++){
358         gaininfo->qidx_table1[i] = get_bits(gb,3);
359         if (get_bits1(gb)) {
360             gaininfo->qidx_table2[i] = get_bits(gb,4) - 7;  //convert to signed
361         } else {
362             gaininfo->qidx_table2[i] = -1;
363         }
364     }
365 }
366
367 /**
368  * Create the quant index table needed for the envelope.
369  *
370  * @param q                 pointer to the COOKContext
371  * @param quant_index_table pointer to the array
372  */
373
374 static void decode_envelope(COOKContext *q, int* quant_index_table) {
375     int i,j, vlc_index;
376     int bitbias;
377
378     bitbias = get_bits_count(&q->gb);
379     quant_index_table[0]= get_bits(&q->gb,6) - 6;       //This is used later in categorize
380
381     for (i=1 ; i < q->total_subbands ; i++){
382         vlc_index=i;
383         if (i >= q->js_subband_start * 2) {
384             vlc_index-=q->js_subband_start;
385         } else {
386             vlc_index/=2;
387             if(vlc_index < 1) vlc_index = 1;
388         }
389         if (vlc_index>13) vlc_index = 13;           //the VLC tables >13 are identical to No. 13
390
391         j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index-1].table,
392                      q->envelope_quant_index[vlc_index-1].bits,2);
393         quant_index_table[i] = quant_index_table[i-1] + j - 12;    //differential encoding
394     }
395 }
396
397 /**
398  * Create the quant value table.
399  *
400  * @param q                 pointer to the COOKContext
401  * @param quant_value_table pointer to the array
402  */
403
404 static void inline dequant_envelope(COOKContext *q, int* quant_index_table,
405                                     float* quant_value_table){
406
407     int i;
408     for(i=0 ; i < q->total_subbands ; i++){
409         quant_value_table[i] = q->rootpow2tab[quant_index_table[i]+63];
410     }
411 }
412
413 /**
414  * Calculate the category and category_index vector.
415  *
416  * @param q                     pointer to the COOKContext
417  * @param quant_index_table     pointer to the array
418  * @param category              pointer to the category array
419  * @param category_index        pointer to the category_index array
420  */
421
422 static void categorize(COOKContext *q, int* quant_index_table,
423                        int* category, int* category_index){
424     int exp_idx, bias, tmpbias, bits_left, num_bits, index, v, i, j;
425     int exp_index2[102];
426     int exp_index1[102];
427
428     int tmp_categorize_array1[128];
429     int tmp_categorize_array1_idx=0;
430     int tmp_categorize_array2[128];
431     int tmp_categorize_array2_idx=0;
432     int category_index_size=0;
433
434     bits_left =  q->bits_per_subpacket - get_bits_count(&q->gb);
435
436     if(bits_left > q->samples_per_channel) {
437         bits_left = q->samples_per_channel +
438                     ((bits_left - q->samples_per_channel)*5)/8;
439         //av_log(NULL, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
440     }
441
442     memset(&exp_index1,0,102*sizeof(int));
443     memset(&exp_index2,0,102*sizeof(int));
444     memset(&tmp_categorize_array1,0,128*sizeof(int));
445     memset(&tmp_categorize_array2,0,128*sizeof(int));
446
447     bias=-32;
448
449     /* Estimate bias. */
450     for (i=32 ; i>0 ; i=i/2){
451         num_bits = 0;
452         index = 0;
453         for (j=q->total_subbands ; j>0 ; j--){
454             exp_idx = (i - quant_index_table[index] + bias) / 2;
455             if (exp_idx<0){
456                 exp_idx=0;
457             } else if(exp_idx >7) {
458                 exp_idx=7;
459             }
460             index++;
461             num_bits+=expbits_tab[exp_idx];
462         }
463         if(num_bits >= bits_left - 32){
464             bias+=i;
465         }
466     }
467
468     /* Calculate total number of bits. */
469     num_bits=0;
470     for (i=0 ; i<q->total_subbands ; i++) {
471         exp_idx = (bias - quant_index_table[i]) / 2;
472         if (exp_idx<0) {
473             exp_idx=0;
474         } else if(exp_idx >7) {
475             exp_idx=7;
476         }
477         num_bits += expbits_tab[exp_idx];
478         exp_index1[i] = exp_idx;
479         exp_index2[i] = exp_idx;
480     }
481     tmpbias = bias = num_bits;
482
483     for (j = 1 ; j < q->numvector_size ; j++) {
484         if (tmpbias + bias > 2*bits_left) {  /* ---> */
485             int max = -999999;
486             index=-1;
487             for (i=0 ; i<q->total_subbands ; i++){
488                 if (exp_index1[i] < 7) {
489                     v = (-2*exp_index1[i]) - quant_index_table[i] - 32;
490                     if ( v >= max) {
491                         max = v;
492                         index = i;
493                     }
494                 }
495             }
496             if(index==-1)break;
497             tmp_categorize_array1[tmp_categorize_array1_idx++] = index;
498             tmpbias -= expbits_tab[exp_index1[index]] -
499                        expbits_tab[exp_index1[index]+1];
500             ++exp_index1[index];
501         } else {  /* <--- */
502             int min = 999999;
503             index=-1;
504             for (i=0 ; i<q->total_subbands ; i++){
505                 if(exp_index2[i] > 0){
506                     v = (-2*exp_index2[i])-quant_index_table[i];
507                     if ( v < min) {
508                         min = v;
509                         index = i;
510                     }
511                 }
512             }
513             if(index == -1)break;
514             tmp_categorize_array2[tmp_categorize_array2_idx++] = index;
515             tmpbias -= expbits_tab[exp_index2[index]] -
516                        expbits_tab[exp_index2[index]-1];
517             --exp_index2[index];
518         }
519     }
520
521     for(i=0 ; i<q->total_subbands ; i++)
522         category[i] = exp_index2[i];
523
524     /* Concatenate the two arrays. */
525     for(i=tmp_categorize_array2_idx-1 ; i >= 0; i--)
526         category_index[category_index_size++] =  tmp_categorize_array2[i];
527
528     for(i=0;i<tmp_categorize_array1_idx;i++)
529         category_index[category_index_size++ ] =  tmp_categorize_array1[i];
530
531     /* FIXME: mc_sich_ra8_20.rm triggers this, not sure with what we
532        should fill the remaining bytes. */
533     for(i=category_index_size;i<q->numvector_size;i++)
534         category_index[i]=0;
535
536 }
537
538
539 /**
540  * Expand the category vector.
541  *
542  * @param q                     pointer to the COOKContext
543  * @param category              pointer to the category array
544  * @param category_index        pointer to the category_index array
545  */
546
547 static void inline expand_category(COOKContext *q, int* category,
548                                    int* category_index){
549     int i;
550     for(i=0 ; i<q->num_vectors ; i++){
551         ++category[category_index[i]];
552     }
553 }
554
555 /**
556  * The real requantization of the mltcoefs
557  *
558  * @param q                     pointer to the COOKContext
559  * @param index                 index
560  * @param band                  current subband
561  * @param quant_value_table     pointer to the array
562  * @param subband_coef_index    array of indexes to quant_centroid_tab
563  * @param subband_coef_noise    use random noise instead of predetermined value
564  * @param mlt_buffer            pointer to the mlt buffer
565  */
566
567
568 static void scalar_dequant(COOKContext *q, int index, int band,
569                            float* quant_value_table, int* subband_coef_index,
570                            int* subband_coef_noise, float* mlt_buffer){
571     int i;
572     float f1;
573
574     for(i=0 ; i<SUBBAND_SIZE ; i++) {
575         if (subband_coef_index[i]) {
576             if (subband_coef_noise[i]) {
577                 f1 = -quant_centroid_tab[index][subband_coef_index[i]];
578             } else {
579                 f1 = quant_centroid_tab[index][subband_coef_index[i]];
580             }
581         } else {
582             /* noise coding if subband_coef_noise[i] == 0 */
583             q->random_state = q->random_state * 214013 + 2531011;    //typical RNG numbers
584             f1 = randsign[(q->random_state/0x1000000)&1] * dither_tab[index]; //>>31
585         }
586         mlt_buffer[band*20+ i] = f1 * quant_value_table[band];
587     }
588 }
589 /**
590  * Unpack the subband_coef_index and subband_coef_noise vectors.
591  *
592  * @param q                     pointer to the COOKContext
593  * @param category              pointer to the category array
594  * @param subband_coef_index    array of indexes to quant_centroid_tab
595  * @param subband_coef_noise    use random noise instead of predetermined value
596  */
597
598 static int unpack_SQVH(COOKContext *q, int category, int* subband_coef_index,
599                        int* subband_coef_noise) {
600     int i,j;
601     int vlc, vd ,tmp, result;
602     int ub;
603     int cb;
604
605     vd = vd_tab[category];
606     result = 0;
607     for(i=0 ; i<vpr_tab[category] ; i++){
608         ub = get_bits_count(&q->gb);
609         vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
610         cb = get_bits_count(&q->gb);
611         if (q->bits_per_subpacket < get_bits_count(&q->gb)){
612             vlc = 0;
613             result = 1;
614         }
615         for(j=vd-1 ; j>=0 ; j--){
616             tmp = (vlc * invradix_tab[category])/0x100000;
617             subband_coef_index[vd*i+j] = vlc - tmp * (kmax_tab[category]+1);
618             vlc = tmp;
619         }
620         for(j=0 ; j<vd ; j++){
621             if (subband_coef_index[i*vd + j]) {
622                 if(get_bits_count(&q->gb) < q->bits_per_subpacket){
623                     subband_coef_noise[i*vd+j] = get_bits1(&q->gb);
624                 } else {
625                     result=1;
626                     subband_coef_noise[i*vd+j]=0;
627                 }
628             } else {
629                 subband_coef_noise[i*vd+j]=0;
630             }
631         }
632     }
633     return result;
634 }
635
636
637 /**
638  * Fill the mlt_buffer with mlt coefficients.
639  *
640  * @param q                 pointer to the COOKContext
641  * @param category          pointer to the category array
642  * @param quant_value_table pointer to the array
643  * @param mlt_buffer        pointer to mlt coefficients
644  */
645
646
647 static void decode_vectors(COOKContext* q, int* category,
648                            float* quant_value_table, float* mlt_buffer){
649     /* A zero in this table means that the subband coefficient is
650        random noise coded. */
651     int subband_coef_noise[SUBBAND_SIZE];
652     /* A zero in this table means that the subband coefficient is a
653        positive multiplicator. */
654     int subband_coef_index[SUBBAND_SIZE];
655     int band, j;
656     int index=0;
657
658     for(band=0 ; band<q->total_subbands ; band++){
659         index = category[band];
660         if(category[band] < 7){
661             if(unpack_SQVH(q, category[band], subband_coef_index, subband_coef_noise)){
662                 index=7;
663                 for(j=0 ; j<q->total_subbands ; j++) category[band+j]=7;
664             }
665         }
666         if(index==7) {
667             memset(subband_coef_index, 0, sizeof(subband_coef_index));
668             memset(subband_coef_noise, 0, sizeof(subband_coef_noise));
669         }
670         scalar_dequant(q, index, band, quant_value_table, subband_coef_index,
671                        subband_coef_noise, mlt_buffer);
672     }
673
674     if(q->total_subbands*SUBBAND_SIZE >= q->samples_per_channel){
675         return;
676     }
677 }
678
679
680 /**
681  * function for decoding mono data
682  *
683  * @param q                 pointer to the COOKContext
684  * @param mlt_buffer1       pointer to left channel mlt coefficients
685  * @param mlt_buffer2       pointer to right channel mlt coefficients
686  */
687
688 static void mono_decode(COOKContext *q, float* mlt_buffer) {
689
690     int category_index[128];
691     float quant_value_table[102];
692     int quant_index_table[102];
693     int category[128];
694
695     memset(&category, 0, 128*sizeof(int));
696     memset(&quant_value_table, 0, 102*sizeof(int));
697     memset(&category_index, 0, 128*sizeof(int));
698
699     decode_envelope(q, quant_index_table);
700     q->num_vectors = get_bits(&q->gb,q->log2_numvector_size);
701     dequant_envelope(q, quant_index_table, quant_value_table);
702     categorize(q, quant_index_table, category, category_index);
703     expand_category(q, category, category_index);
704     decode_vectors(q, category, quant_value_table, mlt_buffer);
705 }
706
707
708 /**
709  * The modulated lapped transform, this takes transform coefficients
710  * and transforms them into timedomain samples. This is done through
711  * an FFT-based algorithm with pre- and postrotation steps.
712  * A window and reorder step is also included.
713  *
714  * @param q                 pointer to the COOKContext
715  * @param inbuffer          pointer to the mltcoefficients
716  * @param outbuffer         pointer to the timedomain buffer
717  * @param mlt_tmp           pointer to temporary storage space
718  */
719
720 static void cook_imlt(COOKContext *q, float* inbuffer, float* outbuffer,
721                       float* mlt_tmp){
722     int i;
723
724     /* prerotation */
725     for(i=0 ; i<q->mlt_size ; i+=2){
726         outbuffer[i] = (q->mlt_presin[i/2] * inbuffer[q->mlt_size-1-i]) +
727                        (q->mlt_precos[i/2] * inbuffer[i]);
728         outbuffer[i+1] = (q->mlt_precos[i/2] * inbuffer[q->mlt_size-1-i]) -
729                          (q->mlt_presin[i/2] * inbuffer[i]);
730     }
731
732     /* FFT */
733     ff_fft_permute(&q->fft_ctx, (FFTComplex *) outbuffer);
734     ff_fft_calc (&q->fft_ctx, (FFTComplex *) outbuffer);
735
736     /* postrotation */
737     for(i=0 ; i<q->mlt_size ; i+=2){
738         mlt_tmp[i] =               (q->mlt_postcos[(q->mlt_size-1-i)/2] * outbuffer[i+1]) +
739                                    (q->mlt_postcos[i/2] * outbuffer[i]);
740         mlt_tmp[q->mlt_size-1-i] = (q->mlt_postcos[(q->mlt_size-1-i)/2] * outbuffer[i]) -
741                                    (q->mlt_postcos[i/2] * outbuffer[i+1]);
742     }
743
744     /* window and reorder */
745     for(i=0 ; i<q->mlt_size/2 ; i++){
746         outbuffer[i] = mlt_tmp[q->mlt_size/2-1-i] * q->mlt_window[i];
747         outbuffer[q->mlt_size-1-i]= mlt_tmp[q->mlt_size/2-1-i] *
748                                     q->mlt_window[q->mlt_size-1-i];
749         outbuffer[q->mlt_size+i]= mlt_tmp[q->mlt_size/2+i] *
750                                   q->mlt_window[q->mlt_size-1-i];
751         outbuffer[2*q->mlt_size-1-i]= -(mlt_tmp[q->mlt_size/2+i] *
752                                       q->mlt_window[i]);
753     }
754 }
755
756
757 /**
758  * the actual requantization of the timedomain samples
759  *
760  * @param q                 pointer to the COOKContext
761  * @param buffer            pointer to the timedomain buffer
762  * @param gain_index        index for the block multiplier
763  * @param gain_index_next   index for the next block multiplier
764  */
765
766 static void interpolate(COOKContext *q, float* buffer,
767                         int gain_index, int gain_index_next){
768     int i;
769     float fc1, fc2;
770     fc1 = q->pow2tab[gain_index+63];
771
772     if(gain_index == gain_index_next){              //static gain
773         for(i=0 ; i<q->gain_size_factor ; i++){
774             buffer[i]*=fc1;
775         }
776         return;
777     } else {                                        //smooth gain
778         fc2 = q->gain_table[11 + (gain_index_next-gain_index)];
779         for(i=0 ; i<q->gain_size_factor ; i++){
780             buffer[i]*=fc1;
781             fc1*=fc2;
782         }
783         return;
784     }
785 }
786
787 /**
788  * timedomain requantization of the timedomain samples
789  *
790  * @param q                 pointer to the COOKContext
791  * @param buffer            pointer to the timedomain buffer
792  * @param gain_now          current gain structure
793  * @param gain_previous     previous gain structure
794  */
795
796 static void gain_window(COOKContext *q, float* buffer, COOKgain* gain_now,
797                         COOKgain* gain_previous){
798     int i, index;
799     int gain_index[9];
800     int tmp_gain_index;
801
802     gain_index[8]=0;
803     index = gain_previous->size;
804     for (i=7 ; i>=0 ; i--) {
805         if(index && gain_previous->qidx_table1[index-1]==i) {
806             gain_index[i] = gain_previous->qidx_table2[index-1];
807             index--;
808         } else {
809             gain_index[i]=gain_index[i+1];
810         }
811     }
812     /* This is applied to the to be previous data buffer. */
813     for(i=0;i<8;i++){
814         interpolate(q, &buffer[q->samples_per_channel+q->gain_size_factor*i],
815                     gain_index[i], gain_index[i+1]);
816     }
817
818     tmp_gain_index = gain_index[0];
819     index = gain_now->size;
820     for (i=7 ; i>=0 ; i--) {
821         if(index && gain_now->qidx_table1[index-1]==i) {
822             gain_index[i]= gain_now->qidx_table2[index-1];
823             index--;
824         } else {
825             gain_index[i]=gain_index[i+1];
826         }
827     }
828
829     /* This is applied to the to be current block. */
830     for(i=0;i<8;i++){
831         interpolate(q, &buffer[i*q->gain_size_factor],
832                     tmp_gain_index+gain_index[i],
833                     tmp_gain_index+gain_index[i+1]);
834     }
835 }
836
837
838 /**
839  * mlt overlapping and buffer management
840  *
841  * @param q                 pointer to the COOKContext
842  * @param buffer            pointer to the timedomain buffer
843  * @param gain_now          current gain structure
844  * @param gain_previous     previous gain structure
845  * @param previous_buffer   pointer to the previous buffer to be used for overlapping
846  *
847  */
848
849 static void gain_compensate(COOKContext *q, float* buffer, COOKgain* gain_now,
850                             COOKgain* gain_previous, float* previous_buffer) {
851     int i;
852     if((gain_now->size  || gain_previous->size)) {
853         gain_window(q, buffer, gain_now, gain_previous);
854     }
855
856     /* Overlap with the previous block. */
857     for(i=0 ; i<q->samples_per_channel ; i++) buffer[i]+=previous_buffer[i];
858
859     /* Save away the current to be previous block. */
860     memcpy(previous_buffer, buffer+q->samples_per_channel,
861            sizeof(float)*q->samples_per_channel);
862 }
863
864
865 /**
866  * function for getting the jointstereo coupling information
867  *
868  * @param q                 pointer to the COOKContext
869  * @param decouple_tab      decoupling array
870  *
871  */
872
873 static void decouple_info(COOKContext *q, int* decouple_tab){
874     int length, i;
875
876     if(get_bits1(&q->gb)) {
877         if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
878
879         length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
880         for (i=0 ; i<length ; i++) {
881             decouple_tab[cplband[q->js_subband_start] + i] = get_vlc2(&q->gb, q->ccpl.table, q->ccpl.bits, 2);
882         }
883         return;
884     }
885
886     if(cplband[q->js_subband_start] > cplband[q->subbands-1]) return;
887
888     length = cplband[q->subbands-1] - cplband[q->js_subband_start] + 1;
889     for (i=0 ; i<length ; i++) {
890        decouple_tab[cplband[q->js_subband_start] + i] = get_bits(&q->gb, q->js_vlc_bits);
891     }
892     return;
893 }
894
895
896 /**
897  * function for decoding joint stereo data
898  *
899  * @param q                 pointer to the COOKContext
900  * @param mlt_buffer1       pointer to left channel mlt coefficients
901  * @param mlt_buffer2       pointer to right channel mlt coefficients
902  */
903
904 static void joint_decode(COOKContext *q, float* mlt_buffer1,
905                          float* mlt_buffer2) {
906     int i,j;
907     int decouple_tab[SUBBAND_SIZE];
908     float decode_buffer[1060];
909     int idx, cpl_tmp,tmp_idx;
910     float f1,f2;
911     float* cplscale;
912
913     memset(decouple_tab, 0, sizeof(decouple_tab));
914     memset(decode_buffer, 0, sizeof(decode_buffer));
915
916     /* Make sure the buffers are zeroed out. */
917     memset(mlt_buffer1,0, 1024*sizeof(float));
918     memset(mlt_buffer2,0, 1024*sizeof(float));
919     decouple_info(q, decouple_tab);
920     mono_decode(q, decode_buffer);
921
922     /* The two channels are stored interleaved in decode_buffer. */
923     for (i=0 ; i<q->js_subband_start ; i++) {
924         for (j=0 ; j<SUBBAND_SIZE ; j++) {
925             mlt_buffer1[i*20+j] = decode_buffer[i*40+j];
926             mlt_buffer2[i*20+j] = decode_buffer[i*40+20+j];
927         }
928     }
929
930     /* When we reach js_subband_start (the higher frequencies)
931        the coefficients are stored in a coupling scheme. */
932     idx = (1 << q->js_vlc_bits) - 1;
933     for (i=q->js_subband_start ; i<q->subbands ; i++) {
934         cpl_tmp = cplband[i];
935         idx -=decouple_tab[cpl_tmp];
936         cplscale = (float*)cplscales[q->js_vlc_bits-2];  //choose decoupler table
937         f1 = cplscale[decouple_tab[cpl_tmp]];
938         f2 = cplscale[idx-1];
939         for (j=0 ; j<SUBBAND_SIZE ; j++) {
940             tmp_idx = ((q->js_subband_start + i)*20)+j;
941             mlt_buffer1[20*i + j] = f1 * decode_buffer[tmp_idx];
942             mlt_buffer2[20*i + j] = f2 * decode_buffer[tmp_idx];
943         }
944         idx = (1 << q->js_vlc_bits) - 1;
945     }
946 }
947
948 /**
949  * Cook subpacket decoding. This function returns one decoded subpacket,
950  * usually 1024 samples per channel.
951  *
952  * @param q                 pointer to the COOKContext
953  * @param inbuffer          pointer to the inbuffer
954  * @param sub_packet_size   subpacket size
955  * @param outbuffer         pointer to the outbuffer
956  */
957
958
959 static int decode_subpacket(COOKContext *q, uint8_t *inbuffer,
960                             int sub_packet_size, int16_t *outbuffer) {
961     int i,j;
962     int value;
963     float* tmp_ptr;
964
965     /* packet dump */
966 //    for (i=0 ; i<sub_packet_size ; i++) {
967 //        av_log(NULL, AV_LOG_ERROR, "%02x", inbuffer[i]);
968 //    }
969 //    av_log(NULL, AV_LOG_ERROR, "\n");
970
971     decode_bytes(inbuffer, q->decoded_bytes_buffer, sub_packet_size);
972     init_get_bits(&q->gb, q->decoded_bytes_buffer, sub_packet_size*8);
973     decode_gain_info(&q->gb, &q->gain_current);
974
975     if(q->nb_channels==2 && q->joint_stereo==1){
976         joint_decode(q, q->decode_buf_ptr[0], q->decode_buf_ptr[2]);
977
978         /* Swap buffer pointers. */
979         tmp_ptr = q->decode_buf_ptr[1];
980         q->decode_buf_ptr[1] = q->decode_buf_ptr[0];
981         q->decode_buf_ptr[0] = tmp_ptr;
982         tmp_ptr = q->decode_buf_ptr[3];
983         q->decode_buf_ptr[3] = q->decode_buf_ptr[2];
984         q->decode_buf_ptr[2] = tmp_ptr;
985
986         /* FIXME: Rethink the gainbuffer handling, maybe a rename?
987            now/previous swap */
988         q->gain_now_ptr = &q->gain_now;
989         q->gain_previous_ptr = &q->gain_previous;
990         for (i=0 ; i<q->nb_channels ; i++){
991
992             cook_imlt(q, q->decode_buf_ptr[i*2], q->mono_mdct_output, q->mlt_tmp);
993             gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
994                             q->gain_previous_ptr, q->previous_buffer_ptr[0]);
995
996             /* Swap out the previous buffer. */
997             tmp_ptr = q->previous_buffer_ptr[0];
998             q->previous_buffer_ptr[0] = q->previous_buffer_ptr[1];
999             q->previous_buffer_ptr[1] = tmp_ptr;
1000
1001             /* Clip and convert the floats to 16 bits. */
1002             for (j=0 ; j<q->samples_per_frame ; j++){
1003                 value = lrintf(q->mono_mdct_output[j]);
1004                 if(value < -32768) value = -32768;
1005                 else if(value > 32767) value = 32767;
1006                 outbuffer[2*j+i] = value;
1007             }
1008         }
1009
1010         memcpy(&q->gain_now, &q->gain_previous, sizeof(COOKgain));
1011         memcpy(&q->gain_previous, &q->gain_current, sizeof(COOKgain));
1012
1013     } else if (q->nb_channels==2 && q->joint_stereo==0) {
1014             /* channel 0 */
1015             mono_decode(q, q->decode_buf_ptr2[0]);
1016
1017             tmp_ptr = q->decode_buf_ptr2[0];
1018             q->decode_buf_ptr2[0] = q->decode_buf_ptr2[1];
1019             q->decode_buf_ptr2[1] = tmp_ptr;
1020
1021             memcpy(&q->gain_channel1[0], &q->gain_current ,sizeof(COOKgain));
1022             q->gain_now_ptr = &q->gain_channel1[0];
1023             q->gain_previous_ptr = &q->gain_channel1[1];
1024
1025             cook_imlt(q, q->decode_buf_ptr2[0], q->mono_mdct_output,q->mlt_tmp);
1026             gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
1027                             q->gain_previous_ptr, q->mono_previous_buffer1);
1028
1029             memcpy(&q->gain_channel1[1], &q->gain_channel1[0],sizeof(COOKgain));
1030
1031
1032             for (j=0 ; j<q->samples_per_frame ; j++){
1033                 value = lrintf(q->mono_mdct_output[j]);
1034                 if(value < -32768) value = -32768;
1035                 else if(value > 32767) value = 32767;
1036                 outbuffer[2*j+1] = value;
1037             }
1038
1039             /* channel 1 */
1040             //av_log(NULL,AV_LOG_ERROR,"bits = %d\n",get_bits_count(&q->gb));
1041             init_get_bits(&q->gb, q->decoded_bytes_buffer, sub_packet_size*8+q->bits_per_subpacket);
1042
1043             q->gain_now_ptr = &q->gain_channel2[0];
1044             q->gain_previous_ptr = &q->gain_channel2[1];
1045
1046             decode_gain_info(&q->gb, &q->gain_channel2[0]);
1047             mono_decode(q, q->decode_buf_ptr[0]);
1048
1049             tmp_ptr = q->decode_buf_ptr[0];
1050             q->decode_buf_ptr[0] = q->decode_buf_ptr[1];
1051             q->decode_buf_ptr[1] = tmp_ptr;
1052
1053             cook_imlt(q, q->decode_buf_ptr[0], q->mono_mdct_output,q->mlt_tmp);
1054             gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
1055                             q->gain_previous_ptr, q->mono_previous_buffer2);
1056
1057             /* Swap out the previous buffer. */
1058             tmp_ptr = q->previous_buffer_ptr[0];
1059             q->previous_buffer_ptr[0] = q->previous_buffer_ptr[1];
1060             q->previous_buffer_ptr[1] = tmp_ptr;
1061
1062             memcpy(&q->gain_channel2[1], &q->gain_channel2[0] ,sizeof(COOKgain));
1063
1064             for (j=0 ; j<q->samples_per_frame ; j++){
1065                 value = lrintf(q->mono_mdct_output[j]);
1066                 if(value < -32768) value = -32768;
1067                 else if(value > 32767) value = 32767;
1068                 outbuffer[2*j] = value;
1069             }
1070
1071     } else {
1072         mono_decode(q, q->decode_buf_ptr[0]);
1073
1074         /* Swap buffer pointers. */
1075         tmp_ptr = q->decode_buf_ptr[1];
1076         q->decode_buf_ptr[1] = q->decode_buf_ptr[0];
1077         q->decode_buf_ptr[0] = tmp_ptr;
1078
1079         /* FIXME: Rethink the gainbuffer handling, maybe a rename?
1080            now/previous swap */
1081         q->gain_now_ptr = &q->gain_now;
1082         q->gain_previous_ptr = &q->gain_previous;
1083
1084         cook_imlt(q, q->decode_buf_ptr[0], q->mono_mdct_output,q->mlt_tmp);
1085         gain_compensate(q, q->mono_mdct_output, q->gain_now_ptr,
1086                         q->gain_previous_ptr, q->mono_previous_buffer1);
1087
1088         /* Clip and convert the floats to 16 bits */
1089         for (j=0 ; j<q->samples_per_frame ; j++){
1090             value = lrintf(q->mono_mdct_output[j]);
1091             if(value < -32768) value = -32768;
1092             else if(value > 32767) value = 32767;
1093             outbuffer[j] = value;
1094         }
1095         memcpy(&q->gain_now, &q->gain_previous, sizeof(COOKgain));
1096         memcpy(&q->gain_previous, &q->gain_current, sizeof(COOKgain));
1097     }
1098     return q->samples_per_frame * sizeof(int16_t);
1099 }
1100
1101
1102 /**
1103  * Cook frame decoding
1104  *
1105  * @param avctx     pointer to the AVCodecContext
1106  */
1107
1108 static int cook_decode_frame(AVCodecContext *avctx,
1109             void *data, int *data_size,
1110             uint8_t *buf, int buf_size) {
1111     COOKContext *q = avctx->priv_data;
1112
1113     if (buf_size < avctx->block_align)
1114         return buf_size;
1115
1116     *data_size = decode_subpacket(q, buf, avctx->block_align, data);
1117
1118     return avctx->block_align;
1119 }
1120
1121 #ifdef COOKDEBUG
1122 static void dump_cook_context(COOKContext *q, COOKextradata *e)
1123 {
1124     //int i=0;
1125 #define PRINT(a,b) av_log(NULL,AV_LOG_ERROR," %s = %d\n", a, b);
1126     av_log(NULL,AV_LOG_ERROR,"COOKextradata\n");
1127     av_log(NULL,AV_LOG_ERROR,"cookversion=%x\n",e->cookversion);
1128     if (e->cookversion > MONO_COOK2) {
1129         PRINT("js_subband_start",e->js_subband_start);
1130         PRINT("js_vlc_bits",e->js_vlc_bits);
1131     }
1132     av_log(NULL,AV_LOG_ERROR,"COOKContext\n");
1133     PRINT("nb_channels",q->nb_channels);
1134     PRINT("bit_rate",q->bit_rate);
1135     PRINT("sample_rate",q->sample_rate);
1136     PRINT("samples_per_channel",q->samples_per_channel);
1137     PRINT("samples_per_frame",q->samples_per_frame);
1138     PRINT("subbands",q->subbands);
1139     PRINT("random_state",q->random_state);
1140     PRINT("mlt_size",q->mlt_size);
1141     PRINT("js_subband_start",q->js_subband_start);
1142     PRINT("log2_numvector_size",q->log2_numvector_size);
1143     PRINT("numvector_size",q->numvector_size);
1144     PRINT("total_subbands",q->total_subbands);
1145 }
1146 #endif
1147
1148 /**
1149  * Cook initialization
1150  *
1151  * @param avctx     pointer to the AVCodecContext
1152  */
1153
1154 static int cook_decode_init(AVCodecContext *avctx)
1155 {
1156     COOKextradata *e = avctx->extradata;
1157     COOKContext *q = avctx->priv_data;
1158
1159     /* Take care of the codec specific extradata. */
1160     if (avctx->extradata_size <= 0) {
1161         av_log(NULL,AV_LOG_ERROR,"Necessary extradata missing!\n");
1162         return -1;
1163     } else {
1164         /* 8 for mono, 16 for stereo, ? for multichannel
1165            Swap to right endianness so we don't need to care later on. */
1166         av_log(NULL,AV_LOG_DEBUG,"codecdata_length=%d\n",avctx->extradata_size);
1167         if (avctx->extradata_size >= 8){
1168             e->cookversion = be2me_32(e->cookversion);
1169             e->samples_per_frame = be2me_16(e->samples_per_frame);
1170             e->subbands = be2me_16(e->subbands);
1171         }
1172         if (avctx->extradata_size >= 16){
1173             e->js_subband_start = be2me_16(e->js_subband_start);
1174             e->js_vlc_bits = be2me_16(e->js_vlc_bits);
1175         }
1176     }
1177
1178     /* Take data from the AVCodecContext (RM container). */
1179     q->sample_rate = avctx->sample_rate;
1180     q->nb_channels = avctx->channels;
1181     q->bit_rate = avctx->bit_rate;
1182
1183     /* Initialize state. */
1184     q->random_state = 1;
1185
1186     /* Initialize extradata related variables. */
1187     q->samples_per_channel = e->samples_per_frame / q->nb_channels;
1188     q->samples_per_frame = e->samples_per_frame;
1189     q->subbands = e->subbands;
1190     q->bits_per_subpacket = avctx->block_align * 8;
1191
1192     /* Initialize default data states. */
1193     q->js_subband_start = 0;
1194     q->log2_numvector_size = 5;
1195     q->total_subbands = q->subbands;
1196
1197     /* Initialize version-dependent variables */
1198     av_log(NULL,AV_LOG_DEBUG,"e->cookversion=%x\n",e->cookversion);
1199     switch (e->cookversion) {
1200         case MONO_COOK1:
1201             if (q->nb_channels != 1) {
1202                 av_log(NULL,AV_LOG_ERROR,"Container channels != 1, report sample!\n");
1203                 return -1;
1204             }
1205             av_log(NULL,AV_LOG_DEBUG,"MONO_COOK1\n");
1206             break;
1207         case MONO_COOK2:
1208             if (q->nb_channels != 1) {
1209                 q->joint_stereo = 0;
1210                 q->bits_per_subpacket = q->bits_per_subpacket/2;
1211             }
1212             av_log(NULL,AV_LOG_DEBUG,"MONO_COOK2\n");
1213             break;
1214         case JOINT_STEREO:
1215             if (q->nb_channels != 2) {
1216                 av_log(NULL,AV_LOG_ERROR,"Container channels != 2, report sample!\n");
1217                 return -1;
1218             }
1219             av_log(NULL,AV_LOG_DEBUG,"JOINT_STEREO\n");
1220             if (avctx->extradata_size >= 16){
1221                 q->total_subbands = q->subbands + e->js_subband_start;
1222                 q->js_subband_start = e->js_subband_start;
1223                 q->joint_stereo = 1;
1224                 q->js_vlc_bits = e->js_vlc_bits;
1225             }
1226             if (q->samples_per_channel > 256) {
1227                 q->log2_numvector_size  = 6;
1228             }
1229             if (q->samples_per_channel > 512) {
1230                 q->log2_numvector_size  = 7;
1231             }
1232             break;
1233         case MC_COOK:
1234             av_log(NULL,AV_LOG_ERROR,"MC_COOK not supported!\n");
1235             return -1;
1236             break;
1237         default:
1238             av_log(NULL,AV_LOG_ERROR,"Unknown Cook version, report sample!\n");
1239             return -1;
1240             break;
1241     }
1242
1243     /* Initialize variable relations */
1244     q->mlt_size = q->samples_per_channel;
1245     q->numvector_size = (1 << q->log2_numvector_size);
1246
1247     /* Generate tables */
1248     init_rootpow2table(q);
1249     init_pow2table(q);
1250     init_gain_table(q);
1251
1252     if (init_cook_vlc_tables(q) != 0)
1253         return -1;
1254
1255
1256     if(avctx->block_align >= UINT_MAX/2)
1257         return -1;
1258
1259     /* Pad the databuffer with FF_INPUT_BUFFER_PADDING_SIZE,
1260        this is for the bitstreamreader. */
1261     if ((q->decoded_bytes_buffer = av_mallocz((avctx->block_align+(4-avctx->block_align%4) + FF_INPUT_BUFFER_PADDING_SIZE)*sizeof(uint8_t)))  == NULL)
1262         return -1;
1263
1264     q->decode_buf_ptr[0] = q->decode_buffer_1;
1265     q->decode_buf_ptr[1] = q->decode_buffer_2;
1266     q->decode_buf_ptr[2] = q->decode_buffer_3;
1267     q->decode_buf_ptr[3] = q->decode_buffer_4;
1268
1269     q->decode_buf_ptr2[0] = q->decode_buffer_3;
1270     q->decode_buf_ptr2[1] = q->decode_buffer_4;
1271
1272     q->previous_buffer_ptr[0] = q->mono_previous_buffer1;
1273     q->previous_buffer_ptr[1] = q->mono_previous_buffer2;
1274
1275     /* Initialize transform. */
1276     if ( init_cook_mlt(q) == 0 )
1277         return -1;
1278
1279     /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1280     if (q->total_subbands > 53) {
1281         av_log(NULL,AV_LOG_ERROR,"total_subbands > 53, report sample!\n");
1282         return -1;
1283     }
1284     if (q->subbands > 50) {
1285         av_log(NULL,AV_LOG_ERROR,"subbands > 50, report sample!\n");
1286         return -1;
1287     }
1288     if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512) || (q->samples_per_channel == 1024)) {
1289     } else {
1290         av_log(NULL,AV_LOG_ERROR,"unknown amount of samples_per_channel = %d, report sample!\n",q->samples_per_channel);
1291         return -1;
1292     }
1293
1294 #ifdef COOKDEBUG
1295     dump_cook_context(q,e);
1296 #endif
1297     return 0;
1298 }
1299
1300
1301 AVCodec cook_decoder =
1302 {
1303     .name = "cook",
1304     .type = CODEC_TYPE_AUDIO,
1305     .id = CODEC_ID_COOK,
1306     .priv_data_size = sizeof(COOKContext),
1307     .init = cook_decode_init,
1308     .close = cook_decode_close,
1309     .decode = cook_decode_frame,
1310 };