2 * COOK compatible decoder
3 * Copyright (c) 2003 Sascha Sommer
4 * Copyright (c) 2005 Benjamin Larsson
6 * This file is part of Libav.
8 * Libav is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
13 * Libav is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with Libav; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26 * This decoder handles RealNetworks, RealAudio G2 data.
27 * Cook is identified by the codec name cook in RM files.
29 * To use this decoder, a calling application must supply the extradata
30 * bytes provided from the RM container; 8+ bytes for mono streams and
31 * 16+ for stereo streams (maybe more).
33 * Codec technicalities (all this assume a buffer length of 1024):
34 * Cook works with several different techniques to achieve its compression.
35 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36 * two neighboring pieces have different quantization index a smooth
37 * quantization curve is used to get a smooth overlap between the different
39 * To get to the transformdomain Cook uses a modulated lapped transform.
40 * The transform domain has 50 subbands with 20 elements each. This
41 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
45 #include "libavutil/lfg.h"
49 #include "bytestream.h"
51 #include "libavutil/audioconvert.h"
56 /* the different Cook versions */
57 #define MONO 0x1000001
58 #define STEREO 0x1000002
59 #define JOINT_STEREO 0x1000003
60 #define MC_COOK 0x2000000 // multichannel Cook, not supported
62 #define SUBBAND_SIZE 20
63 #define MAX_SUBPACKETS 5
75 int samples_per_frame;
79 int samples_per_channel;
80 int log2_numvector_size;
81 unsigned int channel_mask;
82 VLC ccpl; ///< channel coupling
84 int bits_per_subpacket;
87 int numvector_size; ///< 1 << log2_numvector_size;
89 float mono_previous_buffer1[1024];
90 float mono_previous_buffer2[1024];
100 typedef struct cook {
102 * The following 5 functions provide the lowlevel arithmetic on
103 * the internal audio buffers.
105 void (*scalar_dequant)(struct cook *q, int index, int quant_index,
106 int *subband_coef_index, int *subband_coef_sign,
109 void (*decouple)(struct cook *q,
113 float *decode_buffer,
114 float *mlt_buffer1, float *mlt_buffer2);
116 void (*imlt_window)(struct cook *q, float *buffer1,
117 cook_gains *gains_ptr, float *previous_buffer);
119 void (*interpolate)(struct cook *q, float *buffer,
120 int gain_index, int gain_index_next);
122 void (*saturate_output)(struct cook *q, int chan, float *out);
124 AVCodecContext* avctx;
132 int samples_per_channel;
135 int discarded_packets;
142 VLC envelope_quant_index[13];
143 VLC sqvh[7]; // scalar quantization
145 /* generatable tables and related variables */
146 int gain_size_factor;
147 float gain_table[23];
151 uint8_t* decoded_bytes_buffer;
152 DECLARE_ALIGNED(32, float, mono_mdct_output)[2048];
153 float decode_buffer_1[1024];
154 float decode_buffer_2[1024];
155 float decode_buffer_0[1060]; /* static allocation for joint decode */
157 const float *cplscales[5];
159 COOKSubpacket subpacket[MAX_SUBPACKETS];
162 static float pow2tab[127];
163 static float rootpow2tab[127];
165 /*************** init functions ***************/
167 /* table generator */
168 static av_cold void init_pow2table(void)
171 for (i = -63; i < 64; i++) {
172 pow2tab[63 + i] = pow(2, i);
173 rootpow2tab[63 + i] = sqrt(pow(2, i));
177 /* table generator */
178 static av_cold void init_gain_table(COOKContext *q)
181 q->gain_size_factor = q->samples_per_channel / 8;
182 for (i = 0; i < 23; i++)
183 q->gain_table[i] = pow(pow2tab[i + 52],
184 (1.0 / (double) q->gain_size_factor));
188 static av_cold int init_cook_vlc_tables(COOKContext *q)
193 for (i = 0; i < 13; i++) {
194 result |= init_vlc(&q->envelope_quant_index[i], 9, 24,
195 envelope_quant_index_huffbits[i], 1, 1,
196 envelope_quant_index_huffcodes[i], 2, 2, 0);
198 av_log(q->avctx, AV_LOG_DEBUG, "sqvh VLC init\n");
199 for (i = 0; i < 7; i++) {
200 result |= init_vlc(&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
201 cvh_huffbits[i], 1, 1,
202 cvh_huffcodes[i], 2, 2, 0);
205 for (i = 0; i < q->num_subpackets; i++) {
206 if (q->subpacket[i].joint_stereo == 1) {
207 result |= init_vlc(&q->subpacket[i].ccpl, 6, (1 << q->subpacket[i].js_vlc_bits) - 1,
208 ccpl_huffbits[q->subpacket[i].js_vlc_bits - 2], 1, 1,
209 ccpl_huffcodes[q->subpacket[i].js_vlc_bits - 2], 2, 2, 0);
210 av_log(q->avctx, AV_LOG_DEBUG, "subpacket %i Joint-stereo VLC used.\n", i);
214 av_log(q->avctx, AV_LOG_DEBUG, "VLC tables initialized.\n");
218 static av_cold int init_cook_mlt(COOKContext *q)
221 int mlt_size = q->samples_per_channel;
223 if ((q->mlt_window = av_malloc(mlt_size * sizeof(*q->mlt_window))) == 0)
224 return AVERROR(ENOMEM);
226 /* Initialize the MLT window: simple sine window. */
227 ff_sine_window_init(q->mlt_window, mlt_size);
228 for (j = 0; j < mlt_size; j++)
229 q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
231 /* Initialize the MDCT. */
232 if ((ret = ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size) + 1, 1, 1.0 / 32768.0))) {
233 av_free(q->mlt_window);
236 av_log(q->avctx, AV_LOG_DEBUG, "MDCT initialized, order = %d.\n",
237 av_log2(mlt_size) + 1);
242 static const float *maybe_reformat_buffer32(COOKContext *q, const float *ptr, int n)
248 static av_cold void init_cplscales_table(COOKContext *q)
251 for (i = 0; i < 5; i++)
252 q->cplscales[i] = maybe_reformat_buffer32(q, cplscales[i], (1 << (i + 2)) - 1);
255 /*************** init functions end ***********/
257 #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes) + 3) % 4)
258 #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
261 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
262 * Why? No idea, some checksum/error detection method maybe.
264 * Out buffer size: extra bytes are needed to cope with
265 * padding/misalignment.
266 * Subpackets passed to the decoder can contain two, consecutive
267 * half-subpackets, of identical but arbitrary size.
268 * 1234 1234 1234 1234 extraA extraB
269 * Case 1: AAAA BBBB 0 0
270 * Case 2: AAAA ABBB BB-- 3 3
271 * Case 3: AAAA AABB BBBB 2 2
272 * Case 4: AAAA AAAB BBBB BB-- 1 5
274 * Nice way to waste CPU cycles.
276 * @param inbuffer pointer to byte array of indata
277 * @param out pointer to byte array of outdata
278 * @param bytes number of bytes
280 static inline int decode_bytes(const uint8_t *inbuffer, uint8_t *out, int bytes)
282 static const uint32_t tab[4] = {
283 AV_BE2NE32C(0x37c511f2), AV_BE2NE32C(0xf237c511),
284 AV_BE2NE32C(0x11f237c5), AV_BE2NE32C(0xc511f237),
289 uint32_t *obuf = (uint32_t *) out;
290 /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
291 * I'm too lazy though, should be something like
292 * for (i = 0; i < bitamount / 64; i++)
293 * (int64_t) out[i] = 0x37c511f237c511f2 ^ av_be2ne64(int64_t) in[i]);
294 * Buffer alignment needs to be checked. */
296 off = (intptr_t) inbuffer & 3;
297 buf = (const uint32_t *) (inbuffer - off);
300 for (i = 0; i < bytes / 4; i++)
301 obuf[i] = c ^ buf[i];
309 static av_cold int cook_decode_close(AVCodecContext *avctx)
312 COOKContext *q = avctx->priv_data;
313 av_log(avctx, AV_LOG_DEBUG, "Deallocating memory.\n");
315 /* Free allocated memory buffers. */
316 av_free(q->mlt_window);
317 av_free(q->decoded_bytes_buffer);
319 /* Free the transform. */
320 ff_mdct_end(&q->mdct_ctx);
322 /* Free the VLC tables. */
323 for (i = 0; i < 13; i++)
324 ff_free_vlc(&q->envelope_quant_index[i]);
325 for (i = 0; i < 7; i++)
326 ff_free_vlc(&q->sqvh[i]);
327 for (i = 0; i < q->num_subpackets; i++)
328 ff_free_vlc(&q->subpacket[i].ccpl);
330 av_log(avctx, AV_LOG_DEBUG, "Memory deallocated.\n");
336 * Fill the gain array for the timedomain quantization.
338 * @param gb pointer to the GetBitContext
339 * @param gaininfo array[9] of gain indexes
341 static void decode_gain_info(GetBitContext *gb, int *gaininfo)
345 while (get_bits1(gb)) {
349 n = get_bits_count(gb) - 1; // amount of elements*2 to update
353 int index = get_bits(gb, 3);
354 int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
357 gaininfo[i++] = gain;
364 * Create the quant index table needed for the envelope.
366 * @param q pointer to the COOKContext
367 * @param quant_index_table pointer to the array
369 static void decode_envelope(COOKContext *q, COOKSubpacket *p,
370 int *quant_index_table)
374 quant_index_table[0] = get_bits(&q->gb, 6) - 6; // This is used later in categorize
376 for (i = 1; i < p->total_subbands; i++) {
378 if (i >= p->js_subband_start * 2) {
379 vlc_index -= p->js_subband_start;
386 vlc_index = 13; // the VLC tables >13 are identical to No. 13
388 j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index - 1].table,
389 q->envelope_quant_index[vlc_index - 1].bits, 2);
390 quant_index_table[i] = quant_index_table[i - 1] + j - 12; // differential encoding
395 * Calculate the category and category_index vector.
397 * @param q pointer to the COOKContext
398 * @param quant_index_table pointer to the array
399 * @param category pointer to the category array
400 * @param category_index pointer to the category_index array
402 static void categorize(COOKContext *q, COOKSubpacket *p, int *quant_index_table,
403 int *category, int *category_index)
405 int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
409 int tmp_categorize_array[128 * 2];
410 int tmp_categorize_array1_idx = p->numvector_size;
411 int tmp_categorize_array2_idx = p->numvector_size;
413 bits_left = p->bits_per_subpacket - get_bits_count(&q->gb);
415 if (bits_left > q->samples_per_channel) {
416 bits_left = q->samples_per_channel +
417 ((bits_left - q->samples_per_channel) * 5) / 8;
418 //av_log(q->avctx, AV_LOG_ERROR, "bits_left = %d\n",bits_left);
421 memset(&exp_index1, 0, sizeof(exp_index1));
422 memset(&exp_index2, 0, sizeof(exp_index2));
423 memset(&tmp_categorize_array, 0, sizeof(tmp_categorize_array));
428 for (i = 32; i > 0; i = i / 2) {
431 for (j = p->total_subbands; j > 0; j--) {
432 exp_idx = av_clip((i - quant_index_table[index] + bias) / 2, 0, 7);
434 num_bits += expbits_tab[exp_idx];
436 if (num_bits >= bits_left - 32)
440 /* Calculate total number of bits. */
442 for (i = 0; i < p->total_subbands; i++) {
443 exp_idx = av_clip((bias - quant_index_table[i]) / 2, 0, 7);
444 num_bits += expbits_tab[exp_idx];
445 exp_index1[i] = exp_idx;
446 exp_index2[i] = exp_idx;
448 tmpbias1 = tmpbias2 = num_bits;
450 for (j = 1; j < p->numvector_size; j++) {
451 if (tmpbias1 + tmpbias2 > 2 * bits_left) { /* ---> */
454 for (i = 0; i < p->total_subbands; i++) {
455 if (exp_index1[i] < 7) {
456 v = (-2 * exp_index1[i]) - quant_index_table[i] + bias;
465 tmp_categorize_array[tmp_categorize_array1_idx++] = index;
466 tmpbias1 -= expbits_tab[exp_index1[index]] -
467 expbits_tab[exp_index1[index] + 1];
472 for (i = 0; i < p->total_subbands; i++) {
473 if (exp_index2[i] > 0) {
474 v = (-2 * exp_index2[i]) - quant_index_table[i] + bias;
483 tmp_categorize_array[--tmp_categorize_array2_idx] = index;
484 tmpbias2 -= expbits_tab[exp_index2[index]] -
485 expbits_tab[exp_index2[index] - 1];
490 for (i = 0; i < p->total_subbands; i++)
491 category[i] = exp_index2[i];
493 for (i = 0; i < p->numvector_size - 1; i++)
494 category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
499 * Expand the category vector.
501 * @param q pointer to the COOKContext
502 * @param category pointer to the category array
503 * @param category_index pointer to the category_index array
505 static inline void expand_category(COOKContext *q, int *category,
509 for (i = 0; i < q->num_vectors; i++)
511 int idx = category_index[i];
512 if (++category[idx] >= FF_ARRAY_ELEMS(dither_tab))
518 * The real requantization of the mltcoefs
520 * @param q pointer to the COOKContext
522 * @param quant_index quantisation index
523 * @param subband_coef_index array of indexes to quant_centroid_tab
524 * @param subband_coef_sign signs of coefficients
525 * @param mlt_p pointer into the mlt buffer
527 static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
528 int *subband_coef_index, int *subband_coef_sign,
534 for (i = 0; i < SUBBAND_SIZE; i++) {
535 if (subband_coef_index[i]) {
536 f1 = quant_centroid_tab[index][subband_coef_index[i]];
537 if (subband_coef_sign[i])
540 /* noise coding if subband_coef_index[i] == 0 */
541 f1 = dither_tab[index];
542 if (av_lfg_get(&q->random_state) < 0x80000000)
545 mlt_p[i] = f1 * rootpow2tab[quant_index + 63];
549 * Unpack the subband_coef_index and subband_coef_sign vectors.
551 * @param q pointer to the COOKContext
552 * @param category pointer to the category array
553 * @param subband_coef_index array of indexes to quant_centroid_tab
554 * @param subband_coef_sign signs of coefficients
556 static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category,
557 int *subband_coef_index, int *subband_coef_sign)
560 int vlc, vd, tmp, result;
562 vd = vd_tab[category];
564 for (i = 0; i < vpr_tab[category]; i++) {
565 vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
566 if (p->bits_per_subpacket < get_bits_count(&q->gb)) {
570 for (j = vd - 1; j >= 0; j--) {
571 tmp = (vlc * invradix_tab[category]) / 0x100000;
572 subband_coef_index[vd * i + j] = vlc - tmp * (kmax_tab[category] + 1);
575 for (j = 0; j < vd; j++) {
576 if (subband_coef_index[i * vd + j]) {
577 if (get_bits_count(&q->gb) < p->bits_per_subpacket) {
578 subband_coef_sign[i * vd + j] = get_bits1(&q->gb);
581 subband_coef_sign[i * vd + j] = 0;
584 subband_coef_sign[i * vd + j] = 0;
593 * Fill the mlt_buffer with mlt coefficients.
595 * @param q pointer to the COOKContext
596 * @param category pointer to the category array
597 * @param quant_index_table pointer to the array
598 * @param mlt_buffer pointer to mlt coefficients
600 static void decode_vectors(COOKContext *q, COOKSubpacket *p, int *category,
601 int *quant_index_table, float *mlt_buffer)
603 /* A zero in this table means that the subband coefficient is
604 random noise coded. */
605 int subband_coef_index[SUBBAND_SIZE];
606 /* A zero in this table means that the subband coefficient is a
607 positive multiplicator. */
608 int subband_coef_sign[SUBBAND_SIZE];
612 for (band = 0; band < p->total_subbands; band++) {
613 index = category[band];
614 if (category[band] < 7) {
615 if (unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)) {
617 for (j = 0; j < p->total_subbands; j++)
618 category[band + j] = 7;
622 memset(subband_coef_index, 0, sizeof(subband_coef_index));
623 memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
625 q->scalar_dequant(q, index, quant_index_table[band],
626 subband_coef_index, subband_coef_sign,
627 &mlt_buffer[band * SUBBAND_SIZE]);
630 /* FIXME: should this be removed, or moved into loop above? */
631 if (p->total_subbands * SUBBAND_SIZE >= q->samples_per_channel)
637 * function for decoding mono data
639 * @param q pointer to the COOKContext
640 * @param mlt_buffer pointer to mlt coefficients
642 static void mono_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer)
644 int category_index[128];
645 int quant_index_table[102];
648 memset(&category, 0, sizeof(category));
649 memset(&category_index, 0, sizeof(category_index));
651 decode_envelope(q, p, quant_index_table);
652 q->num_vectors = get_bits(&q->gb, p->log2_numvector_size);
653 categorize(q, p, quant_index_table, category, category_index);
654 expand_category(q, category, category_index);
655 decode_vectors(q, p, category, quant_index_table, mlt_buffer);
660 * the actual requantization of the timedomain samples
662 * @param q pointer to the COOKContext
663 * @param buffer pointer to the timedomain buffer
664 * @param gain_index index for the block multiplier
665 * @param gain_index_next index for the next block multiplier
667 static void interpolate_float(COOKContext *q, float *buffer,
668 int gain_index, int gain_index_next)
672 fc1 = pow2tab[gain_index + 63];
674 if (gain_index == gain_index_next) { // static gain
675 for (i = 0; i < q->gain_size_factor; i++)
677 } else { // smooth gain
678 fc2 = q->gain_table[11 + (gain_index_next - gain_index)];
679 for (i = 0; i < q->gain_size_factor; i++) {
687 * Apply transform window, overlap buffers.
689 * @param q pointer to the COOKContext
690 * @param inbuffer pointer to the mltcoefficients
691 * @param gains_ptr current and previous gains
692 * @param previous_buffer pointer to the previous buffer to be used for overlapping
694 static void imlt_window_float(COOKContext *q, float *inbuffer,
695 cook_gains *gains_ptr, float *previous_buffer)
697 const float fc = pow2tab[gains_ptr->previous[0] + 63];
699 /* The weird thing here, is that the two halves of the time domain
700 * buffer are swapped. Also, the newest data, that we save away for
701 * next frame, has the wrong sign. Hence the subtraction below.
702 * Almost sounds like a complex conjugate/reverse data/FFT effect.
705 /* Apply window and overlap */
706 for (i = 0; i < q->samples_per_channel; i++)
707 inbuffer[i] = inbuffer[i] * fc * q->mlt_window[i] -
708 previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
712 * The modulated lapped transform, this takes transform coefficients
713 * and transforms them into timedomain samples.
714 * Apply transform window, overlap buffers, apply gain profile
715 * and buffer management.
717 * @param q pointer to the COOKContext
718 * @param inbuffer pointer to the mltcoefficients
719 * @param gains_ptr current and previous gains
720 * @param previous_buffer pointer to the previous buffer to be used for overlapping
722 static void imlt_gain(COOKContext *q, float *inbuffer,
723 cook_gains *gains_ptr, float *previous_buffer)
725 float *buffer0 = q->mono_mdct_output;
726 float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
729 /* Inverse modified discrete cosine transform */
730 q->mdct_ctx.imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
732 q->imlt_window(q, buffer1, gains_ptr, previous_buffer);
734 /* Apply gain profile */
735 for (i = 0; i < 8; i++)
736 if (gains_ptr->now[i] || gains_ptr->now[i + 1])
737 q->interpolate(q, &buffer1[q->gain_size_factor * i],
738 gains_ptr->now[i], gains_ptr->now[i + 1]);
740 /* Save away the current to be previous block. */
741 memcpy(previous_buffer, buffer0,
742 q->samples_per_channel * sizeof(*previous_buffer));
747 * function for getting the jointstereo coupling information
749 * @param q pointer to the COOKContext
750 * @param decouple_tab decoupling array
753 static void decouple_info(COOKContext *q, COOKSubpacket *p, int *decouple_tab)
756 int vlc = get_bits1(&q->gb);
757 int start = cplband[p->js_subband_start];
758 int end = cplband[p->subbands - 1];
759 int length = end - start + 1;
765 for (i = 0; i < length; i++)
766 decouple_tab[start + i] = get_vlc2(&q->gb, p->ccpl.table, p->ccpl.bits, 2);
768 for (i = 0; i < length; i++)
769 decouple_tab[start + i] = get_bits(&q->gb, p->js_vlc_bits);
773 * function decouples a pair of signals from a single signal via multiplication.
775 * @param q pointer to the COOKContext
776 * @param subband index of the current subband
777 * @param f1 multiplier for channel 1 extraction
778 * @param f2 multiplier for channel 2 extraction
779 * @param decode_buffer input buffer
780 * @param mlt_buffer1 pointer to left channel mlt coefficients
781 * @param mlt_buffer2 pointer to right channel mlt coefficients
783 static void decouple_float(COOKContext *q,
787 float *decode_buffer,
788 float *mlt_buffer1, float *mlt_buffer2)
791 for (j = 0; j < SUBBAND_SIZE; j++) {
792 tmp_idx = ((p->js_subband_start + subband) * SUBBAND_SIZE) + j;
793 mlt_buffer1[SUBBAND_SIZE * subband + j] = f1 * decode_buffer[tmp_idx];
794 mlt_buffer2[SUBBAND_SIZE * subband + j] = f2 * decode_buffer[tmp_idx];
799 * function for decoding joint stereo data
801 * @param q pointer to the COOKContext
802 * @param mlt_buffer1 pointer to left channel mlt coefficients
803 * @param mlt_buffer2 pointer to right channel mlt coefficients
805 static void joint_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer1,
809 int decouple_tab[SUBBAND_SIZE];
810 float *decode_buffer = q->decode_buffer_0;
813 const float *cplscale;
815 memset(decouple_tab, 0, sizeof(decouple_tab));
816 memset(decode_buffer, 0, sizeof(q->decode_buffer_0));
818 /* Make sure the buffers are zeroed out. */
819 memset(mlt_buffer1, 0, 1024 * sizeof(*mlt_buffer1));
820 memset(mlt_buffer2, 0, 1024 * sizeof(*mlt_buffer2));
821 decouple_info(q, p, decouple_tab);
822 mono_decode(q, p, decode_buffer);
824 /* The two channels are stored interleaved in decode_buffer. */
825 for (i = 0; i < p->js_subband_start; i++) {
826 for (j = 0; j < SUBBAND_SIZE; j++) {
827 mlt_buffer1[i * 20 + j] = decode_buffer[i * 40 + j];
828 mlt_buffer2[i * 20 + j] = decode_buffer[i * 40 + 20 + j];
832 /* When we reach js_subband_start (the higher frequencies)
833 the coefficients are stored in a coupling scheme. */
834 idx = (1 << p->js_vlc_bits) - 1;
835 for (i = p->js_subband_start; i < p->subbands; i++) {
836 cpl_tmp = cplband[i];
837 idx -= decouple_tab[cpl_tmp];
838 cplscale = q->cplscales[p->js_vlc_bits - 2]; // choose decoupler table
839 f1 = cplscale[decouple_tab[cpl_tmp] + 1];
841 q->decouple(q, p, i, f1, f2, decode_buffer, mlt_buffer1, mlt_buffer2);
842 idx = (1 << p->js_vlc_bits) - 1;
847 * First part of subpacket decoding:
848 * decode raw stream bytes and read gain info.
850 * @param q pointer to the COOKContext
851 * @param inbuffer pointer to raw stream data
852 * @param gains_ptr array of current/prev gain pointers
854 static inline void decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p,
855 const uint8_t *inbuffer,
856 cook_gains *gains_ptr)
860 offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
861 p->bits_per_subpacket / 8);
862 init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
863 p->bits_per_subpacket);
864 decode_gain_info(&q->gb, gains_ptr->now);
866 /* Swap current and previous gains */
867 FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
871 * Saturate the output signal and interleave.
873 * @param q pointer to the COOKContext
874 * @param chan channel to saturate
875 * @param out pointer to the output vector
877 static void saturate_output_float(COOKContext *q, int chan, float *out)
880 float *output = q->mono_mdct_output + q->samples_per_channel;
881 for (j = 0; j < q->samples_per_channel; j++) {
882 out[chan + q->nb_channels * j] = av_clipf(output[j], -1.0, 1.0);
887 * Final part of subpacket decoding:
888 * Apply modulated lapped transform, gain compensation,
889 * clip and convert to integer.
891 * @param q pointer to the COOKContext
892 * @param decode_buffer pointer to the mlt coefficients
893 * @param gains_ptr array of current/prev gain pointers
894 * @param previous_buffer pointer to the previous buffer to be used for overlapping
895 * @param out pointer to the output buffer
896 * @param chan 0: left or single channel, 1: right channel
898 static inline void mlt_compensate_output(COOKContext *q, float *decode_buffer,
899 cook_gains *gains_ptr, float *previous_buffer,
900 float *out, int chan)
902 imlt_gain(q, decode_buffer, gains_ptr, previous_buffer);
904 q->saturate_output(q, chan, out);
909 * Cook subpacket decoding. This function returns one decoded subpacket,
910 * usually 1024 samples per channel.
912 * @param q pointer to the COOKContext
913 * @param inbuffer pointer to the inbuffer
914 * @param outbuffer pointer to the outbuffer
916 static void decode_subpacket(COOKContext *q, COOKSubpacket *p,
917 const uint8_t *inbuffer, float *outbuffer)
919 int sub_packet_size = p->size;
921 // for (i = 0; i < sub_packet_size ; i++)
922 // av_log(q->avctx, AV_LOG_ERROR, "%02x", inbuffer[i]);
923 // av_log(q->avctx, AV_LOG_ERROR, "\n");
924 memset(q->decode_buffer_1, 0, sizeof(q->decode_buffer_1));
925 decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
927 if (p->joint_stereo) {
928 joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2);
930 mono_decode(q, p, q->decode_buffer_1);
932 if (p->num_channels == 2) {
933 decode_bytes_and_gain(q, p, inbuffer + sub_packet_size / 2, &p->gains2);
934 mono_decode(q, p, q->decode_buffer_2);
938 mlt_compensate_output(q, q->decode_buffer_1, &p->gains1,
939 p->mono_previous_buffer1, outbuffer, p->ch_idx);
941 if (p->num_channels == 2)
943 mlt_compensate_output(q, q->decode_buffer_2, &p->gains1,
944 p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
946 mlt_compensate_output(q, q->decode_buffer_2, &p->gains2,
947 p->mono_previous_buffer2, outbuffer, p->ch_idx + 1);
952 * Cook frame decoding
954 * @param avctx pointer to the AVCodecContext
956 static int cook_decode_frame(AVCodecContext *avctx, void *data,
957 int *got_frame_ptr, AVPacket *avpkt)
959 const uint8_t *buf = avpkt->data;
960 int buf_size = avpkt->size;
961 COOKContext *q = avctx->priv_data;
962 float *samples = NULL;
967 if (buf_size < avctx->block_align)
970 /* get output buffer */
971 if (q->discarded_packets >= 2) {
972 q->frame.nb_samples = q->samples_per_channel;
973 if ((ret = avctx->get_buffer(avctx, &q->frame)) < 0) {
974 av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
977 samples = (float *) q->frame.data[0];
980 /* estimate subpacket sizes */
981 q->subpacket[0].size = avctx->block_align;
983 for (i = 1; i < q->num_subpackets; i++) {
984 q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
985 q->subpacket[0].size -= q->subpacket[i].size + 1;
986 if (q->subpacket[0].size < 0) {
987 av_log(avctx, AV_LOG_DEBUG,
988 "frame subpacket size total > avctx->block_align!\n");
989 return AVERROR_INVALIDDATA;
993 /* decode supbackets */
994 for (i = 0; i < q->num_subpackets; i++) {
995 q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size * 8) >>
996 q->subpacket[i].bits_per_subpdiv;
997 q->subpacket[i].ch_idx = chidx;
998 av_log(avctx, AV_LOG_DEBUG,
999 "subpacket[%i] size %i js %i %i block_align %i\n",
1000 i, q->subpacket[i].size, q->subpacket[i].joint_stereo, offset,
1001 avctx->block_align);
1003 decode_subpacket(q, &q->subpacket[i], buf + offset, samples);
1004 offset += q->subpacket[i].size;
1005 chidx += q->subpacket[i].num_channels;
1006 av_log(avctx, AV_LOG_DEBUG, "subpacket[%i] %i %i\n",
1007 i, q->subpacket[i].size * 8, get_bits_count(&q->gb));
1010 /* Discard the first two frames: no valid audio. */
1011 if (q->discarded_packets < 2) {
1012 q->discarded_packets++;
1014 return avctx->block_align;
1018 *(AVFrame *) data = q->frame;
1020 return avctx->block_align;
1024 static void dump_cook_context(COOKContext *q)
1027 #define PRINT(a, b) av_log(q->avctx, AV_LOG_ERROR, " %s = %d\n", a, b);
1028 av_log(q->avctx, AV_LOG_ERROR, "COOKextradata\n");
1029 av_log(q->avctx, AV_LOG_ERROR, "cookversion=%x\n", q->subpacket[0].cookversion);
1030 if (q->subpacket[0].cookversion > STEREO) {
1031 PRINT("js_subband_start", q->subpacket[0].js_subband_start);
1032 PRINT("js_vlc_bits", q->subpacket[0].js_vlc_bits);
1034 av_log(q->avctx, AV_LOG_ERROR, "COOKContext\n");
1035 PRINT("nb_channels", q->nb_channels);
1036 PRINT("bit_rate", q->bit_rate);
1037 PRINT("sample_rate", q->sample_rate);
1038 PRINT("samples_per_channel", q->subpacket[0].samples_per_channel);
1039 PRINT("samples_per_frame", q->subpacket[0].samples_per_frame);
1040 PRINT("subbands", q->subpacket[0].subbands);
1041 PRINT("js_subband_start", q->subpacket[0].js_subband_start);
1042 PRINT("log2_numvector_size", q->subpacket[0].log2_numvector_size);
1043 PRINT("numvector_size", q->subpacket[0].numvector_size);
1044 PRINT("total_subbands", q->subpacket[0].total_subbands);
1048 static av_cold int cook_count_channels(unsigned int mask)
1052 for (i = 0; i < 32; i++)
1053 if (mask & (1 << i))
1059 * Cook initialization
1061 * @param avctx pointer to the AVCodecContext
1063 static av_cold int cook_decode_init(AVCodecContext *avctx)
1065 COOKContext *q = avctx->priv_data;
1066 const uint8_t *edata_ptr = avctx->extradata;
1067 const uint8_t *edata_ptr_end = edata_ptr + avctx->extradata_size;
1068 int extradata_size = avctx->extradata_size;
1070 unsigned int channel_mask = 0;
1074 /* Take care of the codec specific extradata. */
1075 if (extradata_size <= 0) {
1076 av_log(avctx, AV_LOG_ERROR, "Necessary extradata missing!\n");
1077 return AVERROR_INVALIDDATA;
1079 av_log(avctx, AV_LOG_DEBUG, "codecdata_length=%d\n", avctx->extradata_size);
1081 /* Take data from the AVCodecContext (RM container). */
1082 q->sample_rate = avctx->sample_rate;
1083 q->nb_channels = avctx->channels;
1084 q->bit_rate = avctx->bit_rate;
1085 if (!q->nb_channels) {
1086 av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
1087 return AVERROR_INVALIDDATA;
1090 /* Initialize RNG. */
1091 av_lfg_init(&q->random_state, 0);
1093 while (edata_ptr < edata_ptr_end) {
1094 /* 8 for mono, 16 for stereo, ? for multichannel
1095 Swap to right endianness so we don't need to care later on. */
1096 if (extradata_size >= 8) {
1097 q->subpacket[s].cookversion = bytestream_get_be32(&edata_ptr);
1098 q->subpacket[s].samples_per_frame = bytestream_get_be16(&edata_ptr);
1099 q->subpacket[s].subbands = bytestream_get_be16(&edata_ptr);
1100 extradata_size -= 8;
1102 if (extradata_size >= 8) {
1103 bytestream_get_be32(&edata_ptr); // Unknown unused
1104 q->subpacket[s].js_subband_start = bytestream_get_be16(&edata_ptr);
1105 q->subpacket[s].js_vlc_bits = bytestream_get_be16(&edata_ptr);
1106 extradata_size -= 8;
1109 /* Initialize extradata related variables. */
1110 q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame / q->nb_channels;
1111 q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
1113 /* Initialize default data states. */
1114 q->subpacket[s].log2_numvector_size = 5;
1115 q->subpacket[s].total_subbands = q->subpacket[s].subbands;
1116 q->subpacket[s].num_channels = 1;
1118 /* Initialize version-dependent variables */
1120 av_log(avctx, AV_LOG_DEBUG, "subpacket[%i].cookversion=%x\n", s,
1121 q->subpacket[s].cookversion);
1122 q->subpacket[s].joint_stereo = 0;
1123 switch (q->subpacket[s].cookversion) {
1125 if (q->nb_channels != 1) {
1126 av_log_ask_for_sample(avctx, "Container channels != 1.\n");
1127 return AVERROR_PATCHWELCOME;
1129 av_log(avctx, AV_LOG_DEBUG, "MONO\n");
1132 if (q->nb_channels != 1) {
1133 q->subpacket[s].bits_per_subpdiv = 1;
1134 q->subpacket[s].num_channels = 2;
1136 av_log(avctx, AV_LOG_DEBUG, "STEREO\n");
1139 if (q->nb_channels != 2) {
1140 av_log_ask_for_sample(avctx, "Container channels != 2.\n");
1141 return AVERROR_PATCHWELCOME;
1143 av_log(avctx, AV_LOG_DEBUG, "JOINT_STEREO\n");
1144 if (avctx->extradata_size >= 16) {
1145 q->subpacket[s].total_subbands = q->subpacket[s].subbands +
1146 q->subpacket[s].js_subband_start;
1147 q->subpacket[s].joint_stereo = 1;
1148 q->subpacket[s].num_channels = 2;
1150 if (q->subpacket[s].samples_per_channel > 256) {
1151 q->subpacket[s].log2_numvector_size = 6;
1153 if (q->subpacket[s].samples_per_channel > 512) {
1154 q->subpacket[s].log2_numvector_size = 7;
1158 av_log(avctx, AV_LOG_DEBUG, "MULTI_CHANNEL\n");
1159 if (extradata_size >= 4)
1160 channel_mask |= q->subpacket[s].channel_mask = bytestream_get_be32(&edata_ptr);
1162 if (cook_count_channels(q->subpacket[s].channel_mask) > 1) {
1163 q->subpacket[s].total_subbands = q->subpacket[s].subbands +
1164 q->subpacket[s].js_subband_start;
1165 q->subpacket[s].joint_stereo = 1;
1166 q->subpacket[s].num_channels = 2;
1167 q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame >> 1;
1169 if (q->subpacket[s].samples_per_channel > 256) {
1170 q->subpacket[s].log2_numvector_size = 6;
1172 if (q->subpacket[s].samples_per_channel > 512) {
1173 q->subpacket[s].log2_numvector_size = 7;
1176 q->subpacket[s].samples_per_channel = q->subpacket[s].samples_per_frame;
1180 av_log_ask_for_sample(avctx, "Unknown Cook version.\n");
1181 return AVERROR_PATCHWELCOME;
1184 if (s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
1185 av_log(avctx, AV_LOG_ERROR, "different number of samples per channel!\n");
1186 return AVERROR_INVALIDDATA;
1188 q->samples_per_channel = q->subpacket[0].samples_per_channel;
1191 /* Initialize variable relations */
1192 q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);
1194 /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1195 if (q->subpacket[s].total_subbands > 53) {
1196 av_log_ask_for_sample(avctx, "total_subbands > 53\n");
1197 return AVERROR_PATCHWELCOME;
1200 if ((q->subpacket[s].js_vlc_bits > 6) ||
1201 (q->subpacket[s].js_vlc_bits < 2 * q->subpacket[s].joint_stereo)) {
1202 av_log(avctx, AV_LOG_ERROR, "js_vlc_bits = %d, only >= %d and <= 6 allowed!\n",
1203 q->subpacket[s].js_vlc_bits, 2 * q->subpacket[s].joint_stereo);
1204 return AVERROR_INVALIDDATA;
1207 if (q->subpacket[s].subbands > 50) {
1208 av_log_ask_for_sample(avctx, "subbands > 50\n");
1209 return AVERROR_PATCHWELCOME;
1211 q->subpacket[s].gains1.now = q->subpacket[s].gain_1;
1212 q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
1213 q->subpacket[s].gains2.now = q->subpacket[s].gain_3;
1214 q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
1216 q->num_subpackets++;
1218 if (s > MAX_SUBPACKETS) {
1219 av_log_ask_for_sample(avctx, "Too many subpackets > 5\n");
1220 return AVERROR_PATCHWELCOME;
1223 /* Generate tables */
1226 init_cplscales_table(q);
1228 if ((ret = init_cook_vlc_tables(q)))
1232 if (avctx->block_align >= UINT_MAX / 2)
1233 return AVERROR(EINVAL);
1235 /* Pad the databuffer with:
1236 DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1237 FF_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1238 q->decoded_bytes_buffer =
1239 av_mallocz(avctx->block_align
1240 + DECODE_BYTES_PAD1(avctx->block_align)
1241 + FF_INPUT_BUFFER_PADDING_SIZE);
1242 if (q->decoded_bytes_buffer == NULL)
1243 return AVERROR(ENOMEM);
1245 /* Initialize transform. */
1246 if ((ret = init_cook_mlt(q)))
1249 /* Initialize COOK signal arithmetic handling */
1251 q->scalar_dequant = scalar_dequant_float;
1252 q->decouple = decouple_float;
1253 q->imlt_window = imlt_window_float;
1254 q->interpolate = interpolate_float;
1255 q->saturate_output = saturate_output_float;
1258 /* Try to catch some obviously faulty streams, othervise it might be exploitable */
1259 if ((q->samples_per_channel == 256) || (q->samples_per_channel == 512)
1260 || (q->samples_per_channel == 1024)) {
1262 av_log_ask_for_sample(avctx,
1263 "unknown amount of samples_per_channel = %d\n",
1264 q->samples_per_channel);
1265 return AVERROR_PATCHWELCOME;
1268 avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
1270 avctx->channel_layout = channel_mask;
1272 avctx->channel_layout = (avctx->channels == 2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
1274 avcodec_get_frame_defaults(&q->frame);
1275 avctx->coded_frame = &q->frame;
1278 dump_cook_context(q);
1283 AVCodec ff_cook_decoder = {
1285 .type = AVMEDIA_TYPE_AUDIO,
1286 .id = CODEC_ID_COOK,
1287 .priv_data_size = sizeof(COOKContext),
1288 .init = cook_decode_init,
1289 .close = cook_decode_close,
1290 .decode = cook_decode_frame,
1291 .capabilities = CODEC_CAP_DR1,
1292 .long_name = NULL_IF_CONFIG_SMALL("COOK"),