2 * Copyright (c) 2001-2003 The ffmpeg Project
4 * This file is part of Libav.
6 * Libav is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
11 * Libav is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with Libav; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23 #include "bytestream.h"
25 #include "adpcm_data.h"
30 * First version by Francois Revol (revol@free.fr)
31 * Fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
32 * by Mike Melanson (melanson@pcisys.net)
33 * CD-ROM XA ADPCM codec by BERO
34 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
35 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
36 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
37 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
38 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
39 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
40 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
42 * Features and limitations:
44 * Reference documents:
45 * http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs
46 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead]
47 * http://www.geocities.com/SiliconValley/8682/aud3.txt [dead]
48 * http://openquicktime.sourceforge.net/
49 * XAnim sources (xa_codec.c) http://xanim.polter.net/
50 * http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead]
51 * SoX source code http://sox.sourceforge.net/
54 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead]
55 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead]
56 * readstr http://www.geocities.co.jp/Playtown/2004/
59 /* These are for CD-ROM XA ADPCM */
60 static const int xa_adpcm_table[5][2] = {
68 static const int ea_adpcm_table[] = {
76 // padded to zero where table size is less then 16
77 static const int swf_index_tables[4][16] = {
79 /*3*/ { -1, -1, 2, 4 },
80 /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
81 /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
86 typedef struct ADPCMDecodeContext {
88 ADPCMChannelStatus status[6];
89 int vqa_version; /**< VQA version. Used for ADPCM_IMA_WS */
92 static av_cold int adpcm_decode_init(AVCodecContext * avctx)
94 ADPCMDecodeContext *c = avctx->priv_data;
95 unsigned int min_channels = 1;
96 unsigned int max_channels = 2;
98 switch(avctx->codec->id) {
99 case CODEC_ID_ADPCM_EA:
102 case CODEC_ID_ADPCM_EA_R1:
103 case CODEC_ID_ADPCM_EA_R2:
104 case CODEC_ID_ADPCM_EA_R3:
105 case CODEC_ID_ADPCM_EA_XAS:
109 if (avctx->channels < min_channels || avctx->channels > max_channels) {
110 av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
111 return AVERROR(EINVAL);
114 switch(avctx->codec->id) {
115 case CODEC_ID_ADPCM_CT:
116 c->status[0].step = c->status[1].step = 511;
118 case CODEC_ID_ADPCM_IMA_WAV:
119 if (avctx->bits_per_coded_sample != 4) {
120 av_log(avctx, AV_LOG_ERROR, "Only 4-bit ADPCM IMA WAV files are supported\n");
124 case CODEC_ID_ADPCM_IMA_APC:
125 if (avctx->extradata && avctx->extradata_size >= 8) {
126 c->status[0].predictor = AV_RL32(avctx->extradata);
127 c->status[1].predictor = AV_RL32(avctx->extradata + 4);
130 case CODEC_ID_ADPCM_IMA_WS:
131 if (avctx->extradata && avctx->extradata_size >= 42)
132 c->vqa_version = AV_RL16(avctx->extradata);
137 avctx->sample_fmt = AV_SAMPLE_FMT_S16;
139 avcodec_get_frame_defaults(&c->frame);
140 avctx->coded_frame = &c->frame;
145 static inline short adpcm_ima_expand_nibble(ADPCMChannelStatus *c, char nibble, int shift)
149 int sign, delta, diff, step;
151 step = ff_adpcm_step_table[c->step_index];
152 step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
153 step_index = av_clip(step_index, 0, 88);
157 /* perform direct multiplication instead of series of jumps proposed by
158 * the reference ADPCM implementation since modern CPUs can do the mults
160 diff = ((2 * delta + 1) * step) >> shift;
161 predictor = c->predictor;
162 if (sign) predictor -= diff;
163 else predictor += diff;
165 c->predictor = av_clip_int16(predictor);
166 c->step_index = step_index;
168 return (short)c->predictor;
171 static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
177 step = ff_adpcm_step_table[c->step_index];
178 step_index = c->step_index + ff_adpcm_index_table[nibble];
179 step_index = av_clip(step_index, 0, 88);
182 if (nibble & 4) diff += step;
183 if (nibble & 2) diff += step >> 1;
184 if (nibble & 1) diff += step >> 2;
187 predictor = c->predictor - diff;
189 predictor = c->predictor + diff;
191 c->predictor = av_clip_int16(predictor);
192 c->step_index = step_index;
197 static inline short adpcm_ms_expand_nibble(ADPCMChannelStatus *c, int nibble)
201 predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
202 predictor += ((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
204 c->sample2 = c->sample1;
205 c->sample1 = av_clip_int16(predictor);
206 c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
207 if (c->idelta < 16) c->idelta = 16;
212 static inline short adpcm_ct_expand_nibble(ADPCMChannelStatus *c, char nibble)
214 int sign, delta, diff;
219 /* perform direct multiplication instead of series of jumps proposed by
220 * the reference ADPCM implementation since modern CPUs can do the mults
222 diff = ((2 * delta + 1) * c->step) >> 3;
223 /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
224 c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
225 c->predictor = av_clip_int16(c->predictor);
226 /* calculate new step and clamp it to range 511..32767 */
227 new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
228 c->step = av_clip(new_step, 511, 32767);
230 return (short)c->predictor;
233 static inline short adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, char nibble, int size, int shift)
235 int sign, delta, diff;
237 sign = nibble & (1<<(size-1));
238 delta = nibble & ((1<<(size-1))-1);
239 diff = delta << (7 + c->step + shift);
242 c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
244 /* calculate new step */
245 if (delta >= (2*size - 3) && c->step < 3)
247 else if (delta == 0 && c->step > 0)
250 return (short) c->predictor;
253 static inline short adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, unsigned char nibble)
260 c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
261 c->predictor = av_clip_int16(c->predictor);
262 c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
263 c->step = av_clip(c->step, 127, 24567);
267 static int xa_decode(AVCodecContext *avctx,
268 short *out, const unsigned char *in,
269 ADPCMChannelStatus *left, ADPCMChannelStatus *right, int inc)
272 int shift,filter,f0,f1;
278 shift = 12 - (in[4+i*2] & 15);
279 filter = in[4+i*2] >> 4;
281 av_log(avctx, AV_LOG_ERROR,
282 "Invalid XA-ADPCM filter %d (max. allowed is 4)\n",
284 return AVERROR_INVALIDDATA;
286 f0 = xa_adpcm_table[filter][0];
287 f1 = xa_adpcm_table[filter][1];
295 t = (signed char)(d<<4)>>4;
296 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
298 s_1 = av_clip_int16(s);
303 if (inc==2) { /* stereo */
306 s_1 = right->sample1;
307 s_2 = right->sample2;
308 out = out + 1 - 28*2;
311 shift = 12 - (in[5+i*2] & 15);
312 filter = in[5+i*2] >> 4;
314 av_log(avctx, AV_LOG_ERROR,
315 "Invalid XA-ADPCM filter %d (max. allowed is 4)\n",
317 return AVERROR_INVALIDDATA;
319 f0 = xa_adpcm_table[filter][0];
320 f1 = xa_adpcm_table[filter][1];
325 t = (signed char)d >> 4;
326 s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
328 s_1 = av_clip_int16(s);
333 if (inc==2) { /* stereo */
334 right->sample1 = s_1;
335 right->sample2 = s_2;
347 * Get the number of samples that will be decoded from the packet.
348 * In one case, this is actually the maximum number of samples possible to
349 * decode with the given buf_size.
351 * @param[out] coded_samples set to the number of samples as coded in the
352 * packet, or 0 if the codec does not encode the
353 * number of samples in each frame.
355 static int get_nb_samples(AVCodecContext *avctx, const uint8_t *buf,
356 int buf_size, int *coded_samples)
358 ADPCMDecodeContext *s = avctx->priv_data;
360 int ch = avctx->channels;
361 int has_coded_samples = 0;
366 switch (avctx->codec->id) {
367 /* constant, only check buf_size */
368 case CODEC_ID_ADPCM_EA_XAS:
369 if (buf_size < 76 * ch)
373 case CODEC_ID_ADPCM_IMA_QT:
374 if (buf_size < 34 * ch)
378 /* simple 4-bit adpcm */
379 case CODEC_ID_ADPCM_CT:
380 case CODEC_ID_ADPCM_IMA_APC:
381 case CODEC_ID_ADPCM_IMA_EA_SEAD:
382 case CODEC_ID_ADPCM_IMA_WS:
383 case CODEC_ID_ADPCM_YAMAHA:
384 nb_samples = buf_size * 2 / ch;
390 /* simple 4-bit adpcm, with header */
392 switch (avctx->codec->id) {
393 case CODEC_ID_ADPCM_4XM:
394 case CODEC_ID_ADPCM_IMA_ISS: header_size = 4 * ch; break;
395 case CODEC_ID_ADPCM_IMA_AMV: header_size = 8; break;
396 case CODEC_ID_ADPCM_IMA_SMJPEG: header_size = 4; break;
399 return (buf_size - header_size) * 2 / ch;
401 /* more complex formats */
402 switch (avctx->codec->id) {
403 case CODEC_ID_ADPCM_EA:
404 has_coded_samples = 1;
407 *coded_samples = AV_RL32(buf);
408 *coded_samples -= *coded_samples % 28;
409 nb_samples = (buf_size - 12) / 30 * 28;
411 case CODEC_ID_ADPCM_IMA_EA_EACS:
412 has_coded_samples = 1;
415 *coded_samples = AV_RL32(buf);
416 nb_samples = (buf_size - (4 + 8 * ch)) * 2 / ch;
418 case CODEC_ID_ADPCM_EA_MAXIS_XA:
419 nb_samples = ((buf_size - ch) / (2 * ch)) * 2 * ch;
421 case CODEC_ID_ADPCM_EA_R1:
422 case CODEC_ID_ADPCM_EA_R2:
423 case CODEC_ID_ADPCM_EA_R3:
424 /* maximum number of samples */
425 /* has internal offsets and a per-frame switch to signal raw 16-bit */
426 has_coded_samples = 1;
429 switch (avctx->codec->id) {
430 case CODEC_ID_ADPCM_EA_R1:
431 header_size = 4 + 9 * ch;
432 *coded_samples = AV_RL32(buf);
434 case CODEC_ID_ADPCM_EA_R2:
435 header_size = 4 + 5 * ch;
436 *coded_samples = AV_RL32(buf);
438 case CODEC_ID_ADPCM_EA_R3:
439 header_size = 4 + 5 * ch;
440 *coded_samples = AV_RB32(buf);
443 *coded_samples -= *coded_samples % 28;
444 nb_samples = (buf_size - header_size) * 2 / ch;
445 nb_samples -= nb_samples % 28;
447 case CODEC_ID_ADPCM_IMA_DK3:
448 if (avctx->block_align > 0)
449 buf_size = FFMIN(buf_size, avctx->block_align);
450 nb_samples = ((buf_size - 16) * 2 / 3 * 4) / ch;
452 case CODEC_ID_ADPCM_IMA_DK4:
453 if (avctx->block_align > 0)
454 buf_size = FFMIN(buf_size, avctx->block_align);
455 nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
457 case CODEC_ID_ADPCM_IMA_WAV:
458 if (avctx->block_align > 0)
459 buf_size = FFMIN(buf_size, avctx->block_align);
460 nb_samples = 1 + (buf_size - 4 * ch) / (4 * ch) * 8;
462 case CODEC_ID_ADPCM_MS:
463 if (avctx->block_align > 0)
464 buf_size = FFMIN(buf_size, avctx->block_align);
465 nb_samples = 2 + (buf_size - 7 * ch) * 2 / ch;
467 case CODEC_ID_ADPCM_SBPRO_2:
468 case CODEC_ID_ADPCM_SBPRO_3:
469 case CODEC_ID_ADPCM_SBPRO_4:
471 int samples_per_byte;
472 switch (avctx->codec->id) {
473 case CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
474 case CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
475 case CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
477 if (!s->status[0].step_index) {
481 nb_samples += buf_size * samples_per_byte / ch;
484 case CODEC_ID_ADPCM_SWF:
486 int buf_bits = buf_size * 8 - 2;
487 int nbits = (buf[0] >> 6) + 2;
488 int block_hdr_size = 22 * ch;
489 int block_size = block_hdr_size + nbits * ch * 4095;
490 int nblocks = buf_bits / block_size;
491 int bits_left = buf_bits - nblocks * block_size;
492 nb_samples = nblocks * 4096;
493 if (bits_left >= block_hdr_size)
494 nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
497 case CODEC_ID_ADPCM_THP:
498 has_coded_samples = 1;
501 *coded_samples = AV_RB32(&buf[4]);
502 *coded_samples -= *coded_samples % 14;
503 nb_samples = (buf_size - 80) / (8 * ch) * 14;
505 case CODEC_ID_ADPCM_XA:
506 nb_samples = (buf_size / 128) * 224 / ch;
510 /* validate coded sample count */
511 if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
512 return AVERROR_INVALIDDATA;
517 /* DK3 ADPCM support macro */
518 #define DK3_GET_NEXT_NIBBLE() \
519 if (decode_top_nibble_next) \
521 nibble = last_byte >> 4; \
522 decode_top_nibble_next = 0; \
528 last_byte = *src++; \
529 if (src >= buf + buf_size) \
531 nibble = last_byte & 0x0F; \
532 decode_top_nibble_next = 1; \
535 static int adpcm_decode_frame(AVCodecContext *avctx, void *data,
536 int *got_frame_ptr, AVPacket *avpkt)
538 const uint8_t *buf = avpkt->data;
539 int buf_size = avpkt->size;
540 ADPCMDecodeContext *c = avctx->priv_data;
541 ADPCMChannelStatus *cs;
542 int n, m, channel, i;
547 int nb_samples, coded_samples, ret;
550 nb_samples = get_nb_samples(avctx, buf, buf_size, &coded_samples);
551 if (nb_samples <= 0) {
552 av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
553 return AVERROR_INVALIDDATA;
556 /* get output buffer */
557 c->frame.nb_samples = nb_samples;
558 if ((ret = avctx->get_buffer(avctx, &c->frame)) < 0) {
559 av_log(avctx, AV_LOG_ERROR, "get_buffer() failed\n");
562 samples = (short *)c->frame.data[0];
564 /* use coded_samples when applicable */
565 /* it is always <= nb_samples, so the output buffer will be large enough */
567 if (coded_samples != nb_samples)
568 av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
569 c->frame.nb_samples = nb_samples = coded_samples;
573 bytestream2_init(&gb, buf, buf_size);
575 st = avctx->channels == 2 ? 1 : 0;
577 switch(avctx->codec->id) {
578 case CODEC_ID_ADPCM_IMA_QT:
579 /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples).
580 Channel data is interleaved per-chunk. */
581 for (channel = 0; channel < avctx->channels; channel++) {
584 cs = &(c->status[channel]);
585 /* (pppppp) (piiiiiii) */
587 /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
588 predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
589 step_index = predictor & 0x7F;
592 if (cs->step_index == step_index) {
593 int diff = predictor - cs->predictor;
600 cs->step_index = step_index;
601 cs->predictor = predictor;
604 if (cs->step_index > 88u){
605 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
606 channel, cs->step_index);
607 return AVERROR_INVALIDDATA;
610 samples = (short *)c->frame.data[0] + channel;
612 for (m = 0; m < 32; m++) {
613 int byte = bytestream2_get_byteu(&gb);
614 *samples = adpcm_ima_qt_expand_nibble(cs, byte & 0x0F, 3);
615 samples += avctx->channels;
616 *samples = adpcm_ima_qt_expand_nibble(cs, byte >> 4 , 3);
617 samples += avctx->channels;
621 case CODEC_ID_ADPCM_IMA_WAV:
622 for(i=0; i<avctx->channels; i++){
623 cs = &(c->status[i]);
624 cs->predictor = *samples++ = sign_extend(bytestream2_get_le16u(&gb), 16);
626 cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
627 if (cs->step_index > 88u){
628 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
630 return AVERROR_INVALIDDATA;
634 for (n = (nb_samples - 1) / 8; n > 0; n--) {
635 for (i = 0; i < avctx->channels; i++) {
637 for (m = 0; m < 4; m++) {
638 int v = bytestream2_get_byteu(&gb);
639 *samples = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
640 samples += avctx->channels;
641 *samples = adpcm_ima_expand_nibble(cs, v >> 4 , 3);
642 samples += avctx->channels;
644 samples -= 8 * avctx->channels - 1;
646 samples += 7 * avctx->channels;
649 case CODEC_ID_ADPCM_4XM:
650 for (i = 0; i < avctx->channels; i++)
651 c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
653 for (i = 0; i < avctx->channels; i++) {
654 c->status[i].step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
655 if (c->status[i].step_index > 88u) {
656 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
657 i, c->status[i].step_index);
658 return AVERROR_INVALIDDATA;
662 for (i = 0; i < avctx->channels; i++) {
663 samples = (short *)c->frame.data[0] + i;
665 for (n = nb_samples >> 1; n > 0; n--) {
666 int v = bytestream2_get_byteu(&gb);
667 *samples = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
668 samples += avctx->channels;
669 *samples = adpcm_ima_expand_nibble(cs, v >> 4 , 4);
670 samples += avctx->channels;
674 case CODEC_ID_ADPCM_MS:
678 block_predictor = bytestream2_get_byteu(&gb);
679 if (block_predictor > 6) {
680 av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[0] = %d\n",
682 return AVERROR_INVALIDDATA;
684 c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
685 c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
687 block_predictor = bytestream2_get_byteu(&gb);
688 if (block_predictor > 6) {
689 av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[1] = %d\n",
691 return AVERROR_INVALIDDATA;
693 c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
694 c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
696 c->status[0].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
698 c->status[1].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
701 c->status[0].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
702 if (st) c->status[1].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
703 c->status[0].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
704 if (st) c->status[1].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
706 *samples++ = c->status[0].sample2;
707 if (st) *samples++ = c->status[1].sample2;
708 *samples++ = c->status[0].sample1;
709 if (st) *samples++ = c->status[1].sample1;
710 for(n = (nb_samples - 2) >> (1 - st); n > 0; n--) {
711 int byte = bytestream2_get_byteu(&gb);
712 *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], byte >> 4 );
713 *samples++ = adpcm_ms_expand_nibble(&c->status[st], byte & 0x0F);
717 case CODEC_ID_ADPCM_IMA_DK4:
718 for (channel = 0; channel < avctx->channels; channel++) {
719 cs = &c->status[channel];
720 cs->predictor = *samples++ = sign_extend(bytestream2_get_le16u(&gb), 16);
721 cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
722 if (cs->step_index > 88u){
723 av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
724 channel, cs->step_index);
725 return AVERROR_INVALIDDATA;
728 for (n = nb_samples >> (1 - st); n > 0; n--) {
729 int v = bytestream2_get_byteu(&gb);
730 *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4 , 3);
731 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
734 case CODEC_ID_ADPCM_IMA_DK3:
736 unsigned char last_byte = 0;
737 unsigned char nibble;
738 int decode_top_nibble_next = 0;
739 int end_of_packet = 0;
742 if (avctx->block_align != 0 && buf_size > avctx->block_align)
743 buf_size = avctx->block_align;
745 c->status[0].predictor = (int16_t)AV_RL16(src + 10);
746 c->status[1].predictor = (int16_t)AV_RL16(src + 12);
747 c->status[0].step_index = av_clip(src[14], 0, 88);
748 c->status[1].step_index = av_clip(src[15], 0, 88);
749 /* sign extend the predictors */
751 diff_channel = c->status[1].predictor;
753 /* the DK3_GET_NEXT_NIBBLE macro issues the break statement when
754 * the buffer is consumed */
757 /* for this algorithm, c->status[0] is the sum channel and
758 * c->status[1] is the diff channel */
760 /* process the first predictor of the sum channel */
761 DK3_GET_NEXT_NIBBLE();
762 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
764 /* process the diff channel predictor */
765 DK3_GET_NEXT_NIBBLE();
766 adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
768 /* process the first pair of stereo PCM samples */
769 diff_channel = (diff_channel + c->status[1].predictor) / 2;
770 *samples++ = c->status[0].predictor + c->status[1].predictor;
771 *samples++ = c->status[0].predictor - c->status[1].predictor;
773 /* process the second predictor of the sum channel */
774 DK3_GET_NEXT_NIBBLE();
775 adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
777 /* process the second pair of stereo PCM samples */
778 diff_channel = (diff_channel + c->status[1].predictor) / 2;
779 *samples++ = c->status[0].predictor + c->status[1].predictor;
780 *samples++ = c->status[0].predictor - c->status[1].predictor;
784 case CODEC_ID_ADPCM_IMA_ISS:
785 for (channel = 0; channel < avctx->channels; channel++) {
786 cs = &c->status[channel];
787 cs->predictor = (int16_t)bytestream_get_le16(&src);
788 cs->step_index = av_clip(*src++, 0, 88);
792 for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
795 /* nibbles are swapped for mono */
803 *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
804 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
807 case CODEC_ID_ADPCM_IMA_APC:
808 while (src < buf + buf_size) {
810 *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4 , 3);
811 *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
814 case CODEC_ID_ADPCM_IMA_WS:
815 for (channel = 0; channel < avctx->channels; channel++) {
818 int16_t *smp = samples + channel;
820 if (c->vqa_version == 3) {
821 src0 = src + channel * buf_size / 2;
824 src0 = src + channel;
825 src_stride = avctx->channels;
827 for (n = nb_samples / 2; n > 0; n--) {
830 *smp = adpcm_ima_expand_nibble(&c->status[channel], v >> 4 , 3);
831 smp += avctx->channels;
832 *smp = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
833 smp += avctx->channels;
836 src = buf + buf_size;
838 case CODEC_ID_ADPCM_XA:
839 while (buf_size >= 128) {
840 if ((ret = xa_decode(avctx, samples, src, &c->status[0],
841 &c->status[1], avctx->channels)) < 0)
848 case CODEC_ID_ADPCM_IMA_EA_EACS:
849 src += 4; // skip sample count (already read)
851 for (i=0; i<=st; i++)
852 c->status[i].step_index = av_clip(bytestream_get_le32(&src), 0, 88);
853 for (i=0; i<=st; i++)
854 c->status[i].predictor = bytestream_get_le32(&src);
856 for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
857 *samples++ = adpcm_ima_expand_nibble(&c->status[0], *src>>4, 3);
858 *samples++ = adpcm_ima_expand_nibble(&c->status[st], *src&0x0F, 3);
861 case CODEC_ID_ADPCM_IMA_EA_SEAD:
862 for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
863 *samples++ = adpcm_ima_expand_nibble(&c->status[0], src[0] >> 4, 6);
864 *samples++ = adpcm_ima_expand_nibble(&c->status[st],src[0]&0x0F, 6);
867 case CODEC_ID_ADPCM_EA:
869 int32_t previous_left_sample, previous_right_sample;
870 int32_t current_left_sample, current_right_sample;
871 int32_t next_left_sample, next_right_sample;
872 int32_t coeff1l, coeff2l, coeff1r, coeff2r;
873 uint8_t shift_left, shift_right;
875 /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces,
876 each coding 28 stereo samples. */
878 src += 4; // skip sample count (already read)
880 current_left_sample = (int16_t)bytestream_get_le16(&src);
881 previous_left_sample = (int16_t)bytestream_get_le16(&src);
882 current_right_sample = (int16_t)bytestream_get_le16(&src);
883 previous_right_sample = (int16_t)bytestream_get_le16(&src);
885 for (count1 = 0; count1 < nb_samples / 28; count1++) {
886 coeff1l = ea_adpcm_table[ *src >> 4 ];
887 coeff2l = ea_adpcm_table[(*src >> 4 ) + 4];
888 coeff1r = ea_adpcm_table[*src & 0x0F];
889 coeff2r = ea_adpcm_table[(*src & 0x0F) + 4];
892 shift_left = 20 - (*src >> 4);
893 shift_right = 20 - (*src & 0x0F);
896 for (count2 = 0; count2 < 28; count2++) {
897 next_left_sample = sign_extend(*src >> 4, 4) << shift_left;
898 next_right_sample = sign_extend(*src, 4) << shift_right;
901 next_left_sample = (next_left_sample +
902 (current_left_sample * coeff1l) +
903 (previous_left_sample * coeff2l) + 0x80) >> 8;
904 next_right_sample = (next_right_sample +
905 (current_right_sample * coeff1r) +
906 (previous_right_sample * coeff2r) + 0x80) >> 8;
908 previous_left_sample = current_left_sample;
909 current_left_sample = av_clip_int16(next_left_sample);
910 previous_right_sample = current_right_sample;
911 current_right_sample = av_clip_int16(next_right_sample);
912 *samples++ = (unsigned short)current_left_sample;
913 *samples++ = (unsigned short)current_right_sample;
917 if (src - buf == buf_size - 2)
918 src += 2; // Skip terminating 0x0000
922 case CODEC_ID_ADPCM_EA_MAXIS_XA:
924 int coeff[2][2], shift[2];
926 for(channel = 0; channel < avctx->channels; channel++) {
928 coeff[channel][i] = ea_adpcm_table[(*src >> 4) + 4*i];
929 shift[channel] = 20 - (*src & 0x0F);
932 for (count1 = 0; count1 < nb_samples / 2; count1++) {
933 for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
934 for(channel = 0; channel < avctx->channels; channel++) {
935 int32_t sample = sign_extend(src[channel] >> i, 4) << shift[channel];
937 c->status[channel].sample1 * coeff[channel][0] +
938 c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
939 c->status[channel].sample2 = c->status[channel].sample1;
940 c->status[channel].sample1 = av_clip_int16(sample);
941 *samples++ = c->status[channel].sample1;
944 src+=avctx->channels;
946 /* consume whole packet */
947 src = buf + buf_size;
950 case CODEC_ID_ADPCM_EA_R1:
951 case CODEC_ID_ADPCM_EA_R2:
952 case CODEC_ID_ADPCM_EA_R3: {
955 4chan: 0=fl, 1=rl, 2=fr, 3=rr
956 6chan: 0=fl, 1=c, 2=fr, 3=rl, 4=rr, 5=sub */
957 const int big_endian = avctx->codec->id == CODEC_ID_ADPCM_EA_R3;
958 int32_t previous_sample, current_sample, next_sample;
959 int32_t coeff1, coeff2;
961 unsigned int channel;
964 const uint8_t *src_end = buf + buf_size;
967 src += 4; // skip sample count (already read)
969 for (channel=0; channel<avctx->channels; channel++) {
970 int32_t offset = (big_endian ? bytestream_get_be32(&src)
971 : bytestream_get_le32(&src))
972 + (avctx->channels-channel-1) * 4;
974 if ((offset < 0) || (offset >= src_end - src - 4)) break;
976 samplesC = samples + channel;
978 if (avctx->codec->id == CODEC_ID_ADPCM_EA_R1) {
979 current_sample = (int16_t)bytestream_get_le16(&srcC);
980 previous_sample = (int16_t)bytestream_get_le16(&srcC);
982 current_sample = c->status[channel].predictor;
983 previous_sample = c->status[channel].prev_sample;
986 for (count1 = 0; count1 < nb_samples / 28; count1++) {
987 if (*srcC == 0xEE) { /* only seen in R2 and R3 */
989 if (srcC > src_end - 30*2) break;
990 current_sample = (int16_t)bytestream_get_be16(&srcC);
991 previous_sample = (int16_t)bytestream_get_be16(&srcC);
993 for (count2=0; count2<28; count2++) {
994 *samplesC = (int16_t)bytestream_get_be16(&srcC);
995 samplesC += avctx->channels;
998 coeff1 = ea_adpcm_table[ *srcC>>4 ];
999 coeff2 = ea_adpcm_table[(*srcC>>4) + 4];
1000 shift = 20 - (*srcC++ & 0x0F);
1002 if (srcC > src_end - 14) break;
1003 for (count2=0; count2<28; count2++) {
1005 next_sample = sign_extend(*srcC++, 4) << shift;
1007 next_sample = sign_extend(*srcC >> 4, 4) << shift;
1009 next_sample += (current_sample * coeff1) +
1010 (previous_sample * coeff2);
1011 next_sample = av_clip_int16(next_sample >> 8);
1013 previous_sample = current_sample;
1014 current_sample = next_sample;
1015 *samplesC = current_sample;
1016 samplesC += avctx->channels;
1022 } else if (count != count1) {
1023 av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
1024 count = FFMAX(count, count1);
1027 if (avctx->codec->id != CODEC_ID_ADPCM_EA_R1) {
1028 c->status[channel].predictor = current_sample;
1029 c->status[channel].prev_sample = previous_sample;
1033 c->frame.nb_samples = count * 28;
1037 case CODEC_ID_ADPCM_EA_XAS:
1038 for (channel=0; channel<avctx->channels; channel++) {
1039 int coeff[2][4], shift[4];
1040 short *s2, *s = &samples[channel];
1041 for (n=0; n<4; n++, s+=32*avctx->channels) {
1043 coeff[i][n] = ea_adpcm_table[(src[0]&0x0F)+4*i];
1044 shift[n] = 20 - (src[2] & 0x0F);
1045 for (s2=s, i=0; i<2; i++, src+=2, s2+=avctx->channels)
1046 s2[0] = (src[0]&0xF0) + (src[1]<<8);
1049 for (m=2; m<32; m+=2) {
1050 s = &samples[m*avctx->channels + channel];
1051 for (n=0; n<4; n++, src++, s+=32*avctx->channels) {
1052 for (s2=s, i=0; i<8; i+=4, s2+=avctx->channels) {
1053 int level = sign_extend(*src >> (4 - i), 4) << shift[n];
1054 int pred = s2[-1*avctx->channels] * coeff[0][n]
1055 + s2[-2*avctx->channels] * coeff[1][n];
1056 s2[0] = av_clip_int16((level + pred + 0x80) >> 8);
1062 case CODEC_ID_ADPCM_IMA_AMV:
1063 case CODEC_ID_ADPCM_IMA_SMJPEG:
1064 if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV) {
1065 c->status[0].predictor = sign_extend(bytestream_get_le16(&src), 16);
1066 c->status[0].step_index = av_clip(bytestream_get_le16(&src), 0, 88);
1069 c->status[0].predictor = sign_extend(bytestream_get_be16(&src), 16);
1070 c->status[0].step_index = av_clip(bytestream_get_byte(&src), 0, 88);
1074 for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
1079 if (avctx->codec->id == CODEC_ID_ADPCM_IMA_AMV)
1080 FFSWAP(char, hi, lo);
1082 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1084 *samples++ = adpcm_ima_expand_nibble(&c->status[0],
1088 case CODEC_ID_ADPCM_CT:
1089 for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
1091 *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4 );
1092 *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
1095 case CODEC_ID_ADPCM_SBPRO_4:
1096 case CODEC_ID_ADPCM_SBPRO_3:
1097 case CODEC_ID_ADPCM_SBPRO_2:
1098 if (!c->status[0].step_index) {
1099 /* the first byte is a raw sample */
1100 *samples++ = 128 * (*src++ - 0x80);
1102 *samples++ = 128 * (*src++ - 0x80);
1103 c->status[0].step_index = 1;
1106 if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_4) {
1107 for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
1108 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1110 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1111 src[0] & 0x0F, 4, 0);
1113 } else if (avctx->codec->id == CODEC_ID_ADPCM_SBPRO_3) {
1114 for (n = nb_samples / 3; n > 0; n--, src++) {
1115 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1116 src[0] >> 5 , 3, 0);
1117 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1118 (src[0] >> 2) & 0x07, 3, 0);
1119 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1120 src[0] & 0x03, 2, 0);
1123 for (n = nb_samples >> (2 - st); n > 0; n--, src++) {
1124 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1125 src[0] >> 6 , 2, 2);
1126 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1127 (src[0] >> 4) & 0x03, 2, 2);
1128 *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1129 (src[0] >> 2) & 0x03, 2, 2);
1130 *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1131 src[0] & 0x03, 2, 2);
1135 case CODEC_ID_ADPCM_SWF:
1139 int k0, signmask, nb_bits, count;
1140 int size = buf_size*8;
1142 init_get_bits(&gb, buf, size);
1144 //read bits & initial values
1145 nb_bits = get_bits(&gb, 2)+2;
1146 //av_log(NULL,AV_LOG_INFO,"nb_bits: %d\n", nb_bits);
1147 table = swf_index_tables[nb_bits-2];
1148 k0 = 1 << (nb_bits-2);
1149 signmask = 1 << (nb_bits-1);
1151 while (get_bits_count(&gb) <= size - 22*avctx->channels) {
1152 for (i = 0; i < avctx->channels; i++) {
1153 *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
1154 c->status[i].step_index = get_bits(&gb, 6);
1157 for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
1160 for (i = 0; i < avctx->channels; i++) {
1161 // similar to IMA adpcm
1162 int delta = get_bits(&gb, nb_bits);
1163 int step = ff_adpcm_step_table[c->status[i].step_index];
1164 long vpdiff = 0; // vpdiff = (delta+0.5)*step/4
1175 if (delta & signmask)
1176 c->status[i].predictor -= vpdiff;
1178 c->status[i].predictor += vpdiff;
1180 c->status[i].step_index += table[delta & (~signmask)];
1182 c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
1183 c->status[i].predictor = av_clip_int16(c->status[i].predictor);
1185 *samples++ = c->status[i].predictor;
1192 case CODEC_ID_ADPCM_YAMAHA:
1193 for (n = nb_samples >> (1 - st); n > 0; n--, src++) {
1195 *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
1196 *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4 );
1199 case CODEC_ID_ADPCM_THP:
1205 src += 4; // skip channel size
1206 src += 4; // skip number of samples (already read)
1208 for (i = 0; i < 32; i++)
1209 table[0][i] = (int16_t)bytestream_get_be16(&src);
1211 /* Initialize the previous sample. */
1212 for (i = 0; i < 4; i++)
1213 prev[0][i] = (int16_t)bytestream_get_be16(&src);
1215 for (ch = 0; ch <= st; ch++) {
1216 samples = (short *)c->frame.data[0] + ch;
1218 /* Read in every sample for this channel. */
1219 for (i = 0; i < nb_samples / 14; i++) {
1220 int index = (*src >> 4) & 7;
1221 unsigned int exp = *src++ & 15;
1222 int factor1 = table[ch][index * 2];
1223 int factor2 = table[ch][index * 2 + 1];
1225 /* Decode 14 samples. */
1226 for (n = 0; n < 14; n++) {
1228 if(n&1) sampledat = sign_extend(*src++, 4);
1229 else sampledat = sign_extend(*src >> 4, 4);
1231 sampledat = ((prev[ch][0]*factor1
1232 + prev[ch][1]*factor2) >> 11) + (sampledat << exp);
1233 *samples = av_clip_int16(sampledat);
1234 prev[ch][1] = prev[ch][0];
1235 prev[ch][0] = *samples++;
1237 /* In case of stereo, skip one sample, this sample
1238 is for the other channel. */
1251 *(AVFrame *)data = c->frame;
1253 return src == buf ? bytestream2_tell(&gb) : src - buf;
1257 #define ADPCM_DECODER(id_, name_, long_name_) \
1258 AVCodec ff_ ## name_ ## _decoder = { \
1260 .type = AVMEDIA_TYPE_AUDIO, \
1262 .priv_data_size = sizeof(ADPCMDecodeContext), \
1263 .init = adpcm_decode_init, \
1264 .decode = adpcm_decode_frame, \
1265 .capabilities = CODEC_CAP_DR1, \
1266 .long_name = NULL_IF_CONFIG_SMALL(long_name_), \
1269 /* Note: Do not forget to add new entries to the Makefile as well. */
1270 ADPCM_DECODER(CODEC_ID_ADPCM_4XM, adpcm_4xm, "ADPCM 4X Movie");
1271 ADPCM_DECODER(CODEC_ID_ADPCM_CT, adpcm_ct, "ADPCM Creative Technology");
1272 ADPCM_DECODER(CODEC_ID_ADPCM_EA, adpcm_ea, "ADPCM Electronic Arts");
1273 ADPCM_DECODER(CODEC_ID_ADPCM_EA_MAXIS_XA, adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
1274 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R1, adpcm_ea_r1, "ADPCM Electronic Arts R1");
1275 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R2, adpcm_ea_r2, "ADPCM Electronic Arts R2");
1276 ADPCM_DECODER(CODEC_ID_ADPCM_EA_R3, adpcm_ea_r3, "ADPCM Electronic Arts R3");
1277 ADPCM_DECODER(CODEC_ID_ADPCM_EA_XAS, adpcm_ea_xas, "ADPCM Electronic Arts XAS");
1278 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_AMV, adpcm_ima_amv, "ADPCM IMA AMV");
1279 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_APC, adpcm_ima_apc, "ADPCM IMA CRYO APC");
1280 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK3, adpcm_ima_dk3, "ADPCM IMA Duck DK3");
1281 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_DK4, adpcm_ima_dk4, "ADPCM IMA Duck DK4");
1282 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_EACS, adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
1283 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_EA_SEAD, adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
1284 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_ISS, adpcm_ima_iss, "ADPCM IMA Funcom ISS");
1285 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_QT, adpcm_ima_qt, "ADPCM IMA QuickTime");
1286 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_SMJPEG, adpcm_ima_smjpeg, "ADPCM IMA Loki SDL MJPEG");
1287 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WAV, adpcm_ima_wav, "ADPCM IMA WAV");
1288 ADPCM_DECODER(CODEC_ID_ADPCM_IMA_WS, adpcm_ima_ws, "ADPCM IMA Westwood");
1289 ADPCM_DECODER(CODEC_ID_ADPCM_MS, adpcm_ms, "ADPCM Microsoft");
1290 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_2, adpcm_sbpro_2, "ADPCM Sound Blaster Pro 2-bit");
1291 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_3, adpcm_sbpro_3, "ADPCM Sound Blaster Pro 2.6-bit");
1292 ADPCM_DECODER(CODEC_ID_ADPCM_SBPRO_4, adpcm_sbpro_4, "ADPCM Sound Blaster Pro 4-bit");
1293 ADPCM_DECODER(CODEC_ID_ADPCM_SWF, adpcm_swf, "ADPCM Shockwave Flash");
1294 ADPCM_DECODER(CODEC_ID_ADPCM_THP, adpcm_thp, "ADPCM Nintendo Gamecube THP");
1295 ADPCM_DECODER(CODEC_ID_ADPCM_XA, adpcm_xa, "ADPCM CDROM XA");
1296 ADPCM_DECODER(CODEC_ID_ADPCM_YAMAHA, adpcm_yamaha, "ADPCM Yamaha");