Merge remote branch 'qatar/master'
[ffmpeg.git] / libavcodec / aaccoder.c
1 /*
2  * AAC coefficients encoder
3  * Copyright (C) 2008-2009 Konstantin Shishkov
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21
22 /**
23  * @file
24  * AAC coefficients encoder
25  */
26
27 /***********************************
28  *              TODOs:
29  * speedup quantizer selection
30  * add sane pulse detection
31  ***********************************/
32
33 #include "libavutil/libm.h" // brought forward to work around cygwin header breakage
34
35 #include <float.h>
36 #include <math.h>
37 #include "avcodec.h"
38 #include "put_bits.h"
39 #include "aac.h"
40 #include "aacenc.h"
41 #include "aactab.h"
42
43 /** bits needed to code codebook run value for long windows */
44 static const uint8_t run_value_bits_long[64] = {
45      5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,
46      5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5,  5, 10,
47     10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
48     10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 15
49 };
50
51 /** bits needed to code codebook run value for short windows */
52 static const uint8_t run_value_bits_short[16] = {
53     3, 3, 3, 3, 3, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 9
54 };
55
56 static const uint8_t *run_value_bits[2] = {
57     run_value_bits_long, run_value_bits_short
58 };
59
60
61 /**
62  * Quantize one coefficient.
63  * @return absolute value of the quantized coefficient
64  * @see 3GPP TS26.403 5.6.2 "Scalefactor determination"
65  */
66 static av_always_inline int quant(float coef, const float Q)
67 {
68     float a = coef * Q;
69     return sqrtf(a * sqrtf(a)) + 0.4054;
70 }
71
72 static void quantize_bands(int *out, const float *in, const float *scaled,
73                            int size, float Q34, int is_signed, int maxval)
74 {
75     int i;
76     double qc;
77     for (i = 0; i < size; i++) {
78         qc = scaled[i] * Q34;
79         out[i] = (int)FFMIN(qc + 0.4054, (double)maxval);
80         if (is_signed && in[i] < 0.0f) {
81             out[i] = -out[i];
82         }
83     }
84 }
85
86 static void abs_pow34_v(float *out, const float *in, const int size)
87 {
88 #ifndef USE_REALLY_FULL_SEARCH
89     int i;
90     for (i = 0; i < size; i++) {
91         float a = fabsf(in[i]);
92         out[i] = sqrtf(a * sqrtf(a));
93     }
94 #endif /* USE_REALLY_FULL_SEARCH */
95 }
96
97 static const uint8_t aac_cb_range [12] = {0, 3, 3, 3, 3, 9, 9, 8, 8, 13, 13, 17};
98 static const uint8_t aac_cb_maxval[12] = {0, 1, 1, 2, 2, 4, 4, 7, 7, 12, 12, 16};
99
100 /**
101  * Calculate rate distortion cost for quantizing with given codebook
102  *
103  * @return quantization distortion
104  */
105 static av_always_inline float quantize_and_encode_band_cost_template(
106                                 struct AACEncContext *s,
107                                 PutBitContext *pb, const float *in,
108                                 const float *scaled, int size, int scale_idx,
109                                 int cb, const float lambda, const float uplim,
110                                 int *bits, int BT_ZERO, int BT_UNSIGNED,
111                                 int BT_PAIR, int BT_ESC)
112 {
113     const float IQ = ff_aac_pow2sf_tab[POW_SF2_ZERO + scale_idx - SCALE_ONE_POS + SCALE_DIV_512];
114     const float  Q = ff_aac_pow2sf_tab[POW_SF2_ZERO - scale_idx + SCALE_ONE_POS - SCALE_DIV_512];
115     const float CLIPPED_ESCAPE = 165140.0f*IQ;
116     int i, j;
117     float cost = 0;
118     const int dim = BT_PAIR ? 2 : 4;
119     int resbits = 0;
120     const float  Q34 = sqrtf(Q * sqrtf(Q));
121     const int range  = aac_cb_range[cb];
122     const int maxval = aac_cb_maxval[cb];
123     int off;
124
125     if (BT_ZERO) {
126         for (i = 0; i < size; i++)
127             cost += in[i]*in[i];
128         if (bits)
129             *bits = 0;
130         return cost * lambda;
131     }
132     if (!scaled) {
133         abs_pow34_v(s->scoefs, in, size);
134         scaled = s->scoefs;
135     }
136     quantize_bands(s->qcoefs, in, scaled, size, Q34, !BT_UNSIGNED, maxval);
137     if (BT_UNSIGNED) {
138         off = 0;
139     } else {
140         off = maxval;
141     }
142     for (i = 0; i < size; i += dim) {
143         const float *vec;
144         int *quants = s->qcoefs + i;
145         int curidx = 0;
146         int curbits;
147         float rd = 0.0f;
148         for (j = 0; j < dim; j++) {
149             curidx *= range;
150             curidx += quants[j] + off;
151         }
152         curbits =  ff_aac_spectral_bits[cb-1][curidx];
153         vec     = &ff_aac_codebook_vectors[cb-1][curidx*dim];
154         if (BT_UNSIGNED) {
155             for (j = 0; j < dim; j++) {
156                 float t = fabsf(in[i+j]);
157                 float di;
158                 if (BT_ESC && vec[j] == 64.0f) { //FIXME: slow
159                     if (t >= CLIPPED_ESCAPE) {
160                         di = t - CLIPPED_ESCAPE;
161                         curbits += 21;
162                     } else {
163                         int c = av_clip(quant(t, Q), 0, 8191);
164                         di = t - c*cbrtf(c)*IQ;
165                         curbits += av_log2(c)*2 - 4 + 1;
166                     }
167                 } else {
168                     di = t - vec[j]*IQ;
169                 }
170                 if (vec[j] != 0.0f)
171                     curbits++;
172                 rd += di*di;
173             }
174         } else {
175             for (j = 0; j < dim; j++) {
176                 float di = in[i+j] - vec[j]*IQ;
177                 rd += di*di;
178             }
179         }
180         cost    += rd * lambda + curbits;
181         resbits += curbits;
182         if (cost >= uplim)
183             return uplim;
184         if (pb) {
185             put_bits(pb, ff_aac_spectral_bits[cb-1][curidx], ff_aac_spectral_codes[cb-1][curidx]);
186             if (BT_UNSIGNED)
187                 for (j = 0; j < dim; j++)
188                     if (ff_aac_codebook_vectors[cb-1][curidx*dim+j] != 0.0f)
189                         put_bits(pb, 1, in[i+j] < 0.0f);
190             if (BT_ESC) {
191                 for (j = 0; j < 2; j++) {
192                     if (ff_aac_codebook_vectors[cb-1][curidx*2+j] == 64.0f) {
193                         int coef = av_clip(quant(fabsf(in[i+j]), Q), 0, 8191);
194                         int len = av_log2(coef);
195
196                         put_bits(pb, len - 4 + 1, (1 << (len - 4 + 1)) - 2);
197                         put_bits(pb, len, coef & ((1 << len) - 1));
198                     }
199                 }
200             }
201         }
202     }
203
204     if (bits)
205         *bits = resbits;
206     return cost;
207 }
208
209 #define QUANTIZE_AND_ENCODE_BAND_COST_FUNC(NAME, BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC) \
210 static float quantize_and_encode_band_cost_ ## NAME(                                        \
211                                 struct AACEncContext *s,                                \
212                                 PutBitContext *pb, const float *in,                     \
213                                 const float *scaled, int size, int scale_idx,           \
214                                 int cb, const float lambda, const float uplim,          \
215                                 int *bits) {                                            \
216     return quantize_and_encode_band_cost_template(                                      \
217                                 s, pb, in, scaled, size, scale_idx,                     \
218                                 BT_ESC ? ESC_BT : cb, lambda, uplim, bits,              \
219                                 BT_ZERO, BT_UNSIGNED, BT_PAIR, BT_ESC);                 \
220 }
221
222 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ZERO,  1, 0, 0, 0)
223 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SQUAD, 0, 0, 0, 0)
224 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UQUAD, 0, 1, 0, 0)
225 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(SPAIR, 0, 0, 1, 0)
226 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(UPAIR, 0, 1, 1, 0)
227 QUANTIZE_AND_ENCODE_BAND_COST_FUNC(ESC,   0, 1, 1, 1)
228
229 static float (*const quantize_and_encode_band_cost_arr[])(
230                                 struct AACEncContext *s,
231                                 PutBitContext *pb, const float *in,
232                                 const float *scaled, int size, int scale_idx,
233                                 int cb, const float lambda, const float uplim,
234                                 int *bits) = {
235     quantize_and_encode_band_cost_ZERO,
236     quantize_and_encode_band_cost_SQUAD,
237     quantize_and_encode_band_cost_SQUAD,
238     quantize_and_encode_band_cost_UQUAD,
239     quantize_and_encode_band_cost_UQUAD,
240     quantize_and_encode_band_cost_SPAIR,
241     quantize_and_encode_band_cost_SPAIR,
242     quantize_and_encode_band_cost_UPAIR,
243     quantize_and_encode_band_cost_UPAIR,
244     quantize_and_encode_band_cost_UPAIR,
245     quantize_and_encode_band_cost_UPAIR,
246     quantize_and_encode_band_cost_ESC,
247 };
248
249 #define quantize_and_encode_band_cost(                                  \
250                                 s, pb, in, scaled, size, scale_idx, cb, \
251                                 lambda, uplim, bits)                    \
252     quantize_and_encode_band_cost_arr[cb](                              \
253                                 s, pb, in, scaled, size, scale_idx, cb, \
254                                 lambda, uplim, bits)
255
256 static float quantize_band_cost(struct AACEncContext *s, const float *in,
257                                 const float *scaled, int size, int scale_idx,
258                                 int cb, const float lambda, const float uplim,
259                                 int *bits)
260 {
261     return quantize_and_encode_band_cost(s, NULL, in, scaled, size, scale_idx,
262                                          cb, lambda, uplim, bits);
263 }
264
265 static void quantize_and_encode_band(struct AACEncContext *s, PutBitContext *pb,
266                                      const float *in, int size, int scale_idx,
267                                      int cb, const float lambda)
268 {
269     quantize_and_encode_band_cost(s, pb, in, NULL, size, scale_idx, cb, lambda,
270                                   INFINITY, NULL);
271 }
272
273 static float find_max_val(int group_len, int swb_size, const float *scaled) {
274     float maxval = 0.0f;
275     int w2, i;
276     for (w2 = 0; w2 < group_len; w2++) {
277         for (i = 0; i < swb_size; i++) {
278             maxval = FFMAX(maxval, scaled[w2*128+i]);
279         }
280     }
281     return maxval;
282 }
283
284 static int find_min_book(float maxval, int sf) {
285     float Q = ff_aac_pow2sf_tab[POW_SF2_ZERO - sf + SCALE_ONE_POS - SCALE_DIV_512];
286     float Q34 = sqrtf(Q * sqrtf(Q));
287     int qmaxval, cb;
288     qmaxval = maxval * Q34 + 0.4054f;
289     if      (qmaxval ==  0) cb = 0;
290     else if (qmaxval ==  1) cb = 1;
291     else if (qmaxval ==  2) cb = 3;
292     else if (qmaxval <=  4) cb = 5;
293     else if (qmaxval <=  7) cb = 7;
294     else if (qmaxval <= 12) cb = 9;
295     else                    cb = 11;
296     return cb;
297 }
298
299 /**
300  * structure used in optimal codebook search
301  */
302 typedef struct BandCodingPath {
303     int prev_idx; ///< pointer to the previous path point
304     float cost;   ///< path cost
305     int run;
306 } BandCodingPath;
307
308 /**
309  * Encode band info for single window group bands.
310  */
311 static void encode_window_bands_info(AACEncContext *s, SingleChannelElement *sce,
312                                      int win, int group_len, const float lambda)
313 {
314     BandCodingPath path[120][12];
315     int w, swb, cb, start, start2, size;
316     int i, j;
317     const int max_sfb  = sce->ics.max_sfb;
318     const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
319     const int run_esc  = (1 << run_bits) - 1;
320     int idx, ppos, count;
321     int stackrun[120], stackcb[120], stack_len;
322     float next_minrd = INFINITY;
323     int next_mincb = 0;
324
325     abs_pow34_v(s->scoefs, sce->coeffs, 1024);
326     start = win*128;
327     for (cb = 0; cb < 12; cb++) {
328         path[0][cb].cost     = 0.0f;
329         path[0][cb].prev_idx = -1;
330         path[0][cb].run      = 0;
331     }
332     for (swb = 0; swb < max_sfb; swb++) {
333         start2 = start;
334         size = sce->ics.swb_sizes[swb];
335         if (sce->zeroes[win*16 + swb]) {
336             for (cb = 0; cb < 12; cb++) {
337                 path[swb+1][cb].prev_idx = cb;
338                 path[swb+1][cb].cost     = path[swb][cb].cost;
339                 path[swb+1][cb].run      = path[swb][cb].run + 1;
340             }
341         } else {
342             float minrd = next_minrd;
343             int mincb = next_mincb;
344             next_minrd = INFINITY;
345             next_mincb = 0;
346             for (cb = 0; cb < 12; cb++) {
347                 float cost_stay_here, cost_get_here;
348                 float rd = 0.0f;
349                 for (w = 0; w < group_len; w++) {
350                     FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(win+w)*16+swb];
351                     rd += quantize_band_cost(s, sce->coeffs + start + w*128,
352                                              s->scoefs + start + w*128, size,
353                                              sce->sf_idx[(win+w)*16+swb], cb,
354                                              lambda / band->threshold, INFINITY, NULL);
355                 }
356                 cost_stay_here = path[swb][cb].cost + rd;
357                 cost_get_here  = minrd              + rd + run_bits + 4;
358                 if (   run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
359                     != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
360                     cost_stay_here += run_bits;
361                 if (cost_get_here < cost_stay_here) {
362                     path[swb+1][cb].prev_idx = mincb;
363                     path[swb+1][cb].cost     = cost_get_here;
364                     path[swb+1][cb].run      = 1;
365                 } else {
366                     path[swb+1][cb].prev_idx = cb;
367                     path[swb+1][cb].cost     = cost_stay_here;
368                     path[swb+1][cb].run      = path[swb][cb].run + 1;
369                 }
370                 if (path[swb+1][cb].cost < next_minrd) {
371                     next_minrd = path[swb+1][cb].cost;
372                     next_mincb = cb;
373                 }
374             }
375         }
376         start += sce->ics.swb_sizes[swb];
377     }
378
379     //convert resulting path from backward-linked list
380     stack_len = 0;
381     idx       = 0;
382     for (cb = 1; cb < 12; cb++)
383         if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
384             idx = cb;
385     ppos = max_sfb;
386     while (ppos > 0) {
387         cb = idx;
388         stackrun[stack_len] = path[ppos][cb].run;
389         stackcb [stack_len] = cb;
390         idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
391         ppos -= path[ppos][cb].run;
392         stack_len++;
393     }
394     //perform actual band info encoding
395     start = 0;
396     for (i = stack_len - 1; i >= 0; i--) {
397         put_bits(&s->pb, 4, stackcb[i]);
398         count = stackrun[i];
399         memset(sce->zeroes + win*16 + start, !stackcb[i], count);
400         //XXX: memset when band_type is also uint8_t
401         for (j = 0; j < count; j++) {
402             sce->band_type[win*16 + start] =  stackcb[i];
403             start++;
404         }
405         while (count >= run_esc) {
406             put_bits(&s->pb, run_bits, run_esc);
407             count -= run_esc;
408         }
409         put_bits(&s->pb, run_bits, count);
410     }
411 }
412
413 static void codebook_trellis_rate(AACEncContext *s, SingleChannelElement *sce,
414                                   int win, int group_len, const float lambda)
415 {
416     BandCodingPath path[120][12];
417     int w, swb, cb, start, start2, size;
418     int i, j;
419     const int max_sfb  = sce->ics.max_sfb;
420     const int run_bits = sce->ics.num_windows == 1 ? 5 : 3;
421     const int run_esc  = (1 << run_bits) - 1;
422     int idx, ppos, count;
423     int stackrun[120], stackcb[120], stack_len;
424     float next_minrd = INFINITY;
425     int next_mincb = 0;
426
427     abs_pow34_v(s->scoefs, sce->coeffs, 1024);
428     start = win*128;
429     for (cb = 0; cb < 12; cb++) {
430         path[0][cb].cost     = run_bits+4;
431         path[0][cb].prev_idx = -1;
432         path[0][cb].run      = 0;
433     }
434     for (swb = 0; swb < max_sfb; swb++) {
435         start2 = start;
436         size = sce->ics.swb_sizes[swb];
437         if (sce->zeroes[win*16 + swb]) {
438             for (cb = 0; cb < 12; cb++) {
439                 path[swb+1][cb].prev_idx = cb;
440                 path[swb+1][cb].cost     = path[swb][cb].cost;
441                 path[swb+1][cb].run      = path[swb][cb].run + 1;
442             }
443         } else {
444             float minrd = next_minrd;
445             int mincb = next_mincb;
446             int startcb = sce->band_type[win*16+swb];
447             next_minrd = INFINITY;
448             next_mincb = 0;
449             for (cb = 0; cb < startcb; cb++) {
450                 path[swb+1][cb].cost = 61450;
451                 path[swb+1][cb].prev_idx = -1;
452                 path[swb+1][cb].run = 0;
453             }
454             for (cb = startcb; cb < 12; cb++) {
455                 float cost_stay_here, cost_get_here;
456                 float rd = 0.0f;
457                 for (w = 0; w < group_len; w++) {
458                     rd += quantize_band_cost(s, sce->coeffs + start + w*128,
459                                              s->scoefs + start + w*128, size,
460                                              sce->sf_idx[(win+w)*16+swb], cb,
461                                              0, INFINITY, NULL);
462                 }
463                 cost_stay_here = path[swb][cb].cost + rd;
464                 cost_get_here  = minrd              + rd + run_bits + 4;
465                 if (   run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run]
466                     != run_value_bits[sce->ics.num_windows == 8][path[swb][cb].run+1])
467                     cost_stay_here += run_bits;
468                 if (cost_get_here < cost_stay_here) {
469                     path[swb+1][cb].prev_idx = mincb;
470                     path[swb+1][cb].cost     = cost_get_here;
471                     path[swb+1][cb].run      = 1;
472                 } else {
473                     path[swb+1][cb].prev_idx = cb;
474                     path[swb+1][cb].cost     = cost_stay_here;
475                     path[swb+1][cb].run      = path[swb][cb].run + 1;
476                 }
477                 if (path[swb+1][cb].cost < next_minrd) {
478                     next_minrd = path[swb+1][cb].cost;
479                     next_mincb = cb;
480                 }
481             }
482         }
483         start += sce->ics.swb_sizes[swb];
484     }
485
486     //convert resulting path from backward-linked list
487     stack_len = 0;
488     idx       = 0;
489     for (cb = 1; cb < 12; cb++)
490         if (path[max_sfb][cb].cost < path[max_sfb][idx].cost)
491             idx = cb;
492     ppos = max_sfb;
493     while (ppos > 0) {
494         assert(idx >= 0);
495         cb = idx;
496         stackrun[stack_len] = path[ppos][cb].run;
497         stackcb [stack_len] = cb;
498         idx = path[ppos-path[ppos][cb].run+1][cb].prev_idx;
499         ppos -= path[ppos][cb].run;
500         stack_len++;
501     }
502     //perform actual band info encoding
503     start = 0;
504     for (i = stack_len - 1; i >= 0; i--) {
505         put_bits(&s->pb, 4, stackcb[i]);
506         count = stackrun[i];
507         memset(sce->zeroes + win*16 + start, !stackcb[i], count);
508         //XXX: memset when band_type is also uint8_t
509         for (j = 0; j < count; j++) {
510             sce->band_type[win*16 + start] =  stackcb[i];
511             start++;
512         }
513         while (count >= run_esc) {
514             put_bits(&s->pb, run_bits, run_esc);
515             count -= run_esc;
516         }
517         put_bits(&s->pb, run_bits, count);
518     }
519 }
520
521 /** Return the minimum scalefactor where the quantized coef does not clip. */
522 static av_always_inline uint8_t coef2minsf(float coef) {
523     return av_clip_uint8(log2f(coef)*4 - 69 + SCALE_ONE_POS - SCALE_DIV_512);
524 }
525
526 /** Return the maximum scalefactor where the quantized coef is not zero. */
527 static av_always_inline uint8_t coef2maxsf(float coef) {
528     return av_clip_uint8(log2f(coef)*4 +  6 + SCALE_ONE_POS - SCALE_DIV_512);
529 }
530
531 typedef struct TrellisPath {
532     float cost;
533     int prev;
534 } TrellisPath;
535
536 #define TRELLIS_STAGES 121
537 #define TRELLIS_STATES (SCALE_MAX_DIFF+1)
538
539 static void search_for_quantizers_anmr(AVCodecContext *avctx, AACEncContext *s,
540                                        SingleChannelElement *sce,
541                                        const float lambda)
542 {
543     int q, w, w2, g, start = 0;
544     int i, j;
545     int idx;
546     TrellisPath paths[TRELLIS_STAGES][TRELLIS_STATES];
547     int bandaddr[TRELLIS_STAGES];
548     int minq;
549     float mincost;
550     float q0f = FLT_MAX, q1f = 0.0f, qnrgf = 0.0f;
551     int q0, q1, qcnt = 0;
552
553     for (i = 0; i < 1024; i++) {
554         float t = fabsf(sce->coeffs[i]);
555         if (t > 0.0f) {
556             q0f = FFMIN(q0f, t);
557             q1f = FFMAX(q1f, t);
558             qnrgf += t*t;
559             qcnt++;
560         }
561     }
562
563     if (!qcnt) {
564         memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
565         memset(sce->zeroes, 1, sizeof(sce->zeroes));
566         return;
567     }
568
569     //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
570     q0 = coef2minsf(q0f);
571     //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
572     q1 = coef2maxsf(q1f);
573     //av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);
574     if (q1 - q0 > 60) {
575         int q0low  = q0;
576         int q1high = q1;
577         //minimum scalefactor index is when maximum nonzero coefficient after quantizing is not clipped
578         int qnrg = av_clip_uint8(log2f(sqrtf(qnrgf/qcnt))*4 - 31 + SCALE_ONE_POS - SCALE_DIV_512);
579         q1 = qnrg + 30;
580         q0 = qnrg - 30;
581         //av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);
582         if (q0 < q0low) {
583             q1 += q0low - q0;
584             q0  = q0low;
585         } else if (q1 > q1high) {
586             q0 -= q1 - q1high;
587             q1  = q1high;
588         }
589     }
590     //av_log(NULL, AV_LOG_ERROR, "q0 %d, q1 %d\n", q0, q1);
591
592     for (i = 0; i < TRELLIS_STATES; i++) {
593         paths[0][i].cost    = 0.0f;
594         paths[0][i].prev    = -1;
595     }
596     for (j = 1; j < TRELLIS_STAGES; j++) {
597         for (i = 0; i < TRELLIS_STATES; i++) {
598             paths[j][i].cost    = INFINITY;
599             paths[j][i].prev    = -2;
600         }
601     }
602     idx = 1;
603     abs_pow34_v(s->scoefs, sce->coeffs, 1024);
604     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
605         start = w*128;
606         for (g = 0; g < sce->ics.num_swb; g++) {
607             const float *coefs = sce->coeffs + start;
608             float qmin, qmax;
609             int nz = 0;
610
611             bandaddr[idx] = w * 16 + g;
612             qmin = INT_MAX;
613             qmax = 0.0f;
614             for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
615                 FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
616                 if (band->energy <= band->threshold || band->threshold == 0.0f) {
617                     sce->zeroes[(w+w2)*16+g] = 1;
618                     continue;
619                 }
620                 sce->zeroes[(w+w2)*16+g] = 0;
621                 nz = 1;
622                 for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
623                     float t = fabsf(coefs[w2*128+i]);
624                     if (t > 0.0f)
625                         qmin = FFMIN(qmin, t);
626                     qmax = FFMAX(qmax, t);
627                 }
628             }
629             if (nz) {
630                 int minscale, maxscale;
631                 float minrd = INFINITY;
632                 float maxval;
633                 //minimum scalefactor index is when minimum nonzero coefficient after quantizing is not clipped
634                 minscale = coef2minsf(qmin);
635                 //maximum scalefactor index is when maximum coefficient after quantizing is still not zero
636                 maxscale = coef2maxsf(qmax);
637                 minscale = av_clip(minscale - q0, 0, TRELLIS_STATES - 1);
638                 maxscale = av_clip(maxscale - q0, 0, TRELLIS_STATES);
639                 maxval = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], s->scoefs+start);
640                 for (q = minscale; q < maxscale; q++) {
641                     float dist = 0;
642                     int cb = find_min_book(maxval, sce->sf_idx[w*16+g]);
643                     for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
644                         FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
645                         dist += quantize_band_cost(s, coefs + w2*128, s->scoefs + start + w2*128, sce->ics.swb_sizes[g],
646                                                    q + q0, cb, lambda / band->threshold, INFINITY, NULL);
647                     }
648                     minrd = FFMIN(minrd, dist);
649
650                     for (i = 0; i < q1 - q0; i++) {
651                         float cost;
652                         cost = paths[idx - 1][i].cost + dist
653                                + ff_aac_scalefactor_bits[q - i + SCALE_DIFF_ZERO];
654                         if (cost < paths[idx][q].cost) {
655                             paths[idx][q].cost    = cost;
656                             paths[idx][q].prev    = i;
657                         }
658                     }
659                 }
660             } else {
661                 for (q = 0; q < q1 - q0; q++) {
662                     paths[idx][q].cost = paths[idx - 1][q].cost + 1;
663                     paths[idx][q].prev = q;
664                 }
665             }
666             sce->zeroes[w*16+g] = !nz;
667             start += sce->ics.swb_sizes[g];
668             idx++;
669         }
670     }
671     idx--;
672     mincost = paths[idx][0].cost;
673     minq    = 0;
674     for (i = 1; i < TRELLIS_STATES; i++) {
675         if (paths[idx][i].cost < mincost) {
676             mincost = paths[idx][i].cost;
677             minq = i;
678         }
679     }
680     while (idx) {
681         sce->sf_idx[bandaddr[idx]] = minq + q0;
682         minq = paths[idx][minq].prev;
683         idx--;
684     }
685     //set the same quantizers inside window groups
686     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
687         for (g = 0;  g < sce->ics.num_swb; g++)
688             for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
689                 sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
690 }
691
692 /**
693  * two-loop quantizers search taken from ISO 13818-7 Appendix C
694  */
695 static void search_for_quantizers_twoloop(AVCodecContext *avctx,
696                                           AACEncContext *s,
697                                           SingleChannelElement *sce,
698                                           const float lambda)
699 {
700     int start = 0, i, w, w2, g;
701     int destbits = avctx->bit_rate * 1024.0 / avctx->sample_rate / avctx->channels;
702     float dists[128], uplims[128];
703     float maxvals[128];
704     int fflag, minscaler;
705     int its  = 0;
706     int allz = 0;
707     float minthr = INFINITY;
708
709     //XXX: some heuristic to determine initial quantizers will reduce search time
710     memset(dists, 0, sizeof(dists));
711     //determine zero bands and upper limits
712     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
713         for (g = 0;  g < sce->ics.num_swb; g++) {
714             int nz = 0;
715             float uplim = 0.0f;
716             for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
717                 FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
718                 uplim += band->threshold;
719                 if (band->energy <= band->threshold || band->threshold == 0.0f) {
720                     sce->zeroes[(w+w2)*16+g] = 1;
721                     continue;
722                 }
723                 nz = 1;
724             }
725             uplims[w*16+g] = uplim *512;
726             sce->zeroes[w*16+g] = !nz;
727             if (nz)
728                 minthr = FFMIN(minthr, uplim);
729             allz |= nz;
730         }
731     }
732     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
733         for (g = 0;  g < sce->ics.num_swb; g++) {
734             if (sce->zeroes[w*16+g]) {
735                 sce->sf_idx[w*16+g] = SCALE_ONE_POS;
736                 continue;
737             }
738             sce->sf_idx[w*16+g] = SCALE_ONE_POS + FFMIN(log2f(uplims[w*16+g]/minthr)*4,59);
739         }
740     }
741
742     if (!allz)
743         return;
744     abs_pow34_v(s->scoefs, sce->coeffs, 1024);
745
746     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
747         start = w*128;
748         for (g = 0;  g < sce->ics.num_swb; g++) {
749             const float *scaled = s->scoefs + start;
750             maxvals[w*16+g] = find_max_val(sce->ics.group_len[w], sce->ics.swb_sizes[g], scaled);
751             start += sce->ics.swb_sizes[g];
752         }
753     }
754
755     //perform two-loop search
756     //outer loop - improve quality
757     do {
758         int tbits, qstep;
759         minscaler = sce->sf_idx[0];
760         //inner loop - quantize spectrum to fit into given number of bits
761         qstep = its ? 1 : 32;
762         do {
763             int prev = -1;
764             tbits = 0;
765             fflag = 0;
766             for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
767                 start = w*128;
768                 for (g = 0;  g < sce->ics.num_swb; g++) {
769                     const float *coefs = sce->coeffs + start;
770                     const float *scaled = s->scoefs + start;
771                     int bits = 0;
772                     int cb;
773                     float dist = 0.0f;
774
775                     if (sce->zeroes[w*16+g] || sce->sf_idx[w*16+g] >= 218) {
776                         start += sce->ics.swb_sizes[g];
777                         continue;
778                     }
779                     minscaler = FFMIN(minscaler, sce->sf_idx[w*16+g]);
780                     cb = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
781                     for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
782                         int b;
783                         dist += quantize_band_cost(s, coefs + w2*128,
784                                                    scaled + w2*128,
785                                                    sce->ics.swb_sizes[g],
786                                                    sce->sf_idx[w*16+g],
787                                                    cb,
788                                                    1.0f,
789                                                    INFINITY,
790                                                    &b);
791                         bits += b;
792                     }
793                     dists[w*16+g] = dist - bits;
794                     if (prev != -1) {
795                         bits += ff_aac_scalefactor_bits[sce->sf_idx[w*16+g] - prev + SCALE_DIFF_ZERO];
796                     }
797                     tbits += bits;
798                     start += sce->ics.swb_sizes[g];
799                     prev = sce->sf_idx[w*16+g];
800                 }
801             }
802             if (tbits > destbits) {
803                 for (i = 0; i < 128; i++)
804                     if (sce->sf_idx[i] < 218 - qstep)
805                         sce->sf_idx[i] += qstep;
806             } else {
807                 for (i = 0; i < 128; i++)
808                     if (sce->sf_idx[i] > 60 - qstep)
809                         sce->sf_idx[i] -= qstep;
810             }
811             qstep >>= 1;
812             if (!qstep && tbits > destbits*1.02 && sce->sf_idx[0] < 217)
813                 qstep = 1;
814         } while (qstep);
815
816         fflag = 0;
817         minscaler = av_clip(minscaler, 60, 255 - SCALE_MAX_DIFF);
818         for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
819             for (g = 0; g < sce->ics.num_swb; g++) {
820                 int prevsc = sce->sf_idx[w*16+g];
821                 if (dists[w*16+g] > uplims[w*16+g] && sce->sf_idx[w*16+g] > 60) {
822                     if (find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]-1))
823                         sce->sf_idx[w*16+g]--;
824                     else //Try to make sure there is some energy in every band
825                         sce->sf_idx[w*16+g]-=2;
826                 }
827                 sce->sf_idx[w*16+g] = av_clip(sce->sf_idx[w*16+g], minscaler, minscaler + SCALE_MAX_DIFF);
828                 sce->sf_idx[w*16+g] = FFMIN(sce->sf_idx[w*16+g], 219);
829                 if (sce->sf_idx[w*16+g] != prevsc)
830                     fflag = 1;
831                 sce->band_type[w*16+g] = find_min_book(maxvals[w*16+g], sce->sf_idx[w*16+g]);
832             }
833         }
834         its++;
835     } while (fflag && its < 10);
836 }
837
838 static void search_for_quantizers_faac(AVCodecContext *avctx, AACEncContext *s,
839                                        SingleChannelElement *sce,
840                                        const float lambda)
841 {
842     int start = 0, i, w, w2, g;
843     float uplim[128], maxq[128];
844     int minq, maxsf;
845     float distfact = ((sce->ics.num_windows > 1) ? 85.80 : 147.84) / lambda;
846     int last = 0, lastband = 0, curband = 0;
847     float avg_energy = 0.0;
848     if (sce->ics.num_windows == 1) {
849         start = 0;
850         for (i = 0; i < 1024; i++) {
851             if (i - start >= sce->ics.swb_sizes[curband]) {
852                 start += sce->ics.swb_sizes[curband];
853                 curband++;
854             }
855             if (sce->coeffs[i]) {
856                 avg_energy += sce->coeffs[i] * sce->coeffs[i];
857                 last = i;
858                 lastband = curband;
859             }
860         }
861     } else {
862         for (w = 0; w < 8; w++) {
863             const float *coeffs = sce->coeffs + w*128;
864             start = 0;
865             for (i = 0; i < 128; i++) {
866                 if (i - start >= sce->ics.swb_sizes[curband]) {
867                     start += sce->ics.swb_sizes[curband];
868                     curband++;
869                 }
870                 if (coeffs[i]) {
871                     avg_energy += coeffs[i] * coeffs[i];
872                     last = FFMAX(last, i);
873                     lastband = FFMAX(lastband, curband);
874                 }
875             }
876         }
877     }
878     last++;
879     avg_energy /= last;
880     if (avg_energy == 0.0f) {
881         for (i = 0; i < FF_ARRAY_ELEMS(sce->sf_idx); i++)
882             sce->sf_idx[i] = SCALE_ONE_POS;
883         return;
884     }
885     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
886         start = w*128;
887         for (g = 0; g < sce->ics.num_swb; g++) {
888             float *coefs   = sce->coeffs + start;
889             const int size = sce->ics.swb_sizes[g];
890             int start2 = start, end2 = start + size, peakpos = start;
891             float maxval = -1, thr = 0.0f, t;
892             maxq[w*16+g] = 0.0f;
893             if (g > lastband) {
894                 maxq[w*16+g] = 0.0f;
895                 start += size;
896                 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
897                     memset(coefs + w2*128, 0, sizeof(coefs[0])*size);
898                 continue;
899             }
900             for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
901                 for (i = 0; i < size; i++) {
902                     float t = coefs[w2*128+i]*coefs[w2*128+i];
903                     maxq[w*16+g] = FFMAX(maxq[w*16+g], fabsf(coefs[w2*128 + i]));
904                     thr += t;
905                     if (sce->ics.num_windows == 1 && maxval < t) {
906                         maxval  = t;
907                         peakpos = start+i;
908                     }
909                 }
910             }
911             if (sce->ics.num_windows == 1) {
912                 start2 = FFMAX(peakpos - 2, start2);
913                 end2   = FFMIN(peakpos + 3, end2);
914             } else {
915                 start2 -= start;
916                 end2   -= start;
917             }
918             start += size;
919             thr = pow(thr / (avg_energy * (end2 - start2)), 0.3 + 0.1*(lastband - g) / lastband);
920             t   = 1.0 - (1.0 * start2 / last);
921             uplim[w*16+g] = distfact / (1.4 * thr + t*t*t + 0.075);
922         }
923     }
924     memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
925     abs_pow34_v(s->scoefs, sce->coeffs, 1024);
926     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
927         start = w*128;
928         for (g = 0;  g < sce->ics.num_swb; g++) {
929             const float *coefs  = sce->coeffs + start;
930             const float *scaled = s->scoefs   + start;
931             const int size      = sce->ics.swb_sizes[g];
932             int scf, prev_scf, step;
933             int min_scf = -1, max_scf = 256;
934             float curdiff;
935             if (maxq[w*16+g] < 21.544) {
936                 sce->zeroes[w*16+g] = 1;
937                 start += size;
938                 continue;
939             }
940             sce->zeroes[w*16+g] = 0;
941             scf  = prev_scf = av_clip(SCALE_ONE_POS - SCALE_DIV_512 - log2f(1/maxq[w*16+g])*16/3, 60, 218);
942             step = 16;
943             for (;;) {
944                 float dist = 0.0f;
945                 int quant_max;
946
947                 for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
948                     int b;
949                     dist += quantize_band_cost(s, coefs + w2*128,
950                                                scaled + w2*128,
951                                                sce->ics.swb_sizes[g],
952                                                scf,
953                                                ESC_BT,
954                                                lambda,
955                                                INFINITY,
956                                                &b);
957                     dist -= b;
958                 }
959                 dist *= 1.0f / 512.0f / lambda;
960                 quant_max = quant(maxq[w*16+g], ff_aac_pow2sf_tab[POW_SF2_ZERO - scf + SCALE_ONE_POS - SCALE_DIV_512]);
961                 if (quant_max >= 8191) { // too much, return to the previous quantizer
962                     sce->sf_idx[w*16+g] = prev_scf;
963                     break;
964                 }
965                 prev_scf = scf;
966                 curdiff = fabsf(dist - uplim[w*16+g]);
967                 if (curdiff <= 1.0f)
968                     step = 0;
969                 else
970                     step = log2f(curdiff);
971                 if (dist > uplim[w*16+g])
972                     step = -step;
973                 scf += step;
974                 scf = av_clip_uint8(scf);
975                 step = scf - prev_scf;
976                 if (FFABS(step) <= 1 || (step > 0 && scf >= max_scf) || (step < 0 && scf <= min_scf)) {
977                     sce->sf_idx[w*16+g] = av_clip(scf, min_scf, max_scf);
978                     break;
979                 }
980                 if (step > 0)
981                     min_scf = prev_scf;
982                 else
983                     max_scf = prev_scf;
984             }
985             start += size;
986         }
987     }
988     minq = sce->sf_idx[0] ? sce->sf_idx[0] : INT_MAX;
989     for (i = 1; i < 128; i++) {
990         if (!sce->sf_idx[i])
991             sce->sf_idx[i] = sce->sf_idx[i-1];
992         else
993             minq = FFMIN(minq, sce->sf_idx[i]);
994     }
995     if (minq == INT_MAX)
996         minq = 0;
997     minq = FFMIN(minq, SCALE_MAX_POS);
998     maxsf = FFMIN(minq + SCALE_MAX_DIFF, SCALE_MAX_POS);
999     for (i = 126; i >= 0; i--) {
1000         if (!sce->sf_idx[i])
1001             sce->sf_idx[i] = sce->sf_idx[i+1];
1002         sce->sf_idx[i] = av_clip(sce->sf_idx[i], minq, maxsf);
1003     }
1004 }
1005
1006 static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
1007                                        SingleChannelElement *sce,
1008                                        const float lambda)
1009 {
1010     int start = 0, i, w, w2, g;
1011     int minq = 255;
1012
1013     memset(sce->sf_idx, 0, sizeof(sce->sf_idx));
1014     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
1015         start = w*128;
1016         for (g = 0; g < sce->ics.num_swb; g++) {
1017             for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
1018                 FFPsyBand *band = &s->psy.psy_bands[s->cur_channel*PSY_MAX_BANDS+(w+w2)*16+g];
1019                 if (band->energy <= band->threshold) {
1020                     sce->sf_idx[(w+w2)*16+g] = 218;
1021                     sce->zeroes[(w+w2)*16+g] = 1;
1022                 } else {
1023                     sce->sf_idx[(w+w2)*16+g] = av_clip(SCALE_ONE_POS - SCALE_DIV_512 + log2f(band->threshold), 80, 218);
1024                     sce->zeroes[(w+w2)*16+g] = 0;
1025                 }
1026                 minq = FFMIN(minq, sce->sf_idx[(w+w2)*16+g]);
1027             }
1028         }
1029     }
1030     for (i = 0; i < 128; i++) {
1031         sce->sf_idx[i] = 140;
1032         //av_clip(sce->sf_idx[i], minq, minq + SCALE_MAX_DIFF - 1);
1033     }
1034     //set the same quantizers inside window groups
1035     for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w])
1036         for (g = 0;  g < sce->ics.num_swb; g++)
1037             for (w2 = 1; w2 < sce->ics.group_len[w]; w2++)
1038                 sce->sf_idx[(w+w2)*16+g] = sce->sf_idx[w*16+g];
1039 }
1040
1041 static void search_for_ms(AACEncContext *s, ChannelElement *cpe,
1042                           const float lambda)
1043 {
1044     int start = 0, i, w, w2, g;
1045     float M[128], S[128];
1046     float *L34 = s->scoefs, *R34 = s->scoefs + 128, *M34 = s->scoefs + 128*2, *S34 = s->scoefs + 128*3;
1047     SingleChannelElement *sce0 = &cpe->ch[0];
1048     SingleChannelElement *sce1 = &cpe->ch[1];
1049     if (!cpe->common_window)
1050         return;
1051     for (w = 0; w < sce0->ics.num_windows; w += sce0->ics.group_len[w]) {
1052         for (g = 0;  g < sce0->ics.num_swb; g++) {
1053             if (!cpe->ch[0].zeroes[w*16+g] && !cpe->ch[1].zeroes[w*16+g]) {
1054                 float dist1 = 0.0f, dist2 = 0.0f;
1055                 for (w2 = 0; w2 < sce0->ics.group_len[w]; w2++) {
1056                     FFPsyBand *band0 = &s->psy.psy_bands[(s->cur_channel+0)*PSY_MAX_BANDS+(w+w2)*16+g];
1057                     FFPsyBand *band1 = &s->psy.psy_bands[(s->cur_channel+1)*PSY_MAX_BANDS+(w+w2)*16+g];
1058                     float minthr = FFMIN(band0->threshold, band1->threshold);
1059                     float maxthr = FFMAX(band0->threshold, band1->threshold);
1060                     for (i = 0; i < sce0->ics.swb_sizes[g]; i++) {
1061                         M[i] = (sce0->coeffs[start+w2*128+i]
1062                               + sce1->coeffs[start+w2*128+i]) * 0.5;
1063                         S[i] =  M[i]
1064                               - sce1->coeffs[start+w2*128+i];
1065                     }
1066                     abs_pow34_v(L34, sce0->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
1067                     abs_pow34_v(R34, sce1->coeffs+start+w2*128, sce0->ics.swb_sizes[g]);
1068                     abs_pow34_v(M34, M,                         sce0->ics.swb_sizes[g]);
1069                     abs_pow34_v(S34, S,                         sce0->ics.swb_sizes[g]);
1070                     dist1 += quantize_band_cost(s, sce0->coeffs + start + w2*128,
1071                                                 L34,
1072                                                 sce0->ics.swb_sizes[g],
1073                                                 sce0->sf_idx[(w+w2)*16+g],
1074                                                 sce0->band_type[(w+w2)*16+g],
1075                                                 lambda / band0->threshold, INFINITY, NULL);
1076                     dist1 += quantize_band_cost(s, sce1->coeffs + start + w2*128,
1077                                                 R34,
1078                                                 sce1->ics.swb_sizes[g],
1079                                                 sce1->sf_idx[(w+w2)*16+g],
1080                                                 sce1->band_type[(w+w2)*16+g],
1081                                                 lambda / band1->threshold, INFINITY, NULL);
1082                     dist2 += quantize_band_cost(s, M,
1083                                                 M34,
1084                                                 sce0->ics.swb_sizes[g],
1085                                                 sce0->sf_idx[(w+w2)*16+g],
1086                                                 sce0->band_type[(w+w2)*16+g],
1087                                                 lambda / maxthr, INFINITY, NULL);
1088                     dist2 += quantize_band_cost(s, S,
1089                                                 S34,
1090                                                 sce1->ics.swb_sizes[g],
1091                                                 sce1->sf_idx[(w+w2)*16+g],
1092                                                 sce1->band_type[(w+w2)*16+g],
1093                                                 lambda / minthr, INFINITY, NULL);
1094                 }
1095                 cpe->ms_mask[w*16+g] = dist2 < dist1;
1096             }
1097             start += sce0->ics.swb_sizes[g];
1098         }
1099     }
1100 }
1101
1102 AACCoefficientsEncoder ff_aac_coders[] = {
1103     {
1104         search_for_quantizers_faac,
1105         encode_window_bands_info,
1106         quantize_and_encode_band,
1107         search_for_ms,
1108     },
1109     {
1110         search_for_quantizers_anmr,
1111         encode_window_bands_info,
1112         quantize_and_encode_band,
1113         search_for_ms,
1114     },
1115     {
1116         search_for_quantizers_twoloop,
1117         codebook_trellis_rate,
1118         quantize_and_encode_band,
1119         search_for_ms,
1120     },
1121     {
1122         search_for_quantizers_fast,
1123         encode_window_bands_info,
1124         quantize_and_encode_band,
1125         search_for_ms,
1126     },
1127 };